Local Optima Smoothing for Global
Optimization

Bernardetta Addis* Marco Locatellif Fabio Schoen?

October 30, 2003

Abstract

It is widely believed that in order to solve large scale global op-
timization problems an appropriate mixture of local approximation
and global exploration is necessary. Local approximation, if first or-
der information on the objective function is available, is efficiently
performed by means of local optimization methods. Unfortunately,
global exploration, in absence of some kind of global information on
the problem, is a “blind” procedure, aimed at placing observations
as evenly as possible in the search domain. Often this procedure re-
duces to uniform random sampling (like in Multistart algorithms, or
in techniques based on clustering).

In this paper we propose a new framework for global exploration
which tries to guide random exploration towards the region of attrac-
tion of low-level local optima. The main idea originated by the use
of smoothing techniques (based on gaussian convolutions): the pos-
sibility of applying a smoothing transformation not to the objective
function but to the result of local searches seems to have never been
explored yet. Although an exact smoothing of the results of local
searches is impossible to implement, in this paper we propose a com-
putational approximation scheme which has proven to be very efficient
and (maybe more important) extremely robust in solving large scale
global optimization problems with huge numbers of local optima.

*Email: b.addis@ing.unifi.it - Dip. Sistemi e Informatica - Universita di Firenze
"Email: locatell@di.unito.it - Dip. Informatica - Universita di Torino
'Email: schoen@ing.unifi.it - Dip. Sistemi e Informatica - Universita di Firenze

Keywords: global optimization, local search, basin-hopping, Multistart,
random sampling, smoothing transformation

1 Introduction: two-phase and smoothing meth-
ods for global optimization

Let us consider a general, essentially unconstrained, global optimization
problem of the form

fr= min f(z)

zeSCR"?

where S is a “simple” subset of R", typically an n—dimensional box, and f
is a sufficiently smooth real-valued function. Here the feasible set is defined
in order to have the possibility of sampling a uniform point in it without
too much computational burden. In other words, it is expected that the
global minimum z* is attained in the interior of S (and most likely many,
if not all, local minima are also in the interior): the feasible set is simply a
search space wide enough to contain all of the “interesting solutions” to the
problem. Also, by “sufficiently smooth” we mean that f should be at least
as regular as required by an available local search algorithm.

Many problems of practical interest can be posed in these general terms:
one of the most well-known and hard essentially unconstrained global op-
timization is the problem of folding a protein in such a way as to globally
minimize its free energy: in this problem, atoms are relatively free to move in
R3, even if a box can be defined which eventually will contain “interesting”
molecular conformations.

If the problem allows for the use of a sufficiently efficient local optimiza-
tion algorithm, it is well known [Schoen, 2002] that a two-phase procedure is
a good candidate for global optimization. A two-phase approach is composed
of sampling coupled with local searches started from sampled points. Let us
denote by

LS(x)

a mapping from R" to R™ such that £ = LS(z) is a local optimum point; then
a two-phase global optimization method can be seen as a (random) sampling
technique applied to the problem

min f(L£S ().

Ideally, if £ = LS(x) than x should belong to the basin of attraction of z,
in the sense that there should be a continuous non-increasing path connecting
x with . When using any practical algorithm in place of LS this might not
be true anymore — sometimes local searches perform very large steps, so that
the set of points leading to the same local optimum may be very different
from its region of attraction. But let us, for now, assume that an “ideal”
local search is available. The composed function

L(z) = f(LS(x))

is piecewise constant, with constant “plateaux” corresponding to the regions
of attraction of different local optima. It should be evident that globally
minimizing f(x) is equivalent to globally minimizing the piecewise constant
function f(L£S(x)). Multistart is an elementary example of a two-phase
method aimed at minimizing L(x) - in practice it reduces to a pure ran-
dom (uniform) sampling applied to L(-) = f(L£S(-)). It could in principle be
possible to apply any known global optimization to the transformed prob-
lem min L(z), but many problems arise. First of all, function evaluation
becomes much more expensive — we have to perform a local search on the
original problem to observe the transformed function L in a single point.
Secondly, the analytical form of L is not available; moreover it is a discon-
tinuous, piecewise constant function: even performing a local search on L
is a difficult task, let alone finding a global minimum! Given this difficulty,
most two-phase methods have been built without exploiting the fact that the
true objective function to be minimized is L instead of f; some of the best
known examples of two-phase methods, like e.g. multi-level single-linkage
[Rinnooy Kan and Timmer, 1987], or simple-linkage clustering approaches
[Locatelli and Schoen, 1999, Schoen, 2001] neglect in some sense the piece-
wise constant shape of L and concentrate most of the effort on improving with
respect to Multistart. In particular, for clustering methods, improvement
over Multistart is obtained through a sequential decision procedure which is
used to choose from which points it seems worthwhile starting a local search.
This way much of the effort is placed in sampling f(z), while L is sampled
in a relatively small number of points. This approach is sensible, and indeed
produced very good results, only for problems with relatively few variables (a
few tens) and with relatively few local minima whose regions of attraction are
not too small: in these cases clustering methods are superior to Multistart, as
they succeed in avoiding to start many local searches which eventually lead to
the discovery of the same local minimum. Such kind of strategies are doomed

Y

3

Figure 1: An example of a multimodal function

to fail when either the number of variables is high (and thus uniform sampling
becomes excessively expensive) or when the number of local optima is huge,
a situation which is extremely common, e.g., in most molecular conformation
problems [Doye, 2002]. When this is the case, it frequently happens that lo-
cal optima are not randomly displaced, but quite often they can be seen as
perturbations of an underlying function which possesses quite a low number
of “easy” local optima — in biology this kind of functions are referred to as
“funnel”-like structures. An univariate example of such kind of functions is
given in Figure 1, where the function to be minimized is represented by the
solid line, while it can be seen that the underlying funnel structure is given
by the dotted line. Motivated by examples of this kind, quite naturally,
some authors [Moré and Wu, 1996, Moré and Wu., 1997, Shao et al., 1997]
proposed filtering approaches: if we could filter the high frequencies which

perturb the funnel structure, then it will be possible to recover the underly-
ing funnel structure and use a standard global optimization method on the
filtered function (which is much easier to globally optimize) in order to reach
the global optimum. In the authors’ opinion, however, one of the main draw-
backs of smoothing methods is the fact that they are based on the desire
of directly smoothing f(z), and, as it frequently happens, if this function
is extremely oscillating, it may happen that either the smoothed function is
very different from the original one, or, if the smoothing factor is small, the
smoothed function is again multimodal, and optimizing it is as difficult and
error-prone as optimizing the original one. In this paper we will try to exploit
the interesting characteristics of smoothing methods for the optimization of
L(z).

