
DISSERTATION

Titel der Dissertation

Foundations for a self-reflective, context-aware

semantic representation of mathematical

specifications

Verfasser

Peter Schodl

angestrebter akademischer Grad

Doktor der Naturwissenschaften (Dr.rer.nat)

Wien, im Juli 2011

Studienkennzahl lt. Studienblatt: A 091 405
Dissertationsgebiet lt. Studienblatt: Mathematik
Betreuer: Univ.-Prof. Dr. Arnold Neumaier

2

Contents

Abstract 6

1 Introduction 7

1.1 The MoSMath project . 8

1.2 Vision: The FMathL project 10

1.3 Higher level processing: Concise 11

1.4 Overview . 12

2 Framework: the semantic memory 15

2.1 The semantic memory . 16

2.2 Semantic graphs . 17

3 Algorithms: the semantic virtual machine 19

3.1 The semantic virtual machine 21

3.2 The SVM programming language 22

3.3 Flow control . 26

3.4 External values and external processors 26

3.5 An operational semantics for the SVM 27

3.6 Description of the SVM commands 31

3.7 Turing machines and their simulation 34

3.8 The universal semantic virtual machine 41

4 Typing 43

4.1 The type structure . 44

4.2 Type sheets . 45

4.3 Type declarations in the SM 50

4.4 Well-typed records . 71

4.5 Type declarations and unions as types 73

3

4 CONTENTS

5 Applications 77

5.1 Mathematical formulas . 78

5.2 The representation of informal mathematical text 83

5.3 The representation of optimization problems 86

5.4 The TPTP Library . 87

5.5 Naproche . 88

Appendix 88

A SVM programs 91

A.1 The SVM program copyFields as a semantic graph 91

A.2 The SVM code of the USVM 92

B Typesheets 99

B.1 The typesheet for expressions 99

B.2 Typesheets for a Turing machine 103

B.3 Type sheet for optimization problems 104

B.4 Type sheet for TPTP problems 108

C Examples of expressions 111

C.1 Vectors and matrices . 111

C.2 Sets . 121

C.3 Equalities and inequalities . 129

C.4 Sums and Integrals . 135

C.5 Subscripts and superscripts 145

C.6 Intervals . 149

C.7 Quantification and lambda calculus 153

C.8 Ambiguous expressions . 161

C.9 Case distinction . 163

C.10 Partial derivatives . 165

C.11 Minimum and maximum . 167

D Examples of problems from the OR-Library 171

D.1 Multi-dimensional knapsack. 171

D.2 Multi-demand multi-dimensional knapsack. 172

D.3 Portfolio optimization. 175

D.4 Set partitioning problem. 177

D.5 Set covering problem. 178

CONTENTS 5

D.6 Equitable partitioning. 179

D.7 Data envelopment problem. 180

E Examples from Naproche 181

E.1 Burali-Forti paradox . 181

E.2 An example from elementary group 182

Acknowledgements 183

Zusammenfassung 190

Curriculum Vitae 190

6 CONTENTS

Abstract

The project “a modeling system for mathematics” (MoSMath), currently
carried out at the University of Vienna, aims to create a modeling system for
the specification of models for the numerical work in optimization in a form
that is natural for the working mathematician. The specified model is rep-
resented and processed inside a framework and can then be communicated
to numerical solvers or other systems.

As a first step towards a general purpose tool for representing and interfacing
general mathematics on the computer (the FMathL project), we developed
a representation of mathematics in a semantic network called the semantic
memory, together with a type system that checks validity of the representa-
tion and a virtual machine that can execute algorithms.

The user benefits from this input format in multiple ways: The most ob-
vious advantage is that a user is not forced to learn an algebraic modeling
language and can use the usual natural mathematical language, which is
learned and practiced by every mathematician, computer scientist, physi-
cist, and engineer.

In addition, this kind of specification of a model is the least error prone,
and the most natural way to communicate a model. Once represented in
the framework, multiple outputs in different modeling languages (or even
descriptions in different natural languages) would not mean extra work for
the user if appropriate transformation modules are available.

Chapter 1

Introduction

Mathematicians nowadays rely heavily on computers. They use them to
communicate with colleagues, search the web for information, create docu-
ments they want to publish, perform numerical and symbolic computations,
check their proofs, store the work they have done, etc. However, since math-
ematicians address very diverse parties with their writing, a mathematician
usually has to formulate the same idea (e.g., a proof, a numerical problem,
a conjunction) multiple times, depending on the recipient: for a student in
great detail, for a foreign colleague working in the same field in less detail
but a common language, for a publication in a document markup language,
for a numerical solver in an algebraic modeling language, for a proof checker
in a special language and at a tremendous level of detail.

If a general representation with rich possibilities to interface the information
proves feasible, it may also contribute to an electronic database containing
essential amounts of the known mathematics. This vision is not new, it
dates back at least to the QED project [3]. Its goal was to represent all
important mathematical knowledge, conforming to the highest standards of
mathematical rigor. Another vision in this direction was the universal auto-
mated information system for all sciences [1]. This is even more ambitious
than a universal mathematical database, but the prominent role of mathe-
matics in such a system, also discussed in [1], would make a mathematical
database probably a corner stone of such a system and could be a starting
point.

While mathematicians usually represented their work in LATEX documents
or algorithms written in programming languages, these forms are very rigid
and problems arise concerning semantic searches, re-usability, consistency
checks, etc.

To overcome these problems, several representations of mathematics which
at least include semantics have been developed; we mention some of the
most important ones:

7

8 CHAPTER 1. INTRODUCTION

• MathML andOpenMath [4], XML-based mathematical markup lan-
guages for mathematical formulas. Both are, however, restricted, see
[20] and [21].

• OMDoc [22], an XML-based format based on MathML and Open-
Math for general mathematical objects.

• Languages for formalized mathematics, such as Mizar [49], which re-
quire formal definitions of all occurring symbols, functions, relations,
etc.

• Annotated documents such as MathLang [17] or sLATEX [23], in which
LATEX documents are enriched with semantic content.

Our approach aims at simplicity and transparency of the internal repre-
sentation, and so we chose to represent mathematics in a labeled graph,
and more particular in a semantic network, introduced by Richens [38] in
1956. Semantic networks and akin concepts are discussed in detail by Sowa
[45]. The semantic memory is compatible with, and implementable in the
semantic web [27].

Also, we want to keep the processing as flexible as possible, therefore we did
not implement a fixed set of algorithms to perform actions on the seman-
tic network, but instead we defined a virtual machine discussed in Section
3. This aim is comparable to the GOOD database model [12], which also
offers a data structure based on labeled graphs, some form of typing, and a
transformation language to execute changes on the data.

When using a graph, or passing it to some algorithm, we need information
about the structure of this graph, as we do not want to examine the whole
graph every time it is used. For this reason we define a procedure to de-
termine that a given graph is well-typed of a certain type, or ill-typed.
These assignments are always made with respect to a particular type system.

Thus a concept of typing is needed that covers

• syntactically correct mathematical formulas,

• well-formed sentences built according to a linguistic grammar, and

• structured records in the programming sense.

1.1 The MoSMath project

The project “a modeling system for mathematics” (MoSMath), currently
carried out at the University of Vienna, aims to create a modeling system
for the specification of models for the numerical work in optimization in a

1.1. THE MOSMATH PROJECT 9

form that is natural for the working mathematician. The specified model
is represented and processed inside a framework and can then be commu-
nicated to numerical solvers or other systems. While the input format is a
controlled natural language (just like Naproche [24] and MathNat [14], but
with a different target), it is designed to be as expressive and natural as
currently feasible.

The user benefits from this input format in multiple ways: The most ob-
vious advantage is that a user is not forced to learn an algebraic modeling
language and can use the usual natural mathematical language, which is
learned and practiced by every mathematician, computer scientist, physi-
cist, and engineer.

In addition, this kind of specification of a model is the least error prone,
and the most natural way to communicate a model. Once represented in
the framework, multiple outputs in different modeling languages (or even
descriptions in different natural languages) would not mean extra work for
the user if appropriate transformation modules are available.

The MoSMath project makes use of or connects to several already existing
software systems:

LATEX: Being the de facto standard in the mathematical community for
decades, the syntax of the input will be a subset of LATEX.

Markup languages: Texts written in markup languages like XML are
highly structured and easily machine readable, e.g., XML employs
a tree structure represented in text form. We make use of the tool
LaTeXML [29] to produce an XML document from a LATEX input,
which can then be translated into records in our data structure.

Algebraic modeling languages: To be able to access a wide variety of
solvers, the algebraic modeling language AMPL [9] is used the primary
target language. One of the reasons for this choice is existing software
that converts AMPL to other modeling languages.

The Grammatical Framework [37]: A programming language for mul-
tilingual grammar applications, which allows us to produce grammat-
ically correct sentences in multiple languages.

Naproche [24]: An interface from a controlled natural language to proof
checking software, which can be used to interface proof checkers.

TPTP [47]: The library “Thousands of problems for theorem provers” pro-
vides facilities to interface interactive theorem provers.

10 CHAPTER 1. INTRODUCTION

1.2 Vision: The FMathL project

The MoSMath project is embedded into a far more ambitious long-term
vision – the FMathL project, described in [33] and the extensive FMathL
web site1 (for a summary, see [34]).

While the MoSMath project creates an interface for optimization prob-
lems formulated in almost natural mathematical language, the vision of the
FMathL project is an automatic general purpose mathematical research sys-
tem that combines the indefatigability, accuracy and speed of a computer
with the ability to interact at the level of a good mathematics student.
Formal models would be specified in FMathL close to how they would be
communicated informally when describing them in a lecture or paper: with
functions, sets, operators, measures, quantifiers, tables, cases rather than
loops, indices, diagrams, etc.

FMathL aims at providing mathematical content and proof services as easily
as Google provides web services, Matlab provides numerical services, and
Mathematica or Maple provide symbolic services. A mathematical assistant
based on the FMathL framework should be able to solve standard exercises,
intelligently search a universal database of mathematical knowledge, check
the represented mathematics for correctness, and aid the author in routine
mathematical work. The only extra work the user would have to do is during
parse time of the written document, when possible ambiguities have to be
resolved.

Important planned features of FMathL include the following:

• It has both a “workbench” character where people store their work
locally, as well as a “wiki” character where work can be shared world-
wide.

• It supports full formalization, but does not force it upon the user.

• It incorporates techniques from artificial intelligence.

• It communicates with the user in a natural way.

• The language is extensible, notions can be defined as usual and will
then be understood.

• To deal with ambiguities, the system makes use of contextual infor-
mation.

By complementing existing approaches to mathematical knowledge manage-
ment, the FMathL project will contribute towards the development of:

1The FMathL web site is available at http://www.mat.univie.ac.at/∼neum/FMathL.html

1.3. HIGHER LEVEL PROCESSING: CONCISE 11

• The QED project [3]: FMathL would come with a database of ba-
sic mathematics, preferably completely formalized. In addition, the
natural interface would make contributing to the QED project easier.

• A universal mathematical database: envisioned, e.g., in Andrews [1]
and partially realized in theorem provers with a big library (such as
MIZAR [49]), where they only serve a single purpose.

• An assistant in the sense of Walsh [52] that saves the researcher’s time
and takes routine off their shoulders – in the classroom, in research,
and in industry.

• A checker not only for grammar but also for the semantical correctness
of mathematical text.

• Automatic translation of mathematical content into various natural
languages.

While FMathL reaches far beyond MoSMath, we expect that the frame-
work of the MoSMath project will serve as a first step towards the FMathL
project. The FMathL project will also benefit from MoSMath in the sense
that once MoSMath is integrated into FMathL, it will make FMathL us-
able in the restricted domain of optimization long before the full capabilities
of FMathL are reached.

1.3 Higher level processing: Concise

The SVM is merely intended for definition, checkability and low level im-
plementation. After some experience with SVM programs we designed a
programming environment that is intended for user-friendly data entry and
manipulation, algorithm design and execution, and more general for inter-
action with the semantic memory. Loosely speaking, it is an integrated
development environment (IDE) for mathematics in the semantic memory.
This environment is called Concise.

A Java implementation of Concise is being written by Ferenc Domes, and
publication will be announced at the FMathL web site2. It consists of a
versatile GUI (graphical user interface) that enables the user to view, create
and manipulate sems and records in a natural way. An interpreter for a
Turing complete subset of Concise written for the SVM only requires 330
lines of SVM code.

Algorithms can be programmed and executed in Concise, but algorithms
are represented as records in the SM, making Concise a text-free program-

2http://www.mat.univie.ac.at/∼neum/FMathL.html

12 CHAPTER 1. INTRODUCTION

ming environment. Nevertheless, for debugging and alternative coding there
are text views on Concise programs.

Concise has configurable display and text completion, and will support
types, function calls, different kinds of variables (global, local, static and
persistent), loops over all fields of an object, multiple users and multiple
languages.

Concise will also incorporate a parser capable of dealing with dynamically
changing grammars. This is necessary because in many specifications in
ordinary mathematical language, the syntax (and hence the grammar) is
partially defined through the context. In particular, definitions give not only
the semantics of the term being defined, but implicitly also its grammatical
function.

1.4 Overview

In Chapter 2 we describe a graph-based, implementation independent model
of knowledge representation called the “semantic memory”. It is repre-
sentable as a special case of a semantic network, and influenced by, or akin
to concept maps, the semantic web, parse trees for dependency parsing, etc.
When regarded as a graph, the semantic memory is a directed, labeled graph
where the nodes can have arbitrary data associated to them. The only re-
striction on the graph is that there cannot be two distinct arcs starting from
the same node and having the same label.

Chapter 3 introduces a virtual machine called the “semantic virtual ma-
chine” (SVM) that can perform operations on the semantic memory. We do
so to be able to rigorously argue about processes in the SM, and to be able
to proof properties. Programs that are executed by the semantic virtual
machine can be written in an assembler-style programming language, but
are represented in the semantic memory. We formally define the action of
the SVM by giving an operational semantics.

To show Turing completeness of the semantic virtual machine we give a
program that simulates any given Turing machine. Also, we discuss a SVM
program that interprets any given SVM program. Since this self-interpreter
for the SVM is analogous to the a universal Turing machine, we call this
program the universal semantic virtual machine.

In Chapter 4 we define a type system for the semantic memory. When
data is to be processed by an algorithm, or we want to be able to control
well-formedness of the data to prevent run-time errors.

Types are objects in the semantic memory, and they are associated to re-
quirements, which can be defined using plain text documents called “type
sheets”. The requirements that can be posed via type sheets are comparable
to the typing of XML documents. Also, the type system uses subtypes and

1.4. OVERVIEW 13

unions of types, inheritance, and objects that have meaning on their own.
The requirements associated to a type are also represented in the semantic
memory, and we give a formal definition of the algorithm that check whether
or not data in the semantic memory is well-typed or not.

Since the requirements are also represented in the semantic memory, we can
give the type of types, which is the analogon of a “meta schema” of type
systems for XML.

Chapter 5 introduces actual application done with this framework:

• We gathered a set of different kinds of mathematical expression and
represented them in the semantic memory. From this representation,
the according LATEX-formulas can be generated automatically.

• Informal mathematical text was represented in the semantic memory.

• Optimization problems from the OR Library [2] were represented in
the semantic memory, and we are able to automatically generate a
natural problem description, and a machine-processable AMPL model
description.

• The all problems files from the TPTP Library [47] were represented
in the semantic memory.

• Two example texts used in the Naproche project [24] were represented
in the semantic memory. The automatically generated output is ac-
cepted by the Naproche web interface3.

Appendix A gives examples of SVM programs. It contains an example of a
simple program as it is represented in the semantic memory, and the code
of the USVM.

Appendix B contains several type sheets. Since type sheets express require-
ments of data in the semantic memory, these type sheets can also be seen
as a definition of the representation of several sorts of data in the seman-
tic memory. We give type sheets for mathematical expressions, for Turing
machines, for problems sets from the TPTP, and for optimization problems
from the OR Library.

Appendices C and D give examples from the applications discussed in Chap-
ter 5. Appendix C contains 31 mathematical expressions, both as repre-
sented in the semantic memory, and the LATEX-output automatically cre-
ated from this representation. Appendix D gives 10 optimization problem
from the OR-Library. For each problem it contains both the automatically
created description of the data and the numerical data in the OR Library,
as well as the automatically created AMPL-file.

3http://naproche.net/inc/webinterface.php

14 CHAPTER 1. INTRODUCTION

Earlier results that overlap with this thesis have been published in [34] or
are accepted for publication in [16]. Large parts of Sections 2 and 3 are
submitted for publication as [35], and large parts of Sections 2 and 4 are
submitted for publication as [42].

Chapter 2

Framework: the semantic
memory

The semantic memory is a framework designed for the representation of
arbitrary mathematical content, based on a computer-oriented setting of
formal concept analysis (Ganter & Wille [11]). In particular, our goal
was to be able to represent mathematical expressions, mathematical natural
language, and grammars in a natural way in the semantic memory. We are
aware of existing languages and software systems to represent mathematics,
but found them inadequate for our goals, see [20], [21].

The SM codifies the foundations of formal concept analysis in a way suitable
for automatic storage and processing of complex records. A statement of
the form gIm (interpreted as “the object g has the attribute m”) can be
represented as a sem g.m=Present. The semantic matrix precisely matches
multi valued contexts (Ganter & Wille [11, p.36]) where I is a ternary
relation and I(g,m,w) is interpreted as “the attribute m of object g is
w”, with the property I(g,m,w1) and I(g,m,w2) then w1 = w2. This
corresponds to the sem g.m=w, since the property g.m=w1 and g.m=w2 then
w1=w2 follows from the uniqueness of the entry of a semantic mapping.

The semantic memory is also representable within the framework of the
semantic web [27]. In particular, we have implemented it in RDF [28].

We define the abstract data structure we use to represent mathematics.

It can be regarded as a special case of a semantic network, introduced by
Richens [38] in 1956. This and akin concepts are discussed in detail by
Sowa [45]. Also, it is inspired by, and representable in, the semantic web
[27]. A standardized and widely used example of a semantic net with the aim
to be used in the World Wide Web is the Resource Description Framework
(RDF), described by Manola et al. [28] and specified by Lassila et al.
[25].

15

16 CHAPTER 2. FRAMEWORK: THE SEMANTIC MEMORY

While not identical, our representation shares features with some existing
representation frameworks:

• The need to represent (mathematical) natural language poses the re-
quirement of “structure sharing”, i.e., a phrase, an expression etc. only
has to be represented once while it may occur multiple times in the
text. This suggests a graph structure rather than a tree structure, as
facilitated in the knowledge representation system SNePS [43]. SNePS
also makes use of a labeled graph, but on the other hand uses “struc-
tured variables”, storing quantification and constraints together with
the variable. This is not desirable when representing mathematics
since structured variables make it hard to represent the difference be-
tween, e.g.,

∀x∀y(P (x, y) =⇒ G(x)) and ∀x((∀yP (x, y)) =⇒ G(x)).

• The record structure where a complex record is built up from com-
bining more elemental records is similar to a parse tree, especially to
a parse tree for a dependency grammar [7]. However, a parse tree is
always a tree and does not allow structure sharing.

2.1 The semantic memory

There is an unlimited number of objects, but only finitely many of them
are represented explicitly in stored memory. Objects can be compared for
equality, which is an equivalence relation. On the meta level, we refer to
objects by strings not beginning with a hash (#); different objects are re-
ferred to by different strings. Empty is an object. Object variables are
variables in the usual sense, ranging over the set of objects. We refer to
object variables via a string beginning with a hash (#) followed by some
alphanumeric string. For example, in the statement

#name.type = String for every object #name representing a string,

type and Name are specific objects, and #name is a variable in the same
sense as x is a variable in

x2 is even for every even integer x.

Usually, we will use suggestive strings for variables, e.g., we use #handle or
#h for an object that is intended to be a handle.

A semantic mapping (abbreviated SM) assigns to any two objects #h and
#f a unique object #h.#f such that

if #f = Empty or #h = Empty then #f.#h = Empty.

2.2. SEMANTIC GRAPHS 17

A semantic unit (short sem) is an equation of the form #h.#f = #e with
nonempty #h, #f, and #e; we call #h the handle, #f the field, and #e

the entry of the sem. The constituents of an object #a are the sems in
which #a is the handle.

Semantic mappings are used to store mathematics, but to be able to alter the
data we need a dynamical framework. The semantic mapping that changes
over time (formally, a semantic mapping valued function of time) is called
the semantic memory.

A position is a pair (#h/#f) consisting of two objects #h and #f. We
call #h the handle, #f the field and #h.#f the entry of (#h/#f). This
position is called occupied if #h.#f is not Empty.

We say that the sem #d.#e=#f follows the sem #a.#b = #c if #d =
#c. Using a left-associative notation, we then write #a.#b.#e = #f; thus
#a.#b.#e stands for (#a.#b).#e. This notation naturally extends to more
dots.

A short-hand notation for k repetitions (k = 0, 1, 2, . . .) of a field:

#a.#b. · · · .#b︸ ︷︷ ︸
k times

.#e

is written as #a.#bk.#e.

A path of sems starting at #h and ending at #e is a sequence of sems such
that the first sem has the handle #h, each later sem follows the previous
one, and the last sem has entry #e, and no sem has the field type. An
object #e is reachable from a handle #h if there is some path of sems
starting at #h and ending in #e. A sem is reachable from a handle #h if
there is some path of sems starting at #h that contains that sem. A position
is reachable from a handle #h if the handle of that position is an object
reachable from #h.

If the set of sems reachable from an object #h is finite, then the set of sems
reachable from #h defines the record with handle #h.

Clearly, a SM allows one to construct arbitrarily complex records. In con-
trast to records in programming languages such as Pascal, records in a SM
may contain cycles. Indeed, back references are an important part of the
design of the type system; for example, they allow labeled context-free gram-
mars to be defined as type systems.

2.2 Semantic graphs

For graphical illustration of a semantic mapping, we will interpret a sem
#a.#b=#c as an edge with label #b from node #a to node #c of a directed
labeled graph, called a semantic graph. Objects may, but need not have

18 CHAPTER 2. FRAMEWORK: THE SEMANTIC MEMORY

external values, i.e., data of arbitrary form, associated with the object,
but stored outside the semantic memory. We refer to the value of an object
#obj by VALUE(#obj). In a semantic graph, objects that have an external
value are printed as a box containing that value. For better readability we
use dashed edges for edges labeled with type, since these constituents have
importance for the typing, and bold edges for edges labeled with next, since
this makes linked lists more readable. Different nodes of the semantic graph
may represent the same object. For example, the information 12

4 = 3 may
be represented as a list of sems as given in Figure 2.1, or equivalently as the
semantic graph in Figure 2.2.

$380.type=Binary

$380.lhs=$370

$380.rhs=$246

$380.relation=Equal

$246.type=Integer

$370.type=Fraction

$370.num=$244

$370.denom=$248

$244.type=Integer

$248.type=Integer

VALUE($244) = 12

VALUE($246) = 3

VALUE($248) = 4

Figure 2.1: A list of sems and values

$380

Binary

type

$370

lhs

3

rhs

Equal

relation

Fraction

type

12

num

4

denom

Integer

type

type type

Figure 2.2: A semantic graph

Chapter 3

Algorithms: the semantic
virtual machine

We define a virtual machine that operates on the SM called the semantic
virtual machine (SVM) to be able to rigorously argue about processes in
the SM, and to be able to proof properties. This abstract machine can be
implemented in many ways; we currently have implementations in Matlab
(using a sparse matrix to represent the SM) and in C++/Soprano (using
RDF).

The semantic memory of the SVM contains a program to execute, its con-
text (i.e., input and output, corresponding to the tape of an ordinary Turing
machine), and the information about flow control as well. To enable the pro-
cessing of more than one program in the same memory each program has its
own core, i.e., a record reserved for temporary data. Since the core is the
most important record for a program we use the caret ^ to abbreviate the
reference the core of the program. Hence ^a means #core.a, where #core

is the core of the program under consideration.

A Turing machine, introduced originally in 1936 by Turing [51], is a com-
monly used abstract model of a simple computer. Informally, we think of
a Turing machine (TM) as a reading/writing head that moves along an ar-
bitrary long tape which is divided into cells, each containing one character.
The Turing machine is always in some state, and it has a list of instructions,
usually called the transition table. Determined by the character currently
read from the tape and the state the TM is currently in, the transition table
assigns to the TM some character to write on the tape, to move one cell to
the left or the right, and some state to enter. For a rigorous definition and
properties, see, e.g., the classic book by Rogers [40] or Aho et al. [13] or
almost any other computability book; see also Section 3.7 below.

The concept of a Turing machine is very simple and at the same time very
powerful (we remind of Church’s Thesis, discussed, e.g., by Odifreddi [36]),

19

20CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

but it has two disadvantages that prevent the use of a TM as a device for
efficiently performing calculations:

(i) The instructions of the TM are too primitive, their formulation is not
intuitive in terms of semantically important actions. Given a set of
instructions of some TM, it is very laborious to find out what this TM
does.

(ii) The representation of information on the one-dimensional tape is ad-
equate only in some cases. Usually the result of a calculation cannot
be interpreted easily.

We alter the concept of a TM concerning those two issues, and the resulting
machine is a semantic virtual machine (SVM):

Concerning item 1, the SVM is able to execute an SVM program, i.e., a se-
quence of commands written in an assembler-like language. Each command
performs a comprehensible action on the memory.

Concerning item 2, the SVM represents information by semantic relations
between objects represented by a binary operator, the semantic memory.
Using the semantic memory, complex relations can be represented in a simple
and user-friendly way, and be visualized as a directed, labeled graph. Thus
an SVM allows the expression of semantics in a very natural form.

Altogether, we think of the SVM as a machine that performs some basic
actions on the semantic memory. The SVM has random access to this mem-
ory, and the actions it performs (like writing, copying, deleting,. . .) are
determined by a human-readable program.

That the SVM is as least as powerful as an ordinary Turing machine is
shown in Section 3.7, but we give the SVM even more power by allowing it
to access the capabilities of the physical device it is implemented on: external
memory and external processors, see Section 3.4. This has the consequence
that the SVM is no longer equivalent to an ordinary Turing machine, or in
other words, not every SVM program, regarded as a function on the context,
is Turing computable. For example, external processors might have access
to the system clock etc. However, the main reason for enabling the SVM
to call external processors is higher performance and reusability of trusted
algorithms. The SVM command that calls external processes is essentially
a foreign function interface (FFI) of the SVM.

A cornerstone in the creation of the SVM is the proof that the SVM is
powerful enough to simulate itself in a very simple way. This is done by
giving an SVM program that can simulate every other SVM program. Since
this is analogous to the role of a universal Turing machine, we call this
program the universal semantic virtual machine (USVM).

The USVM is a program short and transparent enough to be checked by
hand. It has only 166 lines of code, see Section 3.8 (compare this, e.g.,

3.1. THE SEMANTIC VIRTUAL MACHINE 21

to the reflective interpreter by Jefferson & Friedman in [15], which has
273 lines). The USVM gives us a possibility to check many aspects of the
SVM for correctness: Once one has convinced oneself of the correctness of
the USVM, one can make the implementation of the SVM on some physical
device also trustworthy by checking empirically (or, in principle, in a formal
way) that any SVM program executed by the implemented SVM produces
the same output as in the case when the USVM simulates this program.

All this makes the SVM a semantically self-contained, transparent and easily
usable tool that can be a trustworthy foundation for any computer system
that deals with semantic content.

3.1 The semantic virtual machine

A semantic virtual machine (SVM) is a machine manipulating semantic
information in a semantic memory. Independent of the interpretation of the
semantic memory either as semantic mapping or as graph, we will refer to
it as the memory of the SVM.

Since there are equivalent formulations of Turing machines which use a 2-
dimensional memory instead of the tape (a proof is given by Cohen [6]) the
change to a binary operator instead of a tape alone would not go beyond
the scope of a Turing machine. But by allowing the SVM to manipulate
its external environment, the scope of an SVM becomes strictly bigger cf.
Section 3.4.

