A semantic virtual machine

Arnold Neumaier
Peter Schodl
Fakultät für Mathematik, Universität Wien
Nordbergstr. 15, A-1090 Wien, Austria
WWW: http://www.mat.univie.ac.at/~neum/FMathL

Abstract

A semantic virtual machine (SVM) is a variant of a programable register machine that combines the transparency and simplicity of the action of a Turing machine with a clearly arranged assembler-style programming language and a user-friendly representation of semantic information. This paper describes the concept of the SVM, its memory management and flow control, and shows how a semantic virtual machine can simulate any ordinary Turing machine. Analogous to a universal Turing machine, we give a universal semantic virtual machine (USVM), which is a special SVM that can simulate every SVM. The USVM serves both as a self-contained semantic explanation of many aspects of the SVM, and as a check that an SVM implementation works correctly.

Contents

1 Introduction 2
2 Definition of the framework 3
3 The semantic virtual machine 5
4 The SVM programming language 6
5 Flow control 9
6 External values and external processors 10
7 An operational semantic for the SVM 11
8 Description of the SVM commands 14
9 Turing machines and their simulation 16
10 The USVM 22

1 Introduction

A Turing machine, introduced originally in 1936 by Turing [18], is a commonly used abstract model of a simple computer. Informally, we think of a Turing machine (TM) as a reading/writing head that moves along an arbitrary long tape which is divided into cells, each containing one character. The Turing machine is always in some state, and it has a list of instructions, usually called the transition table. Determined by the character currently read from the tape and the state the TM is currently in, the transition table assigns to the TM some character to write on the tape, to move one cell to the left or the right, and some state to enter. For a rigorous definition and properties, see, e.g., the classic book by Rogers [13] or Аho et al. [2] or almost any other computability book; see also Section 9 below.

The concept of a Turing machine is very simple and at the same time very powerful (we remind of Church's Thesis, discussed, e.g., by Odifreddi [10]), but it has two disadvantages that prevent the use of a TM as a device for efficiently performing calculations:
(1) The instructions of the TM are too primitive, their formulation is not intuitive in terms of semantically important actions. Given a set of instructions of some TM, it is very laborious to find out what this TM does.
(2) The representation of information on the one-dimensional tape is adequate only in some cases. Usually the result of a calculation cannot be interpreted easily.

We alter the concept of a TM concerning those two issues, and the resulting machine is a semantic virtual machine (SVM):
Concerning item 1, the SVM is able to execute an SVM program, i.e., a sequence of commands written in an assembler-like language. Each command performs a comprehensible action on the memory.
Concerning item 2, the SVM represents information by semantic relations between objects represented by a binary operator, the semantic memory. Using the semantic memory, complex relations can be represented in a simple and user-friendly way, and be visualized as a directed, labelled graph. Thus an SVM allows the expression of semantics in a very natural form.

Alltogether, we think of the SVM as a machine that performs some basic actions on the semantic memory. The SVM has random access to this memory, and the actions it performs (like writing, copying, deleting,...) are determined by a human-readable program.

That the SVM is as least as powerful as an ordinary Turing machine is shown in Section 9, but we give the SVM even more power by allowing it to access the capabilities of the physical device it is implemented on: external memory and external processors, see Section 6. This has the consequence that the SVM is no longer equivalent to an ordinary Turing machine, or in other words, not every SVM program, regarded as a function on the context, is Turing computable. For example, external processors might have access to the system clock etc. However, the main reason for enabling the SVM to call external processors is higher performance and reusability of trusted algorithms. The SVM command that calls external processes is essentially a foreign function interface (FFI) of the SVM.

A cornerstone in the creation of the SVM is the proof that the SVM is powerful enough to simulate itself in a very simple way. This is done by giving an SVM program that can
simulate every other SVM program. Since this is analogous to the role of a universal Turing machine, we call this program the universal semantic virtual machine (USVM).

The USVM is a program short and transparent enough to be checked by hand. It has only 166 lines of code, see Section 10 (compare this, e.g., to the reflective interpreter by Jefferson \& Friedman in [3], which has 273 lines). The USVM gives us a possibility to check many aspects of the SVM for correctness: Once one has convinced oneself of the correctness of the USVM, one can make the implementation of the SVM on some physical device also trustworthy by checking empirically (or, in principle, in a formal way) that any SVM program executed by the implemented SVM produces the same output as in the case when the USVM simulates this program.

All this makes the SVM a semantically self-contained, transparent and easily usable tool that can be a trustworthy foundation for any computer system that deals with semantic content.

Contents. Section 2 formally defines the framework we use to store information. Section 3 describes the SVM and its memory in detail, and Section 4 defines the programming language of the SVM. Having an assembler-like language for the SVM instead of a transition table like the Turing machines makes programming much more convenient, but it requires the storage of information for flow control, described in Section 5. The features of the SVM that allow it to make use of other algorithms on the physical device are discussed in Section 6. In Section 7 we give an operational semantic of the SVM and in Section 8 we describe the commands in a more informal way and give some examples. In Section 9 we show how the SVM can simulate an ordinary TM. The USVM, a special SVM program that can simulate every other SVM program, is given in Section 10.

Acknowledgements. Mike Mowbray and Steve Stevenson contributed useful remarks to an earlier version. Support by the Austrian Science Fund (FWF) under contract number P20631 is gratefully acknowledged.

2 Definition of the framework

We define the abstract data structure we use to represent mathematics.
It can be regarded as a special case of a semantic network, introduced by Richens [11] in 1956. This and akin concepts are discussed in detail by Sowa [17]. Also, it is inspired by, and representable in, the semantic web [5]. A standardized and widely used example of a semantic net with the aim to be used in the World Wide Web is the Resource Description Framework (RDF), described by Manola et al. [6] and specified by Lassila et al. [4].

2.1 The semantic memory

There is an unlimited number of objects, but only finitely many of them are represented explicitly in stored memory. Objects can be compared for equality, which is an equivalence relation. On the metalevel, we refer to objects by strings not beginning with a hash (\#); different objects are referred to by different strings. Empty is an object. Object variables are variables in the usual sense, ranging over the set of objects. We refer to object variables
via a string beginning with a hash (\#) followed by some alphanumeric string. For example, in the statement

```
#name.type = String for every object #name representing a string,
```

type and Name are specific objects, and \#name is a variable in the same sense as x is a variable in

$$
x^{2} \text { is even for every even integer } x \text {. }
$$

Usually, we will use suggestive strings for variables, e.g., we use \#handle or \#h for an object that is intended to be a handle.

A semantic mapping (abbreviated SM) assigns to any two objects $\# \mathrm{~h}$ and $\# \mathrm{f}$ a unique object \#h. \#f such that

$$
\text { if } \# \mathrm{f}=\text { Empty or } \# \mathrm{~h}=\text { Empty then } \# \mathrm{f} . \# \mathrm{~h}=\text { Empty } .
$$

A semantic unit (short sem) is an equation of the form $\# \mathrm{~h} . \# \mathrm{f}=\# \mathrm{e}$ with nonempty $\# \mathrm{~h}$, \#f, and \#e; we call \#h the handle, \#f the field, and \#e the entry of the sem. The constituents of an object \#a are the sems in which \#a is the handle.
Semantic mappings are used to store mathematics, but to be able to alter the data we need a dynamical framework. The semantic mapping that changes over time (formally, a semantic mapping valued function of time) is called the semantic memory.

