
this version: May 13, 2011

A semantic virtual machine

Arnold Neumaier
Peter Schodl

Fakultät für Mathematik, Universität Wien
Nordbergstr. 15, A-1090 Wien, Austria

WWW: http://www.mat.univie.ac.at/∼neum/FMathL

Abstract

A semantic virtual machine (SVM) is a variant of a programable register machine that
combines the transparency and simplicity of the action of a Turing machine with a
clearly arranged assembler-style programming language and a user-friendly representa-
tion of semantic information.
This paper describes the concept of the SVM, its memory management and flow control,
and shows how a semantic virtual machine can simulate any ordinary Turing machine.
Analogous to a universal Turing machine, we give a universal semantic virtual machine
(USVM), which is a special SVM that can simulate every SVM. The USVM serves both
as a self-contained semantic explanation of many aspects of the SVM, and as a check
that an SVM implementation works correctly.

Contents

1 Introduction 2

2 Definition of the framework 3

3 The semantic virtual machine 5

4 The SVM programming language 6

5 Flow control 9

6 External values and external processors 10

7 An operational semantic for the SVM 11

8 Description of the SVM commands 14

9 Turing machines and their simulation 16

10 The USVM 22

1



1 Introduction

A Turing machine, introduced originally in 1936 by Turing [18], is a commonly used
abstract model of a simple computer. Informally, we think of a Turing machine (TM) as a
reading/writing head that moves along an arbitrary long tape which is divided into cells,
each containing one character. The Turing machine is always in some state, and it has a list
of instructions, usually called the transition table. Determined by the character currently
read from the tape and the state the TM is currently in, the transition table assigns to
the TM some character to write on the tape, to move one cell to the left or the right, and
some state to enter. For a rigorous definition and properties, see, e.g., the classic book by
Rogers [13] or Aho et al. [2] or almost any other computability book; see also Section 9
below.

The concept of a Turing machine is very simple and at the same time very powerful (we
remind of Church’s Thesis, discussed, e.g., by Odifreddi [10]), but it has two disadvantages
that prevent the use of a TM as a device for efficiently performing calculations:

(1) The instructions of the TM are too primitive, their formulation is not intuitive in
terms of semantically important actions. Given a set of instructions of some TM, it
is very laborious to find out what this TM does.

(2) The representation of information on the one-dimensional tape is adequate only in
some cases. Usually the result of a calculation cannot be interpreted easily.

We alter the concept of a TM concerning those two issues, and the resulting machine is a
semantic virtual machine (SVM):

Concerning item 1, the SVM is able to execute an SVM program, i.e., a sequence of
commands written in an assembler-like language. Each command performs a comprehensible
action on the memory.

Concerning item 2, the SVM represents information by semantic relations between objects
represented by a binary operator, the semantic memory. Using the semantic memory,
complex relations can be represented in a simple and user-friendly way, and be visualized
as a directed, labelled graph. Thus an SVM allows the expression of semantics in a very
natural form.

Alltogether, we think of the SVM as a machine that performs some basic actions on the
semantic memory. The SVM has random access to this memory, and the actions it performs
(like writing, copying, deleting,. . . ) are determined by a human-readable program.

That the SVM is as least as powerful as an ordinary Turing machine is shown in Section
9, but we give the SVM even more power by allowing it to access the capabilities of the
physical device it is implemented on: external memory and external processors, see Section
6. This has the consequence that the SVM is no longer equivalent to an ordinary Turing
machine, or in other words, not every SVM program, regarded as a function on the context,
is Turing computable. For example, external processors might have access to the system
clock etc. However, the main reason for enabling the SVM to call external processors is
higher performance and reusability of trusted algorithms. The SVM command that calls
external processes is essentially a foreign function interface (FFI) of the SVM.

A cornerstone in the creation of the SVM is the proof that the SVM is powerful enough
to simulate itself in a very simple way. This is done by giving an SVM program that can

2



simulate every other SVM program. Since this is analogous to the role of a universal Turing
machine, we call this program the universal semantic virtual machine (USVM).

The USVM is a program short and transparent enough to be checked by hand. It has
only 166 lines of code, see Section 10 (compare this, e.g., to the reflective interpreter by
Jefferson & Friedman in [3], which has 273 lines). The USVM gives us a possibility
to check many aspects of the SVM for correctness: Once one has convinced oneself of the
correctness of the USVM, one can make the implementation of the SVM on some physical
device also trustworthy by checking empirically (or, in principle, in a formal way) that any
SVM program executed by the implemented SVM produces the same output as in the case
when the USVM simulates this program.

All this makes the SVM a semantically self-contained, transparent and easily usable tool
that can be a trustworthy foundation for any computer system that deals with semantic
content.

Contents. Section 2 formally defines the framework we use to store information. Section
3 describes the SVM and its memory in detail, and Section 4 defines the programming
language of the SVM. Having an assembler-like language for the SVM instead of a transition
table like the Turing machines makes programming much more convenient, but it requires
the storage of information for flow control, described in Section 5. The features of the SVM
that allow it to make use of other algorithms on the physical device are discussed in Section
6. In Section 7 we give an operational semantic of the SVM and in Section 8 we describe the
commands in a more informal way and give some examples. In Section 9 we show how the
SVM can simulate an ordinary TM. The USVM, a special SVM program that can simulate
every other SVM program, is given in Section 10.

Acknowledgements. Mike Mowbray and Steve Stevenson contributed useful remarks to
an earlier version. Support by the Austrian Science Fund (FWF) under contract number
P20631 is gratefully acknowledged.

2 Definition of the framework

We define the abstract data structure we use to represent mathematics.

It can be regarded as a special case of a semantic network, introduced by Richens [11]
in 1956. This and akin concepts are discussed in detail by Sowa [17]. Also, it is inspired
by, and representable in, the semantic web [5]. A standardized and widely used example of
a semantic net with the aim to be used in the World Wide Web is the Resource Description
Framework (RDF), described by Manola et al. [6] and specified by Lassila et al. [4].