2 Smoothing local searches

A quite elementary analysis of the above discussion led to the main contri-
bution of this paper: in order to build a more reliable method for large-scale,
funnel-type global optimization problems, sampling L coupled with smooth-
ing L might prove a good strategy. If we look at Figure 2, it can be imme-
diately noticed that a very good smoothing effect has already been achieved
by simply observing L, the results of local searches, in place of f. However,
in order to fully exploit the funnel structure, a smoothing method should be
applied to L: this way the piecewise constant structure of L will be replaced
by a smooth function which contains information of descent directions. It
is in fact evident that in a piecewise constant function no local information
is able to provide guidelines on descent steps; however, if smoothing were
possible, the smoothed function could help in finding appropriate descent
directions and thus guide the search towards the global optimum.

2.1 Theoretical framework

Given a real valued function f : R™ — R and a smoothing kernel g : R — R,
which is a continuous, bounded, non-negative, symmetric function whose
integral is one, the g—transform of f is defined as

(Fo(x) = - FWg(lly =) dy.

Figure 2: The effect of local optimization

9 T T T T

AR N L(x)
VAR :
8 S e s 8L N 6=025 ———— 7|

Figure 3: Gaussian filtering of L(x)

The most widely used kernel in the literature is of course the gaussian kernel

g(z) o exp (—22/(202))

but by no means this is the only one which has been used in practice (we
used the symbol x to avoid writing a multiplicative constant which plays no
role in the methods we are presenting here).

In this paper we propose to apply a smoothing transformation to the
piecewise constant function L and, thus, we would like to estimate the trans-
formed function

L) = [Lw)gllly - l)dy 0

In Figure 3 we plot the piecewise constant result of local searches of Figure
2 with a few examples of gaussian transforms for different values of o.

This task, apart from trivial examples, is usually an impossible one, as
the analytical expression of L is not available. Nevertheless, it seems worth-
while to explore some of the main characteristics of this transform before
proceeding with an approximation which eventually leads to the definition
of a practical algorithm. Even if it is perfectly clear that an explicit com-
putation of (1) is impossible, in this section we will analyze its behavior in

7

the simplest possible case, i.e. that of a function of a single variable which
possesses a single funnel.

In the one-dimensional case it may be assumed without loss of gener-
ality that the regions of attraction of different local optima are contiguous
segments and thus

N
L(x) = Z‘/ile[aifhai) (2)

i=1
where g = —0 < a; < - - <ay_1 <ay =4+ and V; e R,i=1,...,N.

We observe that in the definition of L(x) some care has to be taken for the
value this function attains at points which are on the boundary between two
different regions of attraction. Usually these are stationary points and a
typical local algorithm will not make any step if initialized at such a point.
In general it is not clear to which region of attraction these points should be
assigned, if any. In the one-dimensional case we arbitrarily choose to leave the
right hand side of each region of attraction open, but in the multidimensional
case the question remains to be considered.

A single-funnel function is characterized by the fact that there exists an
index ¢ € {1,..., N} such that

Via<Vi i=1,....0—1 3)
Via >V i=40,...,N—1.

Notice that the global minimum value is V5. Observe also that (3) states
the property that a descending (more precisely, not ascending) path down
to the global minimum exists from any starting point. We can also assume,
without loss of generality, that the origin x = 0 is the midpoint of the bottom
step, i.e.

Ayp—1 = —Qy (4)

(this can always be obtained through a translation).

Let g(x) be a kernel (which, in particular, is a probability density func-
tion) and let F(z) = ffoo g(y) dy be the corresponding probability distri-
bution function. In the following theorem we prove that if g satisfies quite
general conditions (enjoyed, among others, by gaussian densities), then the
transform L of a single—funnel step function is unimodal.

Theorem 1 Let g(x) be a continuously differentiable probability density
function whose support is R; then, if g is logarithmically concave, i.e. if

log g(x) is concave, and if the step function L defined in (2) satisfies (3),
then either (L),(x) is monotonic or it is unimodal.

Proof By definition of the transform, the value of (L),(z) is given by:

N a
o)=YV [oy =)y
i=1 ai-1
After the change of variable
t=y—=x
we get
N a;—T
W)=Y [gar
i=1 ai-1—%
and, after easy computations,
N-1
(L)g(x) = Vy — Z(WH = Vi)F(a; —).
i=1

It is immediate to proof that:

lim (L),(x) =Vi, lim (L),(z) = Vn
T——00 T——+00

and that

min V; < (L),(z) < max V; = max{V;; Vy}

i=1,N i=1,N
so that the transform might be monotonic (increasing from V; to Vi if V} <
Vi, or decreasing if V; > Vy), otherwise it must have at least a minimum
point. We would like to show that stationary points are minima.

Taking the first derivative we obtain:

(@) = (L) = 3 (Vier — Vgl — a). (5)

dx ,
=1

We wish now to prove that (L),(z) is monotonic or unimodal by looking
at the zeros of L'(x). In fact

N-1

R g —a)
L@)—g();(vzﬂ Vi) 9(2)

and its sign, as g(x) > 0Vx € R, is the same as that of

N-1

oy dE—a)
p (‘/;—i-l %) g(l’) .
We have:
i g(z — a;) _ g'(x —ai)g(x) — g'(x)g(x — a;) (6)
dv g(z) 9*()

The denominator is always positive. The numerator is nonnegative if and
only if
Ja—a) _ g)
g(x —a;) ~ g(x)
If, as it has been assumed, g is logarithmically concave, then the first
derivative of its logarithm

d _J'(x)

is nonincreasing; thus the numerator in (6) is nonnegative if and only if a; > 0
and so
9(x — a;)
9(x)

is nondecreasing if and only if a; > 0; however, also V;,; — V; is positive if
and only if a; > 0, so L'(z) is the product of a nondecreasing function and a
positive one. Thus either it is non zero for all x, or it can be zero either at a
single point or it might be zero in a segment. In any case, as the transform
either has no stationary points or it must have a minimum, the theorem is
proven. O

With slightly stronger assumptions we can obtain a transform which has one
and only one minimum point.