A position is a pair $(\# \mathrm{~h} / \# \mathrm{f})$ consisting of two objects \#h and \#f. We call \#h the handle, $\# \mathrm{f}$ the field and $\# \mathrm{~h} . \# \mathrm{f}$ the entry of ($\# \mathrm{~h} / \# \mathrm{f})$. This position is called occupied if $\# \mathrm{~h} . \# \mathrm{f}$ is not Empty.
We say that the sem $\# \mathrm{~d} . \# \mathrm{e}=\# \mathrm{f}$ follows the sem $\# \mathrm{a} . \# \mathrm{~b}=\# \mathrm{c}$ if $\# \mathrm{~d}=\# \mathrm{c}$. Using a left-associative notation, we then write $\# \mathrm{a} . \# \mathrm{~b} . \# \mathrm{e}=\# \mathrm{f}$; thus $\# \mathrm{a} . \# \mathrm{~b} . \# \mathrm{e}$ stands for (\#a.\#b).\#e. This notation naturally extends to more dots.

A short-hand notation for k repetitions $(k=0,1,2, \ldots)$ of a field: $\# \mathrm{a} \cdot \underbrace{\# \mathrm{~b} . \cdots . \# \mathrm{~b}}_{k \text { times }} . \# \mathrm{e}$ is written as $\# \mathrm{a} . \# \mathrm{~b}^{k} . \# \mathrm{e}$.
A path of sems starting at $\# \mathrm{~h}$ and ending at $\# \mathrm{e}$ is a sequence of sems such that the first sem has the handle $\# \mathrm{~h}$, each later sem follows the previous one, and the last sem has entry \#e, and no sem has the field type. An object \#e is reachable from a handle \#h if there is some path of sems starting at $\# \mathrm{~h}$ and ending in \#e. A sem is reachable from a handle \#h if there is some path of sems starting at \#h that contains that sem. A position is reachable from a handle $\# \mathrm{~h}$ if the handle of that position is an object reachable from \#h.

If the set of sems reachable from an object $\# \mathrm{~h}$ is finite, then the set of sems reachable from \#h defines the record with handle \#h.

Clearly, a SM allows one to construct arbitrarily complex records. In contrast to records in programming languages such as Pascal, records in a SM may contain cycles. Indeed, backreferences are an important part of the design of the type system; for example, they allow labelled context-free grammars to be defined as type systems.

2.2 Illustration by semantic graphs

For graphical illustration of a semantic mapping, we will interpret a sem $\# \mathrm{a} . \# \mathrm{~b}=\# \mathrm{c}$ as an edge with label \#b from node \#a to node \#c of a directed labeled graph, called a
semantic graph. Objects may, but need not have external values, i.e., data of arbitrary form, associated with the object, but stored outside the semantic memory. We refer to the value of an object \#obj by VALUE (\#obj). In a semantic graph, objects that have an external value are printed as a box containing that value. For better readability we use dashed edges for edges labeled with type, since these constituents have importance for the typing, and bold edges for edges labeled with next, since this makes linked lists more readable. Different nodes of the semantic graph may represent the same object. For example, the information $\frac{12}{4}=3$ may be represented as a list of sems as fiven in Figure 1, or equivalently as the semantic graph in Figure 2.

```
$380.type=Binary $370.type=Fraction VALUE($244) = 12
$380.lhs=$370 $370.num=$244 VALUE($246) = 3
$380.rhs=$246 $370.denom=$248
$380.relation=Equal $244.type=Integer
$246.type=Integer $248.type=Integer
```

Figure 1: A list of sems and values

Figure 2: A semantic graph

3 The semantic virtual machine

A semantic virtual machine (SVM) is a machine manipulating semantic information in a semantic memory. Independent of the interpretation of the semantic memory either as semantic mapping or as graph, we will refer to it as the memory of the SVM.

Since there are equivalent formulations of Turing machines which use a 2-dimensional memory instead of the tape (a proof is given by CoHEN [1]) the change to a binary operator instead of a tape alone would not go beyond the scope of a Turing machine. But by allowing the SVM to manipulate its external environment, the scope of an SVM becomes strictly bigger cf. Section 6.

To allow this, objects can have an external value, which is not part of the SM but arbitrary data stored outside the semantic memory (on the physical machine the SVM is implemented on) and associated to the object. This external storage is handled exclusively by external processors, i.e., algorithms executed by the physical machine. External values are discussed in more detail in Section 6 .

The memory of the SVM contains the program to execute, and the information about flow control as well, all represented via a semantic mapping. To enable the processing of more than one program in the same memory, each execution of the SVM has its own core, i.e., a record reserved for the input, the output and temporary data.

Since the core is the most important record for a program, will simplify the notation for it: We use the caret ^ to abbreviate reference to the core of the execution under consideration. Hence "a means \#core.a, where \#core is the core of the execution under consideration. The caret binds stronger than the semantic mapping, hence a. ^ b means a. (\#core.b).

To start processing a program, the SVM needs to know the object that contains the program, and the object that serves as the core. Therefore the call of an SVM program has two arguments: the name of the program and the core.

4 The SVM programming language

The most elementary part of the SVM programming language is a command. There are 24 different commands; a list of the commands and their action is given in Section 8. The commands fall into four groups: commands that structure the program but have no influence on the memory at runtime, commands for flow control, assignments, which make alterations in the memory of the SVM, and commands handling or external values.
Compared to transition tables of Turing machines, SVM programs are much less intricate. In fact, the SVM programming language is much more akin to an assembler-style language.
Before describing the commands in detail, we say something about the structure of the language and external processors and values. This is the content of this and the next section.
The SVM programming language has the reserved names

```
program process start
```

for structuring the program, and the reserved names

check	fields	refset	refin
create	get	set	refout
exist	goto	setconst	unset
existref	if	stop	
external	move	in	
externalref	refget	out	

for commands making certain alterations in the memory or in flow control. The meaning of these names will be discussed in Section 5. The name type should also not be used as a name in a SVM program to prevent collusion with the typing system [14] which is not a part of the SVM but based on it.

All other names and more general alphanumeric strings may be used as variables for objects.
The SVM programming language is the lowest level of a fully comfortable programming language that we are in the process of developing, see [9] and [15].

4.1 The grammar of the SVM programming language

The complete grammar of the SVM programming language si defined by the following grammar, using partially labelled, BNF like productions. A line beginning with a percent sign \% is treated as a comment without any effect on the program. To ease readability, white spaces at the beginning of a line are ignored.