The external values are handled exclusively by external processors, i.e.,
algorithms executed by the physical machine. External values are discussed
in more detail in Section 3.4.

The memory of the SVM contains the program to execute, and the infor-
mation about flow control as well, all represented via a semantic mapping.
To enable the processing of more than one program in the same memory,
each execution of the SVM has its own core, i.e., a record reserved for the
input, the output and temporary data.

Since the core is the most important record for a program, will simplify the
notation for it: We use the caret ^ to abbreviate reference to the core of
the execution under consideration. Hence ^a means #core.a, where #core

is the core of the execution under consideration. The caret binds stronger
than the semantic mapping, hence a.^b means a.(#core.b).

To start processing a program, the SVM needs to know the object that
contains the program, and the object that serves as the core. Therefore the
call of an SVM program has two arguments: the name of the program and
the core.

22CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

3.2 The SVM programming language

The most elementary part of the SVM programming language is a com-
mand. There are 24 different commands; a list of the commands and their
action is given in Section 3.6. The commands fall into four groups: com-
mands that structure the program but have no influence on the memory at
runtime, commands for flow control, assignments, which make alterations in
the memory of the SVM, and commands handling or external values.

Compared to transition tables of Turing machines, SVM programs are much
less intricate. In fact, the SVM programming language is much more akin
to an assembler-style language.

Before describing the commands in detail, we say something about the struc-
ture of the language and external processors and values. This is the content
of this and the next section.

The SVM programming language has the reserved names

program process start

for structuring the program, and the reserved names

check

create

exist

existref

external

externalref

fields

get

goto

if

move

refget

refset

set

setconst

stop

in

out

refin

refout

unset

for commands making certain alterations in the memory or in flow control.
The meaning of these names will be discussed in Section 3.3. The name type
should also not be used as a name in a SVM program to prevent collusion
with the typing system.

All other names and more general alphanumeric strings may be used as
variables for objects.

The SVM programming language is the lowest level of a fully comfortable
programming language that we are in the process of developing, see [34] and
[16].

3.2.1 The grammar of the SVM programming language

The complete grammar of the SVM programming language is defined by
the following grammar, using partially labeled, BNF like productions. A
line beginning with a percent sign % is treated as a comment without any

3.2. THE SVM PROGRAMMING LANGUAGE 23

effect on the program. To ease readability, white spaces at the beginning of
a line are ignored.

We define the following macros in the grammar:

: macro(lines of $1)

macro: $1 | macro newline $1

: macro(string of $1)

macro: $1 | macro $1

The tokens BLANK, CHARACTER and ALPHANUMERIC in the gram-
mar stand for a blank space, any character and any alphanumeric character
respectively. The token COMMENT is a string beginning with a percent
sign (%) and not containing a newline (\n).

STMPROGRAM → HEADER lines of PROCESS STARTPROCESS
HEADER → program(NAME)

NAME → string of ALPHANUMERIC
PROCESS → PROCESSHEADER lines of COMMAND PROCESSEND

PROCESSHEADER → process(NAME)

COMMAND → NC | GC | SC | string of BLANK COMMAND | COMMENT
PROCESSEND → GC | SC | string of BLANK PROCESSEND | COMMENT

STARTPROCESS → start(NAME)

NC → NAME = check(NAME , NAME)

NC → create(NAME)

NC → NAME =exist(NAME , NAME)

NC → NAME =existref(NAME , NAME)

NC → NAME =external(NAME , NAME)

NC → NAME =externalref(NAME , NAME)

NC → NAME =fields(NAME)

NC → NAME =get(NAME , NAME)

NC → goto(NAME)

NC → if(NAME , NAME)

NC → move(NAME)

NC → NAME =refget(NAME , NAME)

NC → (NAME , NAME)=refset(NAME)

NC → (NAME , NAME)=set(NAME)

NC → (NAME , NAME)=setconst(NAME)

NC → NAME =in(NAME , NAME)

NC → NAME =out(NAME , NAME)

NC → NAME =refin(NAME , NAME)

NC → NAME =refout(NAME , NAME)

24CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

NC → unset(NAME , NAME)

SC → stop

3.2.2 Representation of SVM programs in the SM

A process is a sequence of commands, beginning with the command
process(#proc). Every process ends with a command that either halts the
SVM or calls another process.

An SVM program is the command program(#prog) followed by a se-
quence of processes.

Each process is represented in the memory by a linked list of commands,
and the first command of each process is accessible by:

#program.#processname = #process

where #program is the record containing the program, #processname is the
name of the process, and #process is a linked list of the commands of
process #processname.

Each command is represented in the memory by a record #command with

#command.#part = #object

#command.next = #nextcommand

and #nextcommand is the command in the line below this command. The
object #part is one of the following: comm refers to the name of the com-
mand, arg1 to the first argument, arg2 to the second argument, and arg3

to the third argument. Since not all commands have three arguments, some
of these may be empty.

The object #program.start contains the object referring to the first process,
i.e., the process that has to be executed first in the program #program.

The SVM is untyped. However, to further specify the representation of SVM
programs in the SM, we give typesheets for SVM programs:

SVM::

SvmProgram:

allOf> start = Object

processes = Processes

nothingElse>

Processes:

3.2. THE SVM PROGRAMMING LANGUAGE 25

someOfType> Object = SvmCommand

CommandName:

atomic> check, create, exist, existref, external, externalref

atomic> fields, get, goto, if, move, refget, refset, set

atomic> setconst, transportin, transportout, transportrefin

atomic> transportrefout, unset, stop

SvmCommand:

allOf> comm = CommandName

optional> arg1 = Object

arg2 = Object

arg3 = Object

next = SvmCommand

nothingElse>

The semantic graph in Figure 3.1 is the record that represents the SVM
program copyFields as given in text form in Section 3.6, page 33. Note
that for transparency, the sems with field type are not printed.

$326

$450

processes

getfields

start

$440

getfields $502

checkfornext

$548

copynext

$500

next

fields

c o m m

fieldstack

arg1

copyfrom

arg2

arg2 $536

next

exist

c o m m

thereismore

arg1next

arg3

arg1arg2

arg3

$574

next

get

c o m m

goto

c o m m

checkfornext

arg1

arg1

$546

next

if

c o m m

copynext

arg2

stop

c o m m

arg2 c o m m

$592

next

fieldtocopy

arg1

entry

arg3

arg2

arg3$610

next

refget

c o m m

entrytocopy

arg1

arg2arg3

$612

next

refset

c o m m

copyto

arg1

c o m m arg1

Figure 3.1: Representation of an SVM program in the SM

26CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

3.3 Flow control

This section describes how the information for flow control is represented in
the memory of the SVM.

The SVM command currently executed is called the focus, it may change
after each program execution. A process can be entered only at its first
command, but it is possible to leave a process before its last command line
is reached.

During runtime, the focus is represented in the object ^focus. Setting the
entry of ^focus to ^focus.next means to proceed one line forward in the
program. Setting the entry of ^focus to #program.#process as done by
the goto and if command, sets the focus to the first line of the process
#process.

It is assumed that ^core always contains the current core, i.e.,
#core.core=#core. This allows us to reduce the number of different com-
mands.

3.4 External values and external processors

The SVM has the ability to access the facilities of the physical device it is
implemented on. This may provide the SVM with much better performance
for tasks it can export, and allows the use of existing algorithms written in
different programming languages.

Every object can have an external value, which is some data associ-
ated to this object, but not part of the memory of the SVM. Instead, it
is managed by the physical device which executes the SVM. In descrip-
tions of commands, we refer to the external value of the object #object by
VALUE(#object).

The values of objects are directly processed by the physical device. Hence
one can benefit from the full computational power of the physical device.
A computation on the external values is said to be realized by an external
processor. External processors have no access to the memory of the SVM,
but may be called from the SVM as the command external. From a theo-
retical point of view, external processors are oracles to the SVM, as defined
by Shoenfield [44].

External values can be imported into the memory of the SVM, and con-
versely. This is done by the commands in, out, refin and refout. The
information about how to represent the external value in the memory of the
SVM is called the protocol, and is used as an argument for the transport-
commands. Figure 3.2 displays the interactions between the SVM and the
physical device, and the SVM commands involved. Our current implemen-
tation includes protocols for representing

3.5. AN OPERATIONAL SEMANTICS FOR THE SVM 27

• strings,

• SVM programs (see Section 3.2),

• tapes and transition tables for Turing machines (see Section 3.7),

• Concise programs (see [16]).

There may be an arbitrary number of protocols, as long as the device on
which the SVM is implemented knows how to interpret them.

SVM
external //

works on

��

processor of
physical device

works on
��

semantic memory
out, refout // storage of

physical devicein, refin
oo

Figure 3.2: Interaction of the SVM with the physical device

3.5 An operational semantics for the SVM

We formally define the action of the SVM, in particular of every SVM com-
mand, by giving an operational semantics.

Let V the set of values.

A state is a triple (s, v,O) such that O is a sets of objects, s : O ×O → O
is a semantic mapping, and v : O → V is a partial mapping that associates
to some objects in O an external value. We define S to be the set of states.

The object p ∈ O denotes the record that contains the program to ex-
ecute, and c ∈ O denotes the core to use. In the following, we define
f := s(c, focus).

For a semantic mapping s and a set R ⊆ O×O×O we define replace(s,R)
as a semantic mapping s′ with

s′(h, f) :=

{
e if (h, f, e) ∈ R

s(h, f) otherwise

For a mapping v : O → V and a set R ⊆ O × V we define replace(s,R) as
mapping v′ ∈ O → V with

v′(o) :=

{
e if (o, e) ∈ R

v(o) otherwise

28CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

The execution of the SVM is a (possibly infinite) sequence of states
(S1, S2, . . . , Si, . . .) determined by an initial state S0 = (s0, v0, O0) and
by S1 := start(S0) and St+1 := step(St) for t = 1, 2, The function
start : S → S is defined by start(s, v,O) = (replace(s,R), v, O) with
R := {(c, focus, s(p, start)), (c, core, c)}. The function step : S → S is
defined by a case distinction over s(f, comm), as follows:

check: If s(f, comm) = check, then step(s, v,O) = (replace(s,R), v, O)
with

R = {(c, focus, s(f, next)), (c, s(f, arg1), True)}

if s(f, arg2) = s(f, arg3) and

R = {(c, focus, s(f, next)), (c, s(f, arg1), False)}

if s(f, arg2) 6= s(f, arg3)

create: If s(f, comm) = create, then step(s, v,O) = (replace(s,R), v, O ∪
{o}) with
o /∈ O, and R = {(c, focus, s(f, next)), (c, s(f, arg1), o)}.

exist: If s(f, comm) = exist, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (c, s(f, arg1), True)}

if s(s(c, s(f, arg2)), s(f, arg3)) 6= Empty and

R = {(c, focus, s(f, next)), (c, s(f, arg1), False)}

if s(s(c, s(f, arg2)), s(f, arg3)) = Empty

existref: If s(f, comm) = existref, then step(s, v,O) = (replace(s,R), v, O)
with

R = {(c, focus, s(f, next)), (c, s(f, arg1), True)}

if s(s(c, s(f, arg2)), s(c, s(f, arg3))) 6= Empty and

R = {(c, focus, s(f, next)), (c, s(f, arg1), False)}

if s(s(c, s(f, arg2)), s(c, s(f, arg3))) = Empty

3.5. AN OPERATIONAL SEMANTICS FOR THE SVM 29

external: If s(f, comm) = external, then step(s, v,O) = (replace(s,R), v′, O)
with

R = {(c, focus, s(f, next))}
and v′(s(c, s(f, arg1))) is the value calculated by the external process asso-
ciated to s(f, arg2) with input v(s(c, s(f, arg3))) and v′ = v for all other
objects.

externalref: If s(f, comm) = external, then step(s, v,O) = (replace(s,R), v′, O)
with

R = {(c, focus, s(f, next))}
and v′(s(c, s(f, arg1))) is the value calculated by the external process as-
sociated to s(c, s(f, arg2)) with input v(s(c, s(f, arg3))) and v′ = v for all
other objects.

fields: Let (e1, . . . , en) a sequence containing every field of s(c, s(f, arg2)).
If s(f, comm) = fields, then step(s, v,O) = (replace(s,R), v, O∪{o1, . . . , on})
with

oi /∈ O for all i = 1, . . . , n, and

R ={(c, focus, s(f, next)), (s(s(c, s(f, arg1)), next), o1)}
∪ {(oi, entry, ei) | i = 1, . . . , n}
∪ {(oi, next, oi+1) | i = 1, . . . , n− 1}

get: If s(f, comm) = get, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (c, s(f, arg1), s(s(c, s(f, arg2)), s(f, arg3)))}.

goto: If s(f, comm) = goto, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(p, s(f, arg1)))}.

if: If s(f, comm) = if, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(p, s(f, arg2)))} if s(c, s(f, arg1)) = True

R = {(c, focus, s(f, next))} if s(c, s(f, arg1)) = False

For every other value of s(c, s(f, arg1)) the SVM stops and issues an error.

move: If s(f, comm) = move, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(p, s(f, s(c, arg1))))}.

refget: If s(f, comm) = refget, then step(s, v,O) = (replace(s,R), v, O)
with

30CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

R = {(c, focus, s(f, next)), (c, s(f, arg1), s(s(c, s(f, arg2)), s(c, s(f, arg3))))}

refset: If s(f, comm) = refset, then step(s, v,O) = (replace(s,R), v, O)
with

R = {(c, focus, s(f, next)), (s(c, s(f, arg1)), s(c, s(f, arg2)), s(c, s(f, arg3)))}

set: If s(f, comm) = set, then step(s, v,O) = (replace(s,R), v, O) with

R = {(c, focus, s(f, next)), (s(c, s(f, arg1)), s(f, arg2), s(c, s(f, arg3)))}.

setconst: If s(f, comm) = setconst, then step(s, v,O) = (replace(s,R), v, O)
with

R = {(c, focus, s(f, next)), (s(c, s(f, arg1)), s(f, arg2), s(f, arg3))}.

stop: If s(f, comm) = stop, then step(s, v,O) is not defined and the se-
quence of states ends.

in: If s(f, comm) = in, then step(s, v,O) = (s′, v, O ∪ {o1, . . . , on}) with
s′(c, s(f, arg1)) is the semantic mapping that represents the value
v(s(c, s(f, arg3))) in a record with handle s(c, s(f, arg1)) according to the
protocol associated with s(f, arg2), using objects {o1, . . . , on} /∈ O, and
s′(c, focus) = s(f, next).

refin: If s(f, comm) = refin, then step(s, v,O) = (s′, v, O ∪ {o1, . . . , on})
with

s′(c, s(f, arg1)) is the semantic mapping that represents the value
v(s(c, s(f, arg3))) in a record with handle s(c, s(f, arg1)) according to the
protocol associated with s(c, s(f, arg2)), using objects {o1, . . . , on} /∈ O, and
s′(c, focus) = s(f, next).

out: If s(f, comm) = out, then step(s, v,O) = (replace(s,R), replace(v,Q), O)
with

R = {(c, focus, s(f, next))}
Q = {(s(c, s(f, arg1)), e)} and e is the value that represents the record with
handle s(c, s(f, arg3)) according to the protocol associated with s(f, arg2)

refout: If s(f, comm) = refout, then
step(s, v,O) = (replace(s,R), replace(v,Q), O) with

R = {(c, focus, s(f, next))}
Q = {(s(c, s(f, arg1)), e)} and e is the value that represents the record with
handle s(c, s(f, arg3)) according to the protocol associated with s(c, s(f, arg2))

3.6. DESCRIPTION OF THE SVM COMMANDS 31

unset: If s(f, comm) = unset, then step(s, v,O) = (replace(s,R), v, O)
with

R = {(c, focus, s(f, next)), (s(f, arg1), s(f, arg2), Empty)}.
For every other value of s(f, comm), the execution of the SVM stops and
issues an error.

3.5.1 Garbage collection

For some state S = (s, v,O) ∈ S we define the relation o1 BS o2 if there
exists an object x 6= Empty with either s(o1, x) = o2 or s(o1, o2) = x.

We define o1 BBS o2 if there exists a sequence (x1, . . . , xn) of objects with
o1 Bst x1 BS . . . Bst xn BS o2.

For a set X of objects, we define X BBS o if there exists an xi ∈ X with
xi BBS o.

Theorem (Garbage collection) For given state S and p, c ∈ O, we
define Oess = {o ∈ O|{c, p} BBS o}.
Let sess and vess the restrictions of s and v to Oess, let Sess = (sess, vess, Oess).

Then

step(S) = step(Sess)

Proof: It is easy to check that in all cases of the definition of step, the result
step(S) only depends on objects o with {c, p} BBS o. �
This theorem allows us to perform garbage collection after every step of the
SVM, i.e., delete every sem a.b=c with a/∈ Oess, and delete every object
o/∈ Oess, and its value.

3.6 Description of the SVM commands

We now introduce the commands of the SVM language and describe their
effect. There are four groups of commands: Table 3.2 describes the com-
mands that are needed to give the program an appropriate structure. Table
3.3 contains the assignments, i.e., those commands that perform alterations
in the memory of the SVM. Table 3.4 gives the commands used for flow con-
trol, and Table 3.5 the commands that establish communication with the
physical device, namely call external processes and access external values.

3.6.1 Example: shallow copy

The following SVM program performs a shallow copy from the record passed
to the SVM in #core.copyfrom to the object in #core.copyto.

32CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

SVM command comment

program(#1) first line of the program #1

process(#1) first line of the process #1
start(#1) start with process #1

Table 3.2: Structuring commands

SVM command comment

#1=check(#2,#3) sets ^#1 to True if ^#2 = ^#3, else to
False

create(#1) assigns some free object to ^#1

#1=exist(#2,#3) sets ^#1 to True if ^#1.#2 exists, else to
False

#1=existref(#2,#3) sets ^#1 to ’T if ^#1.^#2 exists, else to
False

#1=fields(#2) creates a linked list with handle ^#1 con-
taining all fields of ^#2

#1=get(#2,#3) assigns ^#2.#3 to ^#1

#1=refget(#2,#3) assigns ^#2.^#3 to ^#1

(#1,#2)=set(#3) assigns ^#3 to ^#1.#2

(#1,#2)=refset(#3) assigns ^#3 to ^#1.^#2

(#1,#2)=setconst(#3) writes #3 to ^#1.#2

unset(#1,#2) deletes the position (^#1,^ #2), i.e., sets
it to Empty

Table 3.3: Assignment commands

SVM command comment

goto(#1) sets the focus to the first line of process #1
move(#1) sets the focus to the first line of process ^#1
if(#1,#2) sets the focus to the first line of process #2 if

^#1=True, and to the next line if ^#1=False
stop ends a program

Table 3.4: Commands for flow control

3.6. DESCRIPTION OF THE SVM COMMANDS 33

SVM command comment

#1=external(#2,#3) calls external processor #2 with input
VALUE(^#3) and output VALUE(^#1)

#1=externalref(#2,#3) calls external processor ^#2 with input
VALUE(^#3) and output VALUE(^#1)

#1=in(#2,#3) imports VALUE(^#2) into ^#1 by protocol
#3

#1=out(#2,#3) exports record ^#2 into VALUE(^#1) by
protocol #3

#1=refin(#2,#3) imports VALUE(^#2) into ^#1 by protocol
^#3

#1=refout(#2,#3) exports record ^#2 into VALUE(^#1) by
protocol ^#3

Table 3.5: Commands for external communication

program(copyFields)

process(getfields)

fieldstack=fields(copyfrom)

goto(checkfornext)

process(checkfornext)

thereismore=exist(fieldstack,next)

if(thereismore,copynext)

stop

process(copynext)

fieldstack=get(fieldstack,next)

fieldtocopy=get(fieldstack,entry)

entrytocopy=refget(copyfrom,fieldtocopy)

(copyto,fieldtocopy)=refset(entrytocopy)

goto(checkfornext)

start(getfields)

For example, if the SVM is called with the program above and core #c and
a semantic memory containing the following sems:

#ccore
++

copyfrom

��

copyto

**UUUUUUUUUUUUUUUUUUUUU

#obj1

a

��

b

""FF
FF

FF
FF

F
#obj2

A B

Upon execution of this program the following happens:

34CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

First, the process getfields is entered (due to the line start(getfields)),
and this process generates a linked list beginning in ^fieldstack such that
each field #f of ^copyfrom is represented as ^fieldstack.nextk.entry=#f
for some k ∈ 0, 1, 2, Then, process checkfornext is entered.

The process checkfornext checks if ^fieldstack.next is nonempty. If this
is the case, process copynext is entered; otherwise the SVM halts.

Process copynext first sets ^fieldstack to ^fieldstack.next, i.e., we
advance one link in the linked list that contains all the fields of ^copyfrom.
Then the field of ^copyfrom (stored in ^fieldstack.entry) and the entry
^copyfrom.^fieldstack.entry are stored in ^fieldtocopy and
^entrytocopy respectively. Finally this field and entry are written into a
new sem with handle ^copyto.

The result after execution of the SVM is a semantic memory containing:

#ccore
++

copyfrom

��

copyto

**UUUUUUUUUUUUUUUUUUUUU

#obj1

a

��

b

""FF
FF

FF
FF

F
#obj2

a

ttiiiiiiiiiiiiiiiiiiiiii

b
wwooooooooooooo

A B

3.7 Turing machines and their simulation

In this section we formally introduce Turing machines and show that the
SVM is Turing complete by giving an SVM program that simulates any
ordinary Turing machine.

3.7.1 The tape of the Turing machine

The cells on the tape of the Turing machine are simulated by a linked list
in ^context.tape where ^context.tape.entry is the left end of the tape,
and initially holds the delimiting symbol “>”. Objects that do not exist are
interpreted by the Turing machine as blank spaces. The alphabet of the
Turing machine is arbitrary, but must not contain the pipe |. Furthermore,
the characters > and the blank space are reserved. At the beginning of
execution, the head of the TM is assumed to be on ^context.tape.next,
and the TM to be in state “1”.

3.7. TURING MACHINES AND THEIR SIMULATION 35

3.7.2 The instructions of the Turing machine

The action of the Turing machine is determined by a finite list of instructions
of the form

S | R | W | M | S′

which applies if S is the state the TM is currently in, and R is the symbol
currently read by the TM. In this case, the following actions are performed,
in this order:

(i) The symbol W is written. If W is the empty string, then nothing is
written.

(ii) The head moves one cell to the right if M = R and one cell to the left
if M = L. If M is the empty string, then no movement is performed.

(iii) The state of the TM changes to S′.

If no instruction applies, the TM halts.

3.7.3 Example: Replacement

This is an example of a very simple Turing machine, which simply replaces
in a string of a’s and b’s every occurring a by c. It has only one state, and
runs through the tape from left to right, replacing every a it runs along.
When it reaches the end of the string, it reads a blank, and no instruction
applies, hence the Turing machine halts.

The two instructions are:

1|b||R|1

1|a|c|R|1

Thus, the tape with initial content
> b b b a b b a b b a

has, when the Turing machine halts, the content:
> b b b c b b c b b c

3.7.4 Example: Division with remainder

This is a more complicated example of a Turing machine that performs a
division with remainder. The number of a’s at the beginning of the tape
is divided by the number of the b’s following. The result is represented as
the number of q’s for the quotient, and the number of r’s for the remainder,
when the Turing machine halts.

36CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

For example, if we want to perform 8 divided by 3, the tape initially looks
like this:

> a a a a a a a a b b b

where the eight a’s represent the dividend and the three b’s the divisor.

When the Turing machine halts, the tape contains:
> A A A A A A A A b b b q q r r

which tells us that the quotient is 2 (represented by the two q’s), and the
remainder is also 2 (represented by the two r’s). Note that the a’s have
changed to A’s in order for the processed a’s to be distinguishable from
those not yet processed.

This is the transition table of the Turing machine that performs a division
with remainder:

1|a||R|1

1|b||L|2

2|B||L|2

2|A||L|2

2|a|A||3

2| ||R|7

3|a||R|3

3|A||R|3

3|B||R|3

3|b|B|R|4

3| |||5

3|q|||5

4|b||L|2

4|q|||5

4| |||5

5|q||R|5

5| |q||6

6|q||L|6

6|B|b|L|6

6|A|||2

6|a|||2

7|A||R|7

7|B||R|7

7|b||R|7

7|q||R|7

7| ||L|8

8|q||L|8

8|b||L|8

8|r||L|8

8|B|b||9

9|B||R|9

9|b||R|9

9|q||R|9

9|r||R|9

9| |r||8

This Turing Machine performs the division by the following steps:

State 1 just brings the head in the right position to start:
The head moves to the right until the first b is read, then moves one cell to
the left and enters state 2.

State 2, 3, 4 and 5 determine the quotient, i.e., the number of q’s on the
tape: For every b, an a is replaced by an A, and the b is replaced by a B. If
there is no more b on the tape, one q is written and the B’s are replaced by
b’s:
In state 2, the head is moved to the left, until the rightmost a is reached.
If there is no a on the tape (because all a’s have been replaced by A’s to
mark them as processed), the TM changes to state 7. Else the rightmost
a is changed to A, and the TM enters state 4. State 3 then replaces the
leftmost b by a B and changes to state 4. If there is no b on the tape (every
b has been replaced by a B), the TM changes to state 5. State 4 is only a
case distinction: if the b just replaced was the last one, then change to state
5, and if there is still a b on the tape, then change to state 2, i.e., perform
a loop. State 5 moves the head to the right until it reaches an empty cell,
writes a q, and changes to state 6.

State 6 changes all B’s back to b’s and puts the head on the rightmost cell
containing either A or a. The TM is then set to state 2 again and this is
repeated (and every time a q is written) until there are no more a’s on the
tape, and state 7 is entered.

State 7 then simply puts the head to the last nonempty cell of the tape

3.7. TURING MACHINES AND THEIR SIMULATION 37

and changes to state 8.

States 8 and 9 determine the remainder of the division (i.e., b’s which has
not been replaced by B’s in state 3) and write the corresponding number of
r’s to the tape:
The head is put to the rightmost B by state 8, and before entering state 9,
this B is replaced by a b. If there is no B on the tape, then no instruction
applies and the TM halts. In state 9, the head is put to the first empty cell
of the tape, an r is written there, and the TM enters state 8 again, hence
loops.

There has been put much effort in constructing smaller and smaller uni-
versal Turing machines, i.e., special Turing machines that can simulate
every other Turing machine, from the 1950’s until today1. Small universal
Turing machines were studied, e.g., in the influential paper [30] by Minsky,
by Robinson [39], and recently by Neary & Woods [31].

Apparently no effort was put in making universal Turing machines user-
friendly while keeping them small, which would be related to the goal of our
work.

3.7.5 The SVM-code of a universal TM

To prove Turing completeness we now specify a SVM program that simulates
an arbitrary Turing machine. The reader should interpret it with the help
of Tables 3.2 – 3.5 .