Theorem 2 [f in addition to the assumptions of Theorem 1 g(x) is strictly
log-concave, then the transform has at most a single minimum point.

Proof In fact strict log-concavity for a continuously differentiable function
means that

d
dr logg(x)

10

is decreasing; thus

g'(z)

9(x)
is decreasing and, as a consequence, L'(z) is the product of a positive function
and of an increasing one. Thus it can have at most one zero. 0

Theorem 3 If, in addition to the assumptions of Theorem 1, g is such that

/

lim g(x)

g'(z)
=00 g(x) (7)

= —0

= +o00, lim
a—+o0 g(x)
then L(x) has a minimum.

Proof We simply need to show that L'(z) changes sign. Given the as-
sumptions, thanks to the log-concavity of g, then

g'(z)

9(x)

log g(z — a) —log g(z) < —a

Thus, if @ > 0 the right hand side tends to —oo and we obtain that

m 9@ =)
L g9(z) .
Now,
D@ _ ey 9@ —a)
glx) ;<VZH V) g(x)
— STV A i) TV Canl))
= z‘:az,-;o(v;ﬂ Vi) 9(@) +m§i;0(vz+1 Vi) 9(7)
S 'g<aN_ai> _ 4g(a:—a,-)
< m%wm = e +i;0<v;+l O
- - .Q(GN—C%) OF T — —00
z‘;o(vzﬂ v g(an) :
< 0

A similar reasoning can be followed to show that if + — +oo then L'(z)/g(x)
tends to a strictly positive quantity. 0

11

From the above theorems, it immediately follows that, for example, if g is
a gaussian kernel, then the transform has always one and only one minimum
point. It is also easy to show that if the variance of the density function g
is sufficiently small, then the minimum point occurs, as expected, inside the
interval corresponding to the bottom step of the objective function:

Theorem 4 There exists a @ > 0 such that if

Var(g) = /OO ?g(r)dr < &

—00

then the minimum of (L),(x) belongs to [a;—_1, a]

Proof As the variance goes to zero, by Tchebychev’s inequality, the prob-
ability tends to be concentrated at zero. So lims_.og(x) = 0 for all = # 0.
Thus

lim L' (a—1) = (Ve = Vie1)g(0) <0

o—

and
lim L/(ag) = (‘/ZJrl — W)g(()) > 0.

c—0
OJ

Being restricted to the one-dimensional case, all these results are of lim-
ited usefulness. However, they at least suggest the existence also for the
multidimensional case of some notion of a “path of descending steps down
to the global minimum”, which leads to results similar to those obtained for
the one-dimensional case.

The second requirement we need to relax is that of finding an analytic ex-
pression for (L),(z). This is usually not possible also because we do not even
have an analytic expression for L. However, (L),(x) can be approximated
and the local search over (L),(x) can be substituted by the local search over
its approximation. Next section will be dedicated to the definition of an
approximation and to the resulting global optimization algorithm.

3 An approximation scheme based on smooth-
ing

Of course it is impossible to obtain an analytical expression of the trans-
formed function (L)y; it is even impossible to obtain a numerical estimate,

12

as the transform depends on values of L in all the domain: of course, apart
from the impossibility of sampling L everywhere, even if this would be pos-
sible there would be no point in using a smoothing filter, as, at that point,
the global optimum of the original would have been already discovered. So
a complete description, or even a numerical estimate of (L),(x) at a single
point is out of question. Considering the fact that only finite samples of L
will be available, the approach we followed in this paper was that of sampling
in a spherical neighborhood of prefixed radius r centered at the current point,
i.e. in B(zg,r) = {z : ||z — z0|| < r}; after sampling, we build an approxima-
tion to the restriction of (L),(x) on B(zo;r) which should capture some local
information of the function L. In other words, in some sense similar to what
is done in trust-region methods, we use information and models in a neigh-
borhood of the current point in order to find a descent direction. Assuming
the ball is contained in the feasible set, the restriction of the transform on B
can be defined as follows:

o Lo E@(ly — 2l dy
A ||y—x||>dy

(8)

We notice that the normalization factor is necessary in order to satisfy
the requirements of a kernel function. In order to roughly estimate (L) (x)
we choose to draw a uniform sample on S(xg,r) of a prefixed cardinality K.
Let y1,...,yx denote the points sampled in S(zg,r). Then a local estimate

of the restricted transform is given by

£5(z) — izt Loy = «l)
> im1 9y — z[))

This function shares with (8) some important properties:

(9)

1. it is continuous

2. for each x it is a convex combination of the values obtained by applying
local searches from points inside B(xzg,r) (or, equivalently, obtained
through observations of L)

3. the nearer z is to a sampled point y;, the stronger the influence of the
observed value is at that point.

Under mild regularity assumptions it can be seen that this estimate is
consistent with (8), in the sense that the estimate converges to the restricted
transform as K grows to infinity.

13

4 A numerical algorithm based upon smoothed
local searches

At the beginning of this paper we observed that one of the disadvantages of
working with L(z) was the fact that, due to its piecewise constant shape,
no information could be obtained on descent directions. Here we propose to
use the local approximation of the smoothed transform of L given in (9) as
a local model useful in guiding the search towards the global optimum. In
other words, the local approximation is used as a model to predict a descent
direction of L(x).

