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Abstract

Selection of the topology of a neural network and correct parameters for the
learning algorithm is a tedious task for designing an optimal artificial neural
network, which is smaller, faster and with a better generalization performance. In
this paper we introduce a recently developed cutting angle method (a deterministic
technique) for global optimization of connection weights. Neural networks are
initially trained using the cutting angle method and later the learning is fine-tuned
(meta-learning) using conventional gradient descent or other optimization
techniques. Experiments were carried out on three time series benchmarks and a
comparison was done using evolutionary neural networks. Our preliminary
experimentation results show that the proposed deterministic approach could
provide near optimal results much faster than the evolutionary approach.

1. Introduction

Artificial neural networks are capable of performing many classification, learning
and function approximation tasks, yet in practice sometimes they deliver only
marginal performance. Inappropriate topology selection and weight training are
frequently blamed. Increasing the number of hidden layer neurons helps improving
network performance, yet many problems could be solved with very few neurons if
only the network took its optimal configuration. Unfortunately, the inherent non-
linearity of ANN results in the existence of many sub-optimal networks, and the
great majority of training algorithms converge to these sub-optimal configurations.

The problem of multiple local minima in neural networks has been widely
addressed [8, 12, 13, 14, 17, 22, 25, 29, 28, 30, 31, 32, 36, 35]. Proposed solutions
include multiple start from randomly chosen initial points, simulated annealing,
random perturbation, diffusion techniques and evolutionary computing [14, 25, 29,
28, 30, 31, 36, 35]. The majority of these methods are probabilistic in nature: they
can find the globally optimal solution with a certain probability, which depends on



the number of iterations of the algorithm. In contrast, deterministic techniques
allow one to find guaranteed optimal configuration. The price for this guarantee is
enormous computational cost. The fact that the non-linear optimisation problem is
NP-hard makes the possibility of designing a quick reliable technique very
unlikely. Deterministic methods include tabu search, branch-and-bound,
generalised cutting plane and systematic search [26, 33].

In this paper we investigate a recently developed cutting angle method of
deterministic global optimisation [3, 4, 27] applied to optimising neural networks.
The cutting angle method (CAM) is based on the theory of abstract convexity [27]
and it arises as a particular case of generalised cutting plane method in Lipschitz
programming. It has been successfully applied to solving other problems with many
local minima (free-knot spline approximation, molecular conformations, clustering
and classification [6, 7]), and the design of a relatively fast computational algorithm
[5] makes this technique practical. In section 2, we present the multiple minima
problem related to optimization of weights. The importance of global optimization
of weights and the proposed cutting angel method and evolutionary learning
method is presented in Section 3 and 4. Evolutionary design of neural networks is
presented in Section 5. Experimentation data, set up and results are presented in
Section 6 and 7 and some conclusions are provided towards the end.

2. Multiple Minima Problem

If we consider a network with differentiable activation functions, then the
activation functions of the output units become differentiable functions of both the
input variables and of the weights and biases. If we define an error function (£),
such as sum of squares function, which is a differentiable function of the network
outputs, then this error function is itself a differentiable function of the weights. We
can therefore evaluate the derivatives of the error with respect to the weights, and
these derivatives can then be used to find weight values, which minimize the error
function, by using any of the learning algorithms like backpropagation (BP),
conjugate gradient, quazi-Newton and Levenberg-Marquardt (LM) approach [9].
Viewed from mathematical programming perspective [22, 35], supervised batch
training of a neural network is a classical non-linear optimisation problem: find the
minimum of the error function given some set of training data. Traditionally this is
accomplished by a suitable local descent technique, such as backpropagation. The
independent variables are the weights w, and the objective function is usually the
sum of squared errors (although other measures of error are also used). It is
formulated mathematically as

n:inE(wo,wh) IkZ[i:l(f(onzk)—yk)z , where z; = f(whrxk) (1)

