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Applications of Dynamic Optimization

• Chemical systems

− Determination of Kinetic Constants from

Time Series Data (Parameter Estimation)

− Optimal Control of Batch and semi-Batch

Chemical Reactors

− Safety Analysis of Industrial Processes

• Biological and ecological systems

• Economic and other dynamic systems
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Dynamic Optimization Problem

min
p

J(x(ti, p), p ; i = 0,1, ..., NP )

subject to:

gi(x(ti, p), p) ≤ 0 , i = 0,1, ..., NP

pL ≤ p ≤ pU

ẋ = f(t, x, p) , ∀t ∈ [t0, tNP ]

x(t0, p) = x0(p)

Solution approaches

• Simultaneous approach:

full discretization

• Sequential approach:

opt0
NLP Algorithm

Integrator

x,xp

p

p p

4



Usually nonconvex NLP Problems

• Multiple optimum solutions exist

• Commercially available numerical solvers

guarantee local optimum solutions

• Poor economic performance

Algorithm classes (combined with simultaneous or
sequential approach)

Stochastic algorithms

Deterministic algorithms
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Global optimization methods

Simultaneous approaches

• Application of global optimization algorithms for NLPs

• Issues: problem size; quality of discretization.

• Smith and Pantelides (1996): spatial BB + reformulation

• Esposito and Floudas (2000): αBB algorithm
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Global optimization methods: Sequential approaches

• Stochastic algorithms

– Luus et al. (1990): direct search procedure.

– Banga and Seider (1996), Banga et al. (1997): randomly directed search.

• Deterministic algorithms

– New techniques for convex relaxation of time-dependent parts of problem

– Lack of analytical forms for the constraints / objective function

– Esposito and Floudas (2000): extension of αBB to handle nonlinear dynamics.

– Singer and Barton (2002): convex relaxation of integral objective function with
linear dynamics

– Papamichail and Adjiman (2002): convex relaxations of nonlinear dynamics.
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Reformulated NLP Problem

min
x̂,p

J(x̂i, p ; i = 0,1, ..., NP )

subject to:

gi(x̂i, p) ≤ 0 , i = 0,1, ..., NP

x̂i = x(ti, p) , i = 0,1, ..., NP

p ∈ [pL, pU ]

ẋ = f(t, x, p) , ∀t ∈ [t0, tNP ]

x(t0, p) = x0(p)
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Convex Relaxation of J and gi (1)

f(z) = fCT (z) +
∑bt

i=1 bizBi,1zBi,2 +
∑ut

i=1 fUT,i(zi) +
∑nt

i=1 fNT,i(z)

Underestimating Bilinear Terms (McCormick, 1976)

w = z1z2 over [zL
1 , zU

1 ] × [zL
2 , zU

2 ]

w ≥ zL
1z2 + zL

2z1 − zL
1zL

2
w ≥ zU

1 z2 + zU
2 z1 − zU

1 zU
2

w ≤ zL
1z2 + zU

2 z1 − zL
1zU

2
w ≤ zU

1 z2 + zL
2 z1 − zU

1 zL
2

Underestimating Univariate Concave Terms

f̆UT (z) = fUT (zL) +
fUT (zU) − fUT (zL)

zU − zL
(z − zL) over [zL, zU ] ⊂ <
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Convex Relaxation of J and gi (2)

Underestimating General Nonconvex Terms in C2

(Maranas and Floudas, 1994; Androulakis et al., 1995)

f̆NT (z) = fNT (z) +
m
∑

i=1

αi(z
L
i − zi)(z

U
i − zi) over [zL, zU ] ⊂ <m

• f̆NT (z) is always less than fNT

• f̆NT (z) is convex if αi is big enough

Hf̆NT
(z) = HfNT

(z) + 2 diag(αi)

Rigorous α calculations using the scaled Gerschgorin method

(Adjiman et al., 1998)

∀z ∈ [zL, zU ] HfNT
(z) ∈ [HfNT

] = HfNT
([zL, zU ])
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Convex Relaxation of x̂i = x(ti, p)

x̂i − x(ti, p) ≤ 0

x(ti, p) − x̂i ≤ 0

Constant bounds: x(ti) ≤ x̂i ≤ x(ti)

Affine bounds: M(ti)p + N(ti) ≤ x̂i ≤ M(ti)p + N(ti)

α-based bounds (Esposito and Floudas, 2000):

x̂ik − xk(ti, p) +
r

∑

j=1

α−
kij(p

L
j − pj)(p

U
j − pj) ≤ 0

xk(ti, p) +
r

∑

j=1

α
+
kij(p

L
j − pj)(p

U
j − pj) − x̂ik ≤ 0
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Illustrative example

ẋ(t) = −x(t)2 + p , ∀t ∈ [0,1]

x(0) = 9

p ∈ [−5,5]
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Differential Inequalities (1)

Consider the following parameter dependent ODE:

ẋ = f(t, x, p), ∀t ∈ [t0, tNP ]

x(t0, p) = x0(p)

p ∈ [pL, pU ] ⊂ <r

where x and ẋ ∈ <n, f : (t0, tNP ] ×<n × [pL, pU ] 7→ <n and

x0 : [pL, pU ] 7→ <n.