The instructions of the Turing machine are represented in the memory of
the SVM as follows:
^transtable contains the linked list of instructions
^transtable.nextk.state contains S of the kth instruction
^transtable.nextk.reading contains R of the kth instruction
^transtable.nextk.towrite contains W of the kth instruction
^transtable.nextk.tomove contains M of the kth instruction
^transtable.nextk.tostate contains S′ of the kth instruction
^transtable.nextk.next contains the k + 1th instruction

Note that if W in the instruction is the empty string, #obj.towrite is
set to #obj.reading, hence no alteration is done by writing. If M in the
instruction is the empty string, #obj.tomove is set to X, just to distinguish
it from L and R. The position of the head is stored in ^position, and the
state of the Turing Machine is stored in ^state.

program(UTM)

process(init)

1In October 2007, Alex Smith claimed to have found the smallest
Universal Turing Machine possible, having 2 states and 3 symbols, see
www.wolframscience.com/prizes/tm23/solved.html

38CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

% makes the necessary nodes available in the core

tape=in(tapename,tm_tape)

transtable=in(tablename,tm_instructions)

position=get(core,tape)

(core,state)=setconst(1)

(core,cR)=setconst(R)

(core,cL)=setconst(L)

(core,blank)=setconst()

goto(nextcommand)

process(nextcommand)

% initializes the comparing, reads the tape

trycommand=get(core,transtable)

reading=get(position,entry)

goto(checkstate)

process(trynext)

% halts the TM if there are no instructions left

therearemorecommands=exist(trycommand,next)

if(therearemorecommands,increase)

goto(endprocess)

process(increase)

% go to next command

trycommand=get(trycommand,next)

goto(checkstate)

process(checkstate)

% checks if the state of the TM is equal to the state in the command

stateincommand=get(trycommand,state)

samestate=check(state,stateincommand)

if(samestate,checksymbol)

goto(trynext)

process(checksymbol)

% checks if the symbol read by the TM is equal to

% the symbol in the command

symbolincommand=get(trycommand,reading)

samesymbol=check(symbolincommand,reading)

if(samesymbol,executecommand)

goto(trynext)

process(executecommand)

% executes the instructions in the command

state=get(trycommand,tostate)

towrite=get(trycommand,towrite)

(position,entry)=set(towrite)

tomove=get(trycommand,tomove)

moveleft=check(tomove,cL)

moveright=check(tomove,cR)

3.7. TURING MACHINES AND THEIR SIMULATION 39

if(moveleft,left)

if(moveright,right)

goto(nextcommand)

process(left)

% moves the head to the left

notleftend=exist(position,last)

if(notleftend,goleft)

create(newfield)

(position,last)=set(newfield)

(newfield,entry)=set(blank)

(newfield,next)=set(position)

position=get(position,last)

goto(nextcommand)

process(goleft)

position=get(position,last)

goto(nextcommand)

process(right)

% moves the head to the right

notrightend=exist(position,next)

if(notrightend,goright)

create(newfield)

(position,next)=set(newfield)

(newfield,entry)=set(blank)

(newfield,last)=set(position)

position=get(position,next)

goto(nextcommand)

process(goright)

position=get(position,next)

goto(nextcommand)

process(endprocess)

tapeasvalue=out(tape,tm_tape)

copyoftape=external(valuecopyname,tapeasvalue)

filename=external(writetofilename,copyoftape)

stop

start(init)

When invoked, it expects to have the following objects in its core:

^tapename is an object that has a tape as external value,
^tablename is an object that has a transition table as external

value,
^valuecopyname is an object associated to an external processor that

makes a copy of the external value,
^filename is an object that has a valid filename as external value,

40CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

^writetofilename is an object associated to an external processor that
writes a type of into a file

The SVM-program UTM essentially searches for a command that applies, then
performs the instructions, and then loops. In more detail,

init initially sets up the records so that processing can
begin, including loading the tape (stored as external
value in ^tapename) and the transition table (stored
as external value in ^tablename)

nextcommand resets the records and replaces an empty cell on the
tape by a blank.

trynext halts if there is no next instruction and else calls the
process

increase which brings the next instruction into consideration.
checkstate and
checksymbol compares the state of the Turing Machine with S in

the instruction, and the symbol currently read on the
tape with R in the instruction, respectively. In other
words, these two processes check if the instruction un-
der consideration applies.

executecommand performs the actions given in the instruction, except
for moving the head to the left or the right.
Since ^position contains a counter representing the
position of the head on the tape,

left and
goleft move the head to the left (if the head is not already

on the leftmost cell), while
right and
goright move the head to the right.
endprocess then writes the result first as the value of

^tapeasvalue, then makes a copy of that value to
^copyoftape (which is redundant, but serves for an
example for an external processor), and then the value
is written into the file that is the value of ^filename.

Correctness is straightforward to prove.

The SVM program above simulates an arbitrary TM and does not use ex-
ternal storage. Since an ordinary TM has no external storage and it is not
specified how an external processor should behave, it is impossible to give
an ordinary TM that simulates an arbitrary SVM program.

3.8. THE UNIVERSAL SEMANTIC VIRTUAL MACHINE 41

3.8 The universal semantic virtual machine

A universal SVM (USVM) is the semantic analogon to a universal Turing
machine. It is a special SVM program capable of ‘simulating’ the processing
of an other SVM program P in the following sense: The context of the
USVM contains the SVM program P and the context of P. When the USVM
has finished, the USVM has produced the same changes in the context as P
would have produced when called directly.

When the USVM is started, objects for program, context and library have
to be passed to the USVM as part of its core. It is assumed that this in-
formation is stored in the objects ^sim_prog, ^sim_context and ^sim_lib

before calling the USVM.

The SVM code of the USVM is given in Appendix A.2. Without blank lines
and comment lines, the USVM contains 166 lines.

42CHAPTER 3. ALGORITHMS: THE SEMANTIC VIRTUALMACHINE

Chapter 4

Typing

An essential step that brings formal structure into the semantic memory is
the introduction of types. In order to represent mathematics specified in
a controlled natural language, a concept of typing is needed that is more
general than traditional type systems. It must cover and check for well-
formedness of both structured records as commonly used in programming
languages and structures built from linguistic grammars. In particular each
grammatical category must be representable as a type, in order to provide
a good basis for the semantical analysis of mathematical language.

Information in the SM is organized in records. When using a record, or
passing it to some algorithm, we need information about the structure of
this record. Since we do not want to examine the whole graph every time,
we assign types, both to objects and to sems.

Types can be defined using plain text documents called type sheets. Ex-
ample type sheets can be found in the Appendix. Tables 4.2 and 4.1 gives
an overview of the operators in a type sheet and their usage. For many
tasks, giving an (annotated) type sheet defines the syntax of an arbitrary
construction in the SM, and in many cases it even suffices to define the
semantics.

In order to provide a good basis for the semantical analysis of mathemati-
cal language expressing arbitrary mathematical content, a system needs to
represent mathematics specified in a (perhaps controlled) natural language.
Thus a concept of typing is needed that covers

(i) syntactically correct mathematical formulas,

(ii) well-formed sentences built according to a linguistic grammar, and

(iii) structured records in the programming sense.

The typing must be such that, using an appropriate type system, one can
define and easily check their well-formedness. In particular, grammatical
categories must be representable in the type system. To serve as a foundation
in the sense of the FMathL framework [33], everything is set up in a way

43

44 CHAPTER 4. TYPING

that it can reflect itself without the need to augment the basic structure.

The essential formal structure achieving this is the introduction of a se-
mantic memory as the abstract representation medium, categories as
the fundamental structuring concept, and of types as a particular form of
categories.

Comparison with the type system of XML. Typing in FMathL and
typing in XML bear significant similarities, most notably with DTD and Re-
lax NG [5]. (For a comparison of DTD, Relax NG and other XML schemas,
see Lee & Chu [26].) Some of the operators in type declarations have a
direct correspondence in the language of DTD and the RelaxNG compact
syntax. E.g., ? in DTD corresponds to optional, the pipe | corresponds to
oneOf and parentheses () correspond to allOf. A valid XML document
corresponds to a well-typed record. However, there are also important dif-
ferences, since cycles are an important feature of our framework that enables
an efficient representation of concrete and abstract grammars, while XML
documents are always organized in trees.

4.1 The type structure

Information in the SM is organized in records. When using a record, or
passing it to some algorithm, we need information about the structure of this
record, as we do not want to examine the whole graph every time a record
is used. For this reason we define a procedure to determine that a given
record is well-typed of a certain type, or ill-typed. These assignments are
always made with respect to a particular type system.

A type system is a set of objects which are called the categories of that
type system. The object Empty is never a category.

In the following, until mentioned otherwise, we always consider an arbitrary
but fixed type system and its associated order relations. The set of categories
in a type system is ordered by an irreflexive partial order relation <. If for
the categories #C1 and #C2 the relation #C1 < #C2 holds, we say that
#C1 is a subtype of #C2.

We define the relation << to be the reflexive and transitive closure of the
relation <, i.e., #C1 << #C2 if either #C1 = #C2 or there exist categories
#c1, . . . ,#cn such that #C1 < #c1 < . . . < #cn < #C2. If #C1 << #C2

we say that #C2 contains #C1.

A category is called a type if it is minimal in the ordering <<, and a union
otherwise. Each type is either the default type Object, an atomic type,
or a proper type.

Objects of an atomic type have no constituents; they are used as objects

4.2. TYPE SHEETS 45

with a fixed semantic meaning. Objects of a proper type always have a field
type whose entry is this type. Proper types are used to pose requirements
on the other constituents of the objects of this type.

4.1.1 The type of an object and matching

Every object #obj has a type, defined by the following rules:

(i) If #obj.type is a proper type, then the type of #obj is #obj.type.

(ii) If #obj.type = Empty, and #obj is an atomic type, then the type of
#obj is #obj.

(iii) Otherwise, the type of #obj is Object.

The fact that the type of an atomic type is object itself is the reason why
we use the word “atomic type” and “atomic object” (or just “atomic”)
synonymously.

We say that an object #obj matches a category #C, in symbols:
m(#obj/#C) if either #C = Object, or #T << #C for #T the type of
#obj. Note that since Empty is not a category, no object matches Empty.
Note also that which type matches which category depends on the type
system used. Thus in an implementation, the type system appears as an
extra argument.

For the basic type structure as presented here, the naming convention is to
use names with an upper case initial for categories (and hence for types),
but names with a lower case initial for fields unless they are also names of
categories. Non initial letters are capitalized if they represent the first letter
of an independent word in the name. (This is sometimes called “camel case”
or “medial capitals”.) Users who define their own type systems are of course
not bound to this convention.

4.2 Type sheets

Categories can be defined by text called a type declaration. A document
that contains one or more type declarations is called a type sheet.

The first line of a type sheet declares the name of the type system to be
specified. Every of the following lines either creates a new category (via the
name of the category followed by a colon), or specifies the category, by a
keyword possibly followed by further specifications.

4.2.1 Proper types

A type declaration of a proper type has the following structure:

(i) the name of the proper type (followed by a colon)

46 CHAPTER 4. TYPING

(ii) then optional other proper types (each followed by a +) to inherit
requirements from

(iii) then lines of requirements starting with certain keywords listed in Ta-
ble 4.1 followed by a greater sign (>) and together with some argu-
ments.

In (ii), the final + is missing if no lines of the form (iii) follow.

operator arguments usage

allOf list of equations restricts entry of certain fields
oneOf list of equations restricts entry of certain fields
someOf list of equations restricts entry of certain fields
optional list of equations restricts entry of certain fields
fixed list of equations restricts entry of certain fields
only list of equations restricts entry of certain fields
someOfType list of equations restricts entry of certain fields
itself list of names restricts entry of certain fields
array list of equations restricts entry of certain fields
index list of equations requires to index each instance
template one name assigns a template
nothingElse none forbids further fields

Table 4.1: Keywords in declarations of proper types

Example. We give a simple type declaration of some proper type Norm,
to get acquainted with the syntax and the meaning of a type declaration.
The type declaration

Norm:

allOf> entry=Expression

optional> index=Expression

expresses that any object #obj with #obj.type = Norm is required to have
a constituent #obj.entry = #e with #e matching type Expression, and
optionally it may have a sem #obj.index = #i with #i also matching type
Expression.

4.2.2 Unions and atomics

Since a type declaration for a union may also declare a number of objects
as atomic types, they are treated together in this subsection.

A type declaration of a union has the following structure:
(i) the name of the union type (followed by a colon)

(ii) followed by lines starting with certain keywords listed in Table 4.2
possibly followed by further specifications.

4.2. TYPE SHEETS 47

operator arguments usage

nothing none defines an atomic type
union list of names defines a union
atomic list of names defines a union of atomic types
complete none closes a union
index list of equations requires to index each instance

Table 4.2: Keywords in declarations of unions and atomics

4.2.3 Inheritance

Inheritance adds the specifications from an existing type declaration to a
newly defined type declaration.

For example, if we want a proper type that uses all specifications of the type
Norm as defined above, but adds an optional comment, the type declaration

NormWithComment:

allOf> entry=Expression

optional> index=Expression

comment=String

is equivalent to the shorter version

NormWithComment: Norm +

optional> comment=String

that uses inheritance. Similarly, we can also define the intersection of two
types. Given the type declaration

Comment:

optional> comment=String

we can equivalently define

NormWithComment: Norm + Comment

The same is possible for unions: if we assume a union Document that was
defined by the type declaration

Document:

union> LatexDocument, PlainText

and now we want to add SpreadSheet as a further subtype, we write

Document: Document +

union> SpreadSheet

48 CHAPTER 4. TYPING

4.2.4 Templates

Assume a type declaration of a declared type #D containing the line
template> #C. In this case, #T is called the template of #D. All the
requirements form #T apply to #D, and additionally the requirements for
#D.

There are several differences to inheritance:

• The SM stores the fact that the template of #D is #T, while inheritance
is visible only on the type sheet level but (without closer analysis) not
in the SM.

• Only proper types can have templates, while inheritance is also defined
for unions.

• The proper type and the template may pose requirements on the same
constituent.

• A proper type has at most one template of, while inheritance from
multiple proper types is possible.

Templates are important for efficient programming with records. Indeed,
graph walkers may handle all types with the same template using a single
program rather than one for each such type; see [8]. If a type declaration
does not specify a template, then the type is assumed to be its own template.

4.2.5 A grammar for type sheets

A text document containing a number of type declarations is called a type
sheet. The first line of a type sheet contains the type system it defines or
enlarges. Every line in a type sheet beginning with an exclamation mark
(!) is a comment.

The following context-free grammar defines type sheets as the sentences
derivable from the starting symbol TYPESHEET. The token COMMENT
is an arbitrary string beginning with an exclamation mark (!) and not con-
taining a newline (\n).

4.2. TYPE SHEETS 49

TYPESHEET → HEADER BODY
HEADER → NAME ::

BODY → LINE | BODY \n LINE
LINE → UNION | DECLARED | \n | COMMENT \n

UNION → UNIONHEADER \n UNIONLINES
UNIONHEADER → NAME :

UNIONLINES → union> NAMESEQ | atomic> NAMESEQ |
complete> | index> EQUATIONLINES

DECLARED → DECHEADER \n DECLINES
DECHEADER → NAME : | NAME : NAMESUM + | NAME

: NAMESUM
DECLINES → DECKEYWORD > EQUATIONLINES |

itself> NAMELINES | template> NAME
| nothingElse> | nothing>

DECKEYWORD → allOf | oneOf | someOf | optional |
someOfType | fixed | array | index | only

EQUATIONSEQ → EQUATION | EQUATIONSEQ , EQUA-
TION

EQUATIONLINES → EQUATION | EQUATIONSEQ \n EQUA-
TION

EQUATION → NAME = NAME
NAMESEQ → NAME | NAMESEQ , NAME
NAMELINES → NAME | NAMESEQ \n NAME
NAMESUM → NAME | NAMESEQ + NAME
NAME → A-z | NAME A-z | NAME 0-9

Each line contains a production with a nonterminal on the left side of the
arrow (→), and a disjunction of strings of terminals and/or nonterminals on
the right side, separated by a pipe (|). All words in capital letters are non-
terminals, A-z and 0-9 denote the letters and digits respectively, \n denotes
the “newline” character, and all other non blank characters – in particular,
>, :, +, =, (,) and , denote themselves.

4.2.6 Example: Typesheets for the SVM

The SVM is untyped. However, to further specify the representation of
SVM programs in the SM, and to give examples for type sheets, we give
type sheets for SVM programs:

SVM::

SvmProgram:

allOf> start = Object

processes = Processes

nothingElse>

50 CHAPTER 4. TYPING

Processes:

someOfType> Object = SvmCommand

CommandName:

atomic> check, create, exist, existref, external, externalref

atomic> fields, get, goto, if, move, refget, refset, set

atomic> setconst, transportin, transportout, transportrefin

atomic> transportrefout, unset, stop

SvmCommand:

allOf> comm = CommandName

optional> arg1 = Object

arg2 = Object

arg3 = Object

next = SvmCommand

nothingElse>

4.2.7 Consistency of type sheets

Assume that the type declaration of proper type #D specifies a template #T.
A program that reads the type sheet must perform the following consistency
checks:

• All atomic types declared in a type sheet have to be declared as sub-
types of a union Atomic.

• If a union declares atomic types, these must not already exist.

• The order relation < must be irreflective.

• When using a template, the added requirements are actually restric-
tions of the template.

• In a type declaration the left-hand sides following a particular operator
(including those types declarations to inherit from) have to be unique.

If any of these requirements is violated, the type sheet reader issues an error.

4.3 Type declarations in the SM

We will now describe informally which requirements each keyword in a type
declaration poses on the object that has this type. We also define how type
declarations and type systems are represented in the semantic memory.

4.3. TYPE DECLARATIONS IN THE SM 51

4.3.1 Type declarations of proper types

allOf

Via allOf, we require an object to have all of a collection of fields with
entries of a certain kind.

Example. Consider a category binary, which we want to use to represent
binary relations, e.g., in the representation of

1 ≤ 2,

given in the following semantic graph:

$338

Binary

type

1

lhs

2

rhs

LessEq

relation

Integer

type type

We require constituents with fields both lhs and rhs and entries of type
Integer, and we require a constituent with field relation and an entry
which matches the type RelationAtomic
(assuming LessEq << RelationAtomic).

We can express these restrictions via the following type declaration:

LessEq:

allOf> lhs=Integer

rhs=Integer

relation=RelationAtomic

Representation in the SM. Consider a proper type #PT using allOf:

Test(TypeSystem)::

#PT:

allOf> #O1=#C1

#O2=#C2

#O3=#C3 ! etc.

52 CHAPTER 4. TYPING

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

allOf

Assembly

type

#C1

#O1

#C2

#O2

#C3

#O3

oneOf

Via oneOf, we require an object to have exactly one of a collection of fields
with entries of a certain kind.

Example. An integral must have either a field over or a field fromTo, but
not both. The following semantic graph gives the representation of∫

A
1 dx.

$382

Integral

type

1

entry

$372

over

$350

after

Integer

type

Set

type

A

name

Var

type

x

name

String

typetype

The restrictions we want to express are that the entry of the sem with field
over must be a set, and the entry of the sem with field fromTo must be an

4.3. TYPE DECLARATIONS IN THE SM 53

expression. For this, we use the quantifier oneOf in the type declaration of
Integral. We assume Integer << Expression.

Integral:

oneOf> fromTo=Expression

over=Set

allOf> entry=Expression

after=Var

Representation in the SM. Consider a proper type #PT using oneOf:

Test(TypeSystem)::

#PT:

oneOf > #O1=#C1

#O2=#C2

#O3=#C3 ! etc.

oneOf > #O4=#C4

#O5=#C5

#O6=#C6 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

oneOf

AssemblyLink

type $404

next

$346

entry

type

$406

entry

Assembly

type

#C1

#O1

#C2

#O2

#C3

#O3type #O1#O2 #O3

#C4

#O4

#C5

#O5

#C6

#O6

54 CHAPTER 4. TYPING

someOf

Via someOf, we require an object to have at least one constituent with a
field from a collection of fields with entries of a certain kind.

Example. The type declaration Index requires a subscript, a superscript,
or a subscript or superscript on the left side, i.e, at least one of the positions
m(#obj/sub), m(#obj/sup), m(#obj/lsub) and m(#obj/lsup) to
be occupied by an expression. We express these requirements in the type
declaration:

Index:

someOf> sub=Expression, sup=Expression

lsub=Expression, lsup=Expression

allOf> entry=Expression

We assume that the union Expression contains Integer, String and Var.

The expression
Ak

1

has both indices below and above, and is represented as:

$370

Index

type

A

entry

1

sub

$340

sup

String

type Integer

type

Var

type

k

name

type

Representation in the SM. Consider a proper type #PT using someOf:

Test(TypeSystem)::

4.3. TYPE DECLARATIONS IN THE SM 55

#PT:

someOf > #O1=#C1

#O2=#C2

#O3=#C3 ! etc.

someOf > #O4=#C4

#O5=#C5

#O6=#C6 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

someOf

AssemblyLink

type $404

next

$346

entry

type

$406

entry

Assembly

type

#C1

#O1

#C2

#O2

#C3

#O3type #O1#O2 #O3

#C4

#O4

#C5

#O5

#C6

#O6

optional

Via optional, we require an object, if it has certain fields, to have entries
of a certain kind.

Example. A linked list is a data structure in which there is a first value
given, and every value, except the last value of the list, has a pointer to
the next value. In the SM, a linked list consists of objects that all have
a constituent with field entry and entry of some kind, and may have a
constituent with field next that has another object of the linked list as
entry. We express these restrictions for a linked list of strings in the type
declaration:

56 CHAPTER 4. TYPING

LinkedListOfString:

allOf> entry=String

optional> next=LinkedListOfString

The linked list with entries “Hello”, “world” and “!” is then given by the
semantic graph:

$318

LinkedListOfString

type

$316

next

Hello

entry

type $306

next

world

entry

String

typetype

!

entry

type

type

Representation in the SM. Consider a proper type #PT using optional:

Test(TypeSystem)::

#PT:

optional > #O1=#C1

#O2=#C2

#O3=#C3 ! etc.

4.3. TYPE DECLARATIONS IN THE SM 57

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

optional

Assembly

type

#C1

#O1

#C2

#O2

#C3

#O3

fixed

Via fixed, we require an object to have a sem with given field and given
entry.

Example. We define a special binary relation IntegerLessEq:

IntegerLessEq:

allof> lhs=Integer, rhs=Integer

fixed> relation=LessEq

Then the relation

3 ≤ 5

would be represented by:

$236

IntegerLeq

type

3

lhs

5

rhs

LessEq

relation

Integer

type type

58 CHAPTER 4. TYPING

Representation in the SM. Consider a proper type #PT using fixed:

Test(TypeSystem)::

#PT:

fixed> #O1=#O2

#O3=#O4

#O5=#O6 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

fixed

ObjAssembly

type

#O2

#O1

#O4

#O3

#O6

#O5

only

Via only we require an object to have all of a collection of sems where the
field is the same object as the entry, and the entries need to be of a certain
kind.

Example. Consider a category Root, which we want to use to represent
root nodes of the semantic memory.

Secretary

Root

type

Identity

Identity

Library

Library

IdType

type

LibType

type

4.3. TYPE DECLARATIONS IN THE SM 59

We require constituents with fields Identity and Library and entries equal
to the fields, of type IdType and LibType respectively. We can express these
restrictions via the following type declaration:

Root:

only> Identity=IdType

Library=LibType

Representation in the SM. Consider a proper type #PT using only:

Test(TypeSystem)::

#PT:

only> #O1=#C1

#O2=#C2

#O3=#C3 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

only

Assembly

type

#C1

#O1

#C2

#O2

#C3

#O3

someOfType

Via someOfType, we require an object to have fields of a certain kind and
entries of a certain kind.

Example. We define a random-access array of strings, where each string
is accessible by an integer. So every constituent of this record has to have
an integer as a field, and a String as an entry.

ArrayOfString:

someOfType> Integer=String

60 CHAPTER 4. TYPING

The following is the representation of the array of strings with entry 0 is
“Hello”, entry 1 is “world”, and entry 2 is “!”.

$264

ArrayOfString

type

Hello

0

world

1

!

2

String

type type type

Representation in the SM. Consider a proper type #PT using someOfType:

Test(TypeSystem)::

#PT:

someOfType > #C1=#C2

#C3=#C4

#C5=#C6 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

someOfType

CatAssembly

type

#C2

#C1

#C4

#C3

#C6

#C5

itself

Via itself, we require an object to have fields of a certain kind and entries
equal to the field.

4.3. TYPE DECLARATIONS IN THE SM 61

Example. We define an index of types:

TypeIndex:

itself> Type

We give an example of such an index containing the proper types ArrayOfString
and LinkedListOfString and Integer.

$236

TypeIndex

type

ArrayOfString

ArrayOfString

LinkedListOfString

LinkedListOfString

Integral

Integral

Representation in the SM. Consider a proper type #DT using itself:

Test(TypeSystem)::

#PT:

itself> #C1

#C2

#C3 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

itself

Categories

type

#C1

#C1

#C2

#C2

#C3

#C3

array

Scopes are objects describing a well-ordered set ob objects contained in the
scope; see [8]. Via array, we require an object to have all the fields in a
finite scope, and that their entries are of a certain kind.

62 CHAPTER 4. TYPING

Example. Consider a category DoubleSequence where the scope is the
set of integers between 1 and 10 (represented by the object From1To10) and
the entries are double precision floats:

DoubleSequence:

array> From1To10=Double

The sequence (n2

10n)n=1:10 would be represented by:

$236

DoubleSequence

type

0.1

1

0.04

2

0.009

3

...

...

Double

type type type

Representation in the SM. Consider a proper type #PT using array:

Test(TypeSystem)::

#PT:

array> #S1=#C1

#S2=#C2 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$326

array

Assembly

type

#C1

#S1

#C2

#S2

4.3. TYPE DECLARATIONS IN THE SM 63

index

For some categories, we want to keep track of all their instances. Via index,
we require each instance of some category to be listed in some assigned
record.

Example. Consider a category Equation, with an object in Lhs and an
object in Rhs, which can be expressed via allOf. But furthermore, each
object that is of type Equation should be listed in a record EquationList,
such that all objects in the semantic memory which are of type Equation

can be found as fields of user defined object.

Assume the equation
x = y

represented in record #rec

#rec

Equation

type

$244

Lhs

$246

Rhs

which should be listed in the object EquationIndex :

EquationIndex

$252

ListOfEq

ListOfEq

type

#rec

#rec

Besides the requirements on the constituents of the record of type Equation
we now add requirements to an object that acts as an index of all records of
this type, in this case, the object EquationIndex. All the equations are to be
stored in EquationIndex.ListOfEq, and EquationIndex.ListOfEq.type =
ListOfEq We do this by the type declaration:

ListOfEq:

64 CHAPTER 4. TYPING

itself> Equation

Equation:

allof> Lhs=Object, Rhs=Object

index> EquationIndex = ListOfEq

Representation in the SM. Consider a proper type #PT using index:

Test(TypeSystem)::

#PT:

index> #O1=#C1

#O2=#C2 ! etc.

This is stored in the SM as the following semantic graph:

#PT template

Type

type

$336

index

Assembly

type

#C1

#O1

#C2

#O2

template

For representation of a type declaration containing the line template> #C

is equivalent to inserting the body of the type declaration of #C in place of
this line.

Example. The general form of a binary relation is required in the type
BinaryRel.

BinaryRel:

allOf> lhs=Expression

rhs=Expression

relation=Type

This is used as a template for the more specific proper type LessEq which
is used to express the relation ≤:

4.3. TYPE DECLARATIONS IN THE SM 65

LessEq:

template> BinaryRel

allOf> lhs=Term

rhs=Term

fixed> relation=LessEq

Representation in the SM. Consider a proper type #PT using template:

Test(TypeSystem)::

#PT:

template> #T1

This is stored in the SM as the following semantic graph:

#PT

Type

type

#T1

template

nothingElse

Via nothingElse, we require an object to have only the required con-
stituents and the field type.

Example. The type declaration Var should only have a constituent with
field name and a string as entry, but no other constituents (except for the
field type which is always present in a proper type).

Var:

allOf> name=String

nothingElse>

66 CHAPTER 4. TYPING

$236

Var

type

x

name

String

type

Representation in the SM. Consider a proper type #DT using nothingElse:

Test(TypeSystem)::

#PT:

nothingElse>

This is stored in the SM as the following semantic graph:

#PT template

Type

type

Present

nothingElse

4.3.2 Type systems

A type system is an object #TS in the semantic memory with #TS.type =
TypeSystem. All categories #C belonging to the type system are stored in
#TS.#C = #C.

4.3.3 Type declarations of atomics

nothing

The operator nothing> defines an atomic type. Atomic types are objects
that have a fixed semantic meaning, and must not have any constituents,
not even a field type.

