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Abstract. Global optimization problems are often approached by branch
and bound algorithms which use linear relaxations of the nonlinear con-
straints computed from the current variable bounds. This paper studies
how to derive safe linear relaxations to account for numerical errors aris-
ing when computing the linear coefficients. It first proposes two classes
of safe linear estimators for univariate functions. Class-1 estimators gen-
eralize previously suggested estimators from quadratic to arbitrary func-
tions, while class-2 estimators are novel. Class-2 estimators are shown to
be tighter theoretically (in a certain sense) and almost always tighter nu-
merically. The paper then generalizes these results to multivariate func-
tions. It shows how to derive estimators for multivariate functions by
combining univariate estimators derived for each variable independently.
The combination of tight class-1 safe univariate estimators is shown to
be a tight class-1 safe multivariate estimator and multivariate class-2 es-
timators are shown to be theoretically tighter (in a certain sense) than
multivariate class-1 estimators. Finally, the paper describes how to apply
these estimators to approximate linear programs with interval coefficients
safely.

1 Introduction

Global optimization problems arise naturally in many application areas, includ-
ing chemical and electrical engineering, biology, economics, and robotics to name
only a few. They consist of finding all solutions or the global optima to nonlinear
programming problems. These problems are inherently difficult computationally
(i.e., they are PSPACE-hard) and may also be challenging numerically. In ad-
dition, there has been considerable interest in recent years to produce rigorous
or reliable results, i.e., to make sure that the exact solutions are enclosed in the
results of the algorithms.

Global optimization problems are often approached by branch and bound
algorithms which use linear relaxations of the nonlinear constraints computed
from the current bounds for the variables at each node of the search tree (e.g., [3,
5, 6, 11, 12, 15, 16]). The linear relaxation can be used to obtain a lower bound on
the objective function (in minimization problems) and/or to update the variable



2 Glencora Borradaile and Pascal Van Hentenryck

bounds. This approach can also be combined with constraint satisfaction tech-
niques for global optimization which are also effective in reducing the variable
bounds (e.g., [1, 2, 7, 13, 14]).

The linear relaxation is generally obtained by linearizing nonlinear terms in-
dependently, giving what is often called linear over- and under-estimators. When
rigorous and reliable results are desired, it is critical to generate a safe linear
relaxation which over-approximates the solution to the nonlinear problem at
hand (e.g., [9, 10]). Indeed, the coefficients in the linear constraints are generally
given by real functions which are subject to rounding errors when evaluated. As
a consequence, the resulting linear relaxation may not be safe. Moreover, naive
approaches (e.g., upward rounding for the overestimators’ coefficients) are not
safe in general either. Once a safe linear relaxation is available, it can be solved
exactly or safe bounds on the objective function can be obtained using duality
as in [10, 4] for instance. Experimental results (e.g., [9]) have shown that both
of these two corrections are critical in practice, even on simple problems, to find
all solutions to nonlinear polynomial systems.

This paper focuses on obtaining safe linear relaxations for global optimization
problems and contains three main contributions:

1. The paper presents two classes of safe estimators of univariate functions.
The first class of estimators generalizes the results of [9] from quadratic
to arbitrary functions, while the second class is entirely novel. Theoretical
tightness results are given for both classes, giving the relative strengths of the
presented estimators. In particular, the results show that class-2 estimators
(when they apply) are theoretically tighter than class-1 estimators (in a
certain sense to be defined). Moreover, the numerical results indicate that
class-2 estimators are almost always tighter in practice in our experiments.

2. The paper then generalizes the univariate results to multivariate functions.
It shows how to derive estimators for multivariate functions by combining
univariate estimators derived for each variable independently. Moreover, the
combination of tight class-1 safe univariate estimators is shown to give a
tight class-1 safe multivariate estimator. Finally, univariate relative tightness
results are shown to carry over to the multivariate case, i.e., multivariate
class-2 estimators are shown theoretically tighter (in a certain sense) than
multivariate class-1 estimators.

3. The paper also shows how to approximate linear programs with interval
coefficient safely. This is also important to guarantee correctness, since coef-
ficients are generally not known with certainty or are given by expressions or
textual representations which are subject to rounding errors when evaluated.
Interestingly, linear programs with interval coefficients can be approximated
by class-1 and class-2 estimators again.

As a consequence, these results provide a systematic, comprehensive, and elegant
framework to derive safe linear estimators for global optimization problems. In
conjunction with the safe bounds on the linear relaxations derived in [10, 4],
they provide the theoretical foundation for rigorous results in branch and bound
approaches to global optimization based on linear programming.
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The rest of this paper is organized as follows: Section 2 defines the concept of
safe estimators and the problems arising in deriving them. Section 3 derives the
two classes of linear estimators for univariate functions. Section 4 presents the
theoretical and numerical tightness results. Section 5 presents the multivariate
results. Section 6 shows how to safely approximate linear programs with interval
coefficients.

2 Definitions and Problem Statement

This section defines the concepts of linear estimators and safe linear overesti-
mators, as well as the problem tackled in this paper. For simplicity, the def-
initions are given for univariate functions only, but they generalize naturally
to multivariate functions. We only consider overestimators, since the treatment
for underestimators is similar. A linear overestimator is a linear function which
provides an upper bound to a univariate function over an interval.

Definition 1 (Linear Overestimators). Let g be a univariate function < →
<. A linear overestimator of g over the interval [x, x] is a linear function mx+ b
satisfying

mx + b ≥ g(x), ∀x ∈ [x, x].

In general, given a univariate function g, linear overestimators are obtained
through tangent or secant lines. These are implicitly specified by two functions
fm(x, x, g) and fb(x, x, g) respectively computing the slope m and the intercept
b of the estimator.1 For instance, the secant line for the function xn (n even) is
the linear overestimator mx + b over [x, x] specified by

m = xn−xn

x−x
b = xxn−xxn

x−x

Unfortunately, given an underlying floating-point system F and a representation
of fm and fb, the computation of these functions is subject to rounding errors and
will produce the approximations m̃ and b̃. However, the linear function m̃x + b̃
is not guaranteed to be a linear estimator of g in [x, x].

The main issue addressed in this paper is how to compute safe linear overes-
timators, i.e., linear overestimators m∗x+ b∗ where m∗ and b∗ are floating-point
numbers in the underlying floating-point system F .