Let x = (x1, x2, ..., xn)T and xk− = (x1, x2, ..., xk−1, xk+1, ..., xn)T . The

notation f(t, x, p) = f(t, xk, xk−, p) is used.

Theory on diff. inequalities (Walter, 1970) has been extended.
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Differential Inequalities (2)

Bounds on the solutions of the parameter dependent ODE:

ẋk = inf fk(t, xk, [xk−, xk−], [pL, pU ])

ẋk = sup fk(t, xk, [xk−, xk−], [pL, pU ])

∀t ∈ [t0, tNP ] and k = 1, ..., n

x(t0) = inf x0([p
L, pU ])

x(t0) = sup x0([p
L, pU ])

x(t) is a subfunction and x(t) is a superfunction for the solution of the

ODE, i.e.,

x(t) ≤ x(t, p) ≤ x(t) , ∀p ∈ [pL, pU ] , ∀t ∈ [t0, tNP ]
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Quasi-monotonicity

Definition 1: Let g(x) be a mapping g : D 7→ < with D ⊆ <n. Again the

notation g(x) = g(xk, xk−) is used. The function g is called

unconditionally partially isotone (antitone) on D with respect to the

variable xk if

g(xk, xk−) ≤ g(x̃k, xk−) for xk ≤ x̃k (xk ≥ x̃k)

and for all (xk, xk−), (x̃k, xk−) ∈ D.

Definition 2: Let f(t, x) = (f1(t, x), ..., f2(t, x))
T and each fk(t, xk, xk−) be

unconditionally partially isotone on I0 ×<×<n−1 with respect to any

component of xk−, but not necessarily with respect to xk. Then f is

quasi-monotone increasing on I0 ×<n with respect to x (Walter, 1970)
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Example: Constant bounds

ẋ(t) = −x(t)2 − 5 ẋ(t) = −x(t)2 + 5

x(0) = 9 x(0) = 9
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Parameter Dependent Bounds

Let f(t, x, p) ≤ f(t, x, p) ∀x ∈ [x(t), x(t)], ∀p ∈ [pL, pU ], ∀t ∈ [t0, tNP ] and

x0(p) ≤ x0(p) ∀p ∈ [pL, pU ], where f : [t0, tNP ] ×<n × [pL, pU ] 7→ <n and

x0 : [pL, pU ] 7→ <n.

If f is quasi-monotone increasing w.r.t. x and x(t, p) is the solution of

the ODE:

ẋ = f(t, x, p), ∀t ∈ [t0, tNP ]

x(t0, p) = x0(p)

p ∈ [pL, pU ]

then x(t, p) ≤ x(t, p) , ∀p ∈ [pL, pU ] , ∀t ∈ [t0, tNP ].
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Affine Bounds

Let f(t, x, p) = A(t)x + B(t)p + C(t) and x0(p) = Dp + E, where A(t),

B(t) and C(t) are continuous on [t0, tNP ]. Then the analytical solution

is (Zadeh and Desoer, 1963):

x(t, p) =

{

Φ(t, t0)D +

∫ t

t0
Φ(t, τ)B(τ)dτ

}

p

+Φ(t, t0)E +

∫ t

t0
Φ(t, τ)C(τ)dτ,

where Φ(t, t0) is the transition matrix:

Φ̇(t, t0) = A(t)Φ(t, t0) ∀t ∈ [t0, tNP ]
Φ(t0, t0) = I

and I is the identity matrix. x(t, p) = M(t)p + N(t).
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M(ti), N(ti) calculation

1. Apply x(ti, p) = M(ti)p + N(ti) for r + 1 values

of p

2. Calculate x(ti, p) for the r + 1 values of p from

the integration of the linear ODE

3. Solve n linear systems to find the r+1 unknowns

for each one of the n dimensions of x
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Example: Affine bounds