Here f denotes the transfer function, w, denote output weights, w, denote hidden
layer weights, x; are input training data, y is the desired output and z;, denote
activations of hidden neurons. Despite its popularity, backpropagation has been
widely criticised for its inefficiency [24, 23], and more advanced minimisation



techniques, such as conjugate gradient and Levenberg-Marquardt methods are
available [24]. Yet all these techniques converge to the closest local minimum of
the error function, which is very unlikely to be the global one. As a consequence,
the network trained with a local algorithm may exhibit marginal performance. In
this connection, the primitive backpropagation may result in a better solution than
more sophisticated methods, because its disadvantages turn to the benefits of
avoiding some shallow local minima [24]. The problem of many local minima has
been widely addressed in the past [14, 35]. It was shown that training even a simple
perceptron with non-linear transfer function may result in multiple minima [13].
The remedies include starting local descent from several random points, using tabu
search, simulated annealing and genetic algorithms. The new stochastic
optimisation algorithms significantly outperform the local methods, yet they do not
provide any guarantee that their solution is the global minimum indeed. What is
more, the number of local minima of the error function grows exponentially with
the number of neurons, and the likelihood that these stochastic methods will find
the global minimum is not that high.

Deterministic global optimisation techniques exist [19, 26, 33]. They are based on
more or less systematic exploration of the search space, and involve some
assumptions about the class of the error function, such as Lipschitz properties. With
a suitable choice of neuron transfer functions, these properties are satisfied. The
biggest problem of deterministic techniques is their computational complexity,
which grows exponentially with the number of variables (weights). Hence they are
applicable only to small dimensional problems. The cutting angle method, recently
developed in [4, 3, 27], is no exception to this rule: its computational complexity
grows very rapidly with the number of variables. It is therefore imperative to
simplify the optimisation problem in order to reduce the size of the search space.
On the other hand, it is in the systems with few neurons where global optimisation
techniques are most needed. Indeed one of the goals of using global optimisation in
ANN training is to reduce the number of neurons without sacrificing the
performance, and this has been achieved in many cases [14]. Yet some analysis of
neural network structure will be performed in the next section with the purpose of
further reducing the search space.

The combinations of neural networks and Evolutionary Computation (EC)
procedures have been widely explored [2, 16, 34] . It covers a wide range of topics,
such as weight training, architecture design, learning the learning rule, input feature
selection, genetic reinforcement learning, initial weight selection etc. The
shortcomings of the multiple minima could be overcomed by formulating the
search process as the evolution of connection weights in the environment
determined by the architecture and the learning task. The evolution of connection
weights provides an alternative approach to training neural networks. Such an
evolutionary approach consists of two major stages. The first stage, is to decide the
genotype representation of connection weights, i.e., whether in the form of binary
strings or not. The second one is the evolution itself driven by GAs or other
evolutionary search procedures, in which genetic operators like crossover and



mutation have to be decided in conjunction with the representation scheme.
Different representation schemes and genetic operators can lead to very different
training performance. One of the major problems of evolutionary algorithm is their
inefficiency in fine tuned local search although they are good at global search. The
efficiency of evolutionary training can be improved significantly by incorporating a
local search procedure into the evolution, i.e. combining GA's global search ability
with local search's fine tuning ability. The evolutionary algorithm will be used to
locate a good region in the space and then a local search procedure is used to find a
near optimal solution in this region.

3. Global Optimisation of Weights

Consider a neural network with N input neurons, one output neuron and one hidden
layer with M neurons. Let the transfer function of all hidden and the output neurons
be the standard sigmoid

fo={+e) )

We partition the weight space into hidden weights wy, and output weights w,, as has
been suggested in the past [18, 23, 15, 36]. With respect to the output weights w,,
with hidden weights wy, fixed, this is a problem of training a one-layer perceptron.
Even though this problem may possess multiple local minima, it is still simpler that
that of training all weights at once, and special techniques are available.

Firstly, by considering a different measure of error,
2
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we make the problem linear with respect to the output weights w,. Here the inverse
of the transfer function is given by

iy = [
f (z)—ln[l_t] “@

This technique has been used previously in [18, 23]. It reduces the problem to
solving a linear system of equations using QR or SVD factorisation. Its
disadvantage is that it changes the measure of error, and the output weights found
by this method are not necessarily the optimal with respect to the original error
function (3) [11]. Even though some algorithms take the solution of this linear
problem as the optimal output weights [18, 23], it would be beneficial to optimise
the original measure of error (3) using a local descent technique, taking the solution
of the linear problem as the starting point. The second technique proposed in [15] is
to approximate the transfer function with its truncated Taylor series expansion. A
local descent algorithm to minimize (3) with respect to w, is given in [36]. The
second observation about neural network weights is related to the hidden layer
weights. It is usually assumed that the domain is R™, where m is the number of