2.1 The semantic memory

There is an unlimited number of objects, but only finitely many of them are represented
explicitly in stored memory. Objects can be compared for equality, which is an equivalence
relation. On the metalevel, we refer to objects by strings not beginning with a hash (#);
different objects are referred to by different strings. Empty is an object. Object variables
are variables in the usual sense, ranging over the set of objects. We refer to object variables

3



via a string beginning with a hash (#) followed by some alphanumeric string. For example,
in the statement

#name.type = String for every object #name representing a string,

type and Name are specific objects, and #name is a variable in the same sense as x is a
variable in

x2 is even for every even integer x.

Usually, we will use suggestive strings for variables, e.g., we use #handle or #h for an
object that is intended to be a handle.

A semantic mapping (abbreviated SM) assigns to any two objects #h and #f a unique
object #h.#f such that

if #f = Empty or #h = Empty then #f.#h = Empty.

A semantic unit (short sem) is an equation of the form #h.#f = #e with nonempty #h,
#f, and #e; we call #h the handle, #f the field, and #e the entry of the sem. The
constituents of an object #a are the sems in which #a is the handle.

Semantic mappings are used to store mathematics, but to be able to alter the data we
need a dynamical framework. The semantic mapping that changes over time (formally, a
semantic mapping valued function of time) is called the semantic memory.

A position is a pair (#h/#f) consisting of two objects #h and #f. We call #h the handle,
#f the field and #h.#f the entry of (#h/#f). This position is called occupied if #h.#f

is not Empty.

We say that the sem #d.#e=#f follows the sem #a.#b = #c if #d = #c. Using
a left-associative notation, we then write #a.#b.#e = #f; thus #a.#b.#e stands for
(#a.#b).#e. This notation naturally extends to more dots.

A short-hand notation for k repetitions (k = 0, 1, 2, . . .) of a field: #a.#b. · · · .#b︸ ︷︷ ︸
k times

.#e is

written as #a.#bk.#e.

A path of sems starting at #h and ending at #e is a sequence of sems such that the
first sem has the handle #h, each later sem follows the previous one, and the last sem has
entry #e, and no sem has the field type. An object #e is reachable from a handle #h if
there is some path of sems starting at #h and ending in #e. A sem is reachable from a
handle #h if there is some path of sems starting at #h that contains that sem. A position
is reachable from a handle #h if the handle of that position is an object reachable from
#h.

If the set of sems reachable from an object #h is finite, then the set of sems reachable from
#h defines the record with handle #h.

Clearly, a SM allows one to construct arbitrarily complex records. In contrast to records
in programming languages such as Pascal, records in a SM may contain cycles. Indeed,
backreferences are an important part of the design of the type system; for example, they
allow labelled context-free grammars to be defined as type systems.

2.2 Illustration by semantic graphs

For graphical illustration of a semantic mapping, we will interpret a sem #a.#b=#c as
an edge with label #b from node #a to node #c of a directed labeled graph, called a

4



semantic graph. Objects may, but need not have external values, i.e., data of arbitrary
form, associated with the object, but stored outside the semantic memory. We refer to the
value of an object #obj by VALUE(#obj). In a semantic graph, objects that have an external
value are printed as a box containing that value. For better readability we use dashed edges
for edges labeled with type, since these constituents have importance for the typing, and
bold edges for edges labeled with next, since this makes linked lists more readable. Different
nodes of the semantic graph may represent the same object. For example, the information
12
4 = 3 may be represented as a list of sems as fiven in Figure 1, or equivalently as the
semantic graph in Figure 2.

$380.type=Binary

$380.lhs=$370

$380.rhs=$246

$380.relation=Equal

$246.type=Integer

$370.type=Fraction

$370.num=$244

$370.denom=$248

$244.type=Integer

$248.type=Integer

VALUE($244) = 12

VALUE($246) = 3

VALUE($248) = 4

Figure 1: A list of sems and values

$380

Binary

type

$370

lhs

3

rhs

Equal

relation

Fraction

type

12

num

4

denom

Integer

type

type type

Figure 2: A semantic graph

3 The semantic virtual machine

A semantic virtual machine (SVM) is a machine manipulating semantic information in
a semantic memory. Independent of the interpretation of the semantic memory either as
semantic mapping or as graph, we will refer to it as the memory of the SVM.

Since there are equivalent formulations of Turing machines which use a 2-dimensional mem-
ory instead of the tape (a proof is given by Cohen [1]) the change to a binary operator
instead of a tape alone would not go beyond the scope of a Turing machine. But by allowing
the SVM to manipulate its external environment, the scope of an SVM becomes strictly
bigger cf. Section 6.

5



To allow this, objects can have an external value, which is not part of the SM but
arbitrary data stored outside the semantic memory (on the physical machine the SVM is
implemented on) and associated to the object. This external storage is handled exclusively
by external processors, i.e., algorithms executed by the physical machine. External values
are discussed in more detail in Section 6.

The memory of the SVM contains the program to execute, and the information about
flow control as well, all represented via a semantic mapping. To enable the processing of
more than one program in the same memory, each execution of the SVM has its own core,
i.e., a record reserved for the input, the output and temporary data.

Since the core is the most important record for a program, will simplify the notation for it:
We use the caret ^ to abbreviate reference to the core of the execution under consideration.
Hence ^a means #core.a, where #core is the core of the execution under consideration.
The caret binds stronger than the semantic mapping, hence a.^b means a.(#core.b).

To start processing a program, the SVM needs to know the object that contains the program,
and the object that serves as the core. Therefore the call of an SVM program has two
arguments: the name of the program and the core.

4 The SVM programming language

The most elementary part of the SVM programming language is a command. There are
24 different commands; a list of the commands and their action is given in Section 8. The
commands fall into four groups: commands that structure the program but have no influence
on the memory at runtime, commands for flow control, assignments, which make alterations
in the memory of the SVM, and commands handling or external values.

Compared to transition tables of Turing machines, SVM programs are much less intricate.
In fact, the SVM programming language is much more akin to an assembler-style language.

Before describing the commands in detail, we say something about the structure of the
language and external processors and values. This is the content of this and the next
section.

The SVM programming language has the reserved names

program process start

for structuring the program, and the reserved names

check

create

exist

existref

external

externalref

fields

get

goto

if

move

refget

refset

set

setconst

stop

in

out

refin

refout

unset

for commands making certain alterations in the memory or in flow control. The meaning
of these names will be discussed in Section 5. The name type should also not be used as
a name in a SVM program to prevent collusion with the typing system [14] which is not a
part of the SVM but based on it.