We define the following macros in the grammar:

```
: macro(lines of $1)
macro: $1 | macro newline $1
: macro(string of $1)
macro: $1 | macro $1
```

The tokens BLANK, CHARACTER and ALPHANUMERIC in the grammar stand for a blank space, any character and any alphanumeric character respectively. The token COMMENT is a string beginning with a percent sign (\%) and not containing a newline ($\backslash n$).

```
    STMPROGRAM }->\mathrm{ HEADER lines of PROCESS STARTPROCESS
        HEADER }->\mathrm{ program( NAME )
            NAME }->\mathrm{ string of ALPHANUMERIC
            PROCESS }->\mathrm{ PROCESSHEADER lines of COMMAND PROCESSEND
PROCESSHEADER }->\mathrm{ process( NAME )
            COMMAND }->\mathrm{ NC | GC | SC | string of BLANK COMMAND | COMMENT
    PROCESSEND }->\mathrm{ GC | SC | string of BLANK PROCESSEND | COMMENT
STARTPROCESS }->\mathrm{ start( NAME )
    NC }->\mathrm{ NAME = check( NAME , NAME )
    NC }->\mathrm{ create( NAME )
    NC }->\mathrm{ NAME =exist( NAME , NAME )
    NC }->\mathrm{ NAME =existref( NAME , NAME )
    NC }->\mathrm{ NAME =external( NAME , NAME )
    NC }->\mathrm{ NAME =externalref( NAME , NAME )
    NC }->\mathrm{ NAME =fields(NAME )
    NC }->\mathrm{ NAME =get( NAME , NAME )
    NC }->\mathrm{ goto( NAME )
    NC }->\mathrm{ if( NAME , NAME )
    NC }->\mathrm{ move( NAME )
    NC }->\mathrm{ NAME =refget( NAME , NAME )
    NC }->\mathrm{ ( NAME , NAME )=refset( NAME )
    NC }->\mathrm{ (NAME , NAME )=set( NAME )
    NC }->\mathrm{ ( NAME , NAME )=setconst( NAME )
    NC }->\mathrm{ NAME =in( NAME , NAME )
    NC }->\mathrm{ NAME =out( NAME ,NAME )
```

```
NC }->\mathrm{ NAME =refin( NAME , NAME )
NC }->\mathrm{ NAME =refout( NAME , NAME )
NC }->\mathrm{ unset( NAME ,NAME )
SC }->\mathrm{ stop
```


4.2 Representation of SVM programs in the SM

A process is a sequence of commands, beginning with the command process(\#proc). Every process ends with a command that either halts the SVM or calls another process.
An SVM program is the command program(\#prog) followed by a sequence of processes. Each process is represented in the memory by a linked list of commands, and the first command of each process is accessible by:

```
#program.#processname = #process
```

where \#program is the record containing the program, \#processname is the name of the process, and \#process is a linked list of the commands of process \#processname.

Each command is represented in the memory by a record \#command with

```
    #command.#part = #object
#command.next = #nextcommand
```

and \#nextcommand is the command in the line below this command. The object \#part is one of the following: comm refers to the name of the command, arg1 to the first argument, $\arg 2$ to the second argument, and arg3 to the third argument. Since not all commands have three arguments, some of these may be empty.
The object \#program. start contains the object referring to the first process, i.e., the process that has to be executed first in the program \#program.
The SVM is untyped. However, to further specify the representation of SVM programs in the SM, we give typesheets (see [14]) for SVM programs:

SVM: :
SvmProgram:
allOf> start = Object
processes = Processes
nothingElse>

Processes:

someOfType> Object = SvmCommand

CommandName:

atomic> check, create, exist, existref, external, externalref
atomic> fields, get, goto, if, move, refget, refset, set
atomic> setconst, transportin, transportout, transportrefin

```
atomic> transportrefout, unset, stop
```

```
SvmCommand:
    allOf> comm = CommandName
    optional> arg1 = Object
            arg2 = Object
            arg3 = Object
            next = SvmCommand
    nothingElse>
```

The semantic graph in Figure 3 is the record that represents the SVM program copyFields as given in text form in Section 8, page 16. Note that for transparency, the sems with field type are not printed.

Figure 3: Representation of an SVM program in the SM

5 Flow control

This section describes how the information for flow control is represented in the memory of the SVM.

The SVM command currently executed is called the focus, it may change after each program execution. A process can be entered only at its first command, but it is possible to leave a process before its last command line is reached.

During runtime, the focus is represented in the object ^focus. Setting the entry of ${ }^{\text {^focus }}$
to "focus.next means to proceed one line forward in the programm. Setting the entry of "focus to \#program. \#process as done by the goto and if command, sets the focus to the first line of the process \#process.
It is assumed that ^core always contains the current core, i.e., \#core.core=\#core. This allows us to reduce the number of different commands.

6 External values and external processors

The SVM has the ability to access the facilities of the physical device it is implemented on. This may provide the SVM with much better performance for tasks it can export, and allows the use of existing algorithms written in different programming languages.

Every object can have an external value, which is some data associated to this object, but not part of the memory of the SVM. Instead, it is managed by the physical device which executes the SVM. In descriptions of commands, we refer to the external value of the object \#object by VALUE (\#object).
The values of objects are directly processed by the physical device. Hence one can benefit from the full computational power of the physical device. A computation on the external values is said to be realized by an external processor. External processors have no access to the memory of the SVM, but may be called from the SVM as the command external. From a theoretical point of view, external processors are oracles to the SVM, as defined by Shoenfield [16].
External values can be imported into the memory of the SVM, and conversely. This is done by the commands transportin, transportout, transportrefin and transportrefout. The information about how to represent the external value in the memory of the SVM is called the protocol, and is used as an argument for the transport-commands. Figure 4 displays the interactions between the SVM and the physical device, and the SVM commands involved. Our current implementation includes protocols for representing

- strings,
- SVM programs (see Section 4),
- tapes and transition tables for Turing machines (see Section 9),
- Concise programs (see [15]).

There may be an arbitrary number of protocols, as long as the device on which the SVM is implemented knows how to interpret them.

Figure 4: Interaction of the SVM with the physical device

7 An operational semantic for the SVM

We formally define the action of the SVM, in particular of every SVM command, by giving an operational semantic.

Let V the set of values.
A state is a triple (s, v, O) such that O is a sets of objects, $s: O \times O \rightarrow O$ is a semantic mapping, and $v: O \rightarrow V$ is a partial mapping that associates to some objects in O an external value. We define \mathfrak{S} to be the set of states.

The object $p \in O$ denotes the record that contains the program to execute, and $c \in O$ denotes the core to use. In the following, we define $f:=s(c$, focus).

For a semantic mapping s and a set $R \subseteq O \times O \times O$ we define replace (s, R) as a semantic mapping s^{\prime} with

$$
s^{\prime}(h, f):= \begin{cases}e & \text { if }(h, f, e) \in R \\ s(h, f) & \text { otherwise }\end{cases}
$$

For a mapping $v: O \rightarrow V$ and a set $R \subseteq O \times V$ we define replace (s, R) as mapping $v^{\prime} \in O \rightarrow V$ with

$$
v^{\prime}(o):= \begin{cases}e & \text { if }(o, e) \in R \\ v(o) & \text { otherwise }\end{cases}
$$