Definition 2 (Safe Linear Overestimators). Let g be a univariate function
< → <. A safe linear overestimator of g over interval [x, x] is a linear overesti-
mator m∗x + b∗ for g over [x, x] where m∗, b∗ ∈ F .

1 More precisely, they are specified by a representation (e.g., the text) of these two
functions.
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Notations In the following, we often abuse notation and use m and b to rep-
resent the functions fm and fb. The critical point to remember is that m and b
cannot be computed exactly and may involve significant rounding errors. Also,
given an expression e, we use bec and dee to denote the most precise lower and
upper approximation of e at our disposal given F and the representation of e.2

Fig. 1. Why dmex + dbe is not a Safe Linear Overestimator.

The Problem At first sight, it may seem that the problem of finding a safe
linear overestimator m∗x + b∗ is trivial: simply choose the function dmex + dbe,
i.e., choose m∗ = dme and b∗ = dbe. Unfortunately, as shown in Figure 1, this is
not correct. The figure shows g and its linear overestimator mx + b over [x, x].
The estimator is correct in the <+ region, but not in the <− region where the
slope dme is too strong. Similarly, bmcx+dbe is not a safe overestimator because
its slope is too weak in the <+ region. The value b∗ must be chosen carefully
when m∗ = dme or bmc. The figure shows such a choice of b∗.

Tightness In addition to safety, one is generally interested in linear overesti-
mators which are as tight as possible given F and the representation of fm and
fb.

Definition 3 (Error of Linear Overestimators). Let g be a univariate func-
tion < → <. The error of a linear overestimator mx+ b for g over [x, x] is given

2 Note the safety results presented in this paper hold even if the approximations are
not the most precise.
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Fig. 2. A Safe Overestimator when x ≥ 0.

by
∫ x

x

mx + b − g(x) dx.

Definition 4 (Tightness of Linear Overestimators). Let g be a univariate
function < → <. Let l1 and l2 be two linear overestimators of g over [x, x]. l1 is
tighter than l2 wrt g and [x, x] if l1 has a smaller error than l2,

3 Safe Linear Overestimators for Univariate Functions

This section describes two classes of safe overestimators. These estimators are
derived from the linear overestimator mx + b. In other words, the goal is to find
m∗ and b∗ in F such that

m∗x + b∗ ≥ mx + b, ∀x ∈ [x, x]. (1)

As mentioned, the first class generalizes the results of Michel et al. [9] who gave
safe estimators for x2. The second class is entirely new and enjoys some nice
theoretical and numerical properties.

3.1 A First Class of Safe Overestimators

To obtain a safe linear overestimator m∗x + b∗ from mx + b, there are only two
reasonable choices for m∗: bmc and dme. Other choices would necessarily be less
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tight. We derive the safe overestimators for dme only, the derivation for bmc
being similar. The problem thus reduces to finding b∗ such that

dmex + b∗ ≥ mx + b. (2)

Since dme ≥ m, it is sufficient to satisfy (2) at x = x, which implies b∗ ≥
b− (dme−m)x. The overestimator can now be derived by a case analysis on the
sign of x. If x ≤ 0, we have

b − (dme − m)x ≤ b − (dme − bmc)x = b − err(m)x

where err(m) = dme−bmc. Therefore, choosing b∗ = db−err(m)xe satisfies (2).
If x ≥ 0, it is sufficient to choose b∗ = dbe, as shown in Figure 2. The following
theorem summarizes the results.

Theorem 1 (Safe Linear Overestimators for Univariate Functions, Class
1). Let g be a univariate function g and let mx + b be a linear overestimator for
g in [x, x]. We have that

mx + b ≤







bmcx + db + err(m)xe if x ≥ 0

bmcx + dbe if x ≤ 0

dmex + db − err(m)xe if x ≤ 0

dmex + dbe if x ≥ 0.

As a consequence, the four right-hand sides are safe linear overestimators for g
in [x, x] under the specified conditions.

Proof. We give the proofs for the first two cases. The proofs are similar for the
symmetric cases. In the first case, we have

bmcx + db + err(m)xe

= bmc(x − s) + db + err(m)xe letting x = x − s with s ≥ 0

≥ bmc(x − s) + b + err(m)x

= bmc(x − s) + b + (dme − bmc)x

= dmex − bmcs + b

≥ mx − bmcs + b dmex ≥ mx since x ≥ 0

≥ mx − ms + b bmcs ≤ ms since s ≥ 0

= mx + b

In the second case, since x ≤ x ≤ 0, we have that mx ≤ bmcx and hence
mx + b ≤ bmcx + dbe. ut
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Fig. 3. Choosing b∗ = dg(x) − dmexe which is almost always tighter than dmex + dbe.

3.2 A Second Class of Safe Overestimators

In general, the overestimators used in global optimization are either secant lines
of g (as in Figure 1) or tangent lines to g at x or x (see, for instance, [5]). As
a consequence, we have that g(x) = mx + b and/or g(x) = mx + b. In these
circumstances, it is possible to find a b∗ satisfying (2) which does not depend on
the sign of x. Assume that g(x) = mx + b. Since b∗ must satisfy dmex + b∗ ≥
mx + b = g(x), it follows that b∗ ≥ g(x) − dmex. Choosing b∗ = dg(x) − dmexe
also satisfies (2). This choice for b∗ enjoys some nice theoretical and experimental
properties as detailed in Section 4. Figure 3 illustrates this situation.

Theorem 2 (Safe Linear Overestimators of Univariate Functions, Class
2). Let g be a univariate function g and let mx + b be a linear overestimator for
g in [x, x]. We have that

mx + b ≤

{

bmcx + dg(x) − bmcxe if g(x) = mx + b

dmex + dg(x) − dmexe if g(x) = mx + b

As a consequence, the right-hand sides are safe linear overestimators for g in
[x, x] under the specified conditions.
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Proof. We give the proof for the first case. The proof is similar for the symmetric
case. We have

bmcx + dg(x) − bmcxe

= bmc(x − s) + dg(x) − bmcxe letting x = x − s with s ≥ 0

≥ bmc(x − s) + g(x) − bmcx

= mx + b − bmcs since g(x) = mx + b

≥ mx + b − ms bmcs ≤ ms since s ≥ 0

= mx + b.

ut

4 Tightness of Safe Linear Overestimators

Theorems 1 and 2 provide us with six safe overestimators of a univariate func-
tion. Several of the conditions for these estimators are not mutually exclusive
and it is natural to study their relative tightness. Of course, it is possible to use
all applicable safe estimators in the linear relaxation, but this may be undesir-
able for numerical and efficiency reasons. This section presents theoretical and
experimental results on the tightness of the estimators.