6



All other names and more general alphanumeric strings may be used as variables for objects.

The SVM programming language is the lowest level of a fully comfortable programming
language that we are in the process of developing, see [9] and [15].

4.1 The grammar of the SVM programming language

The complete grammar of the SVM programming language si defined by the following
grammar, using partially labelled, BNF like productions. A line beginning with a percent
sign % is treated as a comment without any effect on the program. To ease readability,
white spaces at the beginning of a line are ignored.

We define the following macros in the grammar:

: macro(lines of $1)

macro: $1 | macro newline $1

: macro(string of $1)

macro: $1 | macro $1

The tokens BLANK, CHARACTER and ALPHANUMERIC in the grammar stand for a
blank space, any character and any alphanumeric character respectively. The token COM-
MENT is a string beginning with a percent sign (%) and not containing a newline (\n).

STMPROGRAM → HEADER lines of PROCESS STARTPROCESS
HEADER → program( NAME )

NAME → string of ALPHANUMERIC
PROCESS → PROCESSHEADER lines of COMMAND PROCESSEND

PROCESSHEADER → process( NAME )

COMMAND → NC | GC | SC | string of BLANK COMMAND | COMMENT
PROCESSEND → GC | SC | string of BLANK PROCESSEND | COMMENT

STARTPROCESS → start( NAME )

NC → NAME = check( NAME , NAME )

NC → create( NAME )

NC → NAME =exist( NAME , NAME )

NC → NAME =existref( NAME , NAME )

NC → NAME =external( NAME , NAME )

NC → NAME =externalref( NAME , NAME )

NC → NAME =fields( NAME )

NC → NAME =get( NAME , NAME )

NC → goto( NAME )

NC → if( NAME , NAME )

NC → move( NAME )

NC → NAME =refget( NAME , NAME )

NC → ( NAME , NAME )=refset( NAME )

NC → ( NAME , NAME )=set( NAME )

NC → ( NAME , NAME )=setconst( NAME )

NC → NAME =in( NAME , NAME )

NC → NAME =out( NAME , NAME )

7



NC → NAME =refin( NAME , NAME )

NC → NAME =refout( NAME , NAME )

NC → unset( NAME , NAME )

SC → stop

4.2 Representation of SVM programs in the SM

A process is a sequence of commands, beginning with the command process(#proc).
Every process ends with a command that either halts the SVM or calls another process.

An SVM program is the command program(#prog) followed by a sequence of processes.

Each process is represented in the memory by a linked list of commands, and the first
command of each process is accessible by:

#program.#processname = #process

where #program is the record containing the program, #processname is the name of the
process, and #process is a linked list of the commands of process #processname.

Each command is represented in the memory by a record #command with

#command.#part = #object

#command.next = #nextcommand

and #nextcommand is the command in the line below this command. The object #part is
one of the following: comm refers to the name of the command, arg1 to the first argument,
arg2 to the second argument, and arg3 to the third argument. Since not all commands
have three arguments, some of these may be empty.

The object #program.start contains the object referring to the first process, i.e., the process
that has to be executed first in the program #program.

The SVM is untyped. However, to further specify the representation of SVM programs in
the SM, we give typesheets (see [14]) for SVM programs:

SVM::

SvmProgram:

allOf> start = Object

processes = Processes

nothingElse>

Processes:

someOfType> Object = SvmCommand

CommandName:

atomic> check, create, exist, existref, external, externalref

atomic> fields, get, goto, if, move, refget, refset, set

atomic> setconst, transportin, transportout, transportrefin

8



atomic> transportrefout, unset, stop

SvmCommand:

allOf> comm = CommandName

optional> arg1 = Object

arg2 = Object

arg3 = Object

next = SvmCommand

nothingElse>

The semantic graph in Figure 3 is the record that represents the SVM program copyFields

as given in text form in Section 8, page 16. Note that for transparency, the sems with field
type are not printed.

$326

$450

processes

getfields

start

$440

getfields $502

checkfornext

$548

copynext

$500

next

fields

c o m m

fieldstack

arg1

copyfrom

arg2

arg2 $536

next

exist

c o m m

thereismore

arg1next

arg3

arg1arg2

arg3

$574

next

get

c o m m

goto

c o m m

checkfornext

arg1

arg1

$546

next

if

c o m m

copynext

arg2

stop

c o m m

arg2 c o m m

$592

next

fieldtocopy

arg1

entry

arg3

arg2

arg3$610

next

refget

c o m m

entrytocopy

arg1

arg2arg3

$612

next

refset

c o m m

copyto

arg1

c o m m arg1

Figure 3: Representation of an SVM program in the SM

5 Flow control

This section describes how the information for flow control is represented in the memory of
the SVM.

The SVM command currently executed is called the focus, it may change after each program
execution. A process can be entered only at its first command, but it is possible to leave a
process before its last command line is reached.

During runtime, the focus is represented in the object ^focus. Setting the entry of ^focus

9



to ^focus.next means to proceed one line forward in the programm. Setting the entry of
^focus to #program.#process as done by the goto and if command, sets the focus to the
first line of the process #process.

It is assumed that ^core always contains the current core, i.e., #core.core=#core. This
allows us to reduce the number of different commands.

6 External values and external processors

The SVM has the ability to access the facilities of the physical device it is implemented
on. This may provide the SVM with much better performance for tasks it can export, and
allows the use of existing algorithms written in different programming languages.

Every object can have an external value, which is some data associated to this object, but
not part of the memory of the SVM. Instead, it is managed by the physical device which
executes the SVM. In descriptions of commands, we refer to the external value of the object
#object by VALUE(#object).

The values of objects are directly processed by the physical device. Hence one can benefit
from the full computational power of the physical device. A computation on the external
values is said to be realized by an external processor. External processors have no access
to the memory of the SVM, but may be called from the SVM as the command external.
From a theoretical point of view, external processors are oracles to the SVM, as defined
by Shoenfield [16].

External values can be imported into the memory of the SVM, and conversely. This is done
by the commands transportin, transportout, transportrefin and transportrefout.
The information about how to represent the external value in the memory of the SVM
is called the protocol, and is used as an argument for the transport-commands. Figure 4
displays the interactions between the SVM and the physical device, and the SVM commands
involved. Our current implementation includes protocols for representing

• strings,

• SVM programs (see Section 4),

• tapes and transition tables for Turing machines (see Section 9),

• Concise programs (see [15]).