The proposed algorithm consists of an approximation phase coupled with
a displacement phase: in the approximation phase we are given a current
point z;, and the value of L(xy); a sample of cardinality K of points in a
neighborhood S(zy,r) of z;, is drawn and L is observed in each point in the
sample. The values thus obtained are used to build an approximate filtered
function (9) which is numerically minimized in S(zp, 7). The global minimum
of ﬁf(w) in B(xp,r) is taken as the next current point and the procedure
is iterated (displacement phase). Of course, as local searches might produce
very good local minima and, possibly, local minima which are very far from
the current point, in order to speed up the procedure each time a record
(i.e., the best local optimum observed so far) is obtained, the procedure
interrupts and sets the current point to the record. The whole procedure
is stopped when no improvement of the record has been observed since a
prefixed number of steps. In the following we describe in pseudo-code the
whole procedure:

Procedure LocSmoothGlobOpt(r, MaxNolmprove, K)
// MaxNolmprove: stopping criterion
/] K: number of observations to perform in the current sphere
/] r: radius used in local perturbation of the current point
Nolmprove = 0;
x = random uniform point in S;
= LS(z);
current = f(z*) = L(z);
record = current;
while (Nolmprove < MaxNolmprove)
1= 0;

14

while (i < K and record < current)
1 =14 1;
y; = random uniform point in S(x*,r);
yi = LS(yi);
current = L(y;);
end while
if (current < record)
// a new record has been found while sampling in S(x*,r)
record = current
r*=yr
Nolmprove = 0;
else
Nolmprove = Nolmprove + K;
// Major iteration: optimization of the

/] approximate smoothing based upon the observations placed in y, . ..

T = arg MiNe sz) if(m);
/] The current point is moved
y=LS(x)
current = L(z);
if (current < record)
// a new record has been found
record = current;
Nolmprove = 0;

=y
else
=z
end if
end if
end while

end Procedure

As it can be seen from the above scheme, in order to speed up the algorithm,
the center of the ball where sampling is performed is moved as soon as a new
record is observed.

15

y UK

5 Numerical results

In order to test the numerical performance of the proposed algorithm both
a set of hard test problems and an alternative algorithm have to be chosen.
We decided to compare our method with Monotonic basin-hopping (MBH)
[Leary, 2000], [Wales and Doye, 1997], a widely used stochastic method which
proved to be extremely efficient when applied to problems possessing a funnel-
like structure. Using a terminology similar to that of the algorithm proposed
in this paper, MBH can be described as follows:

Procedure MBH(r, MaxNolmprove)
/] MaxNolImprove: stopping criterion
/] r: radius used in local perturbation of the current point
Nolmprove = 0;
x = random uniform point in S;
= LS(x)
current = f(2*) = L(x)
record = current;
while (Nolmprove < MaxNolmprove)
y = random uniform point in S(z*,7)
y* = LS(y)
current = L(y;)
if (current < record)
// a new record has been found while sampling in S(x*,r)
record = current

l,* — y*
Nolmprove = 0;
else
Nolmprove = Nolmprove + 1
end if
end while

end procedure

As it can be seen, MBH performs local optimization in a neighborhood of
the current record, moving as soon as an improvement is observed; MBH has
been very successful in many hard test problems of global optimization like,
e.g., the minimization of Lennard-Jones or Morse potential energy functions.
It seems to be the best algorithm to compare with our approach in that it

16

shares with our method some parameters (and thus a comparison is more
meaningful) and it performs extremely well on some test problems which
are generally recognized as extremely difficult ones. We do not explore in
this paper the possibility of applying our method to molecular conformation
problems, as this subject deserves a deeper analysis which would excessively
lengthen this paper.

As a set of test problems we choose a few objective functions which share
the following characteristics:

e they are essentially unconstrained (defined in a box)
e the dimension of the problems can be chosen
e the global optimum is known

e they possess a very high number of local optima

Unfortunately a reliable and stable set of test problems is still lacking for un-
constrained large scale global optimization. Even in [Floudas and Pardalos, 1999]
the chapter on continuously differentiable unconstrained problems contains
very few (and quite easy) general tests. The problems we solved were the
following

Rastrigin [T6rn and Zilinskas, 1989)

Ras(z) = 10n + fo — 10 cos(2mx;) (10)
i=1
with z; € [-5.12,5.12]

Levy [Levy and Montalvo, 1985]
n—1

Levy(x) = 10sin®(ra;) + Z(ml —1)*(1 + 10sin*(7zi41)) + (2, — 1)

i=1
(11)
with z; € [-10, 10]

Ackley [Ackley, 1987]

3

Ack(xz) = —20 - exp(—0.2 -y cos(2mz;)) (12)

1=1

S

) enn
i=1
with x; € [-32.768, 32.768]

17

Schwefel [Schwefel, 1981]

Sch(z) = Z —x; sin(|x;]) (13)

with z; € [—500, 500]

Moreover we performed tests on an amplified version of the Rastrigin
function

AmplRas(xz) = 10n + Z x} — Acos(2mx;) (14)
i=1
with A = 100 and with A = 1000; this function was chosen in order to test
the sensitivity of the method to larger oscillations.
Finally we choose to test our method also on a scaled Rastrigin function:

ScaledRas(x) = 10n + Z(%‘%‘)Q — 10 cos(2m(ayz;)) (15)

i=1

where a; = 1 if |i/10] = 0(mod 2), otherwise a; = 2 (i.e., o; = 1 for the
first ten variables, then it is 2 for the next 10 and so on). This test function
was introduced in order to check the behavior of the method in presence of
asymmetric level sets.

In the following tables we report computational results obtained with
our algorithm and with MBH with different choices of the parameters. For
each test we performed 1000 independent runs of each algorithm; for each
test performed either with our method or with MBH on the same function
but with different parameters, we used the same seeds in random number
generation, so that each of the 1000 runs was started in the same point
for all the methods tested. In both methods we used the value 1000 for
MaxNolmprove parameter. We choose a gaussian kernel for the smoothing
and we let its standard deviation be defined as

o=rK/n"

This choice for ¢ originates from the desire, in some sense, to have enough
information from the observations in all the neighborhood B(z;r). In other
words, assuming that, using a gaussian kernel, enough weight is placed in a
ball of radius ¢ centered in each observation, the above formula is obtained

18

from the requirement that the volume covered by K balls of radius ¢ should
suffice to cover the ball with radius 7.

This way the only parameters which remains to be chosen are r, the radius
of the sphere used both for generating new observations of L and for the local
approximation based upon smoothing, and K, the number of observation
used in order to build an approximation to the smoothed function.