4.1 Theoretical Results on Class 1 Estimators

This section studies the tightness of class-1 estimators. We first compare the
estimators bmcx + db + err(m)xe and dmex + db − err(m)xe which are both
applicable when 0 ∈ [x, x]. The result shows which estimators to choose according
to the magnitude of x and x. Figure 4 illustrates this.

Theorem 3 (Tightness of Class 1 Safe Linear Overestimators when 0 ∈
[x, x]). Let g be a univariate function g, mx+b be a linear overestimator for g in
[x, x], and x < 0 and x > 0. The safe linear overestimator bmcx+db+err(m)xe
is tighter than the safe linear overestimator dmex + db − err(m)xe if |x| < |x|.
Similarly, the safe linear overestimator dmex+db−err(m)xe is tighter than the
safe linear overestimator bmcx + db + err(m)xe if |x| < |x|.

Proof. To compare the estimators bmcx + db + err(m)xe and dmex + db −
err(m)xe, we compare the relative tightness of the slightly tighter estimators
bmcx + b + err(m)x and dmex + b − err(m)x. Their tightness is easier to de-
termine and approximates well the actual relative tightness, since the rounding
errors in computing db + err(m)xe and db − err(m)xe are comparable. First
consider the error of bmcx + b + err(m)x:
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Fig. 4. Finding the optimal floating point representation. In this case bmcx + b∗2 is a
tighter estimator than dmex + b∗1.

E1 =

∫ x

x

bmcx + b + err(m)x − g(x)dx

=

∫ x

x

bmcx + b + err(m)x − (mx + b) + mx + b − g(x)dx

=

∫ x

x

(bmc − m)x + err(m)xdx +

∫ x

x

mx + b − g(x)dx

︸ ︷︷ ︸

E

= (x − x)

[

x

(

dme −
1

2
bmc −

1

2
m

)

+ x

(
1

2
bmc −

1

2
m

)]

+ E

The error of dmex + b − err(m)x is similarly given by:

E2 =

∫ x

x

dmex + b − err(m)x − g(x)dx

= (x − x)

[

x

(
1

2
dme −

1

2
m

)

+ x

(

bmc −
1

2
dme −

1

2
m

)]

+ E

Estimator bmcx + b + err(m)x is tighter than estimator dmex + b − err(m)x
when E1 < E2, i.e., when |x| < |x|. Similarly, estimator dmex + b − err(m)x is
tighter than estimator bmcx + b + err(m)x when |x| < |x|. ut
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When x ≥ 0, it is interesting to compare estimators bmcx + db + err(m)xe with
dmex + dbe and bmcx + dbe with dmex + db − err(m)xe.

Theorem 4 (Tightness of Class 1 Safe Linear Overestimators when
0 /∈ [x, x]). Let g be a univariate function g and mx+b be a linear overestimator
for g in [x, x]. When x ≥ 0, dmex + b is tighter than bmcx + db + err(m)xe.
When x ≤ 0, bmcx + dbe is tighter than dmex + db − err(m)xe.

Proof. Consider the slightly tighter and easily comparable estimators dmex + b
and bmcx + b + err(m)x. The error of bmcx + b + err(m)x is:

E1 =

∫ x

x

bmcx + b + err(m)x − g(x)dx

=
1

2
(x − x) [x (2dme − bmc − m) + x (bmc − m)] + E

where E is the error in mx + b. Likewise the error of dmex + b is:

E2 =

∫ x

x

dmex + b − g(x)dx

=
1

2
(x − x)(dme − m)(x + x) + E

dmex + b is tighter than bmcx + b + err(m)x when E2 < E1 which reduces
to x < x. Since this condition is always met, dmex + b is always tighter than
bmcx+ b+err(m)x. Similarly, bmcx+ dbe is tighter than dmex+ db−err(m)xe
when x ≤ 0. ut

Theorems 3 and 4 generalize and provide the theoretical justification for the
heuristic used by Michel et al. [9].

4.2 Theoretical Results on Class 2 Estimators

We now study the tightness of Class-2 estimators. The next theorem compares
the “real” counterparts of the two class-2 operators.

Theorem 5 (Tightness of Class 2 Safe Linear Overestimators). Let g
be a univariate function with linear overestimator mx + b over [x, x] such that
g(x) = mx + b, g(x) = mx + b. bmcx + g(x) − bmcx is a tighter estimator than
dmex + g(x) − dmex when m − bmc < dme − m.

Proof. The error of the g(x) = mx + b. bmcx + g(x) − bmcx is given by

E1 =

∫ x

x

bmcx + g(x) − bmcx − g(x)

=
1

2
(x − x)2(m − bmc) + E
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where E is the error of mx + b. Likewise the error in dmex + g(x) − dmex is

E2 =
1

2
(x − x)2(dme − m) + E.

The bmc formulation is tighter when E1 < E2 which reduces to m − bmc <
dme − m, i.e., when bmc is a better approximation of m than dme. ut

Of course, this result is not useful in practice, since m is not known and there is no
way to evaluate the condition stated in Theorem 5. The theorem only considers
the “real” counterparts of the estimators, i.e., it ignores the rounding errors in
the actual evaluation of the operators. In other words, since these operators can
be rewritten as dbmc(x−x)+ g(x)e and ddme(x−x)+ g(x)e, Theorem 5 applies
to the Class-2 estimators whenever the rounding errors in these two terms are
similar which in turn requires that g(x) ∼ g(x). Fortunately, the next section,
which relates both classes, gives a criterion to choose between them.

4.3 Theoretical Results on Class 1 and Class 2 Estimators

This section compares the Class 1 and Class 2 overestimators. Its main result
shows that class-2 estimators are always theoretically tighter than the corre-
sponding optimal class-1 estimators. The theorems are given for the dme esti-
mators, but similar results hold for the bmc estimators.