There may be an arbitrary number of protocols, as long as the device on which the SVM is
implemented knows how to interpret them.

SVM
external //

works on

��

processor of
physical device

works on
��

semantic memory
out, refout // storage of

physical devicein, refin
oo

Figure 4: Interaction of the SVM with the physical device

10



7 An operational semantic for the SVM

We formally define the action of the SVM, in particular of every SVM command, by giving
an operational semantic.

Let V the set of values.

A state is a triple (s, v,O) such that O is a sets of objects, s : O × O → O is a semantic
mapping, and v : O → V is a partial mapping that associates to some objects in O an
external value. We define S to be the set of states.

The object p ∈ O denotes the record that contains the program to execute, and c ∈ O
denotes the core to use. In the following, we define f := s(c, focus).

For a semantic mapping s and a set R ⊆ O × O × O we define replace(s,R) as a semantic
mapping s′ with

s′(h, f) :=

{
e if (h, f, e) ∈ R

s(h, f) otherwise

For a mapping v : O → V and a set R ⊆ O × V we define replace(s,R) as mapping
v′ ∈ O → V with

v′(o) :=

{
e if (o, e) ∈ R

v(o) otherwise

The execution of the SVM is a (possibly infinite) sequence of states (S1, S2, . . . , Si, . . .) de-
termined by an initial state S0 = (s0, v0, O0) and by S1 := start(S0) and St+1 := step(St) for
t = 1, 2, . . .. The function start : S → S is defined by start(s, v,O) = (replace(s,R), v, O)
with R := {(c, focus, s(p, start)), (c, core, c)}. The function step : S → S is defined by a
case distinction over s(f, comm), as follows:

check: If s(f, comm) = check, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (c, s(f, arg1), True)}

if s(f, arg2) = s(f, arg3) and

R = {(c, focus, s(f, next)), (c, s(f, arg1), False)}

if s(f, arg2) 6= s(f, arg3)

create: If s(f, comm) = create, then step(s, v,O) = (replace(s,R), v, O ∪ {o}) with
o /∈ O, and R = {(c, focus, s(f, next)), (c, s(f, arg1), o)}.

exist: If s(f, comm) = exist, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (c, s(f, arg1), True)}

if s(s(c, s(f, arg2)), s(f, arg3)) 6= Empty and

R = {(c, focus, s(f, next)), (c, s(f, arg1), False)}

if s(s(c, s(f, arg2)), s(f, arg3)) = Empty

11



existref: If s(f, comm) = existref, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (c, s(f, arg1), True)}

if s(s(c, s(f, arg2)), s(c, s(f, arg3))) 6= Empty and

R = {(c, focus, s(f, next)), (c, s(f, arg1), False)}

if s(s(c, s(f, arg2)), s(c, s(f, arg3))) = Empty

external: If s(f, comm) = external, then step(s, v,O) = (replace(s,R), v′, O) with

R = {(c, focus, s(f, next))}
and v′(s(c, s(f, arg1))) is the value calculated by the external process associated to s(f, arg2)
with input v(s(c, s(f, arg3))) and v′ = v for all other objects.

externalref: If s(f, comm) = external, then step(s, v,O) = (replace(s,R), v′, O) with

R = {(c, focus, s(f, next))}
and v′(s(c, s(f, arg1))) is the value calculated by the external process associated to s(c, s(f, arg2))
with input v(s(c, s(f, arg3))) and v′ = v for all other objects.

fields: Let (e1, . . . , en) a sequence containing every field of s(c, s(f, arg2)). If s(f, comm) =
fields, then step(s, v,O) = (replace(s,R), v, O ∪ {o1, . . . , on}) with
oi /∈ O for all i = 1, . . . , n, and

R ={(c, focus, s(f, next)), (s(s(c, s(f, arg1)), next), o1)}
∪ {(oi, entry, ei) | i = 1, . . . , n}
∪ {(oi, next, oi+1) | i = 1, . . . , n− 1}

get: If s(f, comm) = get, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (c, s(f, arg1), s(s(c, s(f, arg2)), s(f, arg3)))}.

goto: If s(f, comm) = goto, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(p, s(f, arg1)))}.

if: If s(f, comm) = if, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(p, s(f, arg2)))} if s(c, s(f, arg1)) = True

R = {(c, focus, s(f, next))} if s(c, s(f, arg1)) = False

For every other value of s(c, s(f, arg1)) the SVM stops and issues an error.

move: If s(f, comm) = move, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(p, s(f, s(c, arg1))))}.

12



refget: If s(f, comm) = refget, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (c, s(f, arg1), s(s(c, s(f, arg2)), s(c, s(f, arg3))))}

refset: If s(f, comm) = refset, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (s(c, s(f, arg1)), s(c, s(f, arg2)), s(c, s(f, arg3)))}

set: If s(f, comm) = set, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (s(c, s(f, arg1)), s(f, arg2), s(c, s(f, arg3)))}.

setconst: If s(f, comm) = setconst, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (s(c, s(f, arg1)), s(f, arg2), s(f, arg3))}.

stop: If s(f, comm) = stop, then step(s, v,O) is not defined and the sequence of states
ends.

in: If s(f, comm) = in, then step(s, v,O) = (s′, v, O ∪ {o1, . . . , on}) with
s′(c, s(f, arg1)) is the semantic mapping that represents the value v(s(c, s(f, arg3))) in a
record with handle s(c, s(f, arg1)) according to the protocol associated with s(f, arg2),
using objects {o1, . . . , on} /∈ O, and s′(c, focus) = s(f, next).

refin: If s(f, comm) = refin, then step(s, v,O) = (s′, v, O ∪ {o1, . . . , on}) with
s′(c, s(f, arg1)) is the semantic mapping that represents the value v(s(c, s(f, arg3))) in a
record with handle s(c, s(f, arg1)) according to the protocol associated with s(c, s(f, arg2)),
using objects {o1, . . . , on} /∈ O, and s′(c, focus) = s(f, next).

out: If s(f, comm) = out, then step(s, v,O) = (replace(s,R), replace(v,Q), O) with

R = {(c, focus, s(f, next))}
Q = {(s(c, s(f, arg1)), e)} and e is the value that represents the record with handle s(c, s(f, arg3))
according to the protocol associated with s(f, arg2)

refout: If s(f, comm) = refout, then step(s, v,O) = (replace(s,R), replace(v,Q), O) with

R = {(c, focus, s(f, next))}
Q = {(s(c, s(f, arg1)), e)} and e is the value that represents the record with handle s(c, s(f, arg3))
according to the protocol associated with s(c, s(f, arg2))

unset: If s(f, comm) = unset, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (s(f, arg1), s(f, arg2), Empty)}.
For every other value of s(f, comm), the execution of the SVM stops and issues an error.