An atomic type does not pose any requirements on objects except itself,
hence #obj.type = #A for some atomic type #A is meaningless.

4.3. TYPE DECLARATIONS IN THE SM 67

Representation in the SM. Consider a type declaration of type #A

using nothing, which defines the atomic type #A. Since #A must not have
any constituents, it suffices to store that #A is part of the type system.

(Note that the typesheet reader also ensures that the type sheet contains a
union Atomic that has all the atomic types of this type system as subtypes.)

Test(TypeSystem)::

#A:

nothing>

This is stored in the SM as the following semantic graph:

Test

TypeSystem

type

#A

#A

4.3.4 Type declarations of unions

union

A union defines the relation <, and hence also the relation << for a type
system.

Example. We want to define the union Rational containing Integer,
Float and Double, and the union Number containing Integer, Float, Double,
Rational and Real. We specify this in the type sheet by

Rational:

union> Integer, Float, Double

Number:

union> Real, Rational

Note that Float, Double, Real and Integer have to be categories.

In the type sheet above, e.g., Real < Number and Float < Real are defined.
Due to transitivity, e.g., Float << Number follows.

Representation in the SM. Consider a union #U:

68 CHAPTER 4. TYPING

Test(TypeSystem)::

#U:

union> #A1, #U1 !etc.

where #U1 is a union of the atomics #A2 and #A3.

This is stored in the SM as the following semantic graph:

#U1

Union

type

$326

subtypes

$336

parents

SubTypes

type

#A2

#A2

#A3

#A3

Unions

type

#U

#U

type

$380

subtypes

$382

parents

type#A2#A3

#A1

#A1type

A union #U knows about all minimal categories #C with #C << #U, this
is necessary for matching. And #U has to know its immediate parents,
i.e., categories #C with #U < #C to be able to recursively propagate new
categories contained by #U upwards.

atomic

The operator atomic defines a type as a union of atomics. The atomics need
not exist at that point, so as a byproduct, this may result in the definition
of new atomic types.

#TD:

atomic> #A1, ... , #Ak

This is a short-hand notation for

4.3. TYPE DECLARATIONS IN THE SM 69

#A1, ... , #Ak:

nothing>

#TD:

union> #A1, ... , #Ak

complete

This operator declares that no further categories can be added to a union.

Usually, one may add more categories to a union later, e.g.:

Number: Number +

union> Complex

But this is forbidden if the definition of Number contains a line complete>.

Example. The type declaration Documents should only contain the cate-
gories Article, Report and Book, but not anything else.

Documents:

union> Article, Report, Book

complete>

While it is still possible to later define a new category Shortbook with the
property Shortbook << Documents, e.g., with the declaration

Book:

union> Shortbook

it is not possible to add Shortbook with the property Shortbook < Documents,
e.g., with the declaration

Documents: Documents +

union> Shortbook

Representation in the SM. Consider a union #U using complete:

Test(TypeSystem)::

#U:

union> #C1, #C2 ! etc.

complete>

70 CHAPTER 4. TYPING

This is stored in the SM as the following semantic graph:

#U

Union

type

$414

subtypes

$416

parents

Present

complete

SubTypes

type

#C1

#C1

#C2

#C2

Unions

type

index

This applies the requirement to index all instances to all the subtypes of a
union.

Example. Assume we want to have an index that lists all instances of
inequalities. Inequalities are the objects that have either type LessEq, Less,
GreaterEq or Greater, and we want them to be indexed in the object
IndexOfIneq.

Inequality:

union> LessEq, Less, GreaterEq, Greater

index> IndexOfIneq=Inequalities

Representation in the SM. Consider a union #U using index:

Test(TypeSystem)::

#U:

atomic> #A1

index> #O1=#C1

#O2=#C2 ! etc.

(This type declaration also declares an atomic type, which is necessary to
characterize it as a union, else it would be treated as a proper type according
to Subsection 4.3.1.)

4.4. WELL-TYPED RECORDS 71

This is stored in the SM as the following semantic graph:

#U

Union

type

$302

subtypes

$312

parents

$364

index

SubTypes

type

#A1

#A1

Unions

type

Assembly

type

#C2

#O2

This information is propagated to all the subtypes of #U, and represented
in the semantic memory according to Subsection 4.3.1.

4.4 Well-typed records

Assume a record with handle #rec, and let the type of #rec be #T.

To define when this record is well-typed, we first define which position of an
object are a declared position and in which case a position is faulty.

If no position reachable from the handle #rec is faulty, then the record is
well-typed of type #T.

Otherwise the record is ill-typed.

Note that it can be checked in time linear in the number of sems that are
reachable whether or not the record is well-typed.

We consider an object #obj with #obj.type = #TD and #TD.type = Type.

4.4.1 allOf

For every field #f, #f 6=type of #TD.allOf, (#obj/#f) is a declared posi-
tion of #obj.

If for one of the declared positions (#obj/#f) is empty, or not
m(#obj.#f/#TD.allOf.#f) then (#obj/#f) is faulty.

4.4.2 oneOf

For all k = 0, 1, 2, . . . and for every field #f, #f 6= type of
#TD.oneOf.nextk.entry, the position (#obj/#f) is a declared position of
#obj.

72 CHAPTER 4. TYPING

If a declared position (#obj/#f) is nonempty and not
m(#obj.#f/#TD.oneOf.nextk.entry.#f) then it is faulty.

If not for all k exactly one of the declared positions
(#obj/#TD.oneOf.nextk.entry.#f) is occupied then the the position
(#obj/#f) is faulty.

4.4.3 someOf

For all k = 0, 1, 2, . . . and for every field #f, #f 6= type of
#TD.someOf.nextk.entry, the position (#obj/#f) is a declared position of
#obj.

If a declared position (#obj/#f) is nonempty and not
m(#obj.#f/#TD.someOf.nextk.entry.#f) then it is faulty.

If not for all k at least one of the declared positions
(#obj/#TD.someOf.nextk.entry.#f) is occupied then the the position
(#obj/#f) is faulty.

4.4.4 optional

For every field #f, #f 6= type of #TD.optional, (#obj/#f) is a declared
position of #obj.

If a declared position (#obj/#f) is nonempty and not
m(#obj.#f/#TD.optional.#f) then it is faulty.

4.4.5 fixed

For every field #f, #f 6=type of #TD.fixed, (#obj/#f) is a declared po-
sition of #obj. If a declared positions (#obj/#f) is either empty or does
not satisfy #obj.#f = #TD.fixed.#f then (#obj/#f) is faulty.

4.4.6 only

For every field #f, #f 6= type of #TD.only, every position (#obj/#f) is a
declared position of #obj. If a declared positions #obj.#f does not satisfy
both #obj.#f = #f and m(#obj.#f/#TD.only.#f) then (#obj/#f) is
faulty.

4.4.7 array

Not implemented yet.

4.5. TYPE DECLARATIONS AND UNIONS AS TYPES 73

4.4.8 itself

For every field #f, #f 6= type of #TD.itself, every position (#obj/#F)
with m(#F/#f) is a declared position of #obj. For all declared positions
(#obj/#F), if #obj.#F 6= #F then (#obj/#F) is faulty.

4.4.9 someOfType

For every field #f, #f 6= type of #TD.someOfType, every position (#obj/#F)
with m(#F/#f) is a declared position of #obj. If a declared position
(#obj/#F) does not satisfy m(#obj.#F/#TD.someOfType.#f) then
(#obj/#f) is faulty.

4.4.10 nothingelse

If #TD.nothingelse = Present, and there exists an occupied position
(#obj/#f) of #obj that is not a declared position, then (#obj/#f) is
faulty.

4.5 Type declarations and unions as types

In this section, we give a type system that defines the type of a type system,
both as a type sheet and represented in the semantic matrix. As a type
sheet, the type of a type system has 40 lines. When represented in the
semantic memory, the record has 126 sems.

BasicTypes::

Type:

index> Index = Types

allOf> template=Type

someOf> allOf=Assembly

someOf=AssemblyLink

optional=Assembly

oneOf=AssemblyLink

someOfType=CatAssembly

index=Assembly

itself=Categories

nothingElse=Present

fixed=ObjAssembly

array=Assembly

only=Assembly

optional> index=Assembly

74 CHAPTER 4. TYPING

parents=Unions

extends=Type

! array can be tightened when specified

Atomic:

atomic> Present

index> Index = Atomics

Union:

index> Index = Unions

allOf> subtypes = SubTypes

union=Categories

optional> atomic=Atomics

complete=Present

parents=Unions

extends=Union

index=Assembly

SubType:

union> Atomic, Type

Category:

union> Union, Type, Atomic

TypeSystem:

index> Index = TypeSystems

itself> Category

! * BASIC COLLECTIONS *

Atomics:

itself> Atomic

Types:

itself> Type

SubTypes:

itself> SubType

Unions:

itself> Union

Categories:

4.5. TYPE DECLARATIONS AND UNIONS AS TYPES 75

itself> Category

TypeSystems:

itself> TypeSystem

! * BASIC DEFINITIONS *

Assembly:

someOfType> Object=Category

ObjAssembly:

someOfType> Object=Object ! This does nothing

CatAssembly:

someOfType> Category=Category

AssemblyLink:

allOf> entry=Assembly

optional> next=AssemblyLink

76 CHAPTER 4. TYPING

Chapter 5

Applications

The semantic memory is designed for representing and processing mathe-
matical content. While generality of the representation was one important
goal, another one was to be able to run algorithms on the records in a
transparent way.

To test the practicability of the present framework, mathematical content
from different sources is represented in the semantic memory:

• Different types of mathematical formulas were extracted from lecture
notes about basic analysis and linear algebra [32]. These were man-
ually fed into the semantic memory to assure generality of the repre-
sentation of formulas. Partial work on the grammar of the text part
of the lecture notes can be found in [41]. Some of the expressions from
the lecture notes are presented in Section 5.

• As a test for representing informal mathematical text in the SM we
represented the informal description of program taken from the 1991
ACM International Collegiate Programming Contest.

• A significant fraction of the optimization problems from the OR Li-
brary [2] were represented manually in the semantic memory. This
is the most important application for the MoSMath project. We
designed a natural representation of these optimization problems as
records, in order to be able to run algorithms on these records. There
are algorithms that produce LATEX from formulas and whole optimiza-
tion problems. Another algorithm enriches the representation of opti-
mization problems in the semantic memory such that an AMPL docu-
ment specifying a valid, numerically solvable model can be produced.

• An interface was written to automatically import formulas from the
TPTP library [47] (“Thousands of Problems for Theorem Provers”, a

77

78 CHAPTER 5. APPLICATIONS

library of formulas for theorem provers, taken from different branches
of mathematics).

• An interface was written to automatically import formalized proofs
written in the controlled natural language of Naproche [24] (“Natural
Language Proof Checking”).

Grammatical issues in the translation from mathematical language into SM
documents, and from SM records to natural language, including a dynamic
parser for parallel multiple context free grammars (PMCFGs) and an inter-
face to the “Grammatical Framework” (GF) [37] are the subject of the PhD
thesis by Kevin Kofler [19]. This parser will handle updates to the gram-
mar, a feature necessary to handle mathematical definitions that introduce
new syntax.

5.1 Mathematical formulas

We extracted 30 different types of mathematical formulas from mathemat-
ical texts, primarily from the lecture notes about basic analysis and linear
algebra [32] by the second author. These formulas were manually fed into
the semantic memory to assure generality of the representation of formulas.

The following formulas have been chosen and their representation can be
found in Appendix C:

(√
x, x+ y + z

)
(
√
x1, x1 + x2 + x3)(
(λ− x) I ∗

0 ∗

)

+ − + −
− + − +
+ − + −
− + − +

σ1
. . .

σr
0

{x∈R | 0≤x≤1 ∨ x=2}

{≤,=,≥}

{f (x) | x≥1}

5.1. MATHEMATICAL FORMULAS 79

{x∈X (k) | f (x, k)=0}

a
Vor.
= b

f (x)|x=a=f (a)

a
(1)
= b≥c≥d

(2)
= e

n∑
k=1

Aik=bi (i=1, . . . , n)

∑
k∈K

Pr(i|k)Pr(k)

‖A‖F :=
√ ∑

i=1:m,k=1:n

Aik
2

∫
B

∫
A
f (x1, x2) dx1 dx2=

∫
A×B

f (x) dx∫ x

0
t dt=

t2

2

∣∣∣∣x
0

=
x2

2

KBij
2=2Φi,j

Ai
;k=Ai

,k +Ai
,kΓ

i
ka

[0, 1]= {x∈R | 0≤x≤1}

(0, 2]=(0, 1) ∪ [1, 2]

λx.x+ 1

∀x, z∈X : f (x, y, z)=g (y, x)

xl (l=1 : n)

X (k)=λx.P (x, k)

f ′
0 if x<0

x2 if x>1

x otherwise

∂2

∂x∂y
2x2y

max {x+ y, y + z, x+ z}=x+ y + z −min {x, y, z}

max
k=1,...,n

x(k)

The Table 5.1 gives a small statistic of the examples:

80 CHAPTER 5. APPLICATIONS

In the representation of mathematical formulas, the type acts as an operator.

An operation is anything that can be applied to mathematical expressions
E1, E2, . . . such that the result E is an expression again. We call E1, E2, . . .
the subexpressions of E. In particular, all standard functions, binary
operations, and relations are operations, and so are quantification, merging
expressions to form a set, a vector, etc.

We store the information in a fashion inspired by automatic differentiation.
Thus we proceed from the most elementary subexpressions (its variables and
constants) to the more complicated subexpressions by applying operations
until the expression is fully covered.

An operation is anything that can be applied to mathematical expressions
E1, E2, . . . such that the result E is an expression again. We call E1, E2, . . .
the subexpressions of E. In particular, all standard functions, binary
operations, and relations are operations, and so are quantification, merging
expressions to form a set, a vector, etc. The operations are those categories
that match the category Expression in the type sheet for expressions, see
Appendix B.1.

We store the information in a fashion inspired by automatic differentiation,
meaning we proceed from the most elementary subexpressions (its variables
and constants) to the more complicated subexpressions by applying opera-
tions until the expression is fully covered.

Let the record #handle contain the expression E. Then we say that #handle
is the handle of E. From the handle of some expression, the expression E
itself and the free variables of E have to be accessible easily from #handle.
The nodes representing the free variables of E are stored in #handle.free in
the following fashion: For every node #var representing a free variable of E,
we have #handle.free.#var=#var. If some expression does not have any
free variables, then #handle.VAR is nonempty but does not have children.

The expression itself is constructed from its subexpressions in a recursive
way, with constants and variables being expressions without subexpressions.
The operation that is applied to the subexpressions of E is represented in the
object #handle.type, the same object that is used for the typing of #handle.
How the subexpressions of E are represented in relation to #handle depends
on the kind of operation, see below.

When an operation is applied to subexpressions, the free variables of the
combined expression form the union of the free variables of the subexpres-
sions, minus the variables that are bound by the operation. Every vari-
able #var that is bound by application of the operation represented in
#handle.type is stored as #handle.binds.#var=#var.

5.1. MATHEMATICAL FORMULAS 81

5.1.1 Types of expressions

We now illustrate the different types of expressions: since we build up all
expressions from variables, constants and the application of operations to
subexpressions, we have to describe the representation of these.

The handle of the expression is always denoted by #handle or #h.

Constants

There are currently three types of constants: strings, integers and floats, and
all of them are represented in a similar fashion. The actual constant is always
stored as the value of the handle of the constant. The record #h representing
a constant has #h.type=String if #h is a string, #h.type=Integer if #h is
an integer, and #h.type=Float if #h is a float.

For example, the string “Hello world” is represented as

#h
type// String

where #h is some anonymous node with VALUE(#h) = Hello world.

The type declaration of the constant types are:

String, Integer, Float:

nothingElse>

Variables

The record #h representing a variable has #h.type=Var.

A name can, but need not be assigned to the variable. A variable with name
x1 is represented as

#h
type //

name

��

Var

#name

where the object #name is a string containing x1.

The type declaration of variables are:

Var:

optinal> name=String

nothingElse>

82 CHAPTER 5. APPLICATIONS

Operations with fixed arguments

These are the operations that only allow a certain number of subexpressions
to be applied to, and these subexpressions have a known role in the resulting
expression E.

For example, the operation “square root” has one argument, the radicand,
a fraction has two arguments, the numerator and the denominator, etc.

This reflects in the way these expressions are represented. For an expres-
sion E represented as record #h the subexpressions will be represented in
#h.#field where the name of #field will usually unambiguously clarify
the role of the subexpression in #h.#field for the expression in #h.

For example, consider an expression E with E1 being it numerator and E2

the denominator, hence E = E1
E2

.

If E1 is represented in #h1 and E2 is represented in #h2 then the represen-
tation of the expression E in record #h (omitting the free variables) is:

#h
type //

num

||yy
yy

yy
yy

denom ""EE
EE

EE
EE

Div

#h1 #h2

The type declaration of a division is:

Div:

allOf> num=Expression, denom=Expression

General n-ary Operations

Another kind of operations are those that admit an arbitrary number of
subexpressions to be applied to, but all of these are treated equally. But
there may still be a known number of subexpressions aside of these that
have a fixed role.

For example, a case distinction between n cases, and as an extra argument
the case “otherwise”, or the application of a function f to n arguments. In
these cases, the n arguments are always represented as a linked list.

For example, consider the expression f(x1, x2, x3) where f is represented
in #fct and xi is represented in #argi. Then the representation of the
expression f(x1, x2, x3) in record #h (again omitting the free variables) is:

5.2. THE REPRESENTATIONOF INFORMALMATHEMATICAL TEXT83

#h
type //

arguments

xxrrrrrrrrrr
operator

%%KKKKKKKKKKK Of

#obj1
type //

entryzzttttttttt
next

��

ExpLink #fct

#arg1 #obj2
type //

entryzzttttttttt
next

��

ExpLink

#arg2 #obj2
type //

entryzzttttttttt
ExpLink

#arg3

The type declaration of this application is:

Of:

allOf> operator=Expression, arguments=ExpLink

ExpLink:

allOf> entry=Expression

optional> next=ExpLink

Example

We give a complete record, with the bound variables and the free variables.

Consider the expression:
λx.x+ 1

The subexpressions are the variable x and the constant 1, the result of the
operator Plus to these, resulting in x+1 (having free variable x) and lastly
the application of the operator Lambda binding variable x, hence resulting
in λx.x+ 1 which has no free variable.

Anonymous nodes that are not referred to are simply denoted by #. Assume
that VALUE(#one) = 1 and VALUE(#nameofx) = x.

5.2 The representation of informal mathematical
text

For being attractive for a working mathematician, the ability to interface
existing systems is one key feature, another one is communication in an

84 CHAPTER 5. APPLICATIONS

#h
type //

binds

xxrrrrrrrrrrrrrrrrrrrrrrrrrrr
free

tthhhhhhhhhhhhhhhhhhhhhhhh

formula

��

Lambda

#
type //

arguments

��free

tthhhhhhhhhhhhhhhhhhhhhhhhh Plus

#

#var1

��

#
type//

entry
ttiiiiiiiiiiiiiiiiiiiiiii

next

��

ExpLink

#var1
type //

name

��

Var #
type//

entry

��

ExpLink

#nameofx
type // String #one

type // Int

almost natural language.

There is a consensus among mathematicians and linguists that the communi-
cation of mathematics to a computer is much easier than the communication
of arbitrary content:

• Mathematical discourse has a well-defined domain, is highly struc-
tured, and has relatively small set of discourse relations. The reason-
ing patterns applied in mathematics are widely studied and understood
[53]. Building an ontology for, say, number theory, is much easier than
for a natural domain, because mathematicians define concepts before
they use them. It was even claimed that “[. . .] if we fail to construct
an understander for mathematical discourse, then we will also fail to
write one for other (non-trivial) domains”, see p. 8 in [53].

• Due to the fact that mathematicians want to communicate unambigu-
ously, they tend to use a relatively small set of phrases to express their
ideas, and there is a standard interpretation for these phrases. About
700 phrases suffice for the essential part of mathematics (definitions,
theorems, proofs, etc.) but this does not include the more informal
motivational part [50].

• Mathematicians use words and phrases in a very rigid way. The lan-
guage of mathematics is simple: very few variety in time, person, etc.
[10].

• Another reason why mathematics is apt to be represented by a ma-
chine is that in mathematics we are in the (probably unique) position
that every meaningful rigorous statement can, at least in principle,
be translated into a formal language. Therefore, it is possible for a
machine to faithfully represent the complete content of an arbitrary
(but meaningful) mathematical statement.

5.2. THE REPRESENTATIONOF INFORMALMATHEMATICAL TEXT85

However, we do not intend to allow general natural language as input, even
though we expect only relatively simple sentences, but we intend to ex-
ploit the fact that mathematical language is simple by defining a controlled
natural language (CNL) that is expressive enough to fulfill the needs of
mathematicians, while still sounding like natural language.

As a test for representing informal mathematical text in the SM we chose the
description of program taken from the 1991 ACM International Collegiate
Programming Contest, as printed in [46]. The text describes the use, input
and output of a program a participant had to write.

The automatically created output contains grammatical errors. We plan to
overcome these problems by interfacing the Grammatical Framework [37].

Original text: The Center City fire department collaborates with the
transportation department to maintain maps of the city that reflect the
current status of the city streets. On any given day, several streets are
closed for repairs or construction. Firefighters need to be able to select
routes from the fire stations to fires that do not use closed streets.

Central City is divided into non-overlapping fire districts, each containing a
single fire station. When a fire is reported, a central dispatcher alerts the
fire station of the district where the fire is located and gives a list of possible
routes from the fire station to the fire. You must write a program that the
central dispatcher can use to generate routes from the district fire stations
to the fires.

The city has a separate map for each fire district. Street corners of each
map are identified by positive integers less than 21, with the fire station
always on corner #1. The input file contains several test cases representing
different fires in different districts. The first line of a test case consists of
a single intege which is the number of the street corner closest to the fire.
The next several lines consist of pairs of positive integers separated by blank
which are the adjacent street corners of open streets. The final line of each
test case consists of a pair of 0’s.

For each test case, your output must identify the case by number (case #1,
case #2, etc). It must list each route on a separate line, with the street
corners written in the order in which they appear on the route. And it must
give the total number routes from fire station to the fire. Include only routes
which do not pass through any street corner more than once. Output from
separate cases must appear on separate lines. The following sample input
and corresponding correct output represents two test cases.

Automatically generated output (currently without proper inflec-
tions and articles): Fire truck.

Fire department collaborate with transportation department in order to

86 CHAPTER 5. APPLICATIONS

maintain map of city with map of city reflect status of street. For all day ,
several street is closed in order to repair or construction. Firefighter must be
able to select route under the constraint route start at fire station , route end
at fire and not route use closed street. City is divided into not overlapping
fire district with for all fire district , fire district contain 1 fire station. If fire
is reported then central dispatcher alert fire department of fire district of
fire and give list of route with route start at fire station and route end at fire.

Write program such that central dispatcher is able to generate route with
route start at fire station and route end at fire.

City has separate map for all fire district. Street corner identified as positive
integer less than 21 and street corner of fire station identified as 1. Input file
contains several test case with test case represent different fire in different
fire district. First line of test case consist of single positive integer (number
of street corner that is street corner closest to fire). Next several line consist
of pair of positive integer with positive integer separated by blank (adjacent
street corner of open street). Last line of test case consist of pair of 0.

For all test case , create output such that output identify test case by num-
ber. Output must give each route has separate line for all route and order
of street corner of output is equal to order of street corner of route. Output
must give number of route. Output must not include route with number of
route has route pass street corner greater than 1. Output of separate test
case must appear at separate line.

5.3 The representation of optimization problems

A significant fraction of the optimization problems from the OR Library [2]
were represented manually in the semantic memory. We designed a natural
representation of these optimization problems as records, in order to be able
to run algorithms on these records. The representation is defined in a type
sheet printed in Appendix B.3.

There are algorithms that produce LATEX descriptions from the representa-
tion in the semantic matrix, and others that produce a model description in
the algebraic modeling language AMPL [9] specifying a valid, numerically
solvable model.

The Operations Research Library (OR-Library), maintained by J. E. Beasley
and originally described in [2], is an online resource of test data sets for a va-
riety of Operations Research problems.1 It contains 111 problem classes, 59

1The OR-Library is available at http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

5.4. THE TPTP LIBRARY 87

problem classes are downloadable directly from the OR-Library and 52 are
links to data sets outside the OR-Library. For our project, we concentrate
on the 59 problem classes actually contained in the OR-Library.

The OR-Library contains data for well-known optimization problems like the
traveling salesman problem, the bin packing problem, set covering, Hamil-
tonian cycle etc. For example, many of the (NP-complete) problems in the
seminal work [18] are included in the OR-Library.

For one specific problem, the OR-Library contains:

• the reference to a publication where this data set was originally de-
scribed and used

• information about number and size of the files

• a description of the structure of the data in the files

• the data files itself.

Appendix D contains the LATEX-description and the AMPL-output of 7 prob-
lems in the ORLib.

5.4 The TPTP Library

An interface was written to automatically import formulas from the TPTP
library [47, 48] (“Thousands of Problems for Theorem Provers”), a library of
formulas for theorem provers, taken from different branches of mathematics.

We implemented a parser for problem files of the TPTP, and parsed, rep-
resented and typechecked the complete TPTP library (version 3.5.0), which
adds up to more than 10,000 problem files.

As an example we give one small problem file from the TPTP, SET002+4.p
(note that we excluded some comments):

%--

% File : SET002+4 : TPTP v3.5.0. Released v2.2.0.

% Domain : Set Theory (Naive)

% Problem : Idempotency of union

% Version : [Pas99] axioms.

% Comments :

%--

%----Include set theory definitions

include(’Axioms/SET006+0.ax’).

%--

fof(thI14,conjecture,

(! [A] : equal_set(union(A,A),A))).

%--

88 CHAPTER 5. APPLICATIONS

The graph that represents this problem file in the semantic memory is given
in Figure 5.2. Note that not only the formula itself is represented, but also
the domain, the axioms to be included, etc.

Appendix B.4 contains the type sheet for problems from the TPTP.

5.5 Naproche

The Naproche project (Natural language Proof Checking, [24]) is carried
out at the University of Bonn. It provides a controlled natural language for
mathematical texts with formulas. Texts written in this language can be
checked for syntactical and mathematical correctness.

The web interface of the Naproche project2 offers three texts as examples.
We represented two of the three examples in the semantic memory. The
automatically generated output was accepted and successfully checked for
correctness by the web interface.

The Burali-Forti paradox was represented using 521 sems and the output
is given in Appendix E.1.

The example from elementary group theory was represented using 448 sems
and the output is given in Appendix E.2.

2http://naproche.net/inc/webinterface.php

5.5. NAPROCHE 89

Example # visible symbols # LATEXcharacters # sems

1 10 38 31
2 14 78 37
3 11 88 54
4 18 113 39
5 6 95 34
6 15 65 53
7 7 36 10
8 10 50 28
9 17 75 46
10 7 29 16
11 13 62 39
12 15 73 60
13 20 76 73
14 16 45 28
15 22 73 90
16 28 159 75
17 19 105 50
18 11 51 57
19 18 84 83
20 17 64 53
21 17 38 23
22 6 19 21
23 22 76 60
24 9 32 45
25 16 56 41
26 2 8 15
27 24 99 33
28 11 54 32
29 33 99 86
30 14 51 42

Figure 5.1: Statistics of examples of mathematical expressions

90 CHAPTER 5. APPLICATIONS

$4200

TptpFile

type

$4210

formulas

$4202

axioms

SET002+4

filename

.p

extension SET

domain

TptpFormula

type

$4214

entry

conjecture

role

thI14

name

fof

form

AxiomList

type

SET006+0.ax

entry

String

type

type

type

ForAll

type

$4220

entry

$4216

binds

type

Of

type

$4224

arguments

equal_set

operator

VarList

type

A

A

type

ArgumentLink

type

$4238

next

$4226

entry

typetype

A

entry

type

$4230

arguments

union

operator

type$4234

next

A

entry

type

type

A

entry

type

type type

Figure 5.2: A problem file of the TPTP

Appendix A

SVM programs

A.1 The SVM program copyFields as a semantic
graph

The following semantic graph is the record that represents the SVM program
copyFields as given in text form in Section 3.6, page 33. Note that for
transparency, the sems with field type are not printed.

