Outline 0	Introduction	Parsing natural mathematical language	FMathL and GF	Conclusion O

FMathL

Formal Mathematical Language and how it relates to the Grammatical Framework (GF)

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

August 20, 2009

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

Outline	Introduction	Parsing natural mathematical language	FMathL and GF	Conclusion	
•					
Outline of the Talk					

イロト イヨト イヨト イヨト

æ

Introduction

Parsing natural mathematical language

 $\mathsf{FMathL}\xspace$ and $\mathsf{GF}\xspace$

Conclusion

Kevin Kofler University of Vienna, Austria Faculty of Mathematics FMathL Formal Mathematical Language

Outline 0	Introduction ●○○	Parsing natural mathematical language	FMathL and GF	Conclusion O
Introduction				

- research project at the University of Vienna, Austria
- partly sponsored by the Austrian Science Fund (FWF)
- Arnold Neumaier
 - full professor for Computational Mathematics
 - head and ideator of the project
- Peter Schodl
 - working primarily on the Semantic Matrix
 - some work on a grammar for German Mathematics

(日) (同) (三) (三)

- Kevin Kofler (me)
 - the "Computer Science guy" in the project
 - working on all the parsing
- Flaviu Mărginean
 - specialist for Logic
 - working on reasoning

Outline O	Introduction ○●○	Parsing natural mathematical language	FMathL and GF	Conclusion O
Introduction				

A **modeling language** is an artificial language for the user friendly specification of mathematical problems, with interfaces to the corresponding solvers.

FMathL is intended to be a modeling and documentation language for the working mathematician that

- is based on traditional mathematical syntax,
- allows to express arbitrary mathematics,
- decides automatically which tools to use.

Goals:

- modeling language for optimization problems (short term)
- reasoning, e.g. checking the correctness of proofs
- (mostly) automatic translation of mathematical texts
- vision: MathResS automatic math. research system

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

Outline O	Introduction	Parsing natural mathematical language	FMathL and GF	Conclusion
Introduction				

Internal representation: Semantic Matrix

- concepts ... names of rows, columns and entries
 - information in the form
 <concept1>.<concept2> = <concept3>
 - matrix interpretation: <row>.<column> = <entry>
 - related to triplet representation (RDF):
 (<concept1>,<concept2>,<concept3>)
- semantic Turing machine
 - minimalist computer operating on the semantic matrix
 - assembly-like programming
 - (but friendlier than Turing machine)
 - basis for higher-level FMathL programming language
- still work in progress
- some encouraging partial results
- details out of the scope of this summer school

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

Outline O	Introduction	Parsing natural mathematical language ●○○	FMathL and GF	Conclusion O	
Parsing natural mathematical language					

- much simpler than parsing general natural language:
 - very restricted domain
 - small set of frequently repeated phrases
 - usually exact meaning
- test case: 450 page German lecture notes
 - Analysis und Lineare Algebra by Arnold Neumaier
 - (Analysis (Calculus) and Linear Algebra)
 - contains standard undergraduate mathematics.
- list of about 4000 unique sentence templates
 - created via LaTeXML and automatic prostprocessing
 - formulas replaced by the word FORMULA etc.
 - this was the raw material for
 - a lexicon of about 1500 German basic words,
 - a simple morphological grammar (to be replaced by GF),
 - a sentence grammar with about 1000 production rules.

Outline o	Introduction	Parsing natural ı ○●○	mathematical language	FMathL and GF	Conclusion
Parsing natu	ral mathematical langu	ıage			
	"defs	entence = "v h	eisst "o "o.		
	"defs	entence = "o "	v heissen "o.		
	"defs	entence = "v h	eisst dann "o.		
			eisst dann "v.		
	"defs	entence = "o i	st "o mit "f		
	"defs	entence = "o "	o ist "o "o.		
			on "v heissen "o	L.	
			"f heisst "v "o		
			eisst "p, "if "f	-	
			solche "o heisst		
		-	schreiben "f fal		
			ezeichnet "o all		
			sind "o der form		
			nennt "r "o von		
			"f heisst "v ein		
			ler form "f heiss		
			eisst "o 'art "o		
			"o heisst "p, "i		
			t "v schreibt ma		
			vird kurz als "o		
	"defs	entence = "qt	"o mit "o "v ist		
				◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶	三日 うくぐ

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

Outline O	Introduction	Parsing natural mathematical language ००●	FMathL and GF	Conclusion O	
Parsing natural mathematical language					

After more experience with the OR-Library (a library of problems from Operations Research described in mathematical English) and the *Analysis und Lineare Algebra* (ALA) textbook:

- We will define a formal subset of mathematical language (FMathL) that can be easily used and parsed automatically.
- ► All output of our system will be automatically readable.
- An (almost) automatic translation of ALA into english.

My job in the project: work on the parsing part, especially the natural language parsing.

Outline O	Introduction	Parsing natural mathematical language	FMathL and GF ●○○	Conclusion	
FMathL and GF					

- context-free grammars inadequate to parse natural language
 - even for mathematical texts
 - cannot intuitively represent concepts like NP-VP feature agreement
 - need attributed grammars
- GF provides us:
 - a representation for attributed grammars
 - the GF programming language
 - ready to use syntactic grammars
 - the resource grammars
 - one of few projects successfully parsing natural language

 support for defining an application lexicon and a semantic grammar

Thus we want to use GF in our project.

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

Outline O	Introduction	Parsing natural mathematical language	FMathL and GF ○●○	Conclusion O	
FMathL and GF					

Open Issues:

- will need to interface GF with an application
 - semantic matrix / semantic turing machine
 - most likely using C++ (not written yet)
 - need to embed the GF interpreter in some way
 - first experiments with the old (GF 2.9) Haskell API wrapped in the Haskell FFI (allowing use from C/C++)
 - not really satisfying
 - obsolete API (no longer present in GF 3.0)
- ► GF implementation doesn't have some features we'd like
 - incremental changes in the middle of the text
 - incremental changes to the grammar (w/o recompiling)
 - would be important for learning
 - understand the type of a term only once the def. is read
 - but hard to retrofit to an existing infrastructure
 - error correction
- formal verifiability: GF is a complex program

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

Outline O	Introduction	Parsing natural mathematical language	FMathL and GF ○○●	Conclusion O	
FMathL and GF					

Proposed solution: our own parser/interpreter based on the PGF representation (like the Java API)?

- advantages:
 - can use our programming language of choice
 - avoids programming language binding issues
 - can (maybe) implement some desired features
 - error correction
 - reaction to changes in the text
 - (but can probably be retrofitted to the ref. impl. too)
 - could achieve better formal verifiability
- drawbacks:
 - "reinvents the wheel"
 - significant work
 - compatibility concerns
 - might not be able to solve all our issues
 - ► e.g. incremental additions to the grammar still need at least the PGF file rebuilt

Kevin Kofler University of Vienna, Austria Faculty of Mathematics

Outline O	Introduction	Parsing natural mathematical language	FMathL and GF	Conclusion ●		
Conclusion						
 FMathL is about understanding natural math. language research so far only with messy context-free grammars 						
	 current grammars mostly useless for practical purposes current implementation using Flex and Bison (GLR) 					
	► SO	oved completely inadequate far, failing to parse any nontriv st for testing purposes	vial sentence			

- GF is very interesting to us
 - morphological and syntactic analysis
 - will still need semantic analysis and reasoning layers
 - but not started yet, except for lowest level
- but we are still unsure how to best use / interface with it
 - ▶ first step (most likely): convert our grammar to GF
- for more information about our project:

http://www.mat.univie.ac.at/~neum/FMathL.html