13



7.1 Garbage collection

For some state S = (s, v,O) ∈ S we define the relation o1 BS o2 if there exists an object
x 6= Empty with either s(o1, x) = o2 or s(o1, o2) = x.

We define o1 BBS o2 if there exists a sequence (x1, . . . , xn) of objects with o1 Bst x1 BS

. . . Bst xn BS o2.

For a set X of objects, we define X BBS o if there exists an xi ∈ X with xi BBS o.

Theorem (Garbage collection) For given state S and p, c ∈ O, we define Oess = {o ∈
O|{c, p} BBS o}.
Let sess and vess the restrictions of s and v to Oess, let Sess = (sess, vess, Oess).

Then
step(S) = step(Sess)

Proof: It is easy to check that in all cases of the definition of step, the result step(S) only
depends on objects o with {c, p} BBS o. �
This theorem allows us to perform garbage collection after every step of the SVM, i.e.,
delete every sem a.b=c with a/∈ Oess, and delete every object o/∈ Oess, and its value.

8 Description of the SVM commands

We now introduce the commands of the SVM language and describe their effect. There
are four groups of commands: Table 2 describes the commands that are needed to give the
program an appropriate structure. Table 3 contains the assignments, i.e., those commands
that perform alterations in the memory of the SVM. Table 4 gives the commands used for
flow control, and Table 5 the commands that establish communication with the physical
device, namely call external processes and access external values.

SVM command comment

program(#1) first line of the program #1

process(#1) first line of the process #1
start(#1) start with process #1

Table 2: Structuring commands

8.1 Example: shallow copy

The following SVM program performs a shallow copy from the record passed to the SVM
in #core.copyfrom to the object in #core.copyto.

program(copyFields)

process(getfields)

fieldstack=fields(copyfrom)

goto(checkfornext)

process(checkfornext)

thereismore=exist(fieldstack,next)

14



SVM command comment

#1=check(#2,#3) sets ^#1 to True if ^#2 = ^#3, else to False

create(#1) assigns some free object to ^#1

#1=exist(#2,#3) sets ^#1 to True if ^#1.#2 exists, else to False

#1=existref(#2,#3) sets ^#1 to ’T if ^#1.^#2 exists, else to False

#1=fields(#2) creates a linked list with handle ^#1 containing all
fields of ^#2

#1=get(#2,#3) assigns ^#2.#3 to ^#1

#1=refget(#2,#3) assigns ^#2.^#3 to ^#1

(#1,#2)=refset(#3) assigns ^#3 to ^#1.#2

(#1,#2)=set(#3) assigns ^#3 to ^#1.^#2

(#1,#2)=setconst(#3) writes #3 to ^#1.#2

unset(#1,#2) deletes the position (^#1,^ #2), i.e., sets it to
Empty

Table 3: Assignment commands

SVM command comment

goto(#1) sets the focus to the first line of process #1
move(#1) sets the focus to the first line of process ^#1
if(#1,#2) sets the focus to the first line of process #2 if

^#1=True, and to the next line if ^#1=False
stop ends a program

Table 4: Commands for flow control

SVM command comment

#1=external(#2,#3) calls external processor #2 with input VALUE(^#3)
and output VALUE(^#1)

#1=externalref(#2,#3) calls external processor ^#2 with input VALUE(^#3)
and output VALUE(^#1)

#1=in(#2,#3) imports VALUE(^#2) into ^#1 by protocol #3
#1=out(#2,#3) exports record ^#2 into VALUE(^#1) by protocol #3
#1=refin(#2,#3) imports VALUE(^#2) into ^#1 by protocol ^#3
#1=refout(#2,#3) exports record ^#2 into VALUE(^#1) by protocol

^#3

Table 5: Commands for external communication

15



if(thereismore,copynext)

stop

process(copynext)

fieldstack=get(fieldstack,next)

fieldtocopy=get(fieldstack,entry)

entrytocopy=refget(copyfrom,fieldtocopy)

(copyto,fieldtocopy)=refset(entrytocopy)

goto(checkfornext)

start(getfields)

For example, if the SVM is called with the program above and core #c and a semantic
memory containing the following sems:

#ccore
++

copyfrom

��

copyto

**UUUUUUUUUUUUUUUUUUUUU

#obj1

a

��

b

""FF
FF

FF
FF

F
#obj2

A B

Upon execution of this program the following happens:

First, the process getfields is entered (due to the line start(getfields)), and this pro-
cess generates a linked list beginning in ^fieldstack such that each field #f of ^copyfrom
is represented as ^fieldstack.nextk.entry=#f for some k ∈ 0, 1, 2, . . .. Then, process
checkfornext is entered.

The process checkfornext checks if ^fieldstack.next is nonempty. If this is the case,
process copynext is entered; otherwise the SVM halts.

Process copynext first sets ^fieldstack to ^fieldstack.next, i.e., we advance one link
in the linked list that contains all the fields of ^copyfrom. Then the field of ^copyfrom
(stored in ^fieldstack.entry) and the entry ^copyfrom.^fieldstack.entry are stored
in ^fieldtocopy and ^entrytocopy respectively. Finally this field and entry are written
into a new sem with handle ^copyto.

The result after execution of the SVM is a semantic memory containing:

#ccore
++

copyfrom

��

copyto

**UUUUUUUUUUUUUUUUUUUUU

#obj1

a

��

b

""FF
FF

FF
FF

F
#obj2

a

ttiiiiiiiiiiiiiiiiiiiiii

b
wwooooooooooooo

A B

9 Turing machines and their simulation

In this section we formally introduce Turing machines and show that the SVM is Turing
complete by giving an SVM program that simulates any ordinary Turing machine.