Underestimating IVP

ẋ = −(x + x)x + xx + v ∀t ∈ [0,1]
x(0, v) = 9

Overestimating IVPs

ẋ1 = −2xx1 + x2 + v ∀t ∈ [0,1]
x1(0, v) = 9

ẋ2 = −2xx2 + x2 + v ∀t ∈ [0,1]
x2(0, v) = 9
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Example: Affine bounds for p = 0
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α calculation for xk(ti, p)

[Hxk(ti)
] 3 Hxk(ti)

(p) = ∇2xk(ti, p), ∀p ∈ [pL, pU ] ⊂ <r

i = 0,1, ..., NS, k = 1,2, ..., n

1. 1st and 2nd order sensitivity equations

2. Create bounds using Differential Inequalities

3. Construct the interval Hessian matrix

4. Calculate α using the scaled Gerschgorin

method
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Example: All bounds
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| J  |R
l

J - J
u l

R εr<

Spatial BB Algorithm (Horst and Tuy, 1996)

Initialisation

Subregion SelectionLower Bound

Upper and Lower Bounds

NO

YES

Branch

Terminate

Upper Bound
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Global optimization algorithm

Step 1 Initialization: empty list of subregions, bounds on solution

Step 2 First upper bound calculation (local optimization)

Step 3 First lower bound calculation, including relaxation. Add sub-

regions to list.

Step 4 Subregion selection

• Terminate if list is empty

• Choose region with lowest lower bound otherwise

Step 5 Check for convergence (relative tolerance, max iter)

Step 6 Branch with standard rule (least reduced axis)

Step 7 Upper bound for new regions (not needed at every iteration)

Step 8 Lower bound calculation for each region. Go to Step 4.
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Lower bound calculation for region R
(Step 8)

Let JL be the lower bound on the parent region of R.

Let JU be the best known upper bound.

• Obtain bounds on the differential variables

• If affine bounds are used, obtain necessary matrices

• Form convex relaxation of problem for region R

• If a feasible solution with objective function JL
R is obtained,

then

– If affine bounds are used and JL
R < JL, set JL

R = JL

– If JL
R ≤ JU , add R to the list of subregions
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Outline of proof of convergence
Three main properties are needed:

• Bound improvement after branching

– Constant bounds improve after branching

– α-based bounds improve after branching

– Affine bounds do not improve after branching.

Ensure improvement through test in Step 8: if JL
R < JL,

set JL
R = JL

• Bound improving selection operation

– Consequence of region selection criterion (Step 6)

• Consistent bounding operation

– Maximum distance between objective function and its re-

laxation converges to zero.

– Maximum distance between any constraint and its relax-

ation converges to zero.
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Key elements of proof

Bounds on the solutions of the ODE are such that:

ẋk = inf fk(t, xk, [xk−, xk−], [pL, pU ]) ≥ inf fk(t, [x, x], [pL, pU ])

ẋk = sup fk(t, xk, [xk−, xk−], [pL, pU ]) ≤ sup fk(t, [x, x], [pL, pU ])

∀t ∈ [t0, tNP ] and k = 1, ..., n

Inclusion monotonicity of interval operations ensures consistency of

bounding operation with constant bounds.

Similar approach can be taken to show α-based underestimators yield

a consistent bounding operation:

• Interval Hessian matrix obtained through differential inequalities

has desired properties.

• Hence, α and α-based bounds have desired properties.
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Implementation of algorithm

• MATLAB 5.3 implementation

• NLPs: Use fmincon function (Optimization Toolbox)

• IVP solution: ode45 (Runge-Kutta based on Dormand-Prince pair)

• Interval calculations: INTLAB with directed outward rounding.

• Runs performed on an Ultra 60 workstation.
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Case Study I: Parameter estimation for 1st order

reaction (Tjoa and Biegler, 1991) A
k1−→ B

k2−→ C

min
k1,k2

10
∑

j=1

2
∑

i=1

(xi(tj) − x
exp
i (tj))

2

subject to:

ẋ1 = −k1x1 ∀t ∈ [0,1]
ẋ2 = k1x1 − k2x2
x1(0) = 1
x2(0) = 0
0 ≤ k1 ≤ 10
0 ≤ k2 ≤ 10

• Up to 8 affine underestimators and 8 affine overestimators

can be constructed.

• α-values ≤ 0.5. Convexity is identified.
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Results for case study I

Obj. fun. = 1.1856e-06; k1 = 5.0035; k2 = 1.0000

Underestimation Branching
εr Iter.