Theorem 6 (Relative Tightness of Class 1 and Class 2 Safe Linear
Overestimators). Let g be a univariate function with linear overestimator mx+
b over [x, x] such that g(x) = mx + b. The class-2 estimator (dmex + dg(x) −
dmexe) is always tighter than the optimal (using the rules given in Theorems 3
and 4) class-1 estimator when |x| ≥ |x| (modulo rounding errors).

Proof. We prove the result modulo rounding errors. When x ≤ 0, we have

dmex + dg(x) − dmexe

≤ dmex + dg(x) − (m + err(m))xe

≤ dmex + db − err(m)xe

which is the class-1 estimator when x ≤ 0. When x ≥ 0, we have

dmex + dg(x) − dmexe

≤ dmex + dg(x) − mxe

≤ dmex + dbe

which is the class-1 estimator when x ≥ 0. ut

Theorem 6 is interesting for many reasons. First, although it abstracts the round-
ing errors, it should hold in practice since the rounding errors in g(x) should be
smaller than, or similar to, those in b. (There are of course other terms but the
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errors cannot be radically different in the remaining parts). The experimental
results in Section 4.4 confirms this. Second, it provides intuition as to why class-2
estimators are tighter than class-1 estimators. A class-1 operator systematically
accounts for an error err(m) = dme−bmc in the slope, while a class-2 estimator
only adds an error dme−m (resp. m−bmc). Third, since class-2 operators can be
viewed as tighter versions of the class-1 operators, similar criteria can be applied
to choose between them, solving the problem left open in the previous section.

For completeness, Appendix A compares the class-2 safe linear overestimator
dmex + dg(x) − dmexe with the class-1 estimators that uses m∗ = bmc. This
result is not useful in practice when the class-2 operator using bmc is available
(which is always the case for secant lines for instance). In this case, one should
choose the other class-2 estimator which is guaranteed to be tighter theoretically.
However, the result sheds some light on the relationships between the two classes
of estimators and indicate that, in general, class-2 estimators should be preferred.

4.4 Numerical Results

We now compare numerically class-1 and class-2 estimators to confirm the find-
ings of Theorem 6. More precisely, we compare bmcx + dg(x) − bmcxe with
bmcx + db + err(m)xe and dmex + dg(x) − dmexe with dmex + db − err(m)xe
numerically for 0 ∈ [x, x] using the above heuristics to choose between the pairs.
We use even powers for comparison purposes for which linear overestimators are
given as follows.

g(x) = xn ≤
xn − xn

x − x
︸ ︷︷ ︸

m

x +
xxn − xxn

x − x
︸ ︷︷ ︸

b

, n even, x ∈ [x, x] (3)

This general term can be simplified using m = x + x and b = −xx when n = 2.
Moreover, since (3) is a secant of xn, g(x) = mx + b at both x = x and x = x.

Given the theoretical results, it is easy to derive a set of numerical exper-
iments. When |x| ≥ |x|, we only compare the intercepts dg(x) − bmcxe and
db+err(m)xe, using the estimators with the same slopes. The smallest intercept
gives the tightest estimator. Likewise when |x| < |x|, we compare the intercepts
dg(x) − dmexe and db − err(m)xe.

Figures 5 and 6 depict the experimental results. To compute b, our numerical
results use the specialized form for n = 2 (Figure 5) and the general form (Figure
6) otherwise. Random values were generated for x and x in a wide range of values.
The results were collected region by region. We computed the percentage of cases
where class-2 estimators were strictly tighter than class-1 estimators (%C21)
and vice-versa (%C12). The figures report the difference (%C21 - %C12). For
the quadratic case, Figure 5 shows that class-2 estimators are very often tighter
than class-1 operators. Typically, class-2 estimators are tighter in about 40-50%
of the cases, while class-1 estimators are tighter in about 0-10% of the cases (they
have equal tightness in the remaining cases). It is only when the two bounds are
about the same size that class-1 improves over class-2 in about 40-50% of the
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Fig. 5. Numerical Results for x2.

cases. Figure 6 depicts the results for n4 to n10. The improvements of class-2
estimators here is striking. Class-2 estimators improve over class-1 estimators
in more than 99% of the cases. Of course, this is not surprising in light of the
proof of Theorem 6 since the errors in the slope multiplying x or x become
larger for class-1 estimators and the functions fm and fb are also more complex
than xn when n > 2, leading to more pronounced rounding errors. Note also
the improvement in tightness is proportional to the magnitude of the bounds.
In summary, the experimental results confirm the theoretical results and clearly
demonstrate the value of class-2 estimators.

5 Safe Linear Overestimators for Multivariate Functions

We now turn our attention to safe linear overestimators for multivariate func-
tions. Multivariate functions frequently appear in global optimization. They can
be estimated using a hyperplane in n dimensions. For example, a linear overes-
timator for the bilinear term xy (e.g., [5, 11]) is given by two planes:

xy ≤ min{yx + xy − xy, yx + xy − xy}, (x, y) ∈ [x, x] × [y, y] (4)

Since slopes of the two planes given in (4) are floating-point numbers, safe es-
timators for this case are given simply by rounding up the intercepts −xy and
−xy. The overestimator for the term x

y
used by [11, 16] have slopes that are

nonlinear functions of floating point numbers:

x

y
≤ min{

1

yy
(yx− xy + xy),

1

yy
(yx− xy + xy)}(x, y) ∈ [x, x]× [y, y], y > 0 (5)
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Fig. 6. Numerical Results for x4 to x10.

In order to represent (5) with floating point numbers, special care must be taken
in order to satisfy the two dimensional version of (1). More generally, estimators
for multivariate functions can be obtained through estimators for factorable
functions (see, for instance, [8]).

The above discussion indicates that it is critical in practice to generalize our
results to multivariate functions. The problem can be formalized as follows (for
overestimators): given an n-dimensional hyperplane overestimating an n-variate
function g(x) : <n → <, x = (x1, . . . , xn), over [x1, x1] × · · · × [xn, xn], the goal
is to find m∗

1, . . . , m
∗
n, b∗ ∈ F such that:

n∑

i=1

m∗
i xi + b∗ ≥

n∑

i=1

mixi + b ≥ g(x), ∀x ∈ [x1, x1] × · · · × [xn, xn] (6)

The first key result in this section is to show that safe linear estimators for
multivariate functions can be derived naturally by combining univariate linear
estimators. In other words, the result makes it possible to consider each variable
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independently in the estimator

n∑

i=1

mixi + b,

replace mi and b by their safe counterparts m∗
i and b∗i , and combine all the

individual coefficients into a safe estimator for the multivariate function. One of
the interesting aspects of this result is the ability to factor b out from the b∗i s to
obtain a tight estimator.