16



9.1 The tape of the Turing machine

The cells on the tape of the Turing machine are simulated by a linked list in ^context.tape

where ^context.tape.entry is the left end of the tape, and initially holds the delimiting
symbol ‘>’. Objects that do not exist are interpreted by the Turing machine as blank
spaces. The alphabet of the Turing machine is arbitrary, but must not contain the pipe
|. Furthermore, the characters > and the blank space are reserved. At the beginning of
execution, the head of the TM is assumed to be on ^context.tape.next, and the TM to
be in state ‘1’.

9.2 The instructions of the Turing machine

The action of the Turing machine is determined by a finite list of instructions of the form

S | R | W | M | S′

which applies if S is the state the TM is currently in, and R is the symbol currently read
by the TM. In this case, the following actions are performed, in this order:

(1) The symbol W is written. If W is the empty string, then nothing is written.

(2) The head moves one cell to the right if M = R and one cell to the left if M = L. If
M is the empty string, then no movement is performed.

(3) The state of the TM changes to S′.

If no instruction applies, the TM halts.

9.3 Example: Replacement

This is an example of a very simple Turing machine, which simply replaces in a string of
a’s and b’s every occurring a by c. It has only one state, and runs through the tape from
left to right, replacing every a it runs along. When it reaches the end of the string, it reads
a blank, and no instruction applies, hence the Turing machine halts.

The two instructions are:

1|b||R|1

1|a|c|R|1

Thus, the tape with initial content
> b b b a b b a b b a

has, when the Turing machine halts, the content:
> b b b c b b c b b c

9.4 Example: Division with remainder

This is a more complicated example of a Turing machine that performs a division with
remainder. The number of a’s at the beginning of the tape is divided by the number of

17



the b’s following. The result is represented as the number of q’s for the quotient, and the
number of r’s for the remainder, when the Turing machine halts.

For example, if we want to perform 8 divided by 3, the tape initially looks like this:
> a a a a a a a a b b b

where the eight a’s represent the dividend and the three b’s the divisor.

When the Turing machine halts, the tape contains:
> A A A A A A A A b b b q q r r

which tells us that the quotient is 2 (represented by the two q’s), and the remainder is
also 2 (represented by the two r’s). Note that the a’s have changed to A’s in order for the
processed a’s to be distinguishable from those not yet processed.

This is the transition table of the Turing machine that performs a division with remainder:

1|a||R|1

1|b||L|2

2|B||L|2

2|A||L|2

2|a|A||3

2| ||R|7

3|a||R|3

3|A||R|3

3|B||R|3

3|b|B|R|4

3| |||5

3|q|||5

4|b||L|2

4|q|||5

4| |||5

5|q||R|5

5| |q||6

6|q||L|6

6|B|b|L|6

6|A|||2

6|a|||2

7|A||R|7

7|B||R|7

7|b||R|7

7|q||R|7

7| ||L|8

8|q||L|8

8|b||L|8

8|r||L|8

8|B|b||9

9|B||R|9

9|b||R|9

9|q||R|9

9|r||R|9

9| |r||8

This Turing Machine performs the division by the following steps:

State 1 just brings the head in the right position to start:
The head moves to the right until the first b is read, then moves one cell to the left and
enters state 2.

State 2, 3, 4 and 5 determine the quotient, i.e., the number of q’s on the tape: For every
b, an a is replaced by an A, and the b is replaced by a B. If there is no more b on the tape,
one q is written and the B’s are replaced by b’s:
In state 2, the head is moved to the left, until the rightmost a is reached. If there is no
a on the tape (because all a’s have been replaced by A’s to mark them as processed), the
TM changes to state 7. Else the rightmost a is changed to A, and the TM enters state 4.
State 3 then replaces the leftmost b by a B and changes to state 4. If there is no b on the
tape (every b has been replaced by a B), the TM changes to state 5. State 4 is only a case
distinction: if the b just replaced was the last one, then change to state 5, and if there is
still a b on the tape, then change to state 2, i.e., perform a loop. State 5 moves the head
to the right until it reaches an empty cell, writes a q, and changes to state 6.

State 6 changes all B’s back to b’s and puts the head on the rightmost cell containing either
A or a. The TM is then set to state 2 again and this is repeated (and every time a q is
written) until there are no more a’s on the tape, and state 7 is entered.

State 7 then simply puts the head to the last nonempty cell of the tape and changes to
state 8.

States 8 and 9 determine the remainder of the division (i.e., b’s which has not been replaced
by B’s in state 3) and write the corresponding number of r’s to the tape:
The head is put to the rightmost B by state 8, and before entering state 9, this B is replaced
by a b. If there is no B on the tape, then no instruction applies and the TM halts. In state
9, the head is put to the first empty cell of the tape, an r is written there, and the TM
enters state 8 again, hence loops.

There has been put much effort in constructing smaller and smaller universal Turing

18



machines, i.e., special Turing machines that can simulate every other Turing machine,
from the 1950’s until today1. Small universal Turing machines were studied, e.g., in the
influential paper [7] by Minsky, by Robinson [12], and recently by Neary & Woods [8].

Appearently no effort was put in making universal Turing machines user-friendly while
keeping them small, which would be related to the goal of our work.

9.5 The SVM-code of a universal TM

To prove Turing completeness we now specify a SVM program that simulates an arbitrary
Turing machine. The reader should interpret it with the help of Tables 2 – 5 .

The instructions of the Turing machine are represented in the memory of the SVM as
follows:

^transtable contains the linked list of instructions
^transtable.nextk.state contains S of the kth instruction
^transtable.nextk.reading contains R of the kth instruction
^transtable.nextk.towrite contains W of the kth instruction
^transtable.nextk.tomove contains M of the kth instruction
^transtable.nextk.tostate contains S′ of the kth instruction
^transtable.nextk.next contains the k + 1th instruction

Note that if W in the instruction is the empty string, #obj.towrite is set to #obj.reading,
hence no alteration is done by writing. If M in the instruction is the empty string,
#obj.tomove is set to X, just to distinguish it from L and R. The position of the head
is stored in ^position, and the state of the Turing Machine is stored in ^state.

program(UTM)

process(init)

% makes the necessary nodes available in the core

tape=in(tapename,tm_tape)

transtable=in(tablename,tm_instructions)

position=get(core,tape)

(core,state)=setconst(1)

(core,cR)=setconst(R)