The execution of the SVM is a (possibly infinite) sequence of states $\left(S_{1}, S_{2}, \ldots, S_{i}, \ldots\right)$ determined by an initial state $S_{0}=\left(s_{0}, v_{0}, O_{0}\right)$ and by $S_{1}:=\operatorname{start}\left(S_{0}\right)$ and $S_{t+1}:=\operatorname{step}\left(S_{t}\right)$ for $t=1,2, \ldots$ The function start $: \mathfrak{S} \rightarrow \mathfrak{S}$ is defined by $\operatorname{start}(s, v, O)=($ replace $(s, R), v, O)$ with $R:=\{(c$, focus, $s(p$, start $)),(c$, core,$c)\}$. The function step $: \mathfrak{S} \rightarrow \mathfrak{S}$ is defined by a case distinction over $s(f$, comm $)$, as follows:
check: If $s(f, \operatorname{comm})=\mathrm{check}$, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with

$$
R=\{(c, \text { focus }, s(f, \text { next })),(c, s(f, \arg 1), \text { True })\}
$$

if $s(f, \arg 2)=s(f, \arg 3)$ and

$$
R=\{(c, \text { focus }, s(f, \text { next })),(c, s(f, \text { arg1 }), \text { False })\}
$$

if $s(f, \arg 2) \neq s(f, \arg 3)$
create: If $s(f, \operatorname{comm})=$ create, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O \cup\{o\})$ with $o \notin O$, and $R=\{(c$, focus,$s(f$, next $)),(c, s(f, \arg 1), o)\}$.
exist: If $s(f$, comm $)=$ exist, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with

$$
R=\{(c, \text { focus, } s(f, \text { next })),(c, s(f, \arg 1), \text { True })\}
$$

if $s(s(c, s(f, \arg 2)), s(f, \arg 3)) \neq$ Empty and

$$
R=\{(c, \text { focus }, s(f, \text { next })),(c, s(f, \arg 1), \text { False })\}
$$

if $s(s(c, s(f, \arg 2)), s(f, \arg 3))=$ Empty
existref: If $s(f, \operatorname{comm})=$ existref, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with

$$
R=\{(c, \text { focus }, s(f, \text { next })),(c, s(f, \arg 1), \text { True })\}
$$

if $s(s(c, s(f, \arg 2)), s(c, s(f, \arg 3))) \neq$ Empty and

$$
R=\{(c, \text { focus }, s(f, \text { next })),(c, s(f, \arg 1), \text { False })\}
$$

if $s(s(c, s(f, \arg 2)), s(c, s(f, \arg 3)))=$ Empty
external: If $s(f, \operatorname{comm})=$ external, then $\operatorname{step}(s, v, O)=\left(\operatorname{replace}(s, R), v^{\prime}, O\right)$ with $R=\{(c$, focus, $s(f$, next $))\}$
and $v^{\prime}(s(c, s(f, \arg 1)))$ is the value calculated by the external process associated to $s(f, \arg 2)$ with input $v(s(c, s(f, \arg 3)))$ and $v^{\prime}=v$ for all other objects.
externalref: If $s(f, \operatorname{comm})=\operatorname{external}$, then $\operatorname{step}(s, v, O)=\left(\operatorname{replace}(s, R), v^{\prime}, O\right)$ with $R=\{(c$, focus, $s(f$, next $))\}$
and $v^{\prime}(s(c, s(f, \arg 1)))$ is the value calculated by the external process associated to $s(c, s(f, \arg 2))$ with input $v(s(c, s(f, \arg 3)))$ and $v^{\prime}=v$ for all other objects.
fields: Let $\left(e_{1}, \ldots, e_{n}\right)$ a sequence containing every field of $s(c, s(f, \arg 2))$. If $s(f, \operatorname{comm})=$ fields, then $\operatorname{step}(s, v, O)=\left(\operatorname{replace}(s, R), v, O \cup\left\{o_{1}, \ldots, o_{n}\right\}\right)$ with
$o_{i} \notin O$ for all $i=1, \ldots, n$, and

$$
\begin{aligned}
R= & \left\{(c, \text { focus, } s(f, \text { next })),\left(s(s(c, s(f, \text { arg1 })), \text { next }), o_{1}\right)\right\} \\
& \cup\left\{\left(o_{i}, \text { entry }, e_{i}\right) \mid i=1, \ldots, n\right\} \\
& \cup\left\{\left(o_{i}, \text { next }, o_{i+1}\right) \mid i=1, \ldots, n-1\right\}
\end{aligned}
$$

get: If $s(f, \operatorname{comm})=$ get, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with $R=\{(c$, focus,$s(f$, next $)),(c, s(f, \arg 1), s(s(c, s(f, \arg 2)), s(f, \arg 3)))\}$.
goto: If $s(f, \operatorname{comm})=$ goto, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with $R=\{(c$, focus,$s(p, s(f, \arg 1)))\}$.
if: If $s(f, \operatorname{comm})=$ if, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with
$R=\{(c$, focus,$s(p, s(f, \arg 2)))\}$ if $s(c, s(f, \arg 1))=$ True
$R=\{(c$, focus, $s(f$, next $))\}$ if $s(c, s(f, \arg 1))=$ False
For every other value of $s(c, s(f, \arg 1))$ the SVM stops and issues an error.
move: If $s(f, \operatorname{comm})=$ move, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with $R=\{(c$, focus, $s(p, s(f, s(c, \arg 1))))\}$.
refget: If $s(f$, comm $)=$ refget, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with $R=\{(c$, focus,$s(f$, next $)),(c, s(f, \arg 1), s(s(c, s(f, \arg 2)), s(c, s(f, \arg 3))))\}$
refset: If $s(f$, comm $)=$ refset, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with $R=\{(c$, focus,$s(f$, next $)),(s(c, s(f, \arg 1)), s(c, s(f, \arg 2)), s(c, s(f, \arg 3)))\}$
set: If $s(f, \operatorname{comm})=$ set, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with $R=\{(c$, focus,$s(f$, next $)),(s(c, s(f, \arg 1)), s(f, \arg 2), s(c, s(f, \arg 3)))\}$.
setconst: If $s(f$, comm $)=$ setconst, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with $R=\{(c$, focus,$s(f$, next $)),(s(c, s(f, \arg 1)), s(f, \arg 2), s(f, \arg 3))\}$.
stop: If $s(f, \operatorname{comm})=$ stop, then $\operatorname{step}(s, v, O)$ is not defined and the sequence of states ends.
in: If $s(f, \operatorname{comm})=$ in, then $\operatorname{step}(s, v, O)=\left(s^{\prime}, v, O \cup\left\{o_{1}, \ldots, o_{n}\right\}\right)$ with
$s^{\prime}(c, s(f, \arg 1))$ is the semantic mapping that represents the value $v(s(c, s(f, \arg 3)))$ in a record with handle $s(c, s(f, \arg 1))$ according to the protocol associated with $s(f, \arg 2)$, using objects $\left\{o_{1}, \ldots, o_{n}\right\} \notin O$, and $s^{\prime}(c$, focus $)=s(f$, next $)$.
refin: If $s(f$, comm $)=$ refin, then $\operatorname{step}(s, v, O)=\left(s^{\prime}, v, O \cup\left\{o_{1}, \ldots, o_{n}\right\}\right)$ with
$s^{\prime}(c, s(f, \arg 1))$ is the semantic mapping that represents the value $v(s(c, s(f, \arg 3)))$ in a record with handle $s(c, s(f, \arg 1))$ according to the protocol associated with $s(c, s(f, \arg 2))$, using objects $\left\{o_{1}, \ldots, o_{n}\right\} \notin O$, and $s^{\prime}(c$, focus $)=s(f$, next $)$.
out: If $s(f$, comm $)=$ out, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), \operatorname{replace}(v, Q), O)$ with $R=\{(c$, focus, $s(f$, next $))\}$
$Q=\{(s(c, s(f, \arg 1)), e)\}$ and e is the value that represents the record with handle $s(c, s(f, \arg 3))$ according to the protocol associated with $s(f, \arg 2)$
refout: If $s(f$, comm $)=$ refout, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), \operatorname{replace}(v, Q), O)$ with
$R=\{(c$, focus, $s(f$, next $))\}$
$Q=\{(s(c, s(f, \arg 1)), e)\}$ and e is the value that represents the record with handle $s(c, s(f, \arg 3))$ according to the protocol associated with $s(c, s(f, \arg 2))$
unset: If $s(f$, comm $)=$ unset, then $\operatorname{step}(s, v, O)=(\operatorname{replace}(s, R), v, O)$ with
$R=\{(c$, focus, $s(f$, next $)),(s(f, \arg 1), s(f, \arg 2)$, Empty $)\}$.
For every other value of $s(f, c o m m)$, the execution of the SVM stops and issues an error.