Theorem 7 (Safe Linear Overestimators for Multivariate Functions).
Let g be an n-variate function and let

∑n

i=1 mixi +b be an overestimator for g in
[x1, x1]× · · · × [xn, xn]. Let m∗

i xi + b∗i be a safe linear overestimator of mixi + b
in [xi, xi] and δ∗i = db∗i − be, 1 ≤ i ≤ n. Then, the hyperplane

n∑

i=1

m∗
i xi + db +

n∑

i=1

δ∗i e

is a safe linear overestimator for g in [x1, x1] × · · · × [xn, xn].

Proof. We show that

n∑

i=1

m∗
i xi + db +

n∑

i=1

δ∗i e ≥

n∑

i=1

mixi + b.

We have

n∑

i=1

m∗
i xi + db +

n∑

i=1

δ∗i e ≥

n∑

i=1

m∗
i xi + b +

n∑

i=1

δ∗i

≥
n∑

i=1

(m∗
i xi + b∗i − b) + b

=

n∑

i=1

(m∗
i xi + b∗i ) − (n − 1)b

≥

n∑

i=1

(mixi + b) − (n − 1)b

=

n∑

i=1

mixi + b. ut

Note that class-1 estimators trivially satisfy the requirements of this theorem.
As a consequence, the theorem gives an elegant and simple way to obtain safe
overestimators for multivariate functions. (A similar result can be derived for
underestimators).
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5.1 Class-1 Safe Multivariate Linear Estimators

We now investigate the tightness of class-1 safe multivariate estimators derived
using Theorem 7. The class-1 safe multivariate estimators are derived by combin-
ing class-1 univariate estimators. Our first result shows that class-1 multivariate
estimators derived using Theorem 7 are as tight as possible for a given choice of
rounding direction for each dimension (i.e., bmic or dmie).

Theorem 8 (Tightness of Class-1 Safe Multivariate Overestimators).
Class-1 multivariate overestimators derived using Theorem 7 are as tight as pos-
sible for a given choice of rounding direction for each variable (i.e., bmic or
dmie).

Proof. The safe overestimating hyperplane given by Theorem 7 can be written
as:

∑

i∈I∪K

dmiexi +
∑

j∈J∪L

bmjcxj + db −
∑

k∈K

err(mk)xk +
∑

l∈L

err(ml)xle

where sets I , J , K and L partition {1, . . . , n}. Using the same choices for dme and
bmc defined by this partition, we now calculate b∗ such that

∑

i∈I∪Kdmiexi +
∑

j∈J∪Lbmjcxj + b∗ ≥
∑n

i=1 mixi + b. It is sufficient to satisfy this inequality at
(x̃1, . . . , x̃n) where

x̃i =

{

xi : i ∈ J ∪ L

xi : otherwise

due to the combination of bmc and dme given by the partition. b∗ must satisfy

∑

i∈I∪K

dmiexi +
∑

j∈J∪L

bmjcxj + b∗ ≥
∑

i∈I∪K

mixi +
∑

j∈J∪L

mjxj + b.

By a case analysis on the sign of x̃i for each i:

∑

i∈I∪K

mixi +
∑

j∈J∪L

mjxj + b

≤
∑

i∈I

dmiexi +
∑

j∈J

bmjcxj +
∑

k∈K

bmkcxk +
∑

l∈L

dmlexl + b

Therefore,

∑

i∈I∪K

dmiexi +
∑

j∈J∪L

bmjcxj + b∗

≥
∑

i∈I

dmiexi +
∑

j∈J

bmjcxj +
∑

k∈K

bmkcxk +
∑

l∈L

dmlexl + b.

Collecting terms: b∗ ≥ b−
∑

k∈K err(mk)xk +
∑

l∈L err(ml)xl. Correctly round-
ing this results in the same hyperplane as constructed by the theorem. ut
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It remains to choose appropriate rounding directions for each variable. The next
theorem shows that the combination of tight class-1 univariate estimators gives
a tight class-1 multivariate estimator.

Theorem 9 (Optimality of Class-1 Safe Multivariate Overestimators).
A multivariate class-1 safe estimators derived using Theorem 7 by choosing op-
timal class-1 univariate safe estimators for each variable is an optimal class-1
multivariate safe estimator.

Proof. Consider the hyperplane:

H =
∑

i∈I∪K

dmiexi +
∑

j∈J∪L

bmjcxj + db −
∑

k∈K

err(mk)xk +
∑

l∈L

err(ml)xle (7)

where I = {i : xi ≥ 0}, J = {j : xj ≤ 0}, K = {k : 0 ∈ (xk, xk), |xk| < |xk|}
and L = {l : 0 ∈ (xl, xl), |xl| ≥ |xl|}. By theorem 7, H is safe. By theo-
rem 8, H is as tight as possible given the choices of dme and bmc defined
by the partition. Consider the error between a slightly tighter version of (7),
given by an unrounded intercept, and

∑n

i=1 mixi + b. The remaining error

(
∫ x1

x
1

dx1 · · ·
∫ xn

x
n

dxn

∑n

i=1 mixi +b−g) is constant over all 2n possible safe class-

1 overestimating hyperplanes. The error is defined by the natural extension of
definition 3 to higher dimensions:

E =

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn







∑

i∈I∪K

dmiexi +
∑

j∈J∪L

bmjcxj + b −
∑

k∈K

err(mk)xk

+
∑

l∈L

err(ml)xl −

(
n∑

i=1

mixi + b

)}

=

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn







∑

i∈I∪K

(dmie − mi)xi +
∑

j∈J∪L

(bmjc − mj)xj

−
∑

k∈K

err(mk)xk +
∑

l∈L

err(ml)xl

}

Using the integrals

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn 1 =

n∏

j=1

(xj − xj) = P

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn xi =
1

2
(x2

i − x2
i )
∏

j 6=i

(xj − xj)