connections between the input and the bias and the hidden layer. Of course any
systematic exploration of this infinite domain will fail. Thus we usually restrict the
domain to a hypercube in R™. In fact, the true domain is even smaller. Let us swap
any two hidden layer neurons. The output of the network will not change (we
assume the same transfer function for all hidden layer neurons). This means that
there are several equivalent solutions, whose number is the number of permutations
of hidden neurons. So in fact the problem has several global minima, and the error
as a function of network weights possesses symmetry. It is not a problem for local
search methods: it is not important to which of the equivalent minima the algorithm
has converged. But for global search presence of equivalent global minima
becomes an extra computational burden. The smaller the search space, the faster the
algorithm converges. Taking into account that every m-dimensional hypercube
contains m! simplices, the reduction in computing time is by the factor of m!. If we
number the neurons in the order of increasing values of weights between any input
neuron (or the bias) and the hidden layer, the domain in respect to these variables
becomes a simplex. With respect to the other variables the domain does not change.
So we can formulate the constrained minimisation problem as

min E(W), ()
w
. _ 0 0 0
subjectto —a<wy <Swy <..<wy <a,
—aswy <an=1,.,Nm=1..M,
where E (w) =min £ (W o'W ) , and E(w,,wy) is given in (4),
"o
Here wj, denote weights between the n-th input and m-th hidden neurons, and w,e,

denote weights between bias and the m-th hidden neurons. Solution of the inner
problem

minE(wo,wh)
Wo

is performed separately using linear or local technique, as discussed above.

fro)

nesy minima

Figure 1. Illustration of the cutting angle method for univariate functions. The saw
tooth cover of the objective function f{x) is built using known function values.



4. Basics of the Cutting Angle Method

The cutting angle method is based on theoretical results in abstract convexity [27].
Without going much into details, we present some of its features. It systematically
explores the whole domain by calculating the values of the objective function f(x)
at certain points. The points are selected in such a way that the algorithm does not
return to unpromising regions where function values are high. The new point is
chosen where the objective function can potentially take the lowest value. The
function is assumed to be Lipschitz, and the value of the potential minim is
calculated based on both the distance to the neigbouring points and function values
at these points. This is illustrated on Fig. 1 for one-dimensional case.

This process can be seen as constructing the piecewise linear lower approximation
of the objective function f{x). With the addition of new points, the approximation
h(x) becomes closer to the objective function, and the global minimum of the
approximating function x* converges to the global minimum of the objective
function. The lower approximation, the auxiliary function %,(x), is called the saw-
tooth cover of f. The cutting angle method is formulated for optimisation of
Lipschitz functions f{x) in the interior of the n-dimensional unit simplex

i=l,...n

A :{XDREJr DY :1}.
R,, denotes the set of strictly positive real numbers. If the domain of f is a
hypercube, it can be transformed to simplex with the change of variables

Inx;y .
=—i=12,.,n,

i
In x;

where x; are variables in S, and y; are variables in R™.

We can formulate the cutting angle algorithm as follows.

Step 0. Initialisation.

Calculate the values of f{x) at n vertices of the unit simplex.

Set k=n

Build the auxiliary function % (x) using all k known function values.
Step 1. Find all local minima of 4,(x).

Choose the smallest local minimum x* (the global minimum of /,(x))

Step 2. Calculate f(x*).
Build A-(x) using /(x) and the new point x*
Step 3. Set k=k+1

Go to Step 1.



The algorithm stops when the smallest computed value of f(x) is sufficiently close
to the global minimum of A (x), or when the number of iterations reaches the
maximum permitted value. Calculation of the local minima of the auxiliary
function A (x) is the most computationally expensive step. Instead of actually
building this piecewise linear function, its minima can be calculated using
combinatorial approach [4, 27], as combinations of n out of k vectors satisfying
certain properties. An effective solution to this combinatorial problem was found in
[5], where the actual computational algorithm is described. Still the number of
function evaluations to solve this NP-hard problem with a given accuracy is very
big. It was therefore proposed to use a combination of the CAM and local descent
techniques. A specified number of iteration is performed using cutting angle, and
then the best-known function value is improved by a local search method. This
combination was shown to be effective in solving some difficult problems with
many local minima. Any local descent method can be used, in particular
backpropagation, conjugate gradient and Levenberg-Marquardt methods are all
suitable. Hence we can use the following algorithm to train the neural networks.