For what concerns MBH, we tested several values of r in order to find the
best value for that algorithm. Our main aim in these experiments has been
that of showing that even when a very good algorithm, like MBH, is placed
in the best possible conditions, our method still outperforms it.

The tables with numerical results can be found in the appendix; for each
table we report the following columns: the radius r used, the number K
of samples, the number of successes out of 1000 trials (by success we mean
that the algorithm observed the global optimum at least once), the average
number of local searches performed (obtained dividing the total number of
local searches except those used for stopping by the number of trials), and
the average number of local searches per success (obtained dividing the to-
tal number of local searches, again except the last ones, by the number of
successes, if this number is positive). We choose not to count the last local
searches as these are constant for both algorithms and, in some sense, they
are just a waste, as they are just used only to stop the algorithm. Results
relative to MBH are reported in the table with a dash “-” in column K.

5.1 Comments on numerical results

The results obtained with the Rastrigin function (see tables 1-3) show a
clear improvement in our method with respect to MBH. Even when the
best parameter r is chosen for MBH, our method generally outperforms it;
however it is important to notice that not only our algorithm requires less
local searches than MBH: it has also a significantly greater success rate and,
what is particularly important, keeps its good behavior for a quite large set
of choices of the parameter r: in other words not only the method is better
than MBH, but it is also much more robust, so that the choice of parameters
is far less critical. This greater robustness of our algorithm is shared by most
of our tests, as it can be seen from the tables in the appendix.

Analyzing the behavior of the two methods with Levy’s and Ackley’s
functions (Tables 4-6 and 7-9), again it is immediate to see that our method
has a greater success rate, requires less local searches and is more robust than

19

MBH; differently from what happened with Rastrigin test functions, here in-
creasing the cardinality K of the sample did not improve the performance
of our method. This difference may be justified observing that increasing K
has two opposite effects: from one side it gives us a better approximation
of the smoothed function; from another side, however, as we choose to stop
the algorithm after 1000 local searches with no improvement, a greater value
of K gives our algorithm less freedom to move. For example, with K = 50
the algorithm might stop after 20 “major” iterations (i.e. those iterations
during which a new approximate smoothing is built and used) with no im-
provement; increasing K to 100, leaves to our method only 10 unsuccessful
iterations before stopping. For easy functions, like Rastrigin, the advantages
of better approximation compensate the small number of moves; for more
challenging tests this is no more true. However, analyzing the output of our
algorithm, we noticed that in any case the algorithm almost always stops with
a record value which is significantly lower than that found by MBH even in
the cases were failure occurs. Another observation should be made for these
two classes of test functions: looking at the tables it is seen that when both
MBH and our method display the best performance, their behavior is almost
indistinguishable. In these cases our method is actually following the same
decisions as MBH: in practice before a sample of K observations is taken a
new record is almost always observed. In these cases, no approximation is
performed and the method becomes the same as MBH (with no overhead).
However, again, we observe that when the parameters of MBH are not op-
timal, our method still outperforms it. In other words, our method is equal
to MBH when it is easy to follow descent steps towards the global optimum,;
instead, when MBH gets stuck in a local optimum, our algorithm often finds
a descent path which improves the record of MBH and, quite often, ends up
in the global optimum.

The Schwefel test function is particularly interesting as, differently from
the previous ones, it is not a single-funnel one. So both methods might,
and in fact do, end up in different optima. Again, however, it can be easily
seen that our method is significantly more successful and efficient than MBH,
the more so when the dimension increases. When r is sufficiently large, the
identification of the funnel containing the global optimum becomes quite
easy.

The modification introduced on the Amplified Rastrigin function (see
the results in Tables 12-14), while not altering significantly the regions of
attraction of local optima, changes their relative value; thus it is expected

20

that global optimization methods will get into more trouble in finding a
descent path towards the global optimum. In fact the results, both for MBH
and for our method, are worse than those found on the original Rastrigin
function. However, again, our method, for all choices of the parameters,
with a single exception, outperforms MBH both in the number of successes
and in the number of local searches required to observe each success.
Finally we analyze the scaled variant of the Rastrigin function (tables
15-16). The motivation for this modification is that we wished to check the
ability of our method of finding descent paths even when the level sets near
local optima are not spherical. Changing the scale of some of the variables
has the effect of generating ellipsoidal level sets. It is thus quite evident that
a method like MBH, which samples in spheres, will have great difficulties: in
fact if the radius of the sphere is too small, MBH will not find an improvement
and will get stuck in a local minimum. On the other hand, if the radius is
too large, sampling will be performed in a region which is so large that the
probability of finding a record will usually be very low. Quite surprisingly,
however, our method is able to correctly identify descent directions, even
when sampling in small spheres, as it is clearly displayed by the results in the
tables. Of course the higher the dimension, the worse is the behavior of the
algorithm; however the number of successes is quite high. We also performed
a final test to check whether the number of successes could be improved
by letting the algorithm run longer; we thus increased the MaxNolmprove
parameter from 1000 to 2000 (see Table 17) and in fact observed a significant
improvement: this reinforces our suspects that our algorithm successfully
extracts information of good descent direction which enables it, if not stopped
prematurely, to end up in the global minimum with high probability.

6 Conclusions

The numerical results we have presented support the evidence that our
method is significantly efficient and robust. In fact, not only it is able to
find the global optimum generally more often than MBH, with a much lower
number of local searches and, what we think is a particularly interesting char-
acteristics, with far less tuning of parameters. It can be seen from most of the
tables that the behavior of our method is sensibly better than that of basin
hopping for many choices of the two parameters of the algorithm, even when
compared with the best choice for MBH. Of course in the tables presented

21

we did not consider the overhead caused by the use and the optimization of
the approximate transform. This is indeed a computational cost which other
algorithms, and, in particular, MBH, do not possess; also we did not take
into account the fact that while MBH is a memoryless method, in which only
the current and the best observation have to be memorized, in our method
K + 1 observations are to be kept in memory. Of course we could pretend
that the method is applied to the optimization of computationally expensive
objective functions, in which case the overhead will be negligible and surely
counterbalanced by the increase in efficiency and robustness of the method.
However, even in the case of relatively cheap objective functions, like the
ones we used as test problems in this paper, the actual overhead is quite
modest. It should in fact be observed that in the main loop of our algorithm
a new approximation, with the necessity of storing K new observations and
of optimizing the approximate transform, is generated every K iterations;
but, as it can be seen from the tables dividing the number of local searches
by K + 1, the number of approximations required is generally extremely low.
We should also remark that, although the approximate transform might be
nonconvex in the neighborhood of the current point, we just performed a
simple local search on it, based upon the assumption that a descent in the
transform most likely corresponds to a descent in the original function. Al-
though this is not true in general, in practice the results obtained tend to
confirm that this is quite often the case.