$326

$450

processes

getfields

start

$440

getfields $502

checkfornext

$548

copynext

$500

next

fields

c o m m

fieldstack

arg1

copyfrom

arg2

arg2 $536

next

exist

c o m m

thereismore

arg1next

arg3

arg1arg2

arg3

$574

next

get

c o m m

goto

c o m m

checkfornext

arg1

arg1

$546

next

if

c o m m

copynext

arg2

stop

c o m m

arg2 c o m m

$592

next

fieldtocopy

arg1

entry

arg3

arg2

arg3$610

next

refget

c o m m

entrytocopy

arg1

arg2arg3

$612

next

refset

c o m m

copyto

arg1

c o m m arg1

91

92 APPENDIX A. SVM PROGRAMS

A.2 The SVM code of the USVM

The example program below implements a simulator for the SVM, which
shows that the SVM programming language is universal.

program(USVM)

%%%%%%%%%%%%%%%%%%%%%%%% control handling %%%%%%%%%%

process(init)

% initialize nodes, initialize local and global frame

(simcore,core)=set(simcore)

(simcore,program)=set(simprog)

simprocesses=get(simprog,processes)

startfocus=get(simprog,start)

simfocus=refget(simprocesses,startfocus)

goto(load)

process(next)

% proceed to the next command to simulate

simfocus=get(simfocus,next)

goto(load)

process(load)

% load the information about the command

% to simulate to the core

sim_comm=get(simfocus,comm)

move(sim_comm)

%%

process(move)

processname=get(simfocus,arg1)

process=refget(simcore,processname)

simfocus=refget(simprocesses,process)

goto(load)

process(goto)

process=get(simfocus,arg1)

simfocus=refget(simprocesses,process)

goto(load)

process(if)

% if(#criterion,#process)

A.2. THE SVM CODE OF THE USVM 93

criterionname=get(simfocus,arg1)

criterion=refget(simcore,criterionname)

if(criterion,ifapplies)

goto(ifappliesnot)

process(ifapplies)

process=get(simfocus,arg2)

simfocus=refget(simprocesses,process)

goto(load)

process(ifappliesnot)

goto(next)

process(stop)

stop

%%%%%%%%%%%%%%%%%%%% internal handling %%%%%%%%%%%%%%

process(create)

toassign=get(simfocus,arg1)

create(newobj)

(simcore,toassign)=refset(newobj)

goto(next)

process(fields)

% #fieldlist=fields(#record)

writetoname=get(simfocus,arg1)

getfromname=get(simfocus,arg2)

getfrom=refget(simcore,getfromname)

stackoffields=fields(getfrom)

(simcore,writetoname)=refset(stackoffields)

goto(next)

process(check)

% #isequal=check(#left,#right)

leftname=get(simfocus,arg2)

left=refget(simcore,leftname)

rightname=get(simfocus,arg3)

right=refget(simcore,rightname)

result=check(left,right)

writeto=get(simfocus,arg1)

(simcore,writeto)=refset(result)

goto(next)

process(exist)

% #result=exist(#record,#field)

94 APPENDIX A. SVM PROGRAMS

leftname=get(simfocus,arg2)

left=refget(simcore,leftname)

right=get(simfocus,arg3)

result=existref(left,right)

writeto=get(simfocus,arg1)

(simcore,writeto)=refset(result)

goto(next)

process(existref)

% #result=exist(#recordname,#fieldname)

leftname=get(simfocus,arg2)

left=refget(simcore,leftname)

rightname=get(simfocus,arg3)

right=refget(simcore,rightname)

result=existref(left,right)

writeto=get(simfocus,arg1)

(simcore,writeto)=refset(result)

goto(next)

process(setconst)

% (#handle,#field)=const(#setto)

handle=get(simfocus,arg1)

sethandle=refget(simcore,handle)

field=get(simfocus,arg2)

setto=get(simfocus,arg3)

(sethandle,field)=refset(setto)

goto(next)

process(refset)

% (#handlename,#fieldname)=set(#entryname)

handle=get(simfocus,arg1)

sethandle=refget(simcore,handle)

fieldname=get(simfocus,arg2)

field=refget(simcore,fieldname)

entry=get(simfocus,arg3)

setto=refget(simcore,entry)

(sethandle,field)=refset(setto)

goto(next)

process(set)

% (#handlename,#field)=set(#entryname)

handle=get(simfocus,arg1)

sethandle=refget(simcore,handle)

field=get(simfocus,arg2)

A.2. THE SVM CODE OF THE USVM 95

entry=get(simfocus,arg3)

setto=refget(simcore,entry)

(sethandle,field)=refset(setto)

goto(next)

process(refget)

% #towrite=get(#handlename,#fieldname)

addressname=get(simfocus,arg1)

handlename=get(simfocus,arg2)

handle=refget(simcore,handlename)

fieldname=get(simfocus,arg3)

field=refget(simcore,fieldname)

towrite=refget(handle,field)

(simcore,addressname)=refset(towrite)

goto(next)

process(get)

% #towrite=get(#handlename,#field)

addressname=get(simfocus,arg1)

handlename=get(simfocus,arg2)

handle=refget(simcore,handlename)

field=get(simfocus,arg3)

towrite=refget(handle,field)

(simcore,addressname)=refset(towrite)

goto(next)

process(unset)

% unset(#handle.#field)

firstname=get(simfocus,arg1)

secondname=get(simfocus,arg2)

first=refget(simcore,firstname)

second=refget(simcore,secondname)

unset(first,second)

goto(next)

%%%%%%%%%%%%%%%%%%%%%%% external handling %%%%%%%%%%

process(external)

% #output = external(#process,#input)

inputname=get(simfocus,arg3)

processname=get(simfocus,arg2)

outputname=get(simfocus,arg1)

inputnode=refget(simcore,inputname)

processobj=refget(simcore,processname)

96 APPENDIX A. SVM PROGRAMS

outputnode=refget(simcore,outputname)

outputnode=external(processobj,inputnode)

goto(next)

process(in)

% #writeto = in(#readfrom,#protocol)

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocol=get(simfocus,arg3)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refin(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

goto(next)

process(out)

% #writeto = out(#readfrom,#protocol)

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocol=get(simfocus,arg3)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refout(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

goto(next)

process(refin)

% #writeto = refin(#readfrom,#protocolname)

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocolname=get(simfocus,arg3)

protocol=refget(simcore,protocolname)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refin(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

goto(next)

process(refout)

% #writeto = refout(#readfrom,#protocolname)

transto=get(simfocus,arg1)

transfrom=get(simfocus,arg2)

protocolname=get(simfocus,arg3)

protocol=refget(simcore,protocolname)

objtotransfrom=refget(simcore,transfrom)

transtotemp=refout(objtotransfrom,protocol)

(simcore,transto)=refset(transtotemp)

A.2. THE SVM CODE OF THE USVM 97

goto(next)

% info to start program:

start(init)

98 APPENDIX A. SVM PROGRAMS

Appendix B

Typesheets

B.1 The typesheet for expressions

The following is the typesheet that defines all the types that can be consid-
ered as operators to form expressions:

Expressions::

! Expression types

! ----------------

!

! Peter Schodl

!

! Feb 21, 2011

!

! This type system defines the types needed to process expression.

! To type tighter:

!!! Make Term and Expression

!!! type narrower: from AND to / over (a new type FromTo)

Alternative:

allOf> linkedList = AlternativeLink

AlternativeLink:

allOf> entry = Expression

optional> next = AlternativeLink

Bracket:

allOf> entry = Expression

Cases:

allOf> linkedList = CasesLink

optional> otherwise = Expression

CasesLink:

allOf> formula = Expression

condition = Expression

optional> next = CasesLink

Chain:

99

100 APPENDIX B. TYPESHEETS

allOf> firstrel = Expression

linkedList = ExpLink

ExpLink:

allOf> entry = Expression

optional> next = ExpLink

Diag:

allOf> linkedList = ExpLink

Div:

allOf> nom = Expression

den = Expression

Dummy:

allOf> entry = Expression

Equal:

allOf> lhs = Expression

rhs = Expression

optional> above = Text

Eval:

allOf> formula = Expression

binds = VarList

optional> index = Expression

from = Expression

to = Expression

Forall:

allOf> formula = Expression

scopedvar = Expression

binds = VarList

InvisMult:

allOf> linkedList = ExpLink

Interval:

allOf> lower = Expression

upper = Expression

Integral:

allOf> formula = Expression

variable = IndexedVar

binds = VarList

optional> index = Expression

from = Expression

to = Expression

List:

allOf> linkedList = ExpLink

optional> leftBr = Brackets

separator = Separators

rightBr = Brackets

Lambda:

allOf> formula = Expression

variable = IndexedVar

binds = VarList

Max:

allOf> formula = Expression

optional> binds = VarList

B.1. THE TYPESHEET FOR EXPRESSIONS 101

index = Expression

Min:

allOf> formula = Expression

optional> binds = VarList

index = Expression

Mid:

allOf> lhs = Expression

rhs = Expression

Matrix:

allOf> linkedList = RowLink

Norm:

allOf> formula = Expression

optional> index = Expression

Of:

allOf> operator = Expression

arguments = Expression

Or:

allOf> linkedList = ExpLink

OtherInterval:

someOf> lowerclosed = Expression

loweropen = Expression

upperopen = Expression

upperclosed = Expression

Partial:

allOf> linkedList = ExpLink

Prime:

allOf> entry = Expression

Power:

allOf> base = Expression

exponent = Expression

Prob:

allOf> event = Expression

optional> condition = Expression

Row:

allOf> linkedList = ExpLink

RowLink:

allOf> entry = Row

optional> next = RowLink

Restriction:

allOf> formula = Expression

restriction = Expression

optional> binds = VarList

if = Expression

forsome = Expression

Relation:

allOf> lhs = RelationLhs

rhs = Expression

102 APPENDIX B. TYPESHEETS

relation = RelationSymbols

optional> above = Text

Script:

allOf> formula = Expression

someOf> sub = Expression

sup = Expression

lsup = Expression

lsub = Expression

Sqrt:

allOf> radicand = Expression

Set2Exp:

allOf> lhs = Expression

rhs = Expression

optional> binds = VarList

Sum:

allOf> formula = Expression

binds = VarList

someOf> index = Expression

from = Expression

to = Expression

Set:

allOf> scopedvar = Expression

condition = Expression

optional> binds = VarList

SetUnion:

allOf> linkedList = ExpLink

SetProduct:

allOf> linkedList = ExpLink

SetBucket:

allOf> linkedList = ExpLink

SignedSum:

allOf> linkedList = SignedSumLink

SignedSumLink:

allOf> sign = Signs

entry = Expression

optional> next = SignedSumLink

Text:

allOf> entry = Object

Var:

nothingElse>

optional> name = String

VarList:

itself> IndexedVar

Vector:

allOf> linkedList = ExpLink

Separators:

atomic> SepKomma,SepColon,SepSemicolon,SepBlank,None

B.2. TYPESHEETS FOR A TURING MACHINE 103

Brackets:

atomic> BrLeftRound,BrRightRound,BrLeftSquare,BrRightSquare,None

RelationSymbols:

atomic> LessEq,Less,In,Greater,GreaterEq,EqualByDef,EqualSign

Signs:

atomic> InvisPlusSign,MinusSign,PlusSign

Expression:

union> Alternative,Bracket,Cases,Chain,Diag,Div,Dummy,Equal

union> Eval,Forall,InvisMult,Interval,Integral,List,Lambda,Max

union> Min,Mid,Matrix,Norm,Of,Or,OtherInterval,Partial,Prime

union> Power,Prob,Restriction,Relation,Script,Sqrt,Set2Exp,Sum

union> Set,SetBucket,SetProduct,SignedSum,SetUnion,Var,Vector,Dummy

union> String,Integer,Double,Separators,Signs,RelationSymbols

RelationLhs:

union> Expression, VarList

IndexedVar:

union> Var, Script

B.2 Typesheets for a Turing machine

Furthermore, we give type sheets for tapes and transition tables for Turing
machines as represented in the SM and discussed in Section 3.7.

TuringMachine::

Tape:

allOf> entry = Object

optional> last = Tape

next = Tape

nothingElse>

Movement:

atomic> L, R, X

TransTable:

allOf> state = Object

tostate = Object

tomove = Movement

towrite = Object

reading = Object

optional> next=TransTable

nothingElse>

104 APPENDIX B. TYPESHEETS

B.3 Type sheet for optimization problems

ORLibTypes::

Action:

allOf> verb = String

subject = Expression

AlgCode:

allOf> linkedList = AlgCodeLink

AlgCodeLink:

allOf> entry = AlgorithmStep

optional> next = AlgCodeLink

AlgFor:

allOf> from = Expression

to = Expression

running = Var

linkedList = AlgCodeLink

AlgSet:

allOf> entry = Expression

setto = Expression

AlgInstance:

allOf> linkedList = AlgInstanceLink

AlgInstanceLink:

allOf> entry = AlgorithmStep

optional> next = AlgInstanceLink

AlgRead:

allOf> entry = Expression

AlgInc:

allOf> entry = Expression

AlgReadSilent:

allOf> entry = Expression

AlgUntilEOF:

allOf> linkedList = AlgCodeLink

AlgUntilEOL:

allOf> linkedList = AlgCodeLink

Concept:

allOf> entry = SentencePart

optional> specification = SentencePart

adjective = ConceptGeneral

Constraint:

allOf> formula = Expression

optional> restriction = Expression

name = Integer

ConstraintList:

allOf> linkedList = ConstraintListLink

ConstraintListLink:

allOf> entry = Constraint

B.3. TYPE SHEET FOR OPTIMIZATION PROBLEMS 105

optional> next = ConstraintListLink

Card:

allOf> entry = Expression

Definition:

allOf> defined = TextUnit

definedas = Objects

optional> with = Objects

given = Expression

DefinitionRel:

allOf> definethat = TextUnit

optional> with = Expression

given = Objects

iff = Statement

otherwise = TextUnit

Document:

allOf> linkedList = DocumentLink

optional> header = TextUnit

mod = Problem

dat = ORdata

DocumentInclude:

allOf> linkedList = DocumentLink

optional> header = TextUnit

mod = Problem

dat = ORdata

DocumentLink:

allOf> entry = TextUnit

optional> next = DocumentLink

Equivalent:

allOf> lhs = Statement

rhs = Statement

Files:

allOf> linkedList = FilesLink

IncludeMod:

allOf> entry = String

FilesLink:

allOf> entry = String

optional> next = FilesLink

Let:

someOf> subject = Objects

statement = ObjConc

description = ConceptGeneral

optional> qualification = Qualification

MatrixOfDim:

allOf> rows = Expression

columns = Expression

rowindex = Var

colindex = Var

ORdata:

someOf> filenames = Files

106 APPENDIX B. TYPESHEETS

nrproblems = Expression

algorithm = AlgCode

ORdataSolution:

optional> filenames = Files

algorithm = AlgCode

Obj:

optional> formula = Expression

entry = Expression

qualification = Qualification

specification = TextUnit

typeofobj = ConceptGeneral

indexrange = Expression

with = Expression

interpretation = TextUnit

ObjList:

allOf> linkedList = ObjListLink

ObjListLink:

allOf> entry = Objects

optional> next = ObjListLink

ParagraphList:

allOf> linkedList = ParagraphListLink

ParagraphListLink:

allOf> entry = TextUnit

optional> next = ParagraphListLink

Problem:

allOf> find = Objects

target = Target

optional> given = ObjConc

constraint = Constraints

Qualification:

optional> of = ObjConc

Quantification:

someOf> quantity = Expression

hyphenobj = ConceptGeneral

object = ConceptGeneral

Sentence:

optional> linkedList = SentencePartLink

SentenceLink:

allOf> entry = Sentence

optional> next = SentenceLink

SentencePartLink:

allOf> entry = SentencePart

optional> next = SentencePartLink

SentenceList:

allOf> linkedList = SentenceLink

optional> header = TextUnit

Statement:

allOf> subject = Objects

B.3. TYPE SHEET FOR OPTIMIZATION PROBLEMS 107

oneOf> isa = ConceptGeneral

is = TextUnit

has = TextUnit

Target:

allOf> formula = Expression

mode = MinMax

optional> restriction = Expression

VectorOfDim:

allOf> dimension = Expression

indexvar = Var

!!!!!!!!!! ATOMICS AND UNIONS

AlgAtomics:

atomic> ReadInstances, NewLine

PropertiesAtomics:

atomic> NonNegative,Binary,Positive

ConceptAtomics:

atomic> SetAsConcept,IntegerAsConcept,NumberAsConcept,VectorAsConcept

atomic> MatrixAsConcept,RealNumberAsConcept,NaturalNumbersAsConcept

atomic> EmptySetAsConcept,InfinityAsConcept,RealNumbersAsConcept

atomic> SequenceAsConcept

MinMax:

atomic> Minimize, Maximize

AlgorithmStep:

union> AlgRead, AlgFor, AlgInstance, AlgUntilEOF, AlgUntilEOL

union> AlgReadSilent, AlgAtomics, AlgSet, AlgInc

Objects:

union> ObjList, Obj, Expression

Constraints:

union> ConstraintList, Constraint

TextUnit:

union> Sentence, String, SentenceList, ParagraphList

union> PropertiesAtomics, Concept, IncludeMod, Objects

ConceptGeneral:

union> Concept, String, Quantification, PropertiesAtomics, ConceptAtomics

union> VectorOfDim, MatrixOfDim, Sequence

SentencePart:

union> ConceptGeneral, Expression, Obj, Definition, Let

union> ORdata, Problem, Action, ORdataSolution

union> Statement, Equivalent, DefinitionRel

Condition:

union> Statement

ObjConc:

union> Objects, Concept

108 APPENDIX B. TYPESHEETS

B.4 Type sheet for TPTP problems

TPTP::

ArgumentLink:

allOf> entry = ArgumentEntry

optional> next = ArgumentLink

AxiomList:

allOf> entry = String

optional> next = AxiomList

ForAll:

allOf> entry = ArgumentEntry

binds = VarList

Exists:

allOf> entry = ArgumentEntry

binds = VarList

Equal:

allOf> arguments = ArgumentLink

NotEqual:

allOf> arguments = ArgumentLink

Iff:

allOf> arguments = ArgumentLink

NotIff:

allOf> arguments = ArgumentLink

Implies:

allOf> arguments = ArgumentLink

Requires:

allOf> arguments = ArgumentLink

Equivalent:

allOf> arguments = ArgumentLink

NotEquivalent:

allOf> arguments = ArgumentLink

Or:

allOf> arguments = ArgumentLink

NotOr:

allOf> arguments = ArgumentLink

And:

allOf> arguments = ArgumentLink

NotAnd:

allOf> arguments = ArgumentLink

Not:

allOf> entry = ArgumentEntry

Of:

allOf> arguments = ArgumentLinkOrEntry

operator = String

B.4. TYPE SHEET FOR TPTP PROBLEMS 109

VarList:

someOfType> String = String

TptpFiles:

someOfType> String = TptpFile

TptpFile:

allOf> domain = Domains

extension = String

filename = String

optional> axioms = AxiomList

formulas = TptpFormula

TptpFormula:

allOf> entry = ArgumentEntry

form = Forms

name = String

role = Roles

optional> next = TptpFormula

ArgumentEntry:

union> String,Not,Equal,NotEqual,Iff,NotIff

union> Implies,Requires,Or,NotOr,And,NotAnd,Of

union> Exists,ForAll,Equivalent,NotEquivalent

ArgumentLinkOrEntry:

union> ArgumentLink,ArgumentEntry

Domains:

atomic> AGT,ALG,ANA,BOO,CAT,COL,COM,CSR,FLD,GEO,GRA,GRP

atomic> HAL,HEN,HWC,HWV,KRS,LAT,LCL,LDA,MED,MGT,MSC,NLP

atomic> NUM,PLA,PUZ,RNG,ROB,SET,SEU,SWC,SWV,TOP

Forms:

atomic> fof,cnf,thf

Roles:

atomic> axiom,hypothesis,definition,assumption,lemma,theorem

atomic> conjecture,negated_conjecture,plain,fi_domain

atomic> fi_functors,fi_predicates,type,unknown

110 APPENDIX B. TYPESHEETS

Appendix C

Examples of expressions

The running numbers of the examples correspond to Table 5.1 on page 89.

For each example, we give the automatically produced and rendered LATEXoutput,
the raw LATEXoutput, the list of sems and values that represent the expres-
sion, and a semantic graph.

C.1 Vectors and matrices

Example 1. (√
x, x+ y + z

)
1 \left(\sqrt{ x } , x + y + z \right)

$2956.type=Vector

$2956.linkedList=$2958

$2958.type=ExpLink

$2958.next=$2960

$2958.entry=$2938

$2938.type=Sqrt

$2938.radicand=$2934

$2934.type=Var

$2934.name=$2936

$2936.type=String

$2960.type=ExpLink

$2960.entry=$2948

$2948.type=SignedSum

$2948.linkedList=$2950

$2950.type=SignedSumLink

$2950.next=$2952

$2950.sign=InvisPlusSign

$2950.entry=$2934

$2952.type=SignedSumLink

$2952.next=$2954

$2952.sign=PlusSign

$2952.entry=$2940

$2940.type=Var

$2940.name=$2942

$2942.type=String

$2954.type=SignedSumLink

$2954.sign=PlusSign

$2954.entry=$2944

$2944.type=Var

$2944.name=$2946

$2946.type=String

VALUE($2936) = x

VALUE($2942) = y

VALUE($2946) = z

111

112 APPENDIX C. EXAMPLES OF EXPRESSIONS

$2956

Vector

type

$2958

linkedList

ExpLink

type$2960

next

$2938

entry

type

$2948

entry

Sqrt

type

$2934

radicand

Var

type x

name

String

type

SignedSum

type

$2950

linkedList

entry

SignedSumLink

type

$2952

next

InvisPlusSign

sign

type$2954

next

PlusSign

sign

$2940

entry

typesign

$2944

entry

type

y

name

type

type

z

name

type

C.1. VECTORS AND MATRICES 113

Example 2. Similar as before, but now the only variable is the vector x.

(
√
x1, x1 + x2 + x3)

\left(\sqrt{ {}{x}_{ 1 } } , {}{x}_{ 1 } + {}{x}_{

2 } + {}{x}_{ 3 } \right)

$3016.type=Vector

$3016.linkedList=$3018

$3018.type=ExpLink

$3018.next=$3020

$3018.entry=$3006

$3006.type=Sqrt

$3006.radicand=$3000

$3000.type=Script

$3000.formula=$2990

$3000.sub=$2994

$2990.type=Var

$2990.name=$2992

$2992.type=String

$2994.type=Integer

$3020.type=ExpLink

$3020.entry=$3008

$3008.type=SignedSum

$3008.linkedList=$3010

$3010.type=SignedSumLink

$3010.next=$3012

$3010.sign=InvisPlusSign

$3010.entry=$3000

$3012.type=SignedSumLink

$3012.next=$3014

$3012.sign=PlusSign

$3012.entry=$3002

$3002.type=Script

$3002.formula=$2990

$3002.sub=$2996

$2996.type=Integer

$3014.type=SignedSumLink

$3014.sign=PlusSign

$3014.entry=$3004

$3004.type=Script

$3004.formula=$2990

$3004.sub=$2998

$2998.type=Integer

VALUE($2992) = x

VALUE($2994) = 1

VALUE($2996) = 2

VALUE($2998) = 3

114 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3016

Vector

type

$3018

linkedList

ExpLink

type$3020

next

$3006

entry

type

$3008

entry

Sqrt

type

$3000

radicand

Script

type

$2990

formula

1

sub

Var

type

x

name

Integer

type

String

type

SignedSum

type

$3010

linkedList

entry

SignedSumLink

type

$3012

next

InvisPlusSign

sign

type $3014

next

PlusSign

sign

$3002

entry

type sign

$3004

entry

typeformula

2

sub

type

typeformula

3

sub

type

C.1. VECTORS AND MATRICES 115

Example 3. A matrix with wildcard characters, denoted by ∗.(
(λ− x) I ∗

0 ∗

)

\left(\ begin{array}{cc} \left(\lambda - x \right) I

& * \\ 0 & * \\ \end{array} \right)

$3254.type=Matrix

$3254.linkedList=$3256

$3256.type=RowLink

$3256.next=$3258

$3256.entry=$3242

$3242.type=Row

$3242.linkedList=$3244

$3244.type=ExpLink

$3244.next=$3246

$3244.entry=$3236

$3236.type=InvisMult

$3236.linkedList=$3238

$3238.type=ExpLink

$3238.next=$3240

$3238.entry=$3234

$3234.type=Bracket

$3234.entry=$3228

$3228.type=SignedSum

$3228.linkedList=$3230

$3230.type=SignedSumLink

$3230.next=$3232

$3230.sign=InvisPlusSign

$3230.entry=$3208

$3208.type=Var

$3208.name=$3210

$3210.type=String

$3232.type=SignedSumLink

$3232.sign=MinusSign

$3232.entry=$3212

$3212.type=Var

$3212.name=$3214

$3214.type=String

$3240.type=ExpLink

$3240.entry=$3216

$3216.type=MathString

$3216.entry=$3218

$3218.type=String

$3246.type=ExpLink

$3246.entry=$3220

$3220.type=MathString

$3220.entry=$3222

$3222.type=String

$3258.type=RowLink

$3258.entry=$3248

$3248.type=Row

$3248.linkedList=$3250

$3250.type=ExpLink

$3250.next=$3252

$3250.entry=$3224

$3224.type=MathString

$3224.entry=$3226

$3226.type=String

$3252.type=ExpLink

$3252.entry=$3220

VALUE($3210) = \lambda

VALUE($3214) = x

VALUE($3218) = I

VALUE($3222) = *

VALUE($3226) = 0

116 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3254

Matrix

type

$3256

linkedList

RowLink

type$3258

next

$3242

entry

type

$3248

entry

Row

type $3244

linkedList

ExpLink

type

$3246

next

$3236

entry

type

$3220

entry

InvisMult

type

$3238

linkedList

type $3240

next

$3234

entry

type

$3216

entry

Bracket

type

$3228

entry

SignedSum

type

$3230

linkedList

SignedSumLink

type$3232

next

InvisPlusSign

sign

$3208

entry

type

MinusSign

sign

$3212

entry

Var

type

\lambda

name

String

type

type

x

name

type

MathString

type

I

entry

type

type

*

entry

type

type

$3250

linkedList

type$3252

next

$3224

entry

typeentry

type

0

entry

type

C.1. VECTORS AND MATRICES 117

Example 4.
+ − + −
− + − +
+ − + −
− + − +

\left(\ begin{array}{cccc} + & - & + & - \\ - & + & -

& + \\ + & - & + & - \\ - & + & - & + \\ \end{

array} \right)

$3332.type=Matrix

$3332.linkedList=$3334

$3334.type=RowLink

$3334.next=$3336

$3334.entry=$3312

$3312.type=Row

$3312.linkedList=$3314

$3314.type=ExpLink

$3314.next=$3316

$3314.entry=PlusSign

$3316.type=ExpLink

$3316.next=$3318

$3316.entry=MinusSign

$3318.type=ExpLink

$3318.next=$3320

$3318.entry=PlusSign

$3320.type=ExpLink

$3320.entry=MinusSign

$3336.type=RowLink

$3336.next=$3338

$3336.entry=$3322

$3322.type=Row

$3322.linkedList=$3324

$3324.type=ExpLink

$3324.next=$3326

$3324.entry=MinusSign

$3326.type=ExpLink

$3326.next=$3328

$3326.entry=PlusSign

$3328.type=ExpLink

$3328.next=$3330

$3328.entry=MinusSign

$3330.type=ExpLink

$3330.entry=PlusSign

$3338.type=RowLink

$3338.next=$3340

$3338.entry=$3312

$3340.type=RowLink

$3340.entry=$3322

118 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3332

Matrix

type

$3334

linkedList

RowLink

type

$3336

next

$3312

entry

type

$3338

next

$3322

entry

Row

type

$3314

linkedList

ExpLink

type

$3316

next

PlusSign

entry

type

$3318

next

MinusSign

entry

type entry$3320

next

type entry

type

entry

$3340

next

type

$3324

linkedList

type entry

$3326

next

type entry

$3328

next

type entry$3330

next

type entry

type entry

C.1. VECTORS AND MATRICES 119

Example 5.
σ1

. . .