(core,cL)=setconst(L)

(core,blank)=setconst( )

goto(nextcommand)

process(nextcommand)

% initializes the comparing, reads the tape

trycommand=get(core,transtable)

reading=get(position,entry)

goto(checkstate)

process(trynext)

% halts the TM if there are no instructions left

therearemorecommands=exist(trycommand,next)

if(therearemorecommands,increase)

goto(endprocess)

1In October 2007, Alex Smith claimed to have found the smallest Universal Turing Machine possible,
having 2 states and 3 symbols, see www.wolframscience.com/prizes/tm23/solved.html

19



process(increase)

% go to next command

trycommand=get(trycommand,next)

goto(checkstate)

process(checkstate)

% checks if the state of the TM is equal to the state in the command

stateincommand=get(trycommand,state)

samestate=check(state,stateincommand)

if(samestate,checksymbol)

goto(trynext)

process(checksymbol)

% checks if the symbol read by the TM is equal to

% the symbol in the command

symbolincommand=get(trycommand,reading)

samesymbol=check(symbolincommand,reading)

if(samesymbol,executecommand)

goto(trynext)

process(executecommand)

% executes the instructions in the command

state=get(trycommand,tostate)

towrite=get(trycommand,towrite)

(position,entry)=set(towrite)

tomove=get(trycommand,tomove)

moveleft=check(tomove,cL)

moveright=check(tomove,cR)

if(moveleft,left)

if(moveright,right)

goto(nextcommand)

process(left)

% moves the head to the left

notleftend=exist(position,last)

if(notleftend,goleft)

create(newfield)

(position,last)=set(newfield)

(newfield,entry)=set(blank)

(newfield,next)=set(position)

position=get(position,last)

goto(nextcommand)

process(goleft)

position=get(position,last)

goto(nextcommand)

process(right)

% moves the head to the right

notrightend=exist(position,next)

if(notrightend,goright)

create(newfield)

(position,next)=set(newfield)

(newfield,entry)=set(blank)

(newfield,last)=set(position)

20



position=get(position,next)

goto(nextcommand)

process(goright)

position=get(position,next)

goto(nextcommand)

process(endprocess)

tapeasvalue=out(tape,tm_tape)

copyoftape=external(valuecopyname,tapeasvalue)

filename=external(writetofilename,copyoftape)

stop

start(init)

When invoked, it expects to have the following objects in its core:

^tapename is an object that has a tape as external value,
^tablename is an object that has a transistion table as external value,
^valuecopyname is an object associated to an external processor that makes a copy

of the external value,
^filename is an object that has a valid filename as external value,
^writetofilename is an object associated to an external processor that writes a type

of into a file

The SVM-program UTM essentially searches for a command that applies, then performs the
instructions, and then loops. In more detail,

init initially sets up the records so that processing can begin, including
loading the tape (stored as external value in ^tapename) and the
transistion table (stored as external value in ^tablename)

nextcommand resets the records and replaces an empty cell on the tape by a
blank.

trynext halts if there is no next instruction and else calls the process
increase which brings the next instruction into consideration.
checkstate and
checksymbol compares the state of the Turing Machine with S in the instruc-

tion, and the symbol currently read on the tape with R in the in-
struction, respectively. In other words, these two processes check
if the instruction under consideration applies.

executecommand performs the actions given in the instruction, except for moving
the head to the left or the right.
Since ^position contains a counter representing the position of
the head on the tape,

left and
goleft move the head to the left (if the head is not already on the leftmost

cell), while
right and
goright move the head to the right.
endprocess then writes the result first as the value of ^tapeasvalue, then

makes a copy of that value to ^copyoftape (which is redundant,
but serves for an example for an external processor), and then the
value is written into the file that is the value of ^filename.

21



Correctness is straightforward to prove.

The SVM program above simulates an arbitrary TM and does not use external storage.
Since an ordinary TM has no external storage and it is not specified how an external
processor should behave, it is impossible to give an ordinary TM that simulates an arbitrary
SVM program.

10 The USVM

A universal SVM (USVM) teh semantic analogon to a universal Turing machine. It is a
special SVM program capable of ‘simulating’ the processing of an other SVM program P

in the following sense: The context of the USVM contains the SVM program P and the
context of P. When the USVM has finished, the USVM has produced the same changes in
the context as P would have produced when called directly.

When the USVM is started, objects for program, context and library have to be passed
to the USVM as part of its core. It is assumed that this information is stored in the objects
^sim_prog, ^sim_context and ^sim_lib before calling the USVM.

The SVM code of the USVM

The example program below implements a simulator for the SVM, which shows that the
SVM programming language is universal.

program(USVM)

%%%%%%%%%%%%%%%%%%%%%%%% control handling %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

process(init)

% initialize nodes, initialize local and global frame

(simcore,core)=set(simcore)

(simcore,program)=set(simprog)

simprocesses=get(simprog,processes)

startfocus=get(simprog,start)

simfocus=refget(simprocesses,startfocus)

goto(load)

process(next)

% proceed to the next command to simulate

simfocus=get(simfocus,next)

goto(load)

process(load)

% load the information about the command to simulate to the core

sim_comm=get(simfocus,comm)

move(sim_comm)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22



process(move)

% goto ^#process

processname=get(simfocus,arg1)

process=refget(simcore,processname)

simfocus=refget(simprocesses,process)

goto(load)

process(goto)

% goto #process

process=get(simfocus,arg1)

simfocus=refget(simprocesses,process)

goto(load)

process(if)

% if ^#cond goto #process

criterionname=get(simfocus,arg1)

criterion=refget(simcore,criterionname)

if(criterion,ifapplies)

goto(ifappliesnot)

process(ifapplies)

process=get(simfocus,arg2)

simfocus=refget(simprocesses,process)

goto(load)

process(ifappliesnot)

goto(next)

process(stop)

% stop

stop

%%%%%%%%%%%%%%%%%%%% internal handling %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

process(create)

% create ^#newnode

toassign=get(simfocus,arg1)

create(newobj)

(simcore,toassign)=refset(newobj)

goto(next)

process(fields)

% ^#fieldlist=fields of ^#record

writetoname=get(simfocus,arg1)

getfromname=get(simfocus,arg2)

getfrom=refget(simcore,getfromname)

stackoffields=fields(getfrom)