In conclusion we can observe from the numerical experiments that our
approach succeeds in extracting information on possible descent directions
in the piecewise constant function which is obtained through local searches.
The results display a significative improvement both in the precision (num-
ber of successes) and in the computational cost (number of local searches)
with respect to basin-hopping, which is one of the best performing methods
for problems with huge numbers of local optima. Moreover, the proposed
approach is almost parameter free: we have proposed an automatic pro-
cedure for the choice of the o parameter in the definition of the gaussian
transform; all of our results (except one) were obtained with a fixed value
for the MaxNolmprove parameter, and the size of the sample within each
sphere was chosen either equal to n, the dimension of the problem, or to
2n. So the only parameter which requires specification is r, but, as it can be
seen from the tables, choosing r in our method is sensibly much easier than
in basin hopping. Quite large ranges for r produce numerical results which
are significantly better than those obtained with the best possible choice for

22

basin hopping. We can conclude observing that in this paper a new approach
has been proposed which tries to exploit the important information obtained
through local searches by means of a smoothing technique aimed at discov-
ering regions where it is likely to find better function values. The numerical
results obtained are quite encouraging, as they support the fact that the
proposed approach is robust, requires the setting of a very small number of
parameters and is capable of finding the global optima of standard difficult
test problems in quite an efficient way.

References

[Ackley, 1987] Ackley, D. H. (1987). A Connectionist Machine for Genetic
Hillelimbing. Kluwer Academic Publishers, Boston.

[Doye, 2002] Doye, J. P. K. (2002). Physical perspectives on the global opti-
mization of atomic clusters. In Pinter, J. D., editor, Selected Case Studies
in Global Optimization, page in press. Kluwer, Dordrecht. .

[Floudas and Pardalos, 1999] Floudas, C. A. and Pardalos, P. M. (1999).
Handbook of Test Problems in Local and Global Optimization, volume 33
of Nonconver Optimization and its Applications. Kluwer Academic Pub-
lishers, Dordrecht.

[Leary, 2000] Leary, R. H. (2000). Global optimization on funneling land-
scapes. Journal of Global Optimization, 18(4):367—-383. .

[Levy and Montalvo, 1985] Levy, A. and Montalvo, A. (1985). The tunneling
method for global optimization. SIAM J. of Sci. and Stat. Comp., 1:15-29.

[Locatelli and Schoen, 1999] Locatelli, M. and Schoen, F. (1999). Random
linkage: a family of acceptance/rejection algorithms for global optimisa-
tion. Mathematical Programming, 85(2):379-396.

[Moré and Wu, 1996] Moré, J. J. and Wu, Z. (1996). Smoothing techniques
for macromolecular global optimization. In Pillo, G. D. and Gianessi, F.,
editors, Nonlinear Optimization and Applications, pages 297-312. Plenum
Press.

[Moré and Wu., 1997] Moré, J. J. and Wu., Z. (1997). Global continuation
for distance geometry problems. SIAM J. Optim., 7:814-836.

23

[Rinnooy Kan and Timmer, 1987] Rinnooy Kan, A. H. G. and Timmer, G.
(1987). Stochastic global optimization methods. Part II: Multi level meth-
ods. Mathematical Programming, 39:57-78.

[Schoen, 2001] Schoen, F. (2001). Stochastic global optimization: Two phase
methods. In Floudas, C. and Pardalos, P., editors, Encyclopedia of Opti-
mization, pages 301-305 V. Kluwer Academic Publishers, Dordrecht.

[Schoen, 2002] Schoen, F. (2002). Two-phase methods for global optimiza-
tion. In Pardalos, P. and Romeijn, E. H., editors, Handbook of Global
Optimization Volume 2, pages 151-178. Kluwer, Dordrecht.

[Schwefel, 1981] Schwefel, H. P. (1981). Numerical Optimization of Com-
puter Models. J. Wlley & Sons, Chicester.

[Shao et al., 1997] Shao, C. S., Byrd, R. H., Eskow, E., and Schnabel, R. B.
(1997). Global optimization for molecular clusters using a new smoothing
approach. In Biegler, L. T., Coleman, T. F., Conn, A. R., and Santosa,
F. N., editors, Large Scale Optimization with Applications: Part III: Molec-
ular Structure and Optimization, pages 163-199. Springer, New York.

[Térn and Zilinskas, 1989] To6rn, A. and Zilinskas, A. (1989). Global Opti-
mization. Lecture Notes in Computer Sciences. Springer-Verlag, Berlin.

[Wales and Doye, 1997] Wales, D. J. and Doye, J. P. K. (1997). Global op-
timization by basin-hopping and the lowest energy structures of lennard-
jones clusters containing up to 110 atoms. Journal of Physical Chemistry
A, 101:5111-5116.