7.1 Garbage collection

For some state $S=(s, v, O) \in \mathfrak{S}$ we define the relation $o_{1} \triangleright_{S} o_{2}$ if there exists an object $x \neq$ Empty with either $s\left(o_{1}, x\right)=o_{2}$ or $s\left(o_{1}, o_{2}\right)=x$.
We define $o_{1} \triangleright \triangleright_{S} o_{2}$ if there exists a sequence $\left(x_{1}, \ldots, x_{n}\right)$ of objects with $o_{1} \triangleright_{s_{t}} x_{1} \triangleright_{S}$ $\ldots \triangleright_{s_{t}} x_{n} \triangleright_{S} o_{2}$.
For a set X of objects, we define $X \triangleright \triangleright_{S} o$ if there exists an $x_{i} \in X$ with $x_{i} \triangleright \triangleright_{S} o$.

Theorem (Garbage collection) For given state S and $p, c \in O$, we define $O^{\text {ess }}=\{o \in$ $\left.O \mid\{c, p\} \triangleright \triangleright_{S} o\right\}$.
Let $s^{\text {ess }}$ and $v^{\text {ess }}$ the restrictions of s and v to $O^{\text {ess }}$, let $S^{\text {ess }}=\left(s^{\text {ess }}, v^{\text {ess }}, O^{\text {ess }}\right)$.
Then

$$
\operatorname{step}(S)=\operatorname{step}\left(S^{\text {ess }}\right)
$$

Proof: It is easy to check that in all cases of the definition of step, the result step (S) only depends on objects o with $\{c, p\} \triangleright \triangleright_{S} o$.

This theorem allows us to perform garbage collection after every step of the SVM, i.e., delete every sem $\mathrm{a} . \mathrm{b}=\mathrm{c}$ with $\mathrm{a} \notin O^{\text {ess }}$, and delete every object o $\notin O^{\text {ess }}$, and its value.

8 Description of the SVM commands

We now introduce the commands of the SVM language and describe their effect. There are four groups of commands: Table 2 describes the commands that are needed to give the program an appropriate structure. Table 3 contains the assignments, i.e., those commands that perform alterations in the memory of the SVM. Table 4 gives the commands used for flow control, and Table 5 the commands that establish communication with the physical device, namely call external processes and access external values.

SVM command	comment
program(\#1)	first line of the program \#1
process(\#1)	first line of the process \#1
start(\#1)	start with process \#1

Table 2: Structuring commands

8.1 Example: shallow copy

The following SVM program performs a shallow copy from the record passed to the SVM in \#core. copyfrom to the object in \#core. copyto.

```
program(copyFields)
process(getfields)
    fieldstack=fields(copyfrom)
    goto(checkfornext)
process(checkfornext)
    thereismore=exist(fieldstack,next)
```

SVM command	comment
```#1=check(#2,#3) create(#1) #1=exist(#2,#3) #1=existref(#2,#3) #1=fields(#2) #1=get(#2,#3) #1=refget(#2,#3) (#1,#2)=refset(#3) (#1,#2)=set(#3) (#1,#2)=setconst(#3) unset(#1,#2)```	```sets `#1 to True if ^#2 = ` #3, else to False assigns some free object to `#1 sets `#1 to True if `#1.#2 exists, else to False sets `#1 to 'T if `#1. ^#2 exists, else to False creates a linked list with handle `#1 containing all fields of `#2 assigns `#2.#3 to `#1 assigns `#2.^#3 to `#1 assigns `#3 to `#1.#2 assigns ^#3 to `#1. `#2 writes #3 to `#1.#2 deletes the position (`#1,^ #2), i.e., sets it to Empty```

Table 3: Assignment commands

SVM command	comment
goto(\#1)	sets the focus to the first line of process \#1
move (\#1)	sets the focus to the first line of process ^\#1
if (\#1, \#2)	sets the focus to the first line of process \#2 if      ^\#1=True, and to the next line if ${ }^{\wedge} \# 1=$ False
stop	ends a program

Table 4: Commands for flow control

SVM command	comment
\#1=external (\#2,\#3)	calls external processor \#2 with input VALUE (`\#3) and output VALUE ( ${ }^{*}$ \#1)
\#1=externalref(\#2,\#3)	calls external processor ^\#2 with input VALUE(^\#3) and output VALUE (^\#1)
\#1=in(\#2,\#3)	imports VALUE ( $\# 2$ ) into ^\#1 by protocol \#3
\#1=out (\#2,\#3)	exports record ^\#2 into VALUE ( $\# 1$ ) by protocol \#3
\#1=refin(\#2,\#3)	imports VALUE ( $\# 2)$ into ^\#1 by protocol ^\#3
\#1=refout (\#2,\#3)	exports record ^\#2 into VALUE( $\left.{ }^{\wedge} \# 1\right)$ by protocol -\#3

Table 5: Commands for external communication