=
1

2
(xi + xi)P
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the error is rewritten as:

E = P







∑

i∈I∪K

1

2
(dmie − mi)(xi + xi) +

∑

j∈J∪L

1

2
(bmjc − mj)(xi + xi)

−
∑

k∈K

err(mk)xk +
∑

l∈L

err(ml)xl

}

=
P

2







∑

i∈I

(dmie − mi)(xi + xi) +
∑

j∈J

(bmjc − mj)(xi + xi)

+
∑

k∈K

{(dmie − mi)xi + (2bmic − dmie − mi)xi} (8)

+
∑

l∈L

{(bmic − mi)xi + (2dmie − bmic − mi)xi}

}

Define the type of a variable as the set (one of I , J , K, or L) to which it belongs.
We show that another partition, {I ′, J ′, K ′, L′}, does not define a tighter
hyperplane, H ′. Since the error given by (8) is linear in the type of variable,
we can consider each variable independently. H and H ′ can differ in any of the
following four ways while remaining safe:

– A variable, xi, in set I can be moved to set L producing I ′ = I\{xi} and
L′ = L∪{xi}. This will add the term P ·err(ml)xl ≥ 0 to the error, thereby
increasing the total error. H remains tighter than H ′.

– A variable, xi, in set J can be moved to set K producing J ′ = J\{xi} and
K ′ = K ∪ {xi}. This will add the term −P · err(ml)xl ≥ 0 to the error,
thereby increasing the total error. H remains tighter than H ′.

– A variable, xi in set K can move to set L producing K ′ = K\{xi} and
L′ = L ∪ {xi}. The difference in error is:

P

2
{(bmic − mi)xi + (2dmie − bmic − mi)xi

− (dmie − mi)xi − (2bmic − dmie − mi)xi}

= P · err(m){xi + xi}

≥ 0 since the variable in K satisfies |x| > |x|.

Since the error increases with this change, H remains tighter than H ′.

– Likewise, a variable moving from set L to set K increases the error of the
overestimating hyperplane.

By the above arguments, the hyperplane defined by theorem 7 created by com-
bining tight safe class-1 univariate overestimators is the tightest class-1 overes-
timator for an n-variate function. ut
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5.2 Class-2 Safe Multivariate Linear Estimators

The definition of class-2 estimators for multivariate functions is a direct ex-
tension of those for univariate functions. Notice that for the linear fractional
term x/y, the overestimator (yx − xy + xy)/yy is a plane through the points
(x, y), (x, y), (x, y). As a result, a class-2 estimator can be defined at any of these
points. In general, a purely convex n-variate function will have a linear overes-
timator passing through at least n + 1 points (the secant hyperplane). A purely
concave function will have a linear overestimator passing through one point (the
tangent hyperplane). This information is used to define a safe overestimating
hyperplane:

Theorem 10 (Class 2 Safe Multivariate Overestimators). Let g be an
n-variate function with linear overestimator

∑n

i=1 mixi + b over [x1, x1] × · · · ×
[xn, xn] such that g(x̃1, . . . , x̃n) =

∑n

i=1 mix̃i + b where x̃i ∈ {xi, xi}. Let M =
{i|x̃i = xi} and N = {i|x̃i = xi}.

∑

i∈Mdmiexi+
∑

i∈Nbmicxi+dg(x̃1, . . . , x̃n)−
∑

i∈Mdmiexi −
∑

i∈Nbmicxie is a safe linear overestimator.

Proof. The proof follows the same format as for the proof of Theorem 7:

∑

i∈M

dmiexi +
∑

i∈N

bmicxi + dg(x̃1, . . . , x̃n) −
∑

i∈M

dmiexi −
∑

i∈N

bmicxie

≥
∑

i∈M

dmie(xi + si) +
∑

i∈N

bmic(xi − si)

+ g(x̃1, . . . , x̃n) −
∑

i∈M

dmiexi −
∑

i∈N

bmicxi, with si ≥ 0 ∀i

=
∑

i∈M

dmiesi −
∑

i∈N

bmicsi +

n∑

i=1

mix̃i + b

≥
∑

i∈M

misi −
∑

i∈N

misi +

n∑

i=1

mix̃i + b

=
∑

i∈M

mi(xi + si) +
∑

i∈N

mi(xi − si) + b

=

n∑

i=1

mixi + b.x

ut

Just as the univariate class-2 estimators were shown tighter than the class-1 esti-
mators, the multivariate class-2 estimators are tighter than their corresponding
class-1 multivariate estimators. The first result shows that an optimal class-1 es-
timator is always less tight than its corresponding class-2 estimator (if it exists).

Theorem 11 (Relative Tightness of Class 1 and 2 Safe Overestimat-
ing Hyperplanes). Let g be an n-variate function with linear overestimator
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∑n

i=1 mixi + b over [x1, x1] × · · · × [xn, xn]. Let g be such that g(x̃1, . . . , x̃n) =
∑n

i=1 mix̃i + b where x̃i ∈ {xi, xi}. Suppose that
∑

i∈Mdmiexi +
∑

i∈Nbmicxi +
db +

∑n

i=1 δie is the optimal class-1 estimator where M = {i|x̃i = xi} and
N = {i|x̃i = xi}. The corresponding class-2 estimator is tighter than the class-1
estimator (modulo rounding errors).

Proof. When the difference in error between the class-1 and class-2 estimators,
∆E is positive, the class-2 estimator is tighter. We calculate the difference in
error of the slightly tighter estimators:

∆E =

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn

{
∑

i∈M

dmiexi +
∑

i∈N

bmicxi + b +
n∑

i=1

δi

−

(
∑

i∈M

dmiexi +
∑

i∈N

bmicxi + g(x̃1, . . . , x̃n) −
∑

i∈M

dmiexi −
∑

i∈N

bmicxi

)}

=

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn

{
n∑

i=1

δi −

n∑

i=1

mix̃i +
∑

i∈M

dmiexi +
∑

i∈N

bmicxi

}

=

n∏

j=1

(xj − xj)

︸ ︷︷ ︸

=P≥0

{
n∑

i=1

δi +
∑

i∈M

(dmie − mi)xi −
∑

i∈N

(mi − bmic)xi

}

Let I = {i|xi ≥ 0}, J = {i|xi ≤ 0}, K = {i|0 ∈ (xi, xi), |xi| ≤ |xi|} and
L = {i|0 ∈ (xi, xi), |xi| > |xi|}. These sets partition {1, . . . , n} by the rules for
optimality of class-1 estimators.