σr
0

\left(\ begin{array}{cccc} {}{\ sigma}_{1}\\&\ ddots

\\&&{}{\ sigma}_{r}\\&&&0\\ \end{array} \right)

$3486.type=Diag

$3486.linkedList=$3488

$3488.type=ExpLink

$3488.next=$3490

$3488.entry=$3482

$3482.type=Script

$3482.formula=$3462

$3482.sub=$3466

$3462.type=MathString

$3462.entry=$3464

$3464.type=String

$3466.type=MathString

$3466.entry=$3468

$3468.type=String

$3490.type=ExpLink

$3490.next=$3492

$3490.entry=$3478

$3478.type=MathString

$3478.entry=$3480

$3480.type=String

$3492.type=ExpLink

$3492.next=$3494

$3492.entry=$3484

$3484.type=Script

$3484.formula=$3462

$3484.sub=$3470

$3470.type=MathString

$3470.entry=$3472

$3472.type=String

$3494.type=ExpLink

$3494.entry=$3474

$3474.type=MathString

$3474.entry=$3476

$3476.type=String

VALUE($3464) = \sigma

VALUE($3468) = 1

VALUE($3472) = r

VALUE($3476) = 0

VALUE($3480) = \ddots

120 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3486

Diag

type

$3488

linkedList

ExpLink

type

$3490

next

$3482

entry

type

$3492

next

$3478

entry

Script

type

$3462

formula

$3466

sub

MathString

type

\sigma

entry type

1

entry

String

type type

type$3494

next

$3484

entry

type

\ddots

entry

type

type

$3474

entry typeformula

$3470

sub

type

r

entry

type

type

0

entry

type

C.2. SETS 121

C.2 Sets

Example 6.
{x∈R | 0≤x≤1 ∨ x=2}

\left\{x{ \in }\Rz \mid 0{ \leq }x{ \leq }1 \vee x

{{=}}2\ right \}

$3146.type=Set

$3146.scopedvar=$3114

$3146.binds=$3106

$3146.condition=$3140

$3106.type=VarList

$3106.linkedList=$3108

$3108.type=VarListLink

$3108.entry=$3102

$3102.type=Var

$3102.name=$3104

$3104.type=String

$3114.type=Relation

$3114.lhs=$3102

$3114.relation=In

$3114.rhs=$3110

$3110.type=MathString

$3110.entry=$3112

$3112.type=String

$3140.type=Or

$3140.linkedList=$3142

$3142.type=ExpLink

$3142.next=$3144

$3142.entry=$3134

$3134.type=Chain

$3134.firstrel=$3128

$3134.linkedList=$3136

$3128.type=Relation

$3128.lhs=$3116

$3128.relation=LessEq

$3128.rhs=$3102

$3116.type=MathString

$3116.entry=$3118

$3118.type=String

$3136.type=ExpLink

$3136.entry=$3132

$3132.type=Relation

$3132.lhs=$3130

$3132.relation=LessEq

$3132.rhs=$3120

$3120.type=MathString

$3120.entry=$3122

$3122.type=String

$3130.type=Dummy

$3130.entry=$3128

$3144.type=ExpLink

$3144.entry=$3138

$3138.type=Relation

$3138.lhs=$3102

$3138.relation=Equal

$3138.rhs=$3124

$3124.type=MathString

$3124.entry=$3126

$3126.type=String

VALUE($3104) = x

VALUE($3112) = \Rz

VALUE($3118) = 0

VALUE($3122) = 1

VALUE($3126) = 2

122 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3146

Set

type

$3114

scopedvar

$3106

binds

$3140

condition

$3102

lhs

Relation

type

In

relation

$3110

rhs

VarList

type

$3108

linkedList

Or

type

$3142

linkedList

VarListLink

type

entry

Var

type

x

name

String

type

MathString

type

\Rz

entry

type

ExpLink

type

$3144

next $3134

entry

type

$3138

entry

Chain

type

$3128

firstrel

$3136

linkedList

rhs type

$3116

lhs

LessEq

relation

type

$3132

entry

type

0

entry

type

type relation

$3130

lhs

$3120

rhsentry

Dummy

type

type

1

entry

type

lhs type

Equal

relation

$3124

rhs

type

2

entry

type

C.2. SETS 123

Example 7. A set as list with characters as entries.

{≤,=,≥}

\left\{ \leq , {=} , \geq \right\}

$3160.type=SetBucket

$3160.linkedList=$3162

$3162.type=ExpLink

$3162.next=$3164

$3162.entry=LessEq

$3164.type=ExpLink

$3164.next=$3166

$3164.entry=Equal

$3166.type=ExpLink

$3166.entry=GreaterEq

124 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3160

SetBucket

type

$3162

linkedList

ExpLink

type

$3164

next

LessEq

entry

type $3166

next

Equal

entry

type

GreaterEq

entry

C.2. SETS 125

Example 8.
{f (x) | x≥1}

\left\{ f \left(x\right) \mid x{ \geq }1 \right \}

$3448.type=Set2Exp

$3448.binds=$3428

$3448.lhs=$3444

$3448.rhs=$3446

$3428.type=VarList

$3428.linkedList=$3430

$3430.type=VarListLink

$3430.entry=$3424

$3424.type=Var

$3424.name=$3426

$3426.type=String

$3444.type=Of

$3444.operator=$3432

$3444.arguments=$3440

$3432.type=Var

$3432.name=$3434

$3434.type=String

$3440.type=Vector

$3440.linkedList=$3442

$3442.type=ExpLink

$3442.entry=$3424

$3446.type=Relation

$3446.lhs=$3424

$3446.relation=GreaterEq

$3446.rhs=$3436

$3436.type=MathString

$3436.entry=$3438

$3438.type=String

VALUE($3426) = x

VALUE($3434) = f

VALUE($3438) = 1

126 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3448

Set2Exp

type

$3428

binds

$3444

lhs

$3446

rhs

VarList

type

$3430

linkedList

Of

type

$3432

operator

$3440

arguments

$3424

lhs

Relation

type

GreaterEq

relation

$3436

rhs

VarListLink

type

entry

Var

type

x

name

String

type

type

f

name

Vector

type

$3442

linkedList

type

entry

ExpLink

type

MathString

type

1

entry

type

C.2. SETS 127

Example 9.
{x∈X (k) | f (x, k)=0}

\left\{x{ \in }X \left(k\right) \mid f \left(x , k\

right) {{=}} 0 \right\}

$4430.type=Set

$4430.scopedvar=$4428

$4430.binds=$4394

$4430.condition=$4420

$4394.type=VarList

$4394.linkedList=$4396

$4396.type=VarListLink

$4396.entry=$4390

$4390.type=Var

$4390.name=$4392

$4392.type=String

$4420.type=Relation

$4420.lhs=$4418

$4420.relation=Equal

$4420.rhs=$4410

$4410.type=Integer

$4418.type=Of

$4418.operator=$4406

$4418.arguments=$4412

$4406.type=MathString

$4406.entry=$4408

$4408.type=String

$4412.type=Vector

$4412.linkedList=$4414

$4414.type=ExpLink

$4414.next=$4416

$4414.entry=$4390

$4416.type=ExpLink

$4416.entry=$4402

$4402.type=Var

$4402.name=$4404

$4404.type=String

$4428.type=Relation

$4428.lhs=$4390

$4428.relation=In

$4428.rhs=$4426

$4426.type=Of

$4426.operator=$4398

$4426.arguments=$4422

$4398.type=MathString

$4398.entry=$4400

$4400.type=String

$4422.type=Vector

$4422.linkedList=$4424

$4424.type=ExpLink

$4424.entry=$4402

VALUE($4392) = x

VALUE($4400) = X

VALUE($4404) = k

VALUE($4408) = f

VALUE($4410) = 0

128 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4430

Set

type

$4428

scopedvar

$4394

binds

$4420

condition

$4390

lhs

Relation

type

In

relation

$4426

rhs

VarList

type

$4396

linkedList type

$4418

lhs

Equal

relation

0

rhs

VarListLink

type

entry

Var

type

x

name

String

type

Of

type

$4406

operator

$4412

arguments

Integer

type

MathString

type

f

entry

Vector

type

$4414

linkedList

type

entry

ExpLink

type$4416

next

type

$4402

entry

type

k

name

type

type

$4398

operator

$4422

arguments

type

X

entry

type

$4424

linkedList

type

typeentry

C.3. EQUALITIES AND INEQUALITIES 129

C.3 Equalities and inequalities

Example 10. Equality with auxiliary information, stored in the node
above.

a
Vor.
= b

a\stackrel {\text{Vor .}}{{=}}b

$3368.type=Relation

$3368.lhs=$3354

$3368.relation=Equal

$3368.rhs=$3358

$3368.above=$3366

$3354.type=Var

$3354.name=$3356

$3356.type=String

$3358.type=Var

$3358.name=$3360

$3360.type=String

$3366.type=Text

$3366.entry=$3362

$3362.type=MathString

$3362.entry=$3364

$3364.type=String

VALUE($3356) = a

VALUE($3360) = b

VALUE($3364) = Vor.

130 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3368

Relation

type

$3354

lhs

Equal

relation

$3358

rhs

$3366

above

Var

type

a

name type

b

name

Text

type

$3362

entry

String

type type MathString

type

Vor.

entry

type

C.3. EQUALITIES AND INEQUALITIES 131

Example 11.
f (x)|x=a=f (a)

\left.f \left(x\right) \right|_{x{{=}}a}{{=}}f \left

(a\right)

$4310.type=Relation

$4310.lhs=$4308

$4310.relation=Equal

$4310.rhs=$4302

$4302.type=Of

$4302.operator=$4282

$4302.arguments=$4294

$4282.type=MathString

$4282.entry=$4284

$4284.type=String

$4294.type=Vector

$4294.linkedList=$4296

$4296.type=ExpLink

$4296.entry=$4278

$4278.type=MathString

$4278.entry=$4280

$4280.type=String

$4308.type=Eval

$4308.formula=$4304

$4308.binds=$4290

$4308.index=$4306

$4290.type=VarList

$4290.linkedList=$4292

$4292.type=VarListLink

$4292.entry=$4286

$4286.type=Var

$4286.name=$4288

$4288.type=String

$4304.type=Of

$4304.operator=$4282

$4304.arguments=$4298

$4298.type=Vector

$4298.linkedList=$4300

$4300.type=ExpLink

$4300.entry=$4286

$4306.type=Relation

$4306.lhs=$4286

$4306.relation=Equal

$4306.rhs=$4278

VALUE($4280) = a

VALUE($4284) = f

VALUE($4288) = x

132 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4310

Relation

type

$4308

lhs

Equal

relation

$4302

rhs

Eval

type

$4304

formula

$4290

binds

$4306

index

Of

type

$4282

operator

$4294

arguments

MathString

typef

entry

Vector

type

$4296

linkedList

String

type

ExpLink

type

$4278

entry

type

a

entry

type

typeoperator

$4298

arguments

VarList

type

$4292

linkedList type relation

rhs

$4286

lhs

VarListLink

type

entry

Var

type

x

name

type

type

$4300

linkedList

type entry

C.3. EQUALITIES AND INEQUALITIES 133

Example 12.

a
(1)
= b≥c≥d

(2)
= e

a\stackrel {\text {(1) }}{{=}}b{ \geq }c{ \geq }d\

stackrel {\text {(2) }}{{=}}e

$4370.type=Chain

$4370.firstrel=$4356

$4370.linkedList=$4372

$4356.type=Relation

$4356.lhs=$4324

$4356.relation=Equal

$4356.rhs=$4328

$4356.above=$4348

$4324.type=MathString

$4324.entry=$4326

$4326.type=String

$4328.type=MathString

$4328.entry=$4330

$4330.type=String

$4348.type=Text

$4348.entry=$4344

$4344.type=MathString

$4344.entry=$4346

$4346.type=String

$4372.type=ExpLink

$4372.next=$4374

$4372.entry=$4364

$4364.type=Relation

$4364.lhs=$4358

$4364.relation=GreaterEq

$4364.rhs=$4332

$4332.type=MathString

$4332.entry=$4334

$4334.type=String

$4358.type=Dummy

$4358.entry=$4328

$4374.type=ExpLink

$4374.next=$4376

$4374.entry=$4366

$4366.type=Relation

$4366.lhs=$4360

$4366.relation=GreaterEq

$4366.rhs=$4336

$4336.type=MathString

$4336.entry=$4338

$4338.type=String

$4360.type=Dummy

$4360.entry=$4332

$4376.type=ExpLink

$4376.entry=$4368

$4368.type=Relation

$4368.lhs=$4362

$4368.relation=Equal

$4368.rhs=$4340

$4368.above=$4354

$4340.type=MathString

$4340.entry=$4342

$4342.type=String

$4354.type=Text

$4354.entry=$4350

$4350.type=MathString

$4350.entry=$4352

$4352.type=String

$4362.type=Dummy

$4362.entry=$4336

VALUE($4326) = a

VALUE($4330) = b

VALUE($4334) = c

VALUE($4338) = d

VALUE($4342) = e

VALUE($4346) = (1)

VALUE($4352) = (2)

134 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4370

Chain

type

$4356

firstrel

$4372

linkedList

Relation

type

$4324

lhs Equal

relation

$4328

rhs$4348

above

ExpLink

type

$4374

next

$4364

entry

MathString

type

a

entry type

b

entry

Text

type

$4344

entry

String

type type

type

(1)

entry

type

type$4376

next

$4366

entry

type

$4358

lhs

GreaterEq

relation

$4332

rhs

entry

Dummy

type

type

c

entry

type

type

$4368

entry

type relation

$4360

lhs

$4336

rhs

entrytype

type

d

entry

type

typerelation

$4362

lhs

$4340

rhs $4354

above

typeentry

type

e

entry

type

$4350

entry

type

type

(2)

entry

type

C.4. SUMS AND INTEGRALS 135

C.4 Sums and Integrals

Example 13.
n∑

k=1

Aik=bi (i=1, . . . , n)

\sum_{k = 1 }^{n} {}{A}_{ik} {{=}}{}{b}_{i} \qquad (

i{{=}}1 , \ldots , n)

$3750.type=Restriction

$3750.formula=$3734

$3750.binds=$3746

$3750.restriction=$3744

$3734.type=Relation

$3734.lhs=$3732

$3734.relation=Equal

$3734.rhs=$3726

$3726.type=Script

$3726.formula=$3694

$3726.sub=$3702

$3694.type=MathString

$3694.entry=$3696

$3696.type=String

$3702.type=Var

$3702.name=$3704

$3704.type=String

$3732.type=Sum

$3732.formula=$3724

$3732.binds=$3710

$3732.from=$3688

$3732.to=$3714

$3688.type=Integer

$3710.type=VarList

$3710.linkedList=$3712

$3712.type=VarListLink

$3712.entry=$3706

$3706.type=Var

$3706.name=$3708

$3708.type=String

$3714.type=Var

$3714.name=$3716

$3716.type=String

$3724.type=Script

$3724.formula=$3690

$3724.sub=$3718

$3690.type=MathString

$3690.entry=$3692

$3692.type=String

$3718.type=List

$3718.leftBr=None

$3718.separator=None

$3718.rightBr=None

$3718.linkedList=$3720

$3720.type=ExpLink

$3720.next=$3722

$3720.entry=$3702

$3722.type=ExpLink

$3722.entry=$3706

$3744.type=Relation

$3744.lhs=$3702

$3744.relation=Equal

$3744.rhs=$3736

$3736.type=List

$3736.leftBr=None

$3736.separator=Komma

$3736.rightBr=None

$3736.linkedList=$3738

$3738.type=ExpLink

$3738.next=$3740

$3738.entry=$3698

$3698.type=MathString

$3698.entry=$3700

$3700.type=String

$3740.type=ExpLink

$3740.next=$3742

$3740.entry=Ellipsis

$3742.type=ExpLink

$3742.entry=$3714

$3746.type=VarList

$3746.linkedList=$3748

$3748.type=VarListLink

$3748.entry=$3702

VALUE($3688) = 1

VALUE($3692) = A

VALUE($3696) = b

VALUE($3700) = 1

VALUE($3704) = i

VALUE($3708) = k

VALUE($3716) = n

136 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3750

Restriction

type

$3734

formula

$3746

binds

$3744

restriction

Relation

type

$3732

lhs

Equal

relation

$3726

rhs

VarList

type

$3748

linkedList

typerelation

$3702

lhs

$3736

rhs

Sum

type

$3724

formula

$3710

binds

1

from

$3714

to

Script

type

$3694

formula

sub

MathString

type

b

entry

Var

type

i

name

String

type

type

type

$3690

formula$3718

sub type

$3712

linkedList

Integer

type

type

n

name

VarListLink

type

$3706

entry

type

k

name

typetype

type

A

entry

List

type

None

leftBr separator rightBr

$3720

linkedList

type

entry

ExpLink

type $3722

next

entrytype

type leftBr rightBrKomma

separator

$3738

linkedList

type

$3740

next

$3698

entry

type $3742

next

Ellipsis

entrytype

1

entry

type

entrytype

entry

type

C.4. SUMS AND INTEGRALS 137

Example 14. ∑
k∈K

Pr(i|k)Pr(k)

\sum_{k{ \in }K} \text{Pr}(i|k) \text{Pr}(k)

$3792.type=Sum

$3792.formula=$3784

$3792.index=$3790

$3784.type=InvisMult

$3784.linkedList=$3786

$3786.type=ExpLink

$3786.next=$3788

$3786.entry=$3782

$3782.type=Prob

$3782.condition=$3768

$3782.event=$3764

$3764.type=Var

$3764.name=$3766

$3766.type=String

$3768.type=Var

$3768.name=$3770

$3770.type=String

$3788.type=ExpLink

$3788.entry=$3780

$3780.type=Prob

$3780.event=$3768

$3790.type=Relation

$3790.lhs=$3768

$3790.relation=In

$3790.rhs=$3776

$3776.type=MathString

$3776.entry=$3778

$3778.type=String

VALUE($3766) = i

VALUE($3770) = k

VALUE($3778) = K

138 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3792

Sum

type

$3784

formula

$3790

indexInvisMult

type

$3786

linkedList

$3768

lhs

Relation

type

In

relation

$3776

rhs

ExpLink

type $3788

next

$3782

entry

type

$3780

entry

Prob

type condition

$3764

event

Var

type

k

nametype

i

name

String

type type

type event

MathString

type

K

entry

type

C.4. SUMS AND INTEGRALS 139

Example 15.

‖A‖F :=
√ ∑

i=1:m,k=1:n

Aik
2

\|A\|_{F}{ := }\sqrt{ \sum_{i{{=}}1 : m , k{{=}}1 :