```
 if(thereismore,copynext)
 stop
process(copynext)
 fieldstack=get(fieldstack,next)
 fieldtocopy=get(fieldstack,entry)
 entrytocopy=refget(copyfrom,fieldtocopy)
 (copyto,fieldtocopy)=refset(entrytocopy)
 goto(checkfornext)
start(getfields)
```

For example, if the SVM is called with the program above and core \#c and a semantic memory containing the following sems:


Upon execution of this program the following happens:
First, the process getfields is entered (due to the line start(getfields)), and this process generates a linked list beginning in `fieldstack such that each field \#f of ^copyfrom is represented as ^fieldstack.next ${ }^{k}$.entry=\#f for some $k \in 0,1,2, \ldots$. Then, process checkfornext is entered.

The process checkfornext checks if ${ }^{\text {ffieldstack.next is nonempty. If this is the case, }}$ process copynext is entered; otherwise the SVM halts.
Process copynext first sets `fieldstack to `fieldstack.next, i.e., we advance one link in the linked list that contains all the fields of "copyfrom. Then the field of "copyfrom (stored in `fieldstack.entry) and the entry "copyfrom.^fieldstack.entry are stored in `fieldtocopy and `entrytocopy respectively. Finally this field and entry are written into a new sem with handle "copyto.
The result after execution of the SVM is a semantic memory containing:


## 9 Turing machines and their simulation

In this section we formally introduce Turing machines and show that the SVM is Turing complete by giving an SVM program that simulates any ordinary Turing machine.

### 9.1 The tape of the Turing machine

The cells on the tape of the Turing machine are simulated by a linked list in "context.tape where "context.tape.entry is the left end of the tape, and initially holds the delimiting symbol ' $>$ '. Objects that do not exist are interpreted by the Turing machine as blank spaces. The alphabet of the Turing machine is arbitrary, but must not contain the pipe I. Furthermore, the characters > and the blank space are reserved. At the beginning of execution, the head of the TM is assumed to be on "context.tape.next, and the TM to be in state ' 1 '.

### 9.2 The instructions of the Turing machine

The action of the Turing machine is determined by a finite list of instructions of the form

$$
S|R| W|M| S^{\prime}
$$

which applies if $S$ is the state the TM is currently in, and $R$ is the symbol currently read by the TM. In this case, the following actions are performed, in this order:
(1) The symbol $W$ is written. If $W$ is the empty string, then nothing is written.
(2) The head moves one cell to the right if $M=\mathrm{R}$ and one cell to the left if $M=\mathrm{L}$. If $M$ is the empty string, then no movement is performed.
(3) The state of the TM changes to $S^{\prime}$.

If no instruction applies, the TM halts.

### 9.3 Example: Replacement

This is an example of a very simple Turing machine, which simply replaces in a string of a's and b's every occurring a by c. It has only one state, and runs through the tape from left to right, replacing every a it runs along. When it reaches the end of the string, it reads a blank, and no instruction applies, hence the Turing machine halts.

The two instructions are:
$1|b||R| 1$
$1|a| c|R| 1$

Thus, the tape with initial content
$>\mathrm{b}$ b babbababat
has, when the Turing machine halts, the content:
> b b b c b b c b b c

### 9.4 Example: Division with remainder

This is a more complicated example of a Turing machine that performs a division with remainder. The number of a's at the beginning of the tape is divided by the number of
the b's following. The result is represented as the number of q's for the quotient, and the number of $r$ 's for the remainder, when the Turing machine halts.
For example, if we want to perform 8 divided by 3 , the tape initially looks like this:

```
> a a a a a a a a b b b
```

where the eight a's represent the dividend and the three b's the divisor.
When the Turing machine halts, the tape contains:

```
>AAAAAAAAA b b b q q r r
```

which tells us that the quotient is 2 (represented by the two q's), and the remainder is also 2 (represented by the two r's). Note that the a's have changed to A's in order for the processed a's to be distinguishable from those not yet processed.

This is the transition table of the Turing machine that performs a division with remainder:

$1\|a\|\|R\| 1$	$3\|a\|\|R\| 3$	$4\|b\|\|L\| 2$	$6\|B\| b\|L\| 6$	$7\|q\|\|R\| 7$	$9\|B\|\|R\| 9$
$1\|b\|\|L\| 2$	$3\|A\|\|R\| 3$	$4\|q\|\|\mid 5$	$6\|A\|\|\mid 2$	$7\|\|\|L\| 8$	$9\|b\|\|R\| 9$
$2\|B\|\|L\| 2$	$3\|B\|\|R\| 3$	$4\|\|\|\mid 5$	$6\|a\|\|\mid 2$	$8\|q\|\|L\| 8$	$9\|q\|\|R\| 9$
$2\|A\|\|L\| 2$	$3\|b\| B\|R\| 4$	$5\|q\|\|R\| 5$	$7\|A\|\|R\| 7$	$8\|b\|\|L\| 8$	$9\|r\|\|R\| 9$
$2\|a\| A\|\mid 3$	$3\|\|\|\mid 5$	$5\|\|q\|\| 6$	$7\|B\|\|R\| 7$	$8\|r\|\|L\| 8$	$9\|\|r\|\| 8$
$2\|\|\|R\| 7$	$3\|q\|\|\mid 5$	$6\|q\|\|L\| 6$	$7\|b\|\|R\| 7$	$8\|B\| b\|\mid 9$	

This Turing Machine performs the division by the following steps:
State 1 just brings the head in the right position to start:
The head moves to the right until the first b is read, then moves one cell to the left and enters state 2.
State 2, 3, 4 and 5 determine the quotient, i.e., the number of q's on the tape: For every b , an a is replaced by an A , and the b is replaced by a B. If there is no more b on the tape, one $q$ is written and the B's are replaced by b's:
In state 2, the head is moved to the left, until the rightmost a is reached. If there is no a on the tape (because all a's have been replaced by A's to mark them as processed), the TM changes to state 7. Else the rightmost a is changed to A, and the TM enters state 4.
State 3 then replaces the leftmost b by a B and changes to state 4. If there is no bon the tape (every b has been replaced by a B), the TM changes to state 5 . State 4 is only a case distinction: if the b just replaced was the last one, then change to state 5 , and if there is still a b on the tape, then change to state 2, i.e., perform a loop. State 5 moves the head to the right until it reaches an empty cell, writes a q , and changes to state 6 .

State 6 changes all B's back to b's and puts the head on the rightmost cell containing either A or a. The TM is then set to state 2 again and this is repeated (and every time a $q$ is written) until there are no more a's on the tape, and state 7 is entered.

State 7 then simply puts the head to the last nonempty cell of the tape and changes to state 8.

States 8 and 9 determine the remainder of the division (i.e., b's which has not been replaced by B's in state 3 ) and write the corresponding number of $r$ 's to the tape:
The head is put to the rightmost B by state $\mathbf{8}$, and before entering state 9 , this $B$ is replaced by ab. If there is no B on the tape, then no instruction applies and the TM halts. In state $\mathbf{9}$, the head is put to the first empty cell of the tape, an r is written there, and the TM enters state 8 again, hence loops.
There has been put much effort in constructing smaller and smaller universal Turing
machines, i.e., special Turing machines that can simulate every other Turing machine, from the 1950's until today ${ }^{1}$. Small universal Turing machines were studied, e.g., in the influential paper [7] by Minsky, by Robinson [12], and recently by Neary \& Woods [8].
Appearently no effort was put in making universal Turing machines user-friendly while keeping them small, which would be related to the goal of our work.

### 9.5 The SVM-code of a universal TM

To prove Turing completeness we now specify a SVM program that simulates an arbitrary Turing machine. The reader should interpret it with the help of Tables $2-5$.

The instructions of the Turing machine are represented in the memory of the SVM as follows:
"transtable contains the linked list of instructions
"transtable.next ${ }^{k}$.state contains $S$ of the $k$ th instruction
"transtable.next ${ }^{k}$. reading contains $R$ of the $k$ th instruction
"transtable.next ${ }^{k}$.towrite contains $W$ of the $k$ th instruction
${ }^{-}$transtable.next ${ }^{k}$.tomove contains $M$ of the $k$ th instruction
${ }^{\text {transtable.next }}{ }^{k}$. tostate contains $S^{\prime}$ of the $k$ th instruction
${ }^{-}$transtable.next ${ }^{k}$.next contains the $k+1$ th instruction
Note that if $W$ in the instruction is the empty string, \#obj.towrite is set to \#obj.reading, hence no alteration is done by writing. If $M$ in the instruction is the empty string, \#obj.tomove is set to X , just to distinguish it from L and R. The position of the head is stored in `position, and the state of the Turing Machine is stored in "state.