A Tables of numerical results

24

Table 1: Rastrigin, n = 20

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.0 - 0 2330.770 00
1.2 - 758 2289.410 3020.330
1.4 - 998 509.751 510.773
1.6 | - 982 586.033 596.775
1.8 - 321 971.671 3027.012
1.0 | 20 1000 1776.600 1776.600
1.2 20 1000 1079.330 1079.330
1.4 |20 1000 475.290 475.290
1.6 | 20 982 504.462 513.709
1.8 | 20 739 639.072 864.779
1.0 | 40 1000 3053.100 3053.100
1.2 | 40 1000 1432.960 1432.960
1.4 | 40 1000 468.052 468.052
1.6 | 40 1000 422.505 422.505
1.8 | 40 986 564.754 572.773

25

Table 2: Rastrigin, n = 30

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.2 - 0 543.057 00
1.4 - 89 5924.310 66565.281
1.6 | - 972 1054.070 1084.434
1.8 - 983 747.692 760.623
2.0 - 289 1440.620 4984.844
1.2 30 1000 3515.280 3515.280
1.4 | 30 1000 2470.310 2470.310
1.6 | 30 1000 961.410 961.410
1.8 | 30 932 829.191 889.690
2.0 | 30 520 956.656 1839.723
1.2 | 60 907 6866.680 6866.680
1.4 | 60 1000 3779.340 3779.340
1.6 | 60 1000 984.847 984.847
1.8 | 60 1000 698.382 698.382
2.0 | 60 958 947.355 988.888

26

Table 3: Rastrigin, n = 50

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.8 - 0 10116.300 00
2.0 - 830 2028.960 2444.530
2.2 - 945 1156.560 1223.873
2.4 - 187 2245.920 12010.267
2.6 - 0 2187.590 00
1.8 50 990 6000.190 6060.798
20| 50 914 1987.440 2174.442
22| 50 580 1304.740 2249.552
2.4 1 50 152 1529.020 10059.342
26| 50 27 1598.350 59198.148
1.8 | 100 966 9876.560 10224.182
2.0 | 100 994 1999.290 2011.358
2.2 1100 967 1238.560 1280.827
2.4 1100 768 1734.090 2257.930
2.6 | 100 377 1804.170 4785.597

Table 4: Levy, n = 20

r | K | number of | Average number | Average number of LS
successes of LS for each success

0.8 | - 304 881.788 2900.618
1.0 - 989 1017.500 1028.817
1.2 - 1000 99.958 99.958
1.4 - 1000 33.629 33.629
0.8 | 20 1000 451.896 451.896
1.0 | 20 1000 320.191 320.191
1.2 20 1000 96.231 96.231
1.4 120 1000 33.621 33.621
0.8 | 40 957 1938.340 2025.434
1.0 | 40 1000 586.754 586.754
1.2 | 40 1000 99.717 99.717
1.4 | 40 1000 33.629 33.629

27

Table 5: Levy, n = 30

r | K | number of | Average number | Average number of LS
successes of LS for each success

0.8 - 224 231.219 1032.228
1.0 - 346 801.464 2316.370
1.2 - 868 1552.890 1789.044
1.4 - 1000 163.874 163.874
0.8 | 30 885 2524.580 2852.633
1.0 | 30 987 1585.450 1606.332
1.2 | 30 1000 716.133 716.133
1.4 | 30 1000 158.480 158.480
0.8 | 60 330 719.213 2179.433
1.0 | 60 603 1192.370 1977.396
1.2 | 60 934 1242.220 1330.000
1.4 |60 1000 162.173 162.173

28

Table 6: Levy, n = 50

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.0 - 268 202.455 755.429
1.2 - 304 404.545 1330.740
1.4 - 499 941.807 1887.389
1.6 - 955 1184.410 1240.220
1.8 - 1000 146.909 146.909
2.0 - 1000 47.699 47.699
1.0 | 50 365 515.736 1412.975
1.2 | 50 479 737.640 1539.958
1.4 50 694 998.887 1439.318
1.6 | 50 986 957.039 970.628
1.8 | 50 1000 144.947 144.947
20| 50 1000 47.669 47.669
1.0 | 100 346 287.712 831.538
1.2] 100 451 572.906 1270.302
1.4 | 100 655 956.228 1459.890
1.6 | 100 969 1069.500 1103.715
1.8 | 100 1000 146.821 146.821
2.0 | 100 1000 47.699 47.699

29

Table 7: Ackley, n = 20

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.0 - 0 452.045 00
141 - 1000 793.112 793.112
1.8 - 1000 293.625 293.625
2.2 - 1000 274.034 274.034
35| - 115 911.591 7926.878
1.0 | 20 1000 7844.820 7844.820
1.4 |20 1000 791.688 791.688
1.8 | 20 1000 293.625 293.625
2.2 120 1000 275.778 275.778
3.5 120 691 918.841 1329.726
1.0 | 40 1000 13044.100 13044.100
1.4 | 40 1000 793.143 793.143
1.8 | 40 1000 293.625 293.625
2.2 140 1000 274.077 274.077
3.5 | 40 890 814.533 915.206

30

Table 8: Ackley, n = 30

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.0 - 0 1.843 00
141 - 999 22459.200 22481.682
1.8 - 1000 505.210 505.210
22| - 1000 303.604 303.604
3.5 - 92 1042.250 11328.804
1.0 | 30 1000 20708.200 20708.200
1.4 | 30 1000 8385.500 8385.500
1.8 | 30 1000 505.210 505.210
2.2 |30 1000 303.604 303.604
3.5 130 643 1038.170 1614.572
1.0 | 60 999 46343.900 46390.290
1.4 | 60 1000 13323.800 13323.800
1.8 | 60 1000 505.210 505.210
2.2 | 60 1000 303.604 303.604
3.5 | 60 912 920.429 1009.242

31

Table 9: Ackley, n = 50

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.4 - 0 1 00
1.8 - 566 39034.400 68965.371
2.2 - 1000 601.171 601.171
3.5 - 1000 282.960 282.960
3.9 - 815 826.145 1013.675
1.4 50 998 48336.400 48433.267
1.8 50 1000 19035.400 19035.400
2.2 50 1000 601.171 601.171
3.5] 50 1000 288.402 288.402
391 50 999 654.000 654.655
1.4 | 100 0 61893.600 00
1.8 | 100 1000 36007.000 36007.00
2.2 | 100 1000 601.171 601.171
3.5 1100 1000 283.198 283.198
3.9 | 100 998 687.483 688.861

32

Table 10: Schwefel, n =5

r | K | number of | Average number | Average number of LS
successes of LS for each success