n∆E = P

{
∑

i∈K

−err(mi)xi +
∑

i∈L

err(mi)xi

+
∑

i∈I∪K

(dmie − mi)xi −
∑

i∈J∪L

(mi − bmic)xi

}

Using the fact that
∑

i∈I∪K

(dmie − mi)xi ≥
∑

i∈I

(dmie − mi)xi +
∑

i∈K

err(mi)xi

and ∑

i∈J∪L

(mi − bmic)xi ≤
∑

i∈J

(mi − bmic)xi +
∑

i∈L

err(mi)xi

we get the following lower bound:

∆E ≥ P

{
∑

i∈I

(dmie − mi)xi −
∑

i∈J

(mi − bmic)xi

}

≥ 0

Therefore, the class-2 estimator is tighter. ut
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Theorem 15 in Appendix A compares an optimal class-1 estimator with a class-2
operator that is not its direct counterpart. Once again, it provides a reasonable
justification for preferring class-2 estimators in general.

6 Safe Linear Programs

There is one last issue that must be discussed when deriving a safe linear pro-
gram relaxing a global optimization problem: the fact that the coefficients in the
statement may be uncertain. Indeed, these coefficients may be given by intervals
or they may be given by expressions and/or textual representations which are
also subject to rounding errors when evaluated. As a consequence, the linear es-
timators described earlier generally produce a linear program whose coefficients
are intervals and the postprocessing suggested in [10] does not apply directly.

This section discusses how linear constraints with interval coefficients can
be safely approximated by linear constraints with floating-point coefficients. For
example, it shows how to approximate a constraint of the form

∑

[ai, ai] xi + b ≤ 0.

by a constraint
∑

ãi xi + b̃ ≤ 0.

where ãi and b̃ are floating-point numbers. Interestingly, this approximation can
be obtained by specializing the class-1 and class-2 estimators presented earlier.
In the following, we use IF to denote the set of intervals whose bounds are
floating-point numbers.3

Definition 5 (Safe Linear Programs). Let P be an interval linear program

min cT x
subject to

Ax ≤ b
x ∈ [x,x]

where A ∈ IF
m×n, b ∈ IF

m, and c ∈ IF
n. A safe linear program approximating

P is a linear program

min c̃T x + d̃
subject to

Ãx ≤ b̃
x ∈ [x,x]

3 Note that the estimators presented in this section naturally generalize to unbounded
intervals. However, we omit these here since the postprocessing step [10] requires
bounded intervals to correct the approximate solution given by commercial codes.
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where Ã ∈ F
m×n, b̃ ∈ F

m, c̃ ∈ F
m, and d̃ ∈ F satisfying

{x|Ax ≤ b,x ∈ [x,x]} ⊆ {x|Ãx ≤ b̃,x ∈ [x,x]}

and

∀x ∈ [x,x] : c̃T x + d̃ ≤ cT x

We now show that a safe linear program can be obtained without increasing the
number of variables and constraints. Since the program is linear, it is sufficient
to consider each variable’s interval coefficient independently. Figure 7 illustrates
the intuition underlying the most complicated case.

Fig. 7. Finding a safe linear representation.

Theorem 12 (Safe Linear Underestimators for Interval Linear Terms).
Let [a, a]x be a term appearing within an interval linear program and x ∈ [x, x].
We have

∀a ∈ [a, a] : ax ≥







ax x ≥ 0

ax x ≤ 0

ax + berr(a)xc x < 0

ax − berr(a)xc x > 0

mx + bax − mxc |x| < |x|, 0 ∈ [x, x]

mx + bax − mxc |x| ≥ |x|, 0 ∈ [x, x]
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where

m = max

(

a, b
ax − ax

x − x
c

)

and m = min

(

a, d
ax − ax

x − x
e

)

.

Proof. The first four cases are safe: they are class 1 estimators with m = a,
m = a and b = 0. The last two cases are safe: they are class 2 estimators with
m = ax−ax

x−x
(the slope of the line joining (x, ax) and (x, ax). The selection rule

for the last two cases comes from the theorems on class 2 estimators. ut

Theorem 13 (Tightness of Linear Underestimators for Interval Terms).
Theorem 12 provides the tightest possible safe linear program without the addition
of new variables.

Proof. The first two cases are trivially the tightest possible. Consider the tight-
ness of the final two cases. The safe estimating line depicted in Figure 7 is the
tightest possible. When bax−ax

x−x
c > a (resp. dax−ax

x−x
e < a) the fifth (resp. sixth)

case is necessarily tighter than the third (fourth). When m = a (resp. m = a),
the fifth (sixth) case reduces to the third (fourth) case. ut

A safe linear program can thus be obtained easily by safely approximating
each interval linear term independently in the constraints and the objective
function. Of course, the constants generated during this process must be collected
and rounded down as added in order to maintain safety.

7 Conclusion

Global optimization problems are often approached by branch and bound algo-
rithms which use linear relaxations of the nonlinear constraints computed from
the current variable bounds at each node of the search tree. This paper considered
the problem of obtaining safe linear relaxations which are guaranteed to enclose
the solutions of the nonlinear problem. It contains three main contributions.
First, it studied two classes of linear estimators for univariate functions. The
first class of estimators generalizes the results in [9] from quadratic to arbitrary
functions, while the second class is entirely novel. Theoretical and numerical re-
sults indicated that class-2 estimators, when they apply, are tighter than class-1
estimators. Second, the paper generalized the univariate results to multivariate
functions and indicated how to derive estimators for multivariate functions by
combining univariate estimators derived for each variable independently. More-
over, it showed that the combination of tight class-1 safe univariate estimators
is a tight class-1 safe multivariate estimators and class-2 safe multivariate es-
timators are tighter than their corresponding optimal class-1 safe multivariate
estimators. Finally, the paper showed how to safely approximate linear programs
with interval coefficients.