Step 1. Perform K iterations of the cutting angle method to optimise the hidden
layer weights, with the objective function E(w) given in (3)

Step 2. Starting from the best vector of weights from Step 1, find the optimal
weights by using backpropagation, conjugate gradient or Levenberg-Marquardt
methods.

Slow
Evolutionary search of learning algorithms and its parameters
—
 e—
< Evolutionary search of architectures and node transfer functions
Evolutionary search of connection weights
Fast

Figure 2. Meta-learning framework using evolutionary computation

5. Evolutionary Neural Networks and Meta-Learning

Evolutionary computation has been widely used for training and automatically
designing neural networks. Figure 2 illustrates the meta-learning framework with
the learning mechanism of the ANN evolving at the highest level on the slowest
time scale [1]. All the randomly generated architecture of the initial population are
trained by different learning algorithms and evolved separately. Parameters of the
learning algorithms will be adapted (example, learning rate and momentum for BP)



according to the problem. Figure 3 depicts the basic algorithm of proposed meta-
learning approach using evolutionary computation.

1. Set t=0 and randomly generate an initial population of neural networks
with architectures, node transfer functions and connection weights
assigned at random.

2. Train the randomly generated neural networks (architectures and
associated — weights) using conventional learning  algorithms
(backpropagation, conjugate gradient etc.)

3. Evaluate the fitness and select parents for reproduction

Apply mutation to the parents and produce offspring (s) for next
generation. Refill the population back to the defined size.

5. Repeat step 2

6. STOP when the required solution is found or number of iterations has
reached the required limit.

Figure 3. Meta-learning algorithm for optimising artificial neural networks

6. Experimentation Data

To evaluate the performance of the optimization techniques, we used the following
3 different time series for training and evaluating the neural network performance.

a) Waste Water Flow Prediction

The problem is to predict the wastewater flow into a sewage plant [20]. The water
flow was measured every hour. It is important to be able to predict the volume of
flow f{t+1) as the collecting tank has a limited capacity and a sudden increase in
flow will cause to overflow excess water. The water flow prediction is to assist an
adaptive online controller. The data set is represented as [f(?), f(t-1), a(t), b(?),
f(t+1)] where f(), f(t-1) and f(t+1) are the water flows at time ¢,¢-1, and t+1 (hours)
respectively. a(?) and b(t) are the moving averages for 12 hours and 24 hours. The
time series consists of 475 data points. The first 240 data sets were used for training
and remaining data for testing.

b) Mackey-Glass Chaotic Time Series

The Mackey-Glass differential equation is a chaotic time series for some values of
the parameters x(0) and © [21].

dx(t) _ 0.2x(t — 1)
d g x0g - g

We used the value x(z-18), x(t-12), x(t-6), x(t) to predict x(¢+6). Fourth order
Runge-Kutta method was used to generate 1000 data series. The time step used in

- 0.1 x(t). Q)



the method is 0.1 and initial condition were x(0)=1.2, =17, x(¢)=0 for t<0. First 500
data sets were used for training and remaining data for testing.

¢) Gas Furnace Time Series Data

This time series was used to predict the CO, (carbon dioxide) concentration y(t+1)
[10]. In a gas furnace system, air and methane are combined to form a mixture of
gases containing CO,. Air fed into the gas furnace is kept constant, while the
methane feed rate u(?) can be varied in any desired manner. After that, the resulting
CO, concentration y(t) is measured in the exhaust gases at the outlet of the furnace.
Data is represented as [u(?), y(z), y(t+1)] The time series consists of 292 pairs of
observation and 50% of data was used for training and remaining for testing.

7. Experimentation Results Using CAM and EC

Cutting Angle Method

We chose relatively small number of hidden layer neurons, because as we
mentioned earlier, both CAM and ALEC are computationally very expensive. We
summarise the results in the following tables. Computations were performed on
COMPAQ Alpha EV6S8 single processor at 833 MHz, with 2 Gb of RAM
(800Mflops/sec) for experiments using CAM and a Pentium II, 450 MHz with 256
MB of RAM for performing the experiments using evolutionary technique.

Table 1. Performance of ANN trained using Cutting Angle method. After the
specified number of iterations of CAM, the error was improved using further 300
iterations of Levenberg-Marquardt method from 30 best minima provided by CAM.