80 | - 1 305.582 305582.000
100 - 4 417.661 104415.250
120 | - 30 414.768 13825.600
140 - 48 129.044 2688.417
160 | - 44 85.962 1953.682
180 | - 64 92.103 1439.109
200 | - 78 123.072 1577.846
220 | - 98 131.597 1342.827
80| 5 28 664.001 23714.321
100 | 5 46 303.967 6607.978
120 5 144 277.104 1924.333
140 | 5 327 385.778 1179.749
160 | 5 498 488.855 981.637
180 | 5 643 598.035 930.070
200 | 5 716 639.573 893.258
220 | 5 774 624.771 807.198
80 | 10 14 494.673 35333.786
100 | 10 39 314.438 8062.513
120 | 10 103 206.553 2005.369
140 | 10 213 252.764 1186.685
160 | 10 315 339.350 1077.302
180 | 10 393 390.877 994.598
200 | 10 476 428.535 900.284
220 | 10 591 513.847 869.453

33

Table 11: Schwefel, n = 10

r | K | number of | Average number | Average number of LS
successes of LS for each success

160 | - 1 751.440 751440.000
180 | - 2 309.388 154694.000
200 | - 0 122.818 00
220 | - 0 92.398 00
240 | - 0 90.421 00
260 | - 5 95.169 19033.800
280 | - 3 91.332 30444.000
160 | 10 13 290.672 22359.385
180 | 10 25 287.336 11493.440
200 | 10 46 350.104 7610.957
220 | 10 66 380.625 5767.045
240 | 10 106 489.975 4622.406
260 | 10 149 650.252 4364.107
280 | 10 187 758.530 4056.310
160 | 20 4 257.841 64460.250
180 | 20 7 222.044 31720.571
200 | 20 18 189.065 10503.611
220 | 20 11 184.894 16808.545
240 | 20 36 231.097 6419.361
260 | 20 44 268.530 6102.955
280 | 20 63 341.827 5425.825

34

Table 12: AmpRas, n = 20, A = 100

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.2 - 609 3928.250 6450.328
14| - 997 756.266 758.542
1.6 | - 930 775.829 834.225
1.8 - 210 1094.700 5212.857
1.2 20 1000 1366.730 1366.730
1.4 | 20 1000 645.803 645.803
1.6 | 20 984 604.844 614.679
1.8 | 20 736 708.853 963.115
1.2 | 40 1000 1994.530 1994.530
1.4 | 40 1000 663.330 663.330
1.6 | 40 1000 508.582 508.582
1.8 | 40 974 628.643 645.424

Table 13: AmpRas, n = 50, A = 100

r | K | number of | Average number | Average number of LS
successes of LS for each success

2.0 - 449 4213.260 9383.653
2.2 - 644 2135.190 3315.512
2.0 50 878 3514.180 4002.483
2.2 50 506 1925.200 3804.743
2.0 | 100 997 3827.090 3838.606
2.2 1100 935 1962.490 2098.920

35

Table 14: AmpRas, n = 50, A = 1000

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.8 - 0 8628.000 00
2.0 - 407 2319.260 5698.428
2.2 - h87 4694.890 7998.109
2.4 - 19 2786.280 146646.316
1.8 50 981 8013.560 8168.767
2.0 50 869 3802.530 4375.754
2.2 50 530 2041.780 3852.415
24| 50 131 1937.610 14790.916
1.8 | 100 980 15553.900 15871.327
2.0 | 100 994 4186.680 4211.952
2.2 1100 929 2071.080 2229.365
2.4 1100 668 2163.830 3239.266

36

Table 15: ScaledRas, n = 20

r | K | number of | Average number | Average number of LS
successes of LS for each success

06| - 0 379.446 00
0.8 - 0 204.054 00
1.0 - 0 1536.690 00
1.2 - 0 2633.660 00
1.4 - 0 1349.760 00
1.6 | - 0 1076.680 00
1.8 - 0 1004.370 00
0.6 | 20 572 4372.460 7644.161
0.8 | 20 528 2572.770 4872.670
1.0 | 20 3 1332.820 444273.333
1.2| 20 6 1215.430 202571.667
1.4 |20 31 1057.460 34111.613
1.6 | 20 58 1160.840 20014.483
1.8 | 20 104 1325.110 12741.442
0.6 | 40 179 6358.290 35521.173
0.8 | 40 574 4063.510 7079.286
1.0 | 40 1 1747.470 1747470.000
1.2 | 40 1 1013.720 1013720.000
1.4 | 40 1 481.011 481011.000
1.6 | 40 3 555.833 185277.667
1.8 | 40 6 739.986 123331.000

37

Table 16: ScaledRas, n = 50

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.6 - 0 297.031 00
1.8 - 0 6470.100 00
2.0 - 0 3456.610 00
2.2 - 0 2256.010 00
24 - 0 2135.750 00
2.6 - 0 2267.390 00
1.6 | 50 81 7091.190 87545.556
1.8 | 50 16 5544.400 346525.000
20| 50 0 3287.120 00
2.2 50 0 2271.110 00
24| 50 0 1875.970 00
26| 50 0 1647.570 00
1.6 | 100 174 12380.300 71151.149
1.8 | 100 70 8883.980 126914.000
2.0 | 100 15 4586.400 305760.000
2.2 1100 0 3002.430 00
2.4 1100 1 2392.600 2392600.000
2.6 | 100 0 2113.750 00

38

Table 17: ScaledRas, n = 50, MaxNolmprove = 2000

r | K | number of | Average number | Average number of LS
successes of LS for each success

1.6 - 0 4004.450 00
1.8 - 0 11155.900 00
2.0 - 0 5282.770 00
2.2 - 0 3686.780 00
24 - 0 3644.540 00
2.6 - 0 3788.660 00
1.6 | 50 196 7673.810 39146.990
1.8 | 50 42 6174.080 146978.100
20| 50 3 3947.490 1315497.000
2.2 50 0 2940.880 00
24| 50 0 2552.840 00
26| 50 0 2273.280 00
1.6 | 100 416 13157.600 31626.440
1.8 | 100 154 9506.450 61723.700
2.0 | 100 34 5224.780 153640.600
2.2 1100 1 3601.460 3600460.000
2.4 1100 1 3024.360 3023360.000
2.6 | 100 0 2759.240 00

39