In conjunction with the safe bounds on the linear relaxations derived in
[10, 4], these results provide a comprehensive framework to derive safe linear
estimators for global optimization problems, laying the theoretical foundation
for rigorous results of branch and bound approaches to global optimization based
on linear programming.
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A Additional Tightness Results

For completeness, we compare the class-2 safe linear overestimator dmex+dg(x)−
dmexe with the class-1 estimators that uses m∗ = bmc. This result is not useful
in practice when the class-2 operator using bmc is available (which is always
the case for secant lines for instance). In this case, one should choose the other
class-2 estimator which is guaranteed to be tighter theoretically. However, the
result sheds some light on the relationships between the two classes of estimators
and indicate that, in general, class-2 estimators should be preferred.

Theorem 14 (Relative Tightness of Class 1 and Class 2 Safe Linear
Overestimators). Let g be a univariate function with linear overestimator mx+
b over [x, x] such that g(x) = mx + b. The class-2 estimator (dmex + dg(x) −
dmexe) is often tighter than the optimal (using the rules given in Theorems 3
and 4) class-1 estimator when |x| ≤ |x| (modulo rounding errors).

Proof. Again we prove the result modulo rounding errors. Consider the difference
in error (given by definition 3) ∆E between the class-1 estimator bmcx + db +
err(m)xe when |x| ≥ |x| and 0 ∈ (x, x) (the conditions for optimality of this
estimator) and the class-2 estimator. The class-2 estimator is tighter when ∆E >
0. We consider the difference in error between the slightly tighter estimators:

∆E =

∫ x

x

bmcx + b + err(m)x − (dmex + g(x) − dmex)dx

= −
1

2
err(m)(x2 − x2) + (err(m)x + (dme − m)x)(x − x)

= (x − x)

{
1

2
err(m)(x − x) + (dme − m)x

}

The above is positive when

1

2
err(m)(x − x) + (dme − m)x ≥ 0

or, alternatively, when

dme − m

err(m)
≤

|x| + |x|

2|x|
∈ [0.5, 1],

where the final range is given by the range for x: [0, |x|].

Assuming that m is uniformly distributed in [bmc, dme], the class-2 estimator
is expected to be tighter in at least 50% of the cases and the percentage tends
to 100% as x → |x|. ut

The result generalizes to the multivariate case and suggests that, in general,
class-2 estimators should be preferred.
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Theorem 15 (Relative Tightness of Class 1 and 2 Safe Overestimat-
ing Hyperplanes). Let g be an n-variate function with linear overestimator
∑n

i=1 mixi+b over [x1, x1]×· · ·×[xn, xn] such that g(x̃1, . . . , x̃n) =
∑n

i=1 mix̃i+b
where x̃i ∈ {xi, xi}. The corresponding class-2 estimator is often tighter than the
optimal class-1 estimator.

Proof. The optimal class-1 estimator is:

n∑

i=1

m∗
i xi + db +

n∑

i=1

δ∗i e, m∗
i ∈ {dme, bmc}

The class-2 estimator in consideration is:

n∑

i=1

m̃ixi + dg(x̃1, . . . , x̃n) −

n∑

i=1

m̃ix̃ie, m̃i =

{
dme if x̃i = xi,
bmc if x̃i = xi.

Consider the difference in error, ∆E, between the slightly tighter estimators:

∆E =

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn

{
n∑

i=1

m∗
i xi + b +

n∑

i=1

δ∗i

−

(
n∑

i=1

m̃ixi + g(x̃1, . . . , x̃n) −

n∑

i=1

m̃ix̃i

)}

=

∫ x1

x
1

dx1 · · ·

∫ xn

x
n

dxn

{
n∑

i=1

(m∗
i − m̃i)xi + δ∗i − (mi − m̃i)x̃i

}

=

n∏

j=1

(xj − xj)

︸ ︷︷ ︸

=P≥0

n∑

i=1

1

2
(m∗

i − m̃i)(xi + xi) + δ∗i − (mi − m̃i)x̃i

The class-2 estimator is tighter when ∆E ≥ 0. First define the following sets
which partition {1, . . . , n} for the optimal class-1 estimator: I = {i|xi ≥ 0},
J = {i|xi ≤ 0}, K = {i|0 ∈ (xi, xi), |xi| ≤ |xi|} and L = {i|0 ∈ (xi, xi), |xi| >
|xi|}. Also define a partition for the class-2 estimators: M = {i|x̃i = xi} and
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N = {i|x̃i = xi}. The difference in error becomes:

∆E = P







∑

i∈(I∪K)∩M

1

2
err(mi)(xi + xi) −

∑

i∈(J∪L)∩N

1

2
err(mi)(xi + xi)

−
∑

i∈K

err(mi)xi +
∑

i∈L

err(mi)xi

−
∑

i∈M

(mi − bmic)xi +
∑

i∈N

(dmie − mi)xi

}

= P







∑

i∈((I∪K)∩M)∪((J∪L)∩N)

1

2
err(mi)(|xi| + |xi|)

−
∑

i∈K∩N

err(mi)xi +
∑

i∈L∩M

err(mi)xi

−
∑

i∈M

(mi − bmic)xi +
∑

i∈N

(dmie − mi)xi

}

We now use the assumptions that:

1

2
err(mi)(|xi| + |xi|) ≥ |xi|(mi − bmic), i ∈ M

1

2
err(mi)(|xi| + |xi|) ≥ |xi|(dmie − mi), i ∈ N

These assumptions appear in the proof of Theorem 14 and the corresponding
theorem for g(x) = mx + b. The assumptions, as argued in Theorem 14, hold
more often as |xi| → |xi| when i ∈ N and as |xi| → |xi| when i ∈ M . Using
these assumptions, we find that:

∆E ≥ P

{
∑

i∈L∩M

err(mi)xi −
∑

i∈K∩N

err(mi)xi

−
∑

i∈(J∪L)∩M

(mi − bmic)xi +
∑

i∈(I∪K)∩N

(dmie − mi)xi







= P

{
∑

i∈L∩M

(dmie − mi)xi +
∑

i∈J∩M

(bmic − mi)xi

+
∑

i∈K∩N

(bmic − mi)xi +
∑

i∈I∩N

(dmie − mi)xi

}

Upon further analysis, we find that ∆E ≥ 0. The class-2 estimator is tighter
than the optimal class-1 estimator when the above assumptions hold. Since these
conditions are biased to be met more often than not, the class-2 estimator is often
the tightest estimator. ut