n} {{}{A}_{ik }}^{2} }

$3882.type=Relation

$3882.lhs=$3878

$3882.relation=EqualByDef

$3882.rhs=$3880

$3878.type=Norm

$3878.formula=$3822

$3878.index=$3826

$3822.type=MathString

$3822.entry=$3824

$3824.type=String

$3826.type=MathString

$3826.entry=$3828

$3828.type=String

$3880.type=Sqrt

$3880.radicand=$3876

$3876.type=Sum

$3876.formula=$3846

$3876.index=$3864

$3846.type=Power

$3846.base=$3844

$3846.exponent=$3834

$3834.type=MathString

$3834.entry=$3836

$3836.type=String

$3844.type=Script

$3844.formula=$3822

$3844.sub=$3838

$3838.type=List

$3838.leftBr=None

$3838.separator=None

$3838.rightBr=None

$3838.linkedList=$3840

$3840.type=ExpLink

$3840.next=$3842

$3840.entry=$3806

$3806.type=Var

$3806.name=$3808

$3808.type=String

$3842.type=ExpLink

$3842.entry=$3810

$3810.type=Var

$3810.name=$3812

$3812.type=String

$3864.type=List

$3864.leftBr=None

$3864.separator=Komma

$3864.rightBr=None

$3864.linkedList=$3866

$3866.type=ExpLink

$3866.next=$3868

$3866.entry=$3860

$3860.type=Relation

$3860.lhs=$3806

$3860.relation=Equal

$3860.rhs=$3848

$3848.type=List

$3848.leftBr=None

$3848.separator=Colon

$3848.rightBr=None

$3848.linkedList=$3850

$3850.type=ExpLink

$3850.next=$3852

$3850.entry=$3830

$3830.type=MathString

$3830.entry=$3832

$3832.type=String

$3852.type=ExpLink

$3852.entry=$3814

$3814.type=Var

$3814.name=$3816

$3816.type=String

$3868.type=ExpLink

$3868.entry=$3862

$3862.type=Relation

$3862.lhs=$3810

$3862.relation=Equal

$3862.rhs=$3854

$3854.type=List

$3854.leftBr=None

$3854.separator=Colon

$3854.rightBr=None

$3854.linkedList=$3856

$3856.type=ExpLink

$3856.next=$3858

$3856.entry=$3830

$3858.type=ExpLink

$3858.entry=$3818

$3818.type=Var

$3818.name=$3820

$3820.type=String

VALUE($3808) = i

VALUE($3812) = k

VALUE($3816) = m

VALUE($3820) = n

VALUE($3824) = A

VALUE($3828) = F

VALUE($3832) = 1

VALUE($3836) = 2

140 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3882

Relation

type

$3878

lhs

EqualByDef

relation

$3880

rhs

Norm

type

$3822

formula

$3826

index

Sqrt

type

$3876

radicand

MathString

type

A

entrytype

F

entry

String

typetype

Sum

type

$3846

formula

$3864

index

Power

type

$3844

base

$3834

exponent

List

type

None

leftBr rightBr

Komma

separator

$3866

linkedList

formula

Script

type

$3838

sub

type

2

entry

type

type leftBrseparator rightBr

$3840

linkedList

ExpLink

type $3842

next

$3806

entry

type

$3810

entry

Var

type

i

name

type

type

k

name

type

type

$3868

next

$3860

entry

type

$3862

entry

type

lhs

Equal

relation

$3848

rhs

type leftBrrightBr

Colon

separator

$3850

linkedList

type $3852

next

$3830

entry

type

$3814

entrytype

1

entry

type

type

m

name

type

type

lhs

relation

$3854

rhs

type leftBrrightBr separator

$3856

linkedList

type

entry

$3858

next

type

$3818

entry

type

n

name

type

C.4. SUMS AND INTEGRALS 141

Example 16. ∫
B

∫
A
f (x1, x2) dx1 dx2=

∫
A×B

f (x) dx

\int_{B} \int_{A} f \left ({}{x}_{ 1 } , {}{x}_{ 2 }\

right) ~ \mathrm{d}{}{x}_{ 1 } ~ \mathrm{d}{}{x}_

{ 2 }{{=}}\ int_{A \times B} f \left(x\right) ~ \

mathrm{d}x

$4098.type=Relation

$4098.lhs=$4088

$4098.relation=Equal

$4098.rhs=$4096

$4088.type=Integral

$4088.formula=$4086

$4088.binds=$4056

$4088.variable=$4046

$4088.index=$4068

$4046.type=Script

$4046.formula=$4036

$4046.sub=$4042

$4036.type=Var

$4036.name=$4038

$4038.type=String

$4042.type=Integer

$4056.type=VarList

$4056.linkedList=$4058

$4058.type=VarListLink

$4058.entry=$4046

$4068.type=MathString

$4068.entry=$4070

$4070.type=String

$4086.type=Integral

$4086.formula=$4082

$4086.binds=$4052

$4086.variable=$4044

$4086.index=$4064

$4044.type=Script

$4044.formula=$4036

$4044.sub=$4040

$4040.type=Integer

$4052.type=VarList

$4052.linkedList=$4054

$4054.type=VarListLink

$4054.entry=$4044

$4064.type=MathString

$4064.entry=$4066

$4066.type=String

$4082.type=Of

$4082.operator=$4060

$4082.arguments=$4072

$4060.type=MathString

$4060.entry=$4062

$4062.type=String

$4072.type=Vector

$4072.linkedList=$4074

$4074.type=ExpLink

$4074.next=$4076

$4074.entry=$4044

$4076.type=ExpLink

$4076.entry=$4046

$4096.type=Integral

$4096.formula=$4084

$4096.binds=$4048

$4096.variable=$4036

$4096.index=$4090

$4048.type=VarList

$4048.linkedList=$4050

$4050.type=VarListLink

$4050.entry=$4036

$4084.type=Of

$4084.operator=$4060

$4084.arguments=$4078

$4078.type=Vector

$4078.linkedList=$4080

$4080.type=ExpLink

$4080.entry=$4036

$4090.type=SetProduct

$4090.linkedList=$4092

$4092.type=ExpLink

$4092.next=$4094

$4092.entry=$4064

$4094.type=ExpLink

$4094.entry=$4068

VALUE($4038) = x

VALUE($4040) = 1

VALUE($4042) = 2

VALUE($4062) = f

VALUE($4066) = A

VALUE($4070) = B

142 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4098

Relation

type

$4088

lhs

Equal

relation

$4096

rhs

Integral

type

$4086

formula

$4056

binds

$4046

variable

$4068

index

type

$4036

variable

$4084

formula

$4048

binds

$4090

index

type $4082

formula

$4052

binds

$4044

variable

$4064

index

VarList

type

$4058

linkedList

Script

typeformula

2

sub

MathString

type

B

entry

Var

type

x

name

Integer

type

String

type

entryVarListLink

type

type

Of

type

$4060

operator$4072

arguments

type

$4054

linkedList

typeformula

1

sub

type

A

entry

type

type entry

type

type f

entry

Vector

type $4074

linkedList

type

entry

ExpLink

type $4076

next

entrytype

type operator

$4078

arguments type

$4050

linkedList

SetProduct

type

$4092

linkedList

entry

typetype

$4080

linkedList

entry

type

entry

type $4094

next

entrytype

C.4. SUMS AND INTEGRALS 143

Example 17. ∫ x

0
t dt=

t2

2

∣∣∣∣x
0

=
x2

2

\int_{ 0 }^{x} t ~ \mathrm{d}t{{=}}\ left.\frac{{t}^{

2 }}{ 2 }\right|_{ 0 }^{x}{{=}}\ frac{{x}^{ 2 }}{

2 }

$4178.type=Chain

$4178.firstrel=$4172

$4178.linkedList=$4180

$4172.type=Relation

$4172.lhs=$4160

$4172.relation=Equal

$4172.rhs=$4166

$4160.type=Integral

$4160.formula=$4148

$4160.binds=$4156

$4160.variable=$4148

$4160.from=$4152

$4160.to=$4144

$4144.type=Var

$4144.name=$4146

$4146.type=String

$4148.type=Var

$4148.name=$4150

$4150.type=String

$4152.type=Integer

$4156.type=VarList

$4156.linkedList=$4158

$4158.type=VarListLink

$4158.entry=$4148

$4166.type=Eval

$4166.formula=$4164

$4166.binds=$4156

$4166.from=$4152

$4166.to=$4144

$4164.type=Div

$4164.nom=$4162

$4164.den=$4154

$4154.type=Integer

$4162.type=Power

$4162.base=$4148

$4162.exponent=$4154

$4180.type=ExpLink

$4180.entry=$4176

$4176.type=Relation

$4176.lhs=$4174

$4176.relation=Equal

$4176.rhs=$4170

$4170.type=Div

$4170.nom=$4168

$4170.den=$4154

$4168.type=Power

$4168.base=$4144

$4168.exponent=$4154

$4174.type=Dummy

$4174.entry=$4172

VALUE($4146) = x

VALUE($4150) = t

VALUE($4152) = 0

VALUE($4154) = 2

144 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4178

Chain

type

$4172

firstrel

$4180

linkedList

Relation

type

$4160

lhs

Equal

relation

$4166

rhs

ExpLink

type

$4176

entry

Integral

type

$4148

variable formula

$4156

binds

0

from

$4144

to

binds from

to

Eval

type

$4164

formula

Var

type

t

name

VarList

type

$4158

linkedList

Integer

type

type

x

name

String

typetype

entry

VarListLink

type

Div

type

$4162

nom

2

den

base exponent

Power

type

type

typerelation

$4174

lhs

$4170

rhs

entry

Dummy

type

type

den$4168

nom

base exponenttype

C.5. SUBSCRIPTS AND SUPERSCRIPTS 145

C.5 Subscripts and superscripts

Example 18.
KBij

2=2Φi,j

{{}{K}_{{}{B}_{ij}}}^{ 2 }{{=}}{}^{ 2 }{\ Phi }^{i,j}

$4022.type=Relation

$4022.lhs=$4020

$4022.relation=Equal

$4022.rhs=$4014

$4014.type=Script

$4014.formula=$3990

$4014.sup=$4006

$4014.lsup=$3994

$3990.type=MathString

$3990.entry=$3992

$3992.type=String

$3994.type=Integer

$4006.type=List

$4006.leftBr=None

$4006.separator=None

$4006.linkedList=$4008

$4008.type=ExpLink

$4008.next=$4010

$4008.entry=$3974

$3974.type=Var

$3974.name=$3976

$3976.type=String

$4010.type=ExpLink

$4010.next=$4012

$4010.entry=$3996

$3996.type=MathString

$3996.entry=$3998

$3998.type=String

$4012.type=ExpLink

$4012.entry=$3978

$3978.type=Var

$3978.name=$3980

$3980.type=String

$4020.type=Power

$4020.base=$4018

$4020.exponent=$3994

$4018.type=Script

$4018.formula=$3982

$4018.sub=$4016

$3982.type=MathString

$3982.entry=$3984

$3984.type=String

$4016.type=Script

$4016.formula=$3986

$4016.sub=$4000

$3986.type=MathString

$3986.entry=$3988

$3988.type=String

$4000.type=List

$4000.leftBr=None

$4000.separator=None

$4000.linkedList=$4002

$4002.type=ExpLink

$4002.next=$4004

$4002.entry=$3974

$4004.type=ExpLink

$4004.entry=$3978

VALUE($3976) = i

VALUE($3980) = j

VALUE($3984) = K

VALUE($3988) = B

VALUE($3992) = \Phi

VALUE($3994) = 2

VALUE($3998) = ,

146 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4022

Relation

type

$4020

lhs

Equal

relation

$4014

rhs

2

exponentPower

type

$4018

base

Script

type

$3990

formula

$4006

suplsup

MathString

type

\Phi

entry

List

type

None

leftBr separator $4008

linkedList

Integer

type

String

type

ExpLink

type

$4010

next

$3974

entry

type$4012

next

$3996

entry

Var

type

i

name

type

type

$3978

entrytype

,

entry

type

type

j

name

type

type

$3982

formula

$4016

sub

type

K

entry

type

$3986

formula

$4000

sub

type

type

B

entry

typeleftBr separator

$4002

linkedList

type

type

entry

$4004

next

typeentry

C.5. SUBSCRIPTS AND SUPERSCRIPTS 147

Example 19.
Ai

;k=Ai
,k +Ai

,kΓ
i
ka

{}{A}_{ ~ ; k}^{i}{{=}} {}{A}_{ ~ , k}^{i} + {}{A}_{

~ , k}^{i} {}{\ Gamma}_{ka}^{i}

$4264.type=Relation

$4264.lhs=$4244

$4264.relation=Equal

$4264.rhs=$4258

$4244.type=Script

$4244.formula=$4194

$4244.sub=$4214

$4244.sup=$4202

$4194.type=MathString

$4194.entry=$4196

$4196.type=String

$4202.type=Var

$4202.name=$4204

$4204.type=String

$4214.type=List

$4214.leftBr=None

$4214.separator=None

$4214.rightBr=None

$4214.linkedList=$4216

$4216.type=ExpLink

$4216.next=$4218

$4216.entry=Blank

$4218.type=ExpLink

$4218.next=$4220

$4218.entry=Semicolon

$4220.type=ExpLink

$4220.entry=$4206

$4206.type=Var

$4206.name=$4208

$4208.type=String

$4258.type=SignedSum

$4258.linkedList=$4260

$4260.type=SignedSumLink

$4260.next=$4262

$4260.sign=InvisPlusSign

$4260.entry=$4246

$4246.type=Script

$4246.formula=$4194

$4246.sub=$4222

$4246.sup=$4202

$4222.type=List

$4222.leftBr=None

$4222.separator=None

$4222.rightBr=None

$4222.linkedList=$4224

$4224.type=ExpLink

$4224.next=$4226

$4224.entry=Blank

$4226.type=ExpLink

$4226.next=$4228

$4226.entry=Komma

$4228.type=ExpLink

$4228.entry=$4206

$4262.type=SignedSumLink

$4262.sign=PlusSign

$4262.entry=$4252

$4252.type=InvisMult

$4252.linkedList=$4254

$4254.type=ExpLink

$4254.next=$4256

$4254.entry=$4246

$4256.type=ExpLink

$4256.entry=$4248

$4248.type=Script

$4248.formula=$4198

$4248.sub=$4238

$4248.sup=$4202

$4198.type=MathString

$4198.entry=$4200

$4200.type=String

$4238.type=List

$4238.leftBr=None

$4238.separator=None

$4238.rightBr=None

$4238.linkedList=$4240

$4240.type=ExpLink

$4240.next=$4242

$4240.entry=$4206

$4242.type=ExpLink

$4242.entry=$4210

$4210.type=Var

$4210.name=$4212

$4212.type=String

VALUE($4196) = A

VALUE($4200) = \Gamma

VALUE($4204) = i

VALUE($4208) = k

VALUE($4212) = a

148 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4264

Relation

type

$4244

lhs

Equal

relation

$4258

rhs

Script

type

$4194

formula

$4214

sub

$4202

sup

SignedSum

type

$4260

linkedList

MathString

type

A

entryList

type

None

leftBr separator rightBr

$4216

linkedList

Var

type

i

name

String

type

type

ExpLink

type

$4218

next

Blank

entry

type $4220

next

Semicolon

entry

type

$4206

entry

type

k

name

type

SignedSumLink

type$4262

next

InvisPlusSign

sign

$4246

entry

type

PlusSign

sign

$4252

entry

type formula sup

$4222

sub

typeleftBr separator rightBr

$4224

linkedList

type

entry

$4226

next

type $4228

next

Komma

entry

type entry

InvisMult

type

$4254

linkedList

type

entry$4256

next

type

$4248

entry

type sup

$4198

formula

$4238

sub

type

\Gamma

entrytypeleftBr separator rightBr

$4240

linkedList

type

type entry$4242

next

type

$4210

entry

type

a

name

type

C.6. INTERVALS 149

C.6 Intervals

Example 20. The interval on the LHS is a list with layout options for the
parentheses.

[0, 1]= {x∈R | 0≤x≤1}

[0 , 1]{{=}} \left\{x{ \in }\Rz \mid 0{ \leq }x{ \

leq }1\ right\}

$3674.type=Relation

$3674.lhs=$3668

$3674.relation=Equal

$3674.rhs=$3666

$3666.type=Set

$3666.scopedvar=$3654

$3666.binds=$3650

$3666.condition=$3662

$3650.type=VarList

$3650.linkedList=$3652

$3652.type=VarListLink

$3652.entry=$3646

$3646.type=Var

$3646.name=$3648

$3648.type=String

$3654.type=Relation

$3654.lhs=$3646

$3654.relation=In

$3654.rhs=$3642

$3642.type=MathString

$3642.entry=$3644

$3644.type=String

$3662.type=Chain

$3662.firstrel=$3656

$3662.linkedList=$3664

$3656.type=Relation

$3656.lhs=$3634

$3656.relation=LessEq

$3656.rhs=$3646

$3634.type=MathString

$3634.entry=$3636

$3636.type=String

$3664.type=ExpLink

$3664.entry=$3660

$3660.type=Relation

$3660.lhs=$3658

$3660.relation=LessEq

$3660.rhs=$3638

$3638.type=MathString

$3638.entry=$3640

$3640.type=String

$3658.type=Dummy

$3658.entry=$3646

$3668.type=List

$3668.leftBr=BrLeftSquare

$3668.separator=Komma

$3668.rightBr=BrRightSquare

$3668.linkedList=$3670

$3670.type=ExpLink

$3670.next=$3672

$3670.entry=$3634

$3672.type=ExpLink

$3672.entry=$3638

VALUE($3636) = 0

VALUE($3640) = 1

VALUE($3644) = \Rz

VALUE($3648) = x

150 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3674

Relation

type

$3668

lhs

Equal

relation

$3666

rhs

List

type

BrLeftSquare

leftBr

Komma

separator

BrRightSquare

rightBr

$3670

linkedList

Set

type

$3654

scopedvar

$3650

binds

$3662

condition

type

$3646

lhs In

relation

$3642

rhs

VarList

type

$3652

linkedList

Chain

type

$3656

firstrel $3664

linkedList

VarListLink

type

entry

Var

type

x

name

String

type

MathString

type

\Rz

entry

type

type

rhs $3634

lhs

LessEq

relation

ExpLink

type

$3660

entry

type

0

entry

type

type relation

$3658

lhs

$3638

rhs

entry

Dummy

type type

1

entry

type

entry

type $3672

next

type

entry

C.6. INTERVALS 151

Example 21.
(0, 2]=(0, 1) ∪ [1, 2]

(0 , 2]{{=}}(0 , 1) \cup [1 , 2]

$4130.type=Relation

$4130.lhs=$4118

$4130.relation=Equal

$4130.rhs=$4124

$4118.type=OtherInterval

$4118.loweropen=$4112

$4118.upperclosed=$4116

$4112.type=Integer

$4116.type=Integer

$4124.type=SetUnion

$4124.linkedList=$4126

$4126.type=ExpLink

$4126.next=$4128

$4126.entry=$4120

$4120.type=OtherInterval

$4120.loweropen=$4112

$4120.upperopen=$4114

$4114.type=Integer

$4128.type=ExpLink

$4128.entry=$4122

$4122.type=Interval

$4122.lower=$4114

$4122.upper=$4116

VALUE($4112) = 0

VALUE($4114) = 1

VALUE($4116) = 2

152 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4130

Relation

type

$4118

lhs

Equal

relation

$4124

rhs

OtherInterval

type

0

loweropen

2

upperclosed

SetUnion

type

$4126

linkedList

Integer

type type

ExpLink

type$4128

next

$4120

entry

type

$4122

entry

typeloweropen

1

upperopen

type

upper lower

Interval

type

C.7. QUANTIFICATION AND LAMBDA CALCULUS 153

C.7 Quantification and lambda calculus

Example 22.
λx.x+ 1

\lambda x . x + 1

$2856.type=Lambda

$2856.formula=$2850

$2856.binds=$2846

$2856.variable=$2832

$2832.type=Var

$2832.name=$2834

$2834.type=String

$2846.type=VarList

$2846.linkedList=$2848

$2848.type=VarListLink

$2848.entry=$2832

$2850.type=SignedSum

$2850.linkedList=$2852

$2852.type=SignedSumLink

$2852.next=$2854

$2852.sign=InvisPlusSign

$2852.entry=$2832

$2854.type=SignedSumLink

$2854.sign=PlusSign

$2854.entry=$2844

$2844.type=Integer

VALUE($2834) = x

VALUE($2844) = 1

154 APPENDIX C. EXAMPLES OF EXPRESSIONS

$2856

Lambda

type

$2850

formula

$2846

binds

$2832

variable

SignedSum

type

$2852

linkedList

VarList

type

$2848

linkedList

Var

type

x

name

String

type

entry

VarListLink

typeentry

SignedSumLink

type $2854

next

InvisPlusSign

sign

type

PlusSign

sign

1

entry

Integer

type

C.7. QUANTIFICATION AND LAMBDA CALCULUS 155

Example 23.
∀x, z∈X : f (x, y, z)=g (y, x)

\forall x , z{ \in }X : f \left(x , y , z\right)

{{=}}g \left(y , x\right)

$3088.type=ForAll

$3088.formula=$3076

$3088.scopedvar=$3086

$3088.binds=$3078

$3076.type=Relation

$3076.lhs=$3072

$3076.relation=Equal

$3076.rhs=$3074

$3072.type=Of

$3072.operator=$3046

$3072.arguments=$3058

$3046.type=MathString

$3046.entry=$3048

$3048.type=String

$3058.type=Vector

$3058.linkedList=$3060

$3060.type=ExpLink

$3060.next=$3062

$3060.entry=$3034

$3034.type=Var

$3034.name=$3036

$3036.type=String

$3062.type=ExpLink

$3062.next=$3064

$3062.entry=$3038

$3038.type=Var

$3038.name=$3040

$3040.type=String

$3064.type=ExpLink

$3064.entry=$3042

$3042.type=Var

$3042.name=$3044

$3044.type=String

$3074.type=Of

$3074.operator=$3050

$3074.arguments=$3066

$3050.type=MathString

$3050.entry=$3052

$3052.type=String

$3066.type=Vector

$3066.linkedList=$3068

$3068.type=ExpLink

$3068.next=$3070

$3068.entry=$3038

$3070.type=ExpLink

$3070.entry=$3034

$3078.type=VarList

$3078.linkedList=$3080

$3080.type=VarListLink

$3080.next=$3082

$3080.entry=$3034

$3082.type=VarListLink

$3082.entry=$3042

$3086.type=Relation

$3086.lhs=$3078

$3086.relation=In

$3086.rhs=$3054

$3054.type=MathString

$3054.entry=$3056

$3056.type=String

VALUE($3036) = x

VALUE($3040) = y

VALUE($3044) = z

VALUE($3048) = f

VALUE($3052) = g

VALUE($3056) = X

156 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3088

ForAll

type

$3076

formula

$3086

scopedvar

$3078

binds

Relation

type

$3072

lhs

Equal

relation

$3074

rhs lhstype

In

relation

$3054

rhs

VarList

type

$3080

linkedList

Of

type

$3046

operator

$3058

argumentstype

$3050

operator

$3066

arguments

MathString

type

f

entry

Vector

type

$3060

linkedList

String

type

ExpLink

type

$3062

next

$3034

entry

type $3064

next

$3038

entry

Var

type

x

name

type

type

$3042

entry

type

y

name

type

type

z

name

type

type

g

entry

type

$3068

linkedList

type

type

entry

$3070

next

type entry

entry

VarListLink

type$3082

next

entry type

type

X

entry

type

C.7. QUANTIFICATION AND LAMBDA CALCULUS 157

Example 24.
xl (l=1 : n)

{x}^{l} \qquad (l{{=}} 1 : n)

$3932.type=Restriction

$3932.formula=$3924

$3932.binds=$3908

$3932.restriction=$3930

$3908.type=VarList

$3908.linkedList=$3910

$3910.type=VarListLink

$3910.entry=$3904

$3904.type=Var

$3904.name=$3906

$3906.type=String

$3924.type=Alternative

$3924.linkedList=$3926

$3926.type=AlternativeLink

$3926.next=$3928

$3926.entry=$3920

$3920.type=Power

$3920.base=$3896

$3920.exponent=$3904

$3896.type=Var

$3896.name=$3898

$3898.type=String

$3928.type=AlternativeLink

$3928.entry=$3922

$3922.type=Script

$3922.formula=$3896

$3922.sup=$3904

$3930.type=Relation

$3930.lhs=$3904

$3930.relation=Equal

$3930.rhs=$3914

$3914.type=List

$3914.leftBr=None

$3914.separator=Colon

$3914.rightBr=None

$3914.linkedList=$3916

$3916.type=ExpLink

$3916.next=$3918

$3916.entry=$3912

$3912.type=Integer

$3918.type=ExpLink

$3918.entry=$3900

$3900.type=Var

$3900.name=$3902

$3902.type=String

VALUE($3898) = x

VALUE($3902) = n

VALUE($3906) = l

VALUE($3912) = 1

158 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3932

Restriction

type

$3924

formula

$3908

binds

$3930

restriction

Alternative

type

$3926

linkedList

VarList

type

$3910

linkedList

$3904

lhs

Relation

type

Equal

relation

$3914

rhs

VarListLink

type

entry

Var

type

l

name

String

type

AlternativeLink

type $3928

next

$3920

entry

type

$3922

entry

exponent

Power

type

$3896

base

type

x

name

type

supformula

Script

type

List

type

None

leftBrrightBr

Colon

separator

$3916

linkedList

ExpLink

type $3918

next

1

entry

type

$3900

entry

Integer

type

type

n

name

type

C.7. QUANTIFICATION AND LAMBDA CALCULUS 159

Example 25.
X (k)=λx.P (x, k)

X \left(k\right) {{=}} \lambda x . P \left(x , k\

right)

$4482.type=Relation

$4482.lhs=$4478

$4482.relation=Equal

$4482.rhs=$4480

$4478.type=Of

$4478.operator=$4448

$4478.arguments=$4474

$4448.type=MathString

$4448.entry=$4450

$4450.type=String

$4474.type=Vector

$4474.linkedList=$4476

$4476.type=ExpLink

$4476.entry=$4452

$4452.type=Var

$4452.name=$4454

$4454.type=String

$4480.type=Lambda

$4480.formula=$4472

$4480.binds=$4462

$4480.variable=$4444

$4444.type=Var

$4444.name=$4446

$4446.type=String

$4462.type=VarList

$4462.linkedList=$4464

$4464.type=VarListLink

$4464.entry=$4444

$4472.type=Of

$4472.operator=$4456

$4472.arguments=$4466

$4456.type=MathString

$4456.entry=$4458

$4458.type=String

$4466.type=Vector

$4466.linkedList=$4468

$4468.type=ExpLink

$4468.next=$4470

$4468.entry=$4444

$4470.type=ExpLink

$4470.entry=$4452

VALUE($4446) = x

VALUE($4450) = X

VALUE($4454) = k

VALUE($4458) = P

160 APPENDIX C. EXAMPLES OF EXPRESSIONS

$4482

Relation

type

$4478

lhsEqual

relation

$4480

rhs

Of

type

$4448

operator

$4474

arguments

Lambda

type

$4472

formula

$4462

binds

$4444

variable

MathString

type

X

entry

Vector

type

$4476

linkedList

String

typeExpLink

type

$4452

entry

Var

type

k

name

type

type

$4456

operator

$4466

arguments

VarList

type

$4464

linkedList

type

x

name

type

entry VarListLink

type type

P

entry

type

$4468

linkedList

type

type

entry

$4470

next

typeentry

C.8. AMBIGUOUS EXPRESSIONS 161

C.8 Ambiguous expressions

Example 26. f ′ is ambiguous: It could be the application of the operation
′ to the mapping f or the name of fuzzy numbers f, f ′, f ′′.

f ′

f^\ prime

$3190.type=Alternative

$3190.linkedList=$3192

$3192.type=AlternativeLink

$3192.next=$3194

$3192.entry=$3184

$3184.type=MathString

$3184.entry=$3186

$3186.type=String

$3194.type=AlternativeLink

$3194.entry=$3188

$3188.type=Prime

$3188.entry=$3180

$3180.type=Var

$3180.name=$3182

$3182.type=String

VALUE($3182) = f

VALUE($3186) = f^\prime

162 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3190

Alternative

type

$3192

linkedList

AlternativeLink

type $3194

next

$3184

entry

type

$3188

entry

MathString

type

f^\prime

entry

String

type

Prime

type

$3180

entry

Var

type

f

name

type

C.9. CASE DISTINCTION 163

C.9 Case distinction

Example 27.
0 if x<0

x2 if x>1

x otherwise

\begin{cases} 0 & \text{if }x{ < }0 \\{x}^{2} & \

text{if }x{ > }1 \\x & \text{otherwise }\end{cases

}

$3294.type=Cases

$3294.otherwise=$3272

$3294.linkedList=$3296

$3272.type=Var

$3272.name=$3274

$3274.type=String

$3296.type=CasesLink

$3296.next=$3298

$3296.formula=$3276

$3296.condition=$3288

$3276.type=MathString

$3276.entry=$3278

$3278.type=String

$3288.type=Relation

$3288.lhs=$3272

$3288.relation=Less

$3288.rhs=$3276

$3298.type=CasesLink

$3298.formula=$3292

$3298.condition=$3290

$3290.type=Relation

$3290.lhs=$3272

$3290.relation=Greater

$3290.rhs=$3280

$3280.type=MathString

$3280.entry=$3282

$3282.type=String

$3292.type=Power

$3292.base=$3272

$3292.exponent=$3284

$3284.type=MathString

$3284.entry=$3286

$3286.type=String

VALUE($3274) = x

VALUE($3278) = 0

VALUE($3282) = 1

VALUE($3286) = 2

164 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3294

Cases

type

$3272

otherwise

$3296

linkedList

Var

type

x

name

CasesLink

type$3298

next

$3276

formula

$3288

condition

String

type

type

$3292

formula

$3290

condition

MathString

type

0

entry

lhs rhs

Relation

type

Less

relation

type

base

Power

type

$3284

exponent lhs type

Greater

relation

$3280

rhs

type

1

entry

type

type

2

entry

type

C.10. PARTIAL DERIVATIVES 165

C.10 Partial derivatives

Example 28.
∂2

∂x∂y
2x2y

\frac{\ partial ^{2}}{ \partial x \partial y}2 {x}^{2}

y

$3410.type=Of

$3410.operator=$3404

$3410.arguments=$3396

$3396.type=InvisMult

$3396.linkedList=$3398

$3398.type=ExpLink

$3398.next=$3400

$3398.entry=$3390

$3390.type=MathString

$3390.entry=$3392

$3392.type=String

$3400.type=ExpLink

$3400.next=$3402

$3400.entry=$3394

$3394.type=Power

$3394.base=$3382

$3394.exponent=$3390

$3382.type=Var

$3382.name=$3384

$3384.type=String

$3402.type=ExpLink

$3402.entry=$3386

$3386.type=Var

$3386.name=$3388

$3388.type=String

$3404.type=Partial

$3404.linkedList=$3406

$3406.type=ExpLink

$3406.next=$3408

$3406.entry=$3382

$3408.type=ExpLink

$3408.entry=$3386

VALUE($3384) = x

VALUE($3388) = y

VALUE($3392) = 2

166 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3410

Of

type

$3404

operator $3396

arguments

Partial

type

$3406

linkedList

InvisMult

type

$3398

linkedList

ExpLink

type

$3400

next

$3390

entry

type $3402

next

$3394

entry

MathString

type

2

entry

String

type

type

$3386

entry exponent

Power

type

$3382

base

Var

type

x

name

type

type

y

name

type

type entry$3408

next

type entry

C.11. MINIMUM AND MAXIMUM 167

C.11 Minimum and maximum

Example 29.

max {x+ y, y + z, x+ z}=x+ y + z −min {x, y, z}

\max{ \left\{ x + y , y + z , x + z \right\} }{{=}}

x + y + z - \min{ \left\{ x , y , z \right \} }

$3572.type=Relation

$3572.lhs=$3562

$3572.relation=Equal

$3572.rhs=$3566

$3562.type=Max

$3562.formula=$3546

$3546.type=SetBucket

$3546.linkedList=$3548

$3548.type=ExpLink

$3548.next=$3550

$3548.entry=$3520

$3520.type=SignedSum

$3520.linkedList=$3522

$3522.type=SignedSumLink

$3522.next=$3524

$3522.sign=InvisPlusSign

$3522.entry=$3508

$3508.type=Var

$3508.name=$3510

$3510.type=String

$3524.type=SignedSumLink

$3524.sign=PlusSign

$3524.entry=$3512

$3512.type=Var

$3512.name=$3514

$3514.type=String

$3550.type=ExpLink

$3550.next=$3552

$3550.entry=$3526

$3526.type=SignedSum

$3526.linkedList=$3528

$3528.type=SignedSumLink

$3528.next=$3530

$3528.sign=InvisPlusSign

$3528.entry=$3512

$3530.type=SignedSumLink

$3530.sign=PlusSign

$3530.entry=$3516

$3516.type=Var

$3516.name=$3518

$3518.type=String

$3552.type=ExpLink

$3552.entry=$3532

$3532.type=SignedSum

$3532.linkedList=$3534

$3534.type=SignedSumLink

$3534.next=$3536

$3534.sign=InvisPlusSign

$3534.entry=$3508

$3536.type=SignedSumLink

$3536.sign=PlusSign

$3536.entry=$3516

$3566.type=SignedSum

$3566.linkedList=$3568

$3568.type=SignedSumLink

$3568.next=$3570

$3568.sign=InvisPlusSign

$3568.entry=$3538

$3538.type=SignedSum

$3538.linkedList=$3540

$3540.type=SignedSumLink

$3540.next=$3542

$3540.sign=InvisPlusSign

$3540.entry=$3508

$3542.type=SignedSumLink

$3542.next=$3544

$3542.sign=PlusSign

$3542.entry=$3512

$3544.type=SignedSumLink

$3544.sign=PlusSign

$3544.entry=$3516

$3570.type=SignedSumLink

$3570.sign=MinusSign

$3570.entry=$3564

$3564.type=Min

$3564.formula=$3554

$3554.type=SetBucket

$3554.linkedList=$3556

$3556.type=ExpLink

$3556.next=$3558

$3556.entry=$3508

$3558.type=ExpLink

$3558.next=$3560

$3558.entry=$3512

$3560.type=ExpLink

$3560.entry=$3516

VALUE($3510) = x

VALUE($3514) = y

VALUE($3518) = z

168 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3572

Relation

type

$3562

lhs

Equal

relation

$3566

rhs

Max

type

$3546

formula

SignedSum

type

$3568

linkedList

SetBucket

type

$3548

linkedList

ExpLink

type

$3550

next

$3520

entry

type

$3552

next

$3526

entry

type

$3522

linkedList

SignedSumLink

type $3524

next

InvisPlusSign

sign

$3508

entry

type

PlusSign

sign

$3512

entry

Var

type

x

name

String

type

type

y

name

type

type

$3532

entry

type

$3528

linkedList

type

sign

entry$3530

next

type sign

$3516

entry

type

z

name

type

type

$3534

linkedList

type

sign entry

$3536

next

type sign entry

type

sign

$3570

next

$3538

entry

type

MinusSign

sign

$3564

entry

type $3540

linkedList

type

sign entry$3542

next

type sign entry$3544

next

type sign entry

Min

type

$3554

formula

type

$3556

linkedList

type

entry $3558

next

typeentry $3560

next

typeentry

C.11. MINIMUM AND MAXIMUM 169

Example 30.
max

k=1,...,n
x(k)

\max_{k{{=}}1 , \ldots , n}{{}{x}^{\ left(k\right)}}

$3620.type=Max

$3620.formula=$3608

$3620.binds=$3594

$3620.index=$3618

$3594.type=VarList

$3594.linkedList=$3596

$3596.type=VarListLink

$3596.entry=$3590

$3590.type=Var

$3590.name=$3592

$3592.type=String

$3608.type=Script

$3608.formula=$3586

$3608.sup=$3606

$3586.type=Var

$3586.name=$3588

$3588.type=String

$3606.type=Bracket

$3606.entry=$3590

$3618.type=Relation

$3618.lhs=$3590

$3618.relation=Equal

$3618.rhs=$3610

$3610.type=List

$3610.leftBr=None

$3610.separator=Komma

$3610.rightBr=None

$3610.linkedList=$3612

$3612.type=ExpLink

$3612.next=$3614

$3612.entry=$3602

$3602.type=MathString

$3602.entry=$3604

$3604.type=String

$3614.type=ExpLink

$3614.next=$3616

$3614.entry=Ellipsis

$3616.type=ExpLink

$3616.entry=$3598

$3598.type=MathString

$3598.entry=$3600

$3600.type=String

VALUE($3588) = x

VALUE($3592) = k

VALUE($3600) = n

VALUE($3604) = 1

170 APPENDIX C. EXAMPLES OF EXPRESSIONS

$3620

Max

type

$3608

formula

$3594

binds

$3618

index

Script

type

$3586

formula $3606

sup

VarList

type

$3596

linkedList

$3590

lhs Relation

type

Equal

relation

$3610

rhs

VarListLink

type entry

Var

type

k

name

String

type

type

x

name

entry

Bracket

type

type

List

type

None

leftBrrightBr

Komma

separator

$3612

linkedList

ExpLink

type

$3614

next

$3602

entry

type $3616

next

Ellipsis

entry

MathString

type

1

entry

type

type

$3598

entry

type

n

entry

type

Appendix D

Examples of problems from
the OR-Library

As with representation of informal mathematical text (Section 5.2), the au-
tomatically created output contains grammatical errors, which we plan to
overcome by interfacing the Grammatical Framework [37].