```
program(UTM)
process(init)
% makes the necessary nodes available in the core
 tape=in(tapename,tm_tape)
 transtable=in(tablename,tm_instructions)
 position=get(core,tape)
 (core,state)=setconst (1)
 (core,cR)=setconst(R)
 (core,cL)=setconst(L)
 (core,blank)=setconst()
 goto(nextcommand)
process(nextcommand)
% initializes the comparing, reads the tape
 trycommand=get(core,transtable)
 reading=get(position,entry)
 goto(checkstate)
process(trynext)
% halts the TM if there are no instructions left
 therearemorecommands=exist(trycommand,next)
 if(therearemorecommands,increase)
 goto(endprocess)
```

[^0]```
process(increase)
% go to next command
        trycommand=get(trycommand,next)
        goto(checkstate)
process(checkstate)
% checks if the state of the TM is equal to the state in the command
        stateincommand=get(trycommand,state)
        samestate=check(state,stateincommand)
        if(samestate,checksymbol)
        goto(trynext)
process(checksymbol)
% checks if the symbol read by the TM is equal to
% the symbol in the command
        symbolincommand=get(trycommand,reading)
        samesymbol=check(symbolincommand,reading)
        if(samesymbol,executecommand)
        goto(trynext)
process(executecommand)
% executes the instructions in the command
        state=get(trycommand,tostate)
        towrite=get(trycommand,towrite)
        (position, entry)=set(towrite)
        tomove=get(trycommand,tomove)
        moveleft=check(tomove,cL)
        moveright=check(tomove,cR)
        if(moveleft,left)
        if(moveright,right)
        goto(nextcommand)
process(left)
% moves the head to the left
        notleftend=exist(position,last)
        if(notleftend,goleft)
        create(newfield)
        (position,last)=set(newfield)
        (newfield,entry)=set(blank)
        (newfield,next)=set(position)
        position=get(position,last)
        goto(nextcommand)
process(goleft)
    position=get(position,last)
        goto(nextcommand)
process(right)
% moves the head to the right
    notrightend=exist(position,next)
    if(notrightend,goright)
    create(newfield)
    (position,next)=set(newfield)
    (newfield,entry)=set(blank)
    (newfield,last)=set(position)
```

```
    position=get(position,next)
    goto(nextcommand)
process(goright)
    position=get(position,next)
    goto(nextcommand)
process(endprocess)
    tapeasvalue=out(tape,tm_tape)
    copyoftape=external(valuecopyname,tapeasvalue)
    filename=external(writetofilename,copyoftape)
    stop
start(init)
```

When invoked, it expects to have the following objects in its core:

```
`tapename is an object that has a tape as external value,
`tablename
`valuecopyname
`filename is an object that has a valid filename as external value,
~writetofilename
    is an object that has a transistion table as external value,
    is an object associated to an external processor that makes a copy
    of the external value,
    is an object associated to an external processor that writes a type
    of into a file
```

The SVM-program UTM essentially searches for a command that applies, then performs the instructions, and then loops. In more detail,

```
init initially sets up the records so that processing can begin, including
    loading the tape (stored as external value in `tapename) and the
    transistion table (stored as external value in `tablename)
nextcommand resets the records and replaces an empty cell on the tape by a
    blank.
trynext halts if there is no next instruction and else calls the process
increase
checkstate
checksymbol
    which brings the next instruction into consideration.
    and
    compares the state of the Turing Machine with S in the instruc-
    tion, and the symbol currently read on the tape with R in the in-
    struction, respectively. In other words, these two processes check
    if the instruction under consideration applies.
executecommand performs the actions given in the instruction, except for moving
    the head to the left or the right.
    Since 'position contains a counter representing the position of
    the head on the tape,
left and
goleft move the head to the left (if the head is not already on the leftmost
    cell), while
right and
goright
endprocess
move the head to the right.
then writes the result first as the value of "tapeasvalue, then
makes a copy of that value to "copyoftape (which is redundant,
but serves for an example for an external processor), and then the
value is written into the file that is the value of `filename.
```

Correctness is straightforward to prove.
The SVM program above simulates an arbitrary TM and does not use external storage. Since an ordinary TM has no external storage and it is not specified how an external processor should behave, it is impossible to give an ordinary TM that simulates an arbitrary SVM program.

10 The USVM

A universal SVM (USVM) teh semantic analogon to a universal Turing machine. It is a special SVM program capable of 'simulating' the processing of an other SVM program P in the following sense: The context of the USVM contains the SVM program P and the context of P. When the USVM has finished, the USVM has produced the same changes in the context as P would have produced when called directly.
When the USVM is started, objects for program, context and library have to be passed to the USVM as part of its core. It is assumed that this information is stored in the objects ^sim_prog, ^sim_context and ^sim_lib before calling the USVM.