(simcore,writetoname)=refset(stackoffields)

goto(next)

23



process(check)

% ^#isequal=(^#left==^#right)

leftname=get(simfocus,arg2)

left=refget(simcore,leftname)

rightname=get(simfocus,arg3)

right=refget(simcore,rightname)

result=check(left,right)

writeto=get(simfocus,arg1)

(simcore,writeto)=refset(result)

goto(next)

process(exist)

% ^#node=exist(#record,#field)

leftname=get(simfocus,arg2)

left=refget(simcore,leftname)

right=get(simfocus,arg3)

result=existref(left,right)

writeto=get(simfocus,arg1)

(simcore,writeto)=refset(result)

goto(next)

process(existref)

% ^#node=exist(^#record,^#field)

leftname=get(simfocus,arg2)

left=refget(simcore,leftname)

rightname=get(simfocus,arg3)

right=refget(simcore,rightname)

result=existref(left,right)

writeto=get(simfocus,arg1)

(simcore,writeto)=refset(result)

goto(next)

process(setconst)

% ^#1.#2=const #3

handle=get(simfocus,arg1)

sethandle=refget(simcore,handle)

field=get(simfocus,arg2)

setto=get(simfocus,arg3)

(sethandle,field)=refset(setto)

goto(next)

process(refset)

% ^#1.^#2=^#3

handle=get(simfocus,arg1)

sethandle=refget(simcore,handle)

fieldname=get(simfocus,arg2)

field=refget(simcore,fieldname)

entry=get(simfocus,arg3)

24



setto=refget(simcore,entry)

(sethandle,field)=refset(setto)

goto(next)

process(set)

% ^#1.#2=^#3

handle=get(simfocus,arg1)

sethandle=refget(simcore,handle)

field=get(simfocus,arg2)

entry=get(simfocus,arg3)

setto=refget(simcore,entry)

(sethandle,field)=refset(setto)

goto(next)

process(refget)

% ^#1=^#2.^#3

addressname=get(simfocus,arg1)

handlename=get(simfocus,arg2)

handle=refget(simcore,handlename)

fieldname=get(simfocus,arg3)

field=refget(simcore,fieldname)

towrite=refget(handle,field)

(simcore,addressname)=refset(towrite)

goto(next)

process(get)

% ^#1=^#2.#3

addressname=get(simfocus,arg1)

handlename=get(simfocus,arg2)

handle=refget(simcore,handlename)

field=get(simfocus,arg3)

towrite=refget(handle,field)

(simcore,addressname)=refset(towrite)

goto(next)

process(unset)

% unset(^#1.^#2)

firstname=get(simfocus,arg1)

secondname=get(simfocus,arg2)

first=refget(simcore,firstname)

second=refget(simcore,secondname)

unset(first,second)

goto(next)

%%%%%%%%%%%%%%%%%%%%%%% external handling %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

process(external)

% external: #program(^#input)

inputname=get(simfocus,arg3)

25



processname=get(simfocus,arg2)

outputname=get(simfocus,arg1)

inputnode=refget(simcore,inputname)

processobj=refget(simcore,processname)

outputnode=refget(simcore,outputname)

outputnode=external(processobj,inputnode)

goto(next)

process(in)

% move in ^#node as #protocol

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocol=get(simfocus,arg3)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refin(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

goto(next)

process(out)

% move out ^#node as #protocol

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocol=get(simfocus,arg3)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refout(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

goto(next)

process(refin)

% move in ^#node as ^#protocol

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocolname=get(simfocus,arg3)

protocol=refget(simcore,protocolname)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refin(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

goto(next)

process(refout)

% move out ^#node as ^#protocol

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocolname=get(simfocus,arg3)

protocol=refget(simcore,protocolname)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refout(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

goto(next)

26



% info to start program:

start(init)

Without blank lines and comment lines, the USVM contains 166 lines.

References

[1] Daniel I. Cohen. Introduction to computer theory. John Wiley & Sons, Inc., New York,
NY, USA, 1986.

[2] J.E. Hopcroft, J.D. Ullman, and A.V. Aho. The design and analysis of computer
algorithms. Addison-Wesley, Boston, MA, USA, 1975.

[3] S. Jefferson and D.P. Friedman. A simple reflective interpreter. LISP and symbolic
computation, 9(2):181–202, 1996.

[4] O. Lassila, R.R. Swick, et al. Resource Description Framework (RDF) Model and
Syntax Specification, 1999.

[5] T.B. Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific American,
284(5):34–43, 2001.

[6] F. Manola, E. Miller, et al. RDF Primer. W3C Recommendation, 10, 2004.

[7] Marvin Minsky. Size and structure of universal Turing machines using tag systems.
Proceedings of Symposia in Pure Mathematics, 5.

[8] T. Neary and D. Woods. Small fast universal Turing machines. Theoretical Computer
Science, 362(1–3):171–195, 2006.

[9] A. Neumaier and P. Schodl. A Framework for Representing and Processing Arbitrary
Mathematics. In J. Filipe and J.L.G. Dietz, editors, Proc. Int. Conf. Knowledge Engi-
neering and Ontology Development, pages 476–479. SciTePress, 2010. An ealier version
is available at http://www.mat.univie.ac.at/~schodl/pdfs/IC3K_10.pdf.

[10] Piergiorgio Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, New
York, Oxford, 1999.

[11] R. H. Richens. Preprogramming for mechanical translation. Mechanical Translation,
3(1):20–28, 1956.

[12] Raphael M. Robinson. Minsky’s Small Universal Turing Machine. International Journal
of Mathematics, 2(5):551–562.

[13] Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York, 1967.

[14] P. Schodl and A. Neumaier. The FMathL type system. Manuscript, available at
http://www.mat.univie.ac.at/~neum/FMathL.html#TypeSystem, 2010.

[15] P. Schodl, A. Neumaier, K.Kofler, F. Domes, and H. Schichl. Towards a Self-reflective,
Context-aware Semantic Representation of Mathematical Specifications. In J. Kallrath,
editor, Modeling Languages in Mathematical Optimization. Springer, to appear.

27



[16] J.R. Shoenfield. Recursion theory. Springer-Verlag New York, 1993.

[17] J.F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. MIT Press, 2000.

[18] A. M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math. Soc., 42(2):230–265.

28