CPU time
scheme strategy (sec)

C 1 1.00e-02 3,501 2,828
C 1 1.00e-03 34,508 22,959

C & A 1 1.00e-02 37 767
C & A 1 1.00e-03 39 801
C & α 1 1.00e-02 31 396
C & α 1 1.00e-03 35 420
C & α 2 1.00e-02 27 366
C & α 2 1.00e-03 31 407

C & A & α 1 1.00e-02 31 959
C & A & α 2 1.00e-02 27 875
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Case Study II: Parameter estimation for catalytic
cracking of gas oil (Tjoa and Biegler, 1991)

A
k1
−→ Q

k3 ↘ ↙ k2

S

min
k1,k2,k3

20
∑

j=1

2
∑

i=1

(xi(tj) − x
exp
i (tj))

2

subject to:

ẋ1 = −(k1 + k3)x
2
1 ∀t ∈ [0,0.95]

ẋ2 = k1x2
1 − k2x2

x1(0) = 1
x2(0) = 0
0 ≤ k1 ≤ 20
0 ≤ k2 ≤ 20
0 ≤ k3 ≤ 20
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Results for case study II

Obj. fun. = 2.6557e − 03; k = (12.2141, 7.9799,2.2215)T

Underestimation Branching
εr Iter.

CPU time
scheme strategy (sec)

C 1 6.41e-02 10,000 16,729
C 1 1.33e-02 100,000 152,816

C & A 1 1.00e-02 67 26,597
C & A 1 1.00e-03 94 35,478
C & α 1 1.00e-02 73 11,415
C & α 1 1.00e-03 88 13,524
C & α 2 1.00e-02 65 10,116
C & α 2 1.00e-03 81 12,300

32 affine underestimators + 64 affine overestimators
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Case Study III: Parameter estimation for reversible
gas phase reaction (Bellman, 1967):

2NO + O2 ⇀↽ 2NO2

min
k1,k2

14
∑

j=1

(x(t = tj, k1, k2) − xexp(tj))
2

s.t. ẋ = k1(126.2 − x)(91.9 − x)2 − k2x2 ∀t ∈ [0,39]
x(t = 0, k1, k2) = 0
0 ≤ k1 ≤ 0.1
0 ≤ k2 ≤ 0.1

x is the difference of the pressure of the system from the initial

pressure.

k1 and k2 are the rate constants of the forward and reverse reactions.
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Results for case study III

Obj. fun.=21.86671; k1 = 4.5771e-06; k2 = 2.7962e-04

Underestimation Branching
εr Iter.

CPU time
scheme strategy (sec)

constant 1 1.00e-02 75,441 58,513

• only constant bounds used

• 32 affine underestimators + 128 affine overestimators

– stiff systems, expensive to integrate

– quality of bounds not better than constant bounds

• quality of α-based bounds poor due to wrapping effect
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Case Study IV: Optimal control with end-point
constraint (Goh and Teo, 1988)

Problem formulation using control vector parameterization:

min
u1,u2

x2(t = 1, u1, u2)

s.t. ẋ1 = u1(1 − t) + u2t ∀t ∈

[0,1]ẋ2 = x2
1 + (u1(1 − t) + u2t)2

x1(t = 0, u1, u2) = 1
x2(t = 0, u1, u2) = 0
x1(t = 1, u1, u2) ≥ 1
x1(t = 1, u1, u2) ≤ 1
−1 ≤ u1 ≤ 1
−1 ≤ u2 ≤ 1

16 affine underestimators + 2 affine overestimators
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Results for case study IV

Obj. fun.=9.24242e-01; u1 = −0.4545; u2 = 0.4545

Underestimation Branching
εr Iter.

CPU time
scheme strategy (sec)

C 1 1.00e-02 302 317
C 1 1.00e-03 1,062 1,106

C & A 1 1.00e-02 150 2787
C & A 1 1.00e-03 527 9922
C & α 1 or 2 1.12e-13 0 8

α-based bounds recognize convexity of problem at root node.
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Conclusions

• Three types of rigorous convex relaxations have been de-

veloped

• Convergence of the algorithm has been proved

• A BB global optimization algorithm has been applied

successfully to case studies in parameter estimation and

optimal control

• References:

– Papamichail and Adjiman, J. Glob Opt, 2002.

– Papamichail and Adjiman, Comp Chem Eng, 2003.
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Perspectives

• Basic theoretical developments of recent years make global

optimization of problems with nonlinear IVPs in the con-

straints possible.

• Practical applicability limited by

• cost of constructing underestimators and overestima-

tors,

• quality of estimators for highly nonlinear systems (e.g.

oscillatory) and long time horizons.

• Further research needed to

• identify classes of IVPs for which current estimators are

effective,

• develop new estimators for other problem classes,

• establish basic theory for DAE systems.

41