The SVM code of the USVM

The example program below implements a simulator for the SVM, which shows that the SVM programming language is universal.

```
program(USVM)
%%%%%%%%%%%%%%%%%%%%%%%%%%%% control handling %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
process(init)
% initialize nodes, initialize local and global frame
    (simcore,core)=set(simcore)
    (simcore,program)=set(simprog)
    simprocesses=get(simprog,processes)
    startfocus=get(simprog,start)
    simfocus=refget(simprocesses,startfocus)
    goto(load)
process(next)
% proceed to the next command to simulate
    simfocus=get(simfocus,next)
    goto(load)
process(load)
% load the information about the command to simulate to the core
    sim_comm=get(simfocus,comm)
    move(sim_comm)
```

```
process(move)
% goto `#process
    processname=get(simfocus,arg1)
    process=refget(simcore,processname)
    simfocus=refget(simprocesses,process)
    goto(load)
process(goto)
% goto #process
    process=get(simfocus,arg1)
    simfocus=refget(simprocesses,process)
    goto(load)
process(if)
% if `#cond goto #process
    criterionname=get(simfocus,arg1)
    criterion=refget(simcore,criterionname)
    if(criterion,ifapplies)
    goto(ifappliesnot)
process(ifapplies)
    process=get(simfocus,arg2)
    simfocus=refget(simprocesses,process)
    goto(load)
process(ifappliesnot)
    goto(next)
process(stop)
% stop
        stop
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\% internal handling \%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
process(create)
% create `#newnode
    toassign=get(simfocus,arg1)
    create(newobj)
    (simcore,toassign)=refset(newobj)
    goto(next)
process(fields)
% ^#fieldlist=fields of `#record
    writetoname=get(simfocus,arg1)
    getfromname=get(simfocus,arg2)
    getfrom=refget(simcore,getfromname)
    stackoffields=fields(getfrom)
    (simcore,writetoname)=refset(stackoffields)
    goto(next)
```

```
process(check)
% ^#isequal=(`#left==^#right)
    leftname=get(simfocus,arg2)
    left=refget(simcore,leftname)
    rightname=get(simfocus,arg3)
    right=refget(simcore,rightname)
    result=check(left,right)
    writeto=get(simfocus,arg1)
    (simcore,writeto)=refset(result)
    goto(next)
process(exist)
% `#node=exist(#record,#field)
    leftname=get(simfocus,arg2)
    left=refget(simcore,leftname)
    right=get(simfocus,arg3)
    result=existref(left,right)
    writeto=get(simfocus,arg1)
    (simcore,writeto)=refset(result)
    goto(next)
process(existref)
% ^#node=exist(`#record,^#field)
    leftname=get(simfocus,arg2)
    left=refget(simcore,leftname)
    rightname=get(simfocus,arg3)
    right=refget(simcore,rightname)
    result=existref(left,right)
    writeto=get(simfocus,arg1)
    (simcore,writeto)=refset(result)
    goto(next)
process(setconst)
% `#1.#2=const #3
    handle=get(simfocus,arg1)
    sethandle=refget(simcore,handle)
    field=get(simfocus,arg2)
    setto=get(simfocus,arg3)
    (sethandle,field)=refset(setto)
    goto(next)
process(refset)
% `#1.^#2=^#3
    handle=get(simfocus,arg1)
    sethandle=refget(simcore,handle)
    fieldname=get(simfocus,arg2)
    field=refget(simcore,fieldname)
    entry=get(simfocus,arg3)
```

```
    setto=refget(simcore,entry)
    (sethandle,field)=refset(setto)
    goto(next)
process(set)
% ^#1.#2=^#3
    handle=get(simfocus,arg1)
    sethandle=refget(simcore,handle)
    field=get(simfocus,arg2)
    entry=get(simfocus,arg3)
    setto=refget(simcore, entry)
    (sethandle,field)=refset (setto)
    goto(next)
process(refget)
% ^#1=^#2.^#3
    addressname=get(simfocus,arg1)
    handlename=get(simfocus,arg2)
    handle=refget(simcore,handlename)
    fieldname=get(simfocus,arg3)
    field=refget(simcore,fieldname)
    towrite=refget(handle,field)
    (simcore,addressname)=refset(towrite)
    goto(next)
process(get)
% ^#1=^#2.#3
    addressname=get(simfocus,arg1)
    handlename=get(simfocus,arg2)
    handle=refget(simcore,handlename)
    field=get(simfocus,arg3)
    towrite=refget(handle,field)
    (simcore,addressname)=refset(towrite)
    goto(next)
process(unset)
% unset(`#1.`#2)
        firstname=get(simfocus,arg1)
        secondname=get(simfocus,arg2)
        first=refget(simcore,firstname)
        second=refget(simcore,secondname)
        unset(first,second)
        goto(next)
```

\% external handling \%
process(external)
\% external: \#program(^\#input)
inputname=get(simfocus,arg3)

```
    processname=get(simfocus,arg2)
    outputname=get(simfocus,arg1)
    inputnode=refget(simcore,inputname)
    processobj=refget(simcore,processname)
    outputnode=refget(simcore,outputname)
    outputnode=external(processobj,inputnode)
    goto(next)
process(in)
% move in `#node as #protocol
    transto=get(simfocus,arg1)
    transfrom=get(simfocus,arg2)
    protocol=get(simfocus,arg3)
    objtotransfrom=refget(simcore,transfrom)
    transtotemp=refin(objtotransfrom,protocol)
    (simcore,transto)=refset(transtotemp)
    goto(next)
process(out)
% move out `#node as #protocol
    transto=get(simfocus,arg1)
    transfrom=get(simfocus,arg2)
    protocol=get(simfocus,arg3)
    objtotransfrom=refget(simcore,transfrom)
    transtotemp=refout(objtotransfrom, protocol)
    (simcore,transto)=refset(transtotemp)
    goto(next)
process(refin)
% move in `#node as `#protocol
    transto=get(simfocus,arg1)
    transfrom=get(simfocus,arg2)
    protocolname=get(simfocus,arg3)
    protocol=refget(simcore,protocolname)
    objtotransfrom=refget(simcore,transfrom)
    transtotemp=refin(objtotransfrom,protocol)
    (simcore,transto)=refset(transtotemp)
    goto(next)
process(refout)
% move out `#node as `#protocol
    transto=get(simfocus,arg1)
    transfrom=get(simfocus,arg2)
    protocolname=get(simfocus,arg3)
    protocol=refget(simcore,protocolname)
    objtotransfrom=refget(simcore,transfrom)
    transtotemp=refout(objtotransfrom, protocol)
    (simcore,transto)=refset(transtotemp)
    goto(next)
```

```
% info to start program:
```

start(init)

Without blank lines and comment lines, the USVM contains 166 lines.

References

[1] Daniel I. Cohen. Introduction to computer theory. John Wiley \& Sons, Inc., New York, NY, USA, 1986.
[2] J.E. Hopcroft, J.D. Ullman, and A.V. Aho. The design and analysis of computer algorithms. Addison-Wesley, Boston, MA, USA, 1975.
[3] S. Jefferson and D.P. Friedman. A simple reflective interpreter. LISP and symbolic computation, $9(2): 181-202,1996$.
[4] O. Lassila, R.R. Swick, et al. Resource Description Framework (RDF) Model and Syntax Specification, 1999.
[5] T.B. Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific American, 284(5):34-43, 2001.
[6] F. Manola, E. Miller, et al. RDF Primer. W3C Recommendation, 10, 2004.
[7] Marvin Minsky. Size and structure of universal Turing machines using tag systems. Proceedings of Symposia in Pure Mathematics, 5.
[8] T. Neary and D. Woods. Small fast universal Turing machines. Theoretical Computer Science, 362(1-3):171-195, 2006.
[9] A. Neumaier and P. Schodl. A Framework for Representing and Processing Arbitrary Mathematics. In J. Filipe and J.L.G. Dietz, editors, Proc. Int. Conf. Knowledge Engineering and Ontology Development, pages 476-479. SciTePress, 2010. An ealier version is available at http://www.mat.univie.ac.at/~schodl/pdfs/IC3K_10.pdf.
[10] Piergiorgio Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, New York, Oxford, 1999.
[11] R. H. Richens. Preprogramming for mechanical translation. Mechanical Translation, $3(1): 20-28,1956$.
[12] Raphael M. Robinson. Minsky's Small Universal Turing Machine. International Journal of Mathematics, 2(5):551-562.
[13] Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGrawHill, New York, 1967.
[14] P. Schodl and A. Neumaier. The FMathL type system. Manuscript, available at http://www.mat.univie.ac.at/~neum/FMathL.html\#TypeSystem, 2010.
[15] P. Schodl, A. Neumaier, K.Kofler, F. Domes, and H. Schichl. Towards a Self-reflective, Context-aware Semantic Representation of Mathematical Specifications. In J. Kallrath, editor, Modeling Languages in Mathematical Optimization. Springer, to appear.
[16] J.R. Shoenfield. Recursion theory. Springer-Verlag New York, 1993.
[17] J.F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foundations. MIT Press, 2000.
[18] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., 42(2):230-265.

[^0]: ${ }^{1}$ In October 2007, Alex Smith claimed to have found the smallest Universal Turing Machine possible, having 2 states and 3 symbols, see www.wolframscience.com/prizes/tm23/solved.html