D.1 Multi-dimensional knapsack.

Let N that is integer be cardinality of contract and let M that is integer be
cardinality of budget. Let cj for j∈{1, . . . , N} be contract volume of project
j. Let Ai,j for i∈{1, . . . ,M} and j∈{1, . . . , N} be estimated cost of project
j and budget i. Let Bi for i∈{1, . . . ,M} be available amount of budget i.
Let xj=1 if project j is selected, and xj=0 otherwise for j∈{1, . . . , N}.
Problem: Given N that is integer , M that is integer , N -dimensional
vector c, M×N -matrix A and M -dimensional vector B, find N -dimensional
vector x that is binary such that

N∑
j=1

cjxj

is maximal under the constraint
∑N

j=1Ai,jxj≤Bi for i∈{1, . . . ,M}.
The OR-Lib contains the files :
mknap1.txt,
mknapcb<i>.txt~~(i=1:9)

to be read with:

171

172APPENDIX D. EXAMPLES OF PROBLEMS FROMTHEOR-LIBRARY

read nr of instances

newline

for 1:nr of instances

read M
read N
skip S
newline

for i = 1:M
read Bi

end

newline

for j = 1:N
for i = 1:M

read Ai,j

end

newline

end

for j = 1:N
read cj

end

newline

end
.

Output generated for AMPL:

param N integer ;

param M integer ;

param c{j in 1..N} ;

4 param A{i in 1..M , j in 1..N} ;

param B{i in 1..M} ;

var x{j in 1..N} binary ;

maximize

target : sum{j in 1..N}(c[j] * x[j]);

9 subject to

constraint1{i in 1..M} : sum{j in 1..N}(A[i , j] *

x[j]) <= B[i];

D.2 Multi-demand multi-dimensional knapsack.

Problem: Given m that is integer , n that is integer , q that is integer ,
m+ q×n-matrix a that is nonnegative , m+ q-dimensional vector b that is
nonnegative and n-dimensional vector c, find n-dimensional vector x that is

D.2. MULTI-DEMAND MULTI-DIMENSIONAL KNAPSACK. 173

binary such that

n∑
j=1

cjxj

is maximal under the constraint∑n
j=1 aijxj≤bi for i∈{1, . . . ,m}

and∑n
j=1 aijxj≥bi for i∈{m+ 1, . . . ,m+ q}. The OR-Lib contains the files :

mdmkp_test.txt

to be read with:

174APPENDIX D. EXAMPLES OF PROBLEMS FROMTHEOR-LIBRARY

read nr of instances

newline

for 1:nr of instances

read n
read m
newline

for i = 1:m
for j = 1:n

read aij
end

newline

end

for i = 1:m
read bi

end

newline

for i = m+ 1:m+m
for j = 1:n

read aij
end

newline

end

for i = m+ 1:m+m
read bi

end

newline

for j = 1:n
read c1j

end

newline

for j = 1:n
read c2j

end

newline

for j = 1:n
read c3j

end

newline

for j = 1:n
read c4j

end

newline

for j = 1:n
read c5j

end

newline

for j = 1:n
read c6j

end

newline

end

. Choose q=1 and c=c1 or q=m
2 and c=c2 or q=m and c=c3 or q=1 and

D.3. PORTFOLIO OPTIMIZATION. 175

c=c4 or q=m
2 and c=c5 or q=m and c=c6.

Output generated for AMPL:

param m integer ;

2 param n integer ;

param q integer ;

param a{i in 1..m+q , j in 1..n} >= 0 ;

param b{i in 1..m+q} >= 0 ;

param c{j in 1..n} ;

7 var x{j in 1..n} binary ;

maximize

target : sum{j in 1..n}(c[j] * x[j]);

subject to

constraint0{i in 1..m} : sum{j in 1..n}(a[i , j] *

x[j]) <= b[i];

12 subject to

constraint1{i in m+1..m+q} : sum{j in 1..n}(a[i , j

] * x[j]) >= b[i];

D.3 Portfolio optimization.

Let N that is integer be cardinality of available asset. For i={1, . . . , N} let
ri be expected return of asset i. For i={1, . . . , N} and j∈{1, . . . , N} let cij
be covariance of asset i and asset j. Let real number R be desired expected
return. For i={1, . . . , N} let real number wi be held proportion of asset i.

Given N that is integer , N -dimensional vector r, N×N -matrix c and real
number R, find N -dimensional vector w such that

N∑
i=1

N∑
j=1

wiwjcij

is minimal under the constraint∑N
i=1wiri=R

and∑N
i=1wi=1

and
0≤wi for i={1, . . . , N}
and
wi≤1 for i={1, . . . , N}.
The OR-Lib contains the files :
port<i>~~(i=1:5)

to be read with:

176APPENDIX D. EXAMPLES OF PROBLEMS FROMTHEOR-LIBRARY

read N
newline

for i = 1:N
read ri
skip di
newline

end

until EOF

read i
read j
read cij
newline

end
.

Let V :=
∑N

i=1

∑N
j=1wiwjcij . The OR-Lib contains solutions in the files :

portef<i> (i=1:5)

to be read with:
until EOF
read R
read V
newline

end

.

Output generated for AMPL:

param N integer ;

param r{i in 1..N} ;

param c{i in 1..N , j in 1..N} ;

4 param R ;

var w{i in 1..N} ;

minimize

target : sum{i in 1..N}(sum{j in 1..N}(w[i] * w[j]

* c[i , j]));

subject to

9 constraint0 : sum{i in 1..N}(w[i] * r[i]) = R;

subject to

constraint1 : sum{i in 1..N}(w[i]) = 1;

subject to

constraint2{i = 1..N} : 0 <= w[i];

14 subject to

constraint3{i = 1..N} : w[i] <= 1;

D.4. SET PARTITIONING PROBLEM. 177

D.4 Set partitioning problem.

For element i and set j let ai,j=1 if i∈j, and 0 otherwise. Let cj be cost of
column j. Let xj=1 if set j is selected, and xj=0 otherwise.

Given m that is integer , n that is integer , m×n-matrix a that is binary
and n-dimensional vector c, find n-dimensional vector x that is binary such
that

n∑
j=1

cjxj

is minimal under the constraint
∑n

j=1 ai,jxj=1 for i∈{1, . . . ,m}.
The OR-Lib contains the files :
sppnw<i> (i=01:43),
sppaa0<i> (i=1:6),
sppus0<i> (i=1:4),
sppkl0<i> (i=1:2)

to be read with:
read m
read n
for j = 1:n

read cj
read K
for k = 1:K

read i
set ai,j := 1

end

end
.

Output generated for AMPL:

param m integer ;

2 param n integer ;

param a{i in 1..m , j in 1..n} binary ;

param c{j in 1..n} ;

var x{j in 1..n} binary ;

minimize

7 target : sum{j in 1..n}(c[j] * x[j]);

subject to

constraint1{i in 1..m} : sum{j in 1..n}(a[i , j] *

x[j]) = 1;

178APPENDIX D. EXAMPLES OF PROBLEMS FROMTHEOR-LIBRARY

D.5 Set covering problem.

For element i and set j let ai,j=1 if i∈j, and 0 otherwise. Let cj be cost of
column j. Let xj=1 if set j is selected, and xj=0 otherwise.

Given m that is integer , n that is integer , m×n-matrix a that is binary
and n-dimensional vector c, find n-dimensional vector x that is binary such
that

n∑
j=1

cjxj

is minimal under the constraint
∑n

j=1 ai,jxj≥1 for i∈{1, . . . ,m}.
The OR-Lib contains the files :
scp4<i> (i=1:10),
scp5<i> (i=1:10),
scp6<i> (i=1:5),
scp<i><j> (i=a,b,c,d,e j=1:5),
scpr<i><j> (i=e,f,g,h j=1:5),
scpcyc<i> (i=06:11),
scpclr<i> (i=10:13)

to be read with:
read m
read n
for j = 1:n

read cj
read K
for k = 1:K

read i
set ai,j := 1

end

end
.

Output generated for AMPL:

param m integer ;

param n integer ;

3 param a{i in 1..m , j in 1..n} binary ;

param c{j in 1..n} ;

var x{j in 1..n} binary ;

minimize

target : sum{j in 1..n}(c[j] * x[j]);

8 subject to

constraint1{i in 1..m} : sum{j in 1..n}(a[i , j] *

x[j]) >= 1;

D.6. EQUITABLE PARTITIONING. 179

D.6 Equitable partitioning.

Given set of n student , set of m group and set of p attribute , we define
that aj,k:=1 if student j has attribute k and aj,k:=0 otherwise. Given group
i, we define that Xi,j :=1 if group i has student j and Xi,j :=0 otherwise. Let
di,k that is nonnegative be overallocation of group i and attribute k. Let
ei,k that is nonnegative be underallocation of group i and attribute k.

Given m that is integer , n that is integer , p that is integer and n×p-matrix
a that is binary , find m×p-matrix d that is nonnegative , m×p-matrix e
that is nonnegative and m×n-matrix X that is binary such that

p∑
k=1

m∑
i=1

di,k + ei,k

is minimal under the constraint∑m
i=1Xi,j=1 for j∈{1, . . . , n}

and∑n
j=1Xi,jaj,k − di,k + ei,k=

∑n
j=1

aj,k
m for i∈{1, . . . ,m}, k∈{1, . . . , p}.

The OR-Lib contains the files :
epprandom<i> (i=1:5),
eppperf<i> (i=1:5)

to be read with:
set j := 1
until EOF

set k := 1
until EOL

read aj,k
k++

end

j++
newline

end

set n := j − 1
set p := k − 1

. Choose m.

Output generated for AMPL:

param m integer ;

param n integer ;

3 param p integer ;

param a{j in 1..n , k in 1..p} binary ;

var d{i in 1..m , k in 1..p} >= 0 ;

var e{i in 1..m , k in 1..p} >= 0 ;

var X{i in 1..m , j in 1..n} binary ;

180APPENDIX D. EXAMPLES OF PROBLEMS FROMTHEOR-LIBRARY

8 minimize

target : sum{k in 1..p}(sum{i in 1..m}(d[i , k]+e[i

, k]));

subject to

constraint0{j in 1..n} : sum{i in 1..m}(X[i , j]) =

1;

subject to

13 constraint1{i in 1..m , k in 1..p} : sum{j in 1..n

}(X[i , j] * a[j , k]-d[i , k]+e[i , k]) = sum{j

in 1..n}((a[j , k])/(m));

D.7 Data envelopment problem.

Let s be cardinality of output measure, let t be cardinality of input measure
and let n be cardinality of decision making unit. Let yi,k be value of output
measure i for decision making unit k. Let xj,k be value of input measure j
for decision making unit k. Let ui be weight for output measure i and let vj
be weight for input measure j. We define S (k) as

∑s
i=1 uiyi,k and we define

T (k) as
∑t

j=1 vjxj,k.

Given s that is integer , t that is integer , n that is integer , t×n-matrix
x and s×n-matrix y, find s-dimensional vector u that is nonnegative and
t-dimensional vector v that is nonnegative such that S(k)

T (k) is maximal for

k∈{1, . . . , n}.
Output generated for AMPL:

param s integer ;

param t integer ;

param n integer ;

4 param x{i in 1..t , k in 1..n} ;

param y{j in 1..s , k in 1..n} ;

var u{i in 1..s} >= 0 ;

var v{j in 1..t} >= 0 ;

maximize

9 target{k in 1..n} : (sum{i in 1..s}(u[i] * y[i , k

]))/(sum{j in 1..t}(v[j] * x[j , k]));

Appendix E

Examples from Naproche

Again, as with representation of informal mathematical text (Section 5.2),
the automatically created output contains grammatical errors, which we
plan to overcome by interfacing the Grammatical Framework [37].

E.1 Burali-Forti paradox

Axiom.

There is no y such that $y \in \emptyset$.

3 Axiom.

For all x it is not the case that $x \in x$.

Define x to be transitive if and only if for all

u , v it is the case that if $u \in v$ and $v

\in x$ then $u \in x$. Define x to be a

ordinal if and only if x is transitive and for

all y it is the case that if $y \in x$ then y

is transitive.

Theorem.

\emptyset is a ordinal.

8 Proof.

Assume$u \in v$ and $v \in \emptyset$. Hence there

is a x such that $x \in \emptyset$.

Contradiction. Thus \emptyset is transitive.

Assume$y \in \emptyset$. Hence there is a x

such that $x \in \emptyset$. Contradiction. Hence

for all y it is the case that if $y \in \

emptyset$ then y is transitive. Thus $\

emptyset$ is a ordinal. Qed.

Theorem.

181

182 APPENDIX E. EXAMPLES FROM NAPROCHE

For all x , y it is the case that if $x \in y$

and y is a ordinal then x is a ordinal.

Proof.

13 Assume$x \in y$ and y is a ordinal. Hence for all

v it is the case that if $v \in y$ then v is

transitive. Hence x is transitive. Assume$u \in

x$. Hence $u \in y$ and u is transitive. Thus

x is a ordinal. Qed.

Theorem.

There is no x such that for all u it is the case

that $u \in x$if and only ifu is a ordinal.

Proof.

Assume there is a x such that for all u it is

the case that $u \in x$if and only ifu is a

ordinal. Lemma: x is a ordinal.

18 Proof.

Assume$u \in v$ and $v \in x$. Hence v is a

ordinal and u is a ordinal and $u \in x$. Thus

x is transitive. Assume$v \in x$. Hence v is

a ordinal and v is transitive. Thus x is a

ordinal. Qed.

Hence $x \in x$. Contradiction. Qed.

E.2 An example from elementary group

Axiom 1.

For all x , y , z it is the case that $ ((x

* y) * z) = (x * (y * z)) $.

Axiom 2.

For all x it is the case that $ (1 * x) = x$ and

$ (x * 1) = x$.

5 Axiom 3.

For all x it is the case that $ (x * f (x)) =

1$ and $ (f (x) * x) = 1$.

Lemma 1: If $ (u * x) = x$ then $u = 1$.

Proof.

Assume$ (u * x) = x$. Hence $ ((u * x) * f (x

)) = (x * f (x)) $. By axiom 1, $ (u * (x

* f (x))) = (x * f (x)) $. Hence by axiom

3, $ (u * 1) = 1$. Hence by axiom 2, $u = 1$.

Qed.

10 Lemma 2: If $ (x * y) = 1$ then $y = f (x) $.

Proof.

E.2. AN EXAMPLE FROM ELEMENTARY GROUP 183

Assume$ (x * y) = 1$. Hence $ (f (x) * (x * y

)) = (f (x) * 1) $ and $ ((f (x) * x) *

y) = f (x) $. Hence $ (1 * y) = f (x) $

and $y = f (x) $. Qed.

Theorem 1.

$f (x * y) = (f (y) * f (x)) $.

15 Proof.

Let $u = ((x * y) * (f (y) * f (x))) $.

Hence by axiom 1, $u = (x * ((y * f (y)) *

f (x))) $. Hence $u = (x * (1 * f (x)))

= (x * f (x)) = 1$. Hence $ ((x * y) * (

f (y) * f (x))) = 1$. Hence by lemma 2, $ (

f (y) * f (x)) = f (x * y) $. Qed.

Acknowledgements.

Support by the Austrian Science Foundation (FWF) under contract number
P20631 is gratefully acknowledged.
I wish to thank Prof. Arnold Neumaier and the members of the FMathL
seminar for their support and input.

184 APPENDIX E. EXAMPLES FROM NAPROCHE

Bibliography

[1] P.B. Andrews. A Universal Automated Information System for Science
and Technology. In First Workshop on Challenges and Novel Applica-
tions for Automated Reasoning, pages 13–18, 2003.

[2] J.E. Beasley. OR-Library: Distributing test problems by electronic
mail. Journal of the Operational Research Society, 41(11):1069–1072,
1990.

[3] R. Boyer et al. The QED Manifesto. Automated Deduction–CADE,
12:238–251, 1994.

[4] O. Caprotti and D. Carlisle. OpenMath and MathML: semantic markup
for mathematics. Crossroads, 6(2):14, 1999.

[5] J. Clark, M. Murata, et al. Relax NG specification – Committee
Specification 3 December 2001. Web document.
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

[6] Daniel I. Cohen. Introduction to computer theory. John Wiley & Sons,
Inc., New York, NY, USA, 1986.

[7] M.A. Covington. A fundamental algorithm for dependency parsing. In
Proceedings of the 39th annual ACM southeast conference, pages 95–
102. Citeseer, 2001.

[8] F. Domes, K. Kofler, A. Neumaier, and P. Schodl. CONCISE – The
FMathL programming system. Manuscript, 2010.

[9] R. Fourer, D.M. Gay, and B.W. Kernighan. A modeling language
for mathematical programming. Management Science, 36(5):519–554,
1990.

[10] M. Ganesalingam. The Language of Mathematics. PhD thesis, Univer-
sity of Cambridge, 2009.

[11] B. Ganter and R. Wille. Formale Begriffsanalyse: Mathematische
Grundlagen. Springer-Verlag Berlin Heidelberg New York, 1996.

185

186 BIBLIOGRAPHY

[12] M. Gyssens, J. Paredaens, J. Van den Bussche, and D. Van Gucht. A
graph-oriented object database model. Knowledge and Data Engineer-
ing, IEEE Transactions on, 6(4):572–586, 1994.

[13] J.E. Hopcroft, J.D. Ullman, and A.V. Aho. The design and analysis of
computer algorithms. Addison-Wesley, Boston, MA, USA, 1975.

[14] M. Humayoun and C. Raffalli. MathNat – Mathematical Text in a Con-
trolled Natural Language. Special issue: Natural Language Processing
and its Applications, page 293, 2010.

[15] S. Jefferson and D.P. Friedman. A simple reflective interpreter. LISP
and symbolic computation, 9(2):181–202, 1996.

[16] J. Kallrath. Modeling languages in mathematical optimization (Applied
Optimization Vol. 88). Kluwer Academic Publisghers, Boston, Dor-
drecht, London, 2004. accepted for publication.

[17] F. Kamareddine and JB Wells. Computerizing mathematical text with
mathlang. Electronic Notes in Theoretical Computer Science, 205:5–30,
2008.

[18] R. M. Karp. Reducibility among combinatorial problems. 50 Years of
Integer Programming 1958-2008, pages 219–241, 1972.

[19] K. Kofler. A Dynamic Generalized Parser for Common Mathematical
Language. PhD thesis, 2011. In preparation.

[20] K. Kofler, P. Schodl, and A. Neumaier. Limita-
tions in Content MathML. Technical report, 2009.
http://www.mat.univie.ac.at/~neum/FMathL.html#Related.

[21] K. Kofler, P. Schodl, and A. Neumaier. Lim-
itations in OpenMath. Technical report, 2009.
http://www.mat.univie.ac.at/~neum/FMathL.html#Related.

[22] M. Kohlhase. OMDoc: Towards an internet standard for the adminis-
tration, distribution, and teaching of mathematical knowledge. In Ar-
tificial Intelligence and Symbolic Computation, pages 32–52. Springer,
2001.

[23] M. Kohlhase. Using LATEX as a semantic markup format. Mathematics
in Computer Science, 2(2):279–304, 2008.

[24] D. Kühlwein, M. Cramer, P. Koepke, and B. Schröder. The naproche
system. Intelligent Computer Mathematics, Springer LNCS, 2009.

[25] O. Lassila, R.R. Swick, et al. Resource Description Framework (RDF)
Model and Syntax Specification. 1999.

BIBLIOGRAPHY 187

[26] D. Lee and W.W. Chu. Comparative analysis of six XML schema lan-
guages. ACM SIGMOD Record, 29(3):76–87, 2000.

[27] T.B. Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific
American, 284(5):34–43, 2001.

[28] F. Manola, E. Miller, et al. RDF Primer. Web document, 2004. W3C
Recommendation.

[29] B. Miller. Latexml the manual. Web document, 2011.
http://dlmf.nist.gov/LaTeXML/manual.pdf.

[30] Marvin Minsky. Size and structure of universal Turing machines using
tag systems. Proceedings of Symposia in Pure Mathematics, 5.

[31] T. Neary and D. Woods. Small fast universal Turing machines. Theo-
retical Computer Science, 362(1–3):171–195, 2006.

[32] A. Neumaier. Analysis und lineare Algebra. Lecture notes, 2008.
http://www.mat.univie.ac.at/~neum/FMathL.html#ALA.

[33] A. Neumaier. The FMathL mathematical framework. Draft version,
2009.
http://www.mat.univie.ac.at/~neum/FMathL.html#foundations.

[34] A. Neumaier and P. Schodl. A Framework for Representing and
Processing Arbitrary Mathematics. Proceedings of the Interna-
tional Conference on Knowledge Engineering and Ontology Devel-
opment, pages 476–479, 2010. An ealier version is available at
http://www.mat.univie.ac.at/~schodl/pdfs/IC3K 10.pdf.

[35] A. Neumaier and P. Schodl. A semantic virtual machine. 2011. sub-
mitted for publication.

[36] Piergiorgio Odifreddi. Classical Recursion Theory. North Holland, Am-
sterdam, New York, Oxford, 1999.

[37] A. Ranta. Grammatical framework. Journal of Functional Program-
ming, 14(02):145–189, 2004.

[38] R. H. Richens. Preprogramming for mechanical translation. Mechanical
Translation, 3(1):20–28, 1956.

[39] Raphael M. Robinson. Minsky’s Small Universal Turing Machine. In-
ternational Journal of Mathematics, 2(5):551–562.

[40] Hartley Rogers. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, New York, 1967.

188 BIBLIOGRAPHY

[41] P. Schodl and A. Neumaier. An experimental grammar for German
mathematical text. Manuscript, 2009.
http://www.mat.univie.ac.at/~neum/FMathL.html#ALA.

[42] P. Schodl and A. Neumaier. The FMathL type system. 2011. submitted
for publication.

[43] S. Shapiro. An introduction to SNePS 3. Conceptual Structures: Logi-
cal, Linguistic, and Computational Issues, pages 510–524, 2000.

[44] J.R. Shoenfield. Recursion theory. Springer-Verlag New York, 1993.

[45] J.F. Sowa. Knowledge Representation: Logical, Philosophical, and
Computational Foundations. MIT Press, 2000.

[46] D. E. Stevenson. Fire Truck: A Tutorial Example of Problem Solving.
Working paper, 2010.

[47] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

[48] G. Sutcliffe and C. Suttner. The TPTP problem library. Journal of
Automated Reasoning, 21(2):177–203, 1998.

[49] A. Trybulec and H. Blair. Computer assisted reasoning with Mizar.
In Proceedings of the 9th International Joint Conference on Artificial
Intelligence, pages 26–28. Citeseer, 1985.

[50] J. Trzeciak. Writing mathematical papers in English: a practical guide.
Gdańsk Teacher’s Press, Gdańsk, 1995.

[51] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc., 42(2):230–265.

[52] T. Walsh. A Grand Challenge for Computing Research: a mathematical
assistant. In First Workshop on Challenges and Novel Applications for
Automated Reasoning, pages 33–34, 2003.

[53] C. Zinn. Understanding informal mathematical discourse. PhD thesis,
University of Erlangen-Nürnberg, 2004.

Index

atomic type, 44

caret, 19, 21
categories, 44
constituents, 17
contains, 44
context, 19
core, 19, 21

declared position, 71
default type, 44

entry, 17
external processor, 26
external processors, 21
external value, 26
external values, 18

faulty, 71
field, 17
focus, 26
follows, 17

handle, 17

ill-typed, 8, 44, 71
intersection, 47

matches, 45
memory, 21

Object variables, 16
objects, 16
occupied, 17

path of sems, 17
position, 17
process, 24

program, 19, 21
proper type, 44
protocol, 26

reachable, 17
record, 17

Scopes, 61
sem, 17
semantic graph, 17
semantic mapping, 16
semantic memory, 17, 20, 44
semantic unit, 17

sem, 17
semantic virtual machine, 19–21

SVM, 19
state, 27
subtype, 44
SVM program, 20, 24

template, 48
type, 44, 45
type declaration, 45
type sheet, 45, 48
type sheets, 43
type system, 44
types, 43, 44

union, 44
universal semantic virtual machine,

20
universal Turing machines, 37

well-typed, 8, 44, 71

189

190 INDEX

Zusammenfassung

Das Projekt “a modeling system for mathematics” (MoSMath), das zur
Zeit and der Universität Wien durchgeführt wird, hat die Erstellung eines
Systems zur Spezifikation von numerischen Modellen zum Ziel, in einer
Form wie sie für Mathematiker natürlich ist. Das spezifizierte Modell soll
innerhalb des Systems repräsentiert und bearbeitet werden, und dann zu
numerischen Solvern, die nicht Teil des System sind, übermittelt werden
können.

Als ein erster Schritt zu einer universal einsetzbaren Software für die Re-
präsentation und bearbeitung von Mathematik auf dem Computer (das
FMathL Projekt) entwickeln wir eine Repräsentation von Mathematik in
einem Semantischen Netz (das “semantic memory”), zusammen mit einem
Typsystem das die Gültigkeit der Repräsentation prüft, und einer virtuellen
Maschine, die Algorithmen ausführen kann.

Der Benutzer profitiert von so einem System auf mehrfache Weise: Der
offensichtlichste Vorteil ist dass der Benutzer nicht gezwungen ist eine Mod-
ellierungssprache zu erlernen und kann stattdessen die natürliche Sprache
der Mathematik verwenden, welche von jedem Mathematiker, Informatiker,
Physker, etc. erlernt und praktiziert wird.

Zusätzlich ist diese Art der Spezifizierung eines Modells am wenigsten Fehler-
anfällig, und die natürlichste Art ein Modell zu kommunizieren. Einmal in
dem System repräsentiert, können ohne zusätzlichen Aufwand Ausgaben
des Modells in verschiedenen Modellierungssprachen, und verschiednenen
natürlichen Sprachen erzeugt werden, vorausgesetzt dass passende Trans-
formationsroutinen verfügbar sind.

Curriculum Vitae

Name: Peter Schodl
Date of birth: 24 August 1978
Place of birth: Mödling, Austria
Nationality: Austrian

Education and occupations:

1992 – 1997 HTL Mödling
Oct. 1997 – Oct. 1998 compulsory community service
1999 – 2004 Master Philosophy, University of Vienna
1999 – 2005 Master Mathematics, University of Vienna
Aug. 2005 – Feb. 2006 Voluntary social work in Sucre, Bolivia
2006 – 2008 Austrian statistical office
2008 – 2011 PhD Mathematics, University of Vienna