. RMSE RMSE . Time
Data set Architecture (train) (test) Iterations (sec)
Mackey- 4:4:1
Glass Sigmoid 0.0085 0.0091 3000 410
Gas 231 00173 | 0.0384 | 1000 12
Furnace Sigmoid
Waste 4dl 0.057 | 0.066 2000 216
water flow | Sigmoid

Evolutionary Computation (EC) Method

We have applied the EC method to the three-time series prediction problems
mentioned in Section 6. The parameters used in our experiments were set to be the
same for all the 3 problems. Fitness value is calculated based on the RMSE
achieved on the test set. The best-evolved ANN is taken to be the best individual in
the last generation. As the learning process is evolved separately, user has the
option to pick the best ANN (e.g. less RMSE, fast convergence, less computational
expensive etc.) among the different learning algorithms. Genotypes were
represented using binary coding and the initial populations of network architectures
were randomly created based on the following parameters settings.



Table 2. Parameters used for evolutionary design of artificial neural networks

Population size 40

Maximum no of generations 40

Number of hidden nodes 4 neurons (maximum)

Activation functions tanh (T), logistic (L), sigmoidal (S), tanh-
sigmoidal (T*), log-sigmoidal (L*)

Output neuron linear

Training epochs 400 epochs for LM algorithm

Initialisation of weights +/-0.3

Ranked based selection 0.50

Mutation rate 0.40

For LM we used 1 as the factor for memory/speed trade off to converge faster,
adaptive learning rate of 0.001 (+/- 100%) and learning rate increasing and
decreasing factor of 10 and 0.1 respectively. The experiments were repeated three
times and the worst RMSE values are reported.

Table 3. Experiment results using evolutionary approach

Data set ﬁ?:isn}i lﬁ\gsst;z Architecture (m{:nl:llfes)
Mackey-Glass 0.0056 | 0.0061 |2T,2T* 602
Gas Furnace 0.0181 0.0290 | IT,IL, 1 T* 132
Waste water flow 0.0567 0.0591 | 2L, 1T,1T* 294

8. Discussions and Future Research Directions

Our computational results suggest that both the cutting angle method and
evolutionary design technique are capable of training neural networks, and of
locating if not global, very deep local minima of the error function. Yet both
techniques are computationally very expensive. This is due to the fact that the
underlying non-convex optimisation problem is NP-hard, and hence exponential
time to solve the problem is needed. This is the reason why the globally optimal
weights can be found easily only for relatively small networks. Along with
simulated annealing (discussed elsewhere [14,23,24,28,30,36]), genetic algorithms
and CAM are feasible alternatives to network training, which are superior to
traditional local techniques. Being deterministic method, CAM is also capable of
confirming the global optimum for small networks, and as our experiments show, is
performing much faster than evolutionary approach on the problems considered.
Our future research will concentrate on comparing various global and local
methods for network training. We will standardise measuring algorithm
performance using various measures (number of network error evaluations,
computing time, quality of the solution), and will formally compare the methods on



a suit of training datasets. We will also investigate combinations of various global
and local techniques.

9. Conclusion

The problem of multiple local minima, persistent in neural networks training, can
be dealt with using various global optimisation techniques. This paper investigates
one such technique, evolutionary computing, and introduces another one, the
cutting angle method. We show that both methods can be successfully used for
network training. If allowed to run sufficiently long, CAM can also confirm that the
global minimum has been reached. Because the underlying optimisation problem is
NP-hard, any general global training method is bound to be computationally very
expensive. Hence in practice some global optimisation methods are applicable to
relatively small networks. An important advantage of the evolutionary design of
neural network is the complete adaptation of the network architecture, node transfer
functions, connection weights, learning algorithm and its parameters according to
the problem environment. CAM technique optimises the connection weights in a
pre-defined architecture depending upon the designer's knowledge of the problem
domain. Hence EC technique (even parallel evolutionary algorithms) might be
helpful to solve complicated problems where not much knowledge about the
network is available.

Because of increased computational complexity, it is important to reduce the
domain of the variables both in dimensionality and size. Using output weights as
linear or local variables reduces the dimension of the problem, and using the
symmetry of the problem to restrict some weights to a unit simplex reduces the size
of the domain by a factor of m! (m is the number of hidden neurons).
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