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1. INTRODUCTION

This paper describes a design methodology which ex-
tends the basic pole placement method to discrete-
time systems with parametric uncertainties. Pole place-
ment controller design is a well known technique to
control LTI systems. This method is intuitive and sim-
ple to use and can be equally well applied to both con-
tinuous as well as discrete-time systems (Ackermann,
1993). The basic idea behind it is the design of state
feedback such that all poles of the closed-loop system
assume prescribed values. The success of the pole-
placement design is strongly dependent on the avail-
ability of an accurate model of the system under study.
As modeling is a well-known bottleneck, there is a
strong demand for robust pole-placement design that
can take model uncertainty into account, while satis-
fying the closed-loop stability and performance spec-

1 To whom all the correspondence should be sent.

ifications. Model uncertainty can be generally classi-
fied into two different types: parametric uncertainty,
which represents imprecision of parameters within the
model, and unstructured uncertainty, which represents
unmodeled dynamics. In this paper the former one will
be considered by assuming that each uncertain param-
eter is allowed to vary within some known bounds.

There is quite a rich range of literature on pole place-
ment for uncertain systems; see (Söylemez, 1999) for
a recent review of the developments for continuous-
time systems. Not included in this review, but worth
mentioning, are the contributions of Evans and Xianya
(1985), Soh et al. (1987), Soh (1989) and Garcia et
al. (1996) who give procedures for robust pole as-
signment in the presence of known but bounded pa-
rameter variations in the plant. Keel et al. (1988) and
Solak and Peng (1995) study how the pole placement
controller affects the robust stability of the resulting
closed-loop system. In (Keel et al., 1988), an iterative



procedure is also given for adjusting the parameters
of the controller so that robustness requirements are
met. With regard to discrete-time systems, on the other
hand, the number of notable references is not very
high. The technique described by Solak (1994) aims at
determining a pole placement controller such that the
real stability radius of the closed-loop characteristic
polynomial is maximized. Halpern et al. (1995) con-
sider systems with norm-bounded parametric uncer-
tainties and describe how to design overparametrized
pole assignment controllers in order to reduce the ef-
fect of uncertainties on the closed-loop characteris-
tic polynomial. Given a system with both structured
and unstructured uncertainties, the problem of placing
its poles into the smallest possible circular region is
dealt with in (Kim et al., 1996). Finally, the results of
(Soh et al., 1987; Garcia et al., 1996) apply to both
continuous-time and discrete-time systems.

The common shortcoming of the works cited above is
that the important and non-trivial task of pairing the
nominal closed-loop poles with their perturbed coun-
terparts is not treated. The only serious attempt in this
direction appears to have been made by Söylemez and
Munro (1997) by introducing a concept called pole
coloring which relies on global optimization tech-
niques in order to obtain a pole assignment controller
that achieves the pairing between nominal and per-
turbed closed-loop poles and thus allows for a thor-
ough assessment of robust performance in addition to
robust stability. The novelty of the present paper is the
use of a simplified and slightly modified version of
this concept for discrete-time systems. The proposed
control scheme has been successfully applied to real-
time control of a laboratory-scale helicopter system.

The rest of the paper is organized as follows. In
Section 2 background information on pole placement
control of discrete-time systems is given. Section 3
presents the methodology employed to design a ro-
bust pole placement controller with the pole coloring
concept. Experimental real-time results are presented
in Section 4. Finally, some conclusions are drawn in
Section 5.

2. STANDARD POLE PLACEMENT
CONTROLLER DESIGN

Consider a completely controllable and observable
MIMO dynamic process with m inputs, n states and
m outputs, described by the following linear discrete-
time nominal model:

Mo :
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) (1)

The standard pole placement design method addresses
the problem of driving the states of the system to zero.
If, on the other hand, the objective is to make the states
and the outputs of the system follow desired trajecto-
ries, then the pole placement controller needs to be

augmented by extra dynamics. Unless the plant has an
integrating property, these extra dynamics are usually
chosen to be one or two integrators so that steady-
state errors can be eliminated. This paper addresses
the latter of the above two problems by designing
a unity feedback control scheme whose feedforward
path consists of an integrator connected in series with
the plant which has a pole placement controller around
it. A detailed formulation of such a control scheme as
a pole placement problem can be found, for instance,
in (Ogata, 1987). The resulting closed-loop system is
given by:

xc(k + 1) = Acxc(k) + Bcr(k + 1) (2)

y(k) = Ccxc(k) (3)

where r(k) is the reference input vector, y(k) is the
output vector of the plant, xc(k) = [x(k) u(k)]T is
the closed-loop state vector, and:

Ac =

[
A B

K2(Im − A) − K1CA Im − (K2 + K1C)B

]
(4)

Bc = [0n×m K1]
T (5)

Cc = [C 0m] (6)

with K2 being the m×n pole placement matrix and
K1 the m×m integrator gain matrix, corresponding to
the best overall system state-feedback matrices com-
puted from:

[
K2

... K1

]
=

[
K̂ +

[
0

... Im

]] [
A − In B
CA CB

]−1

(7)

with K̂ being the solution of the pole placement
technique according to the Ackermann’s formula
(Ackermann, 1993), obtained once the desired closed-
loop poles are specified.

3. ROBUST POLE PLACEMENT CONTROLLER
DESIGN

If the entries of matrices (A,B) of the nominal model
Mo are uncertain, then K1 and K2 need to be deter-
mined such that perturbations in the closed-loop poles
as a result of the uncertainties do not violate the design
specifications. This study considers parametric model
uncertainties with the following model description:

Mp :
{

x(k + 1) = A(p)x(k) + B(p)u(k)
y(k) = Cx(k) (8)

with p = [p1 p2 . . . pl]T being the vector containing
the uncertain system parameters, where pj ∈ [p−j ; p+

j ],
for j = 1, . . . , l, with p−j and p+

j being independent
known bounds. As mentioned in Section 1, a vast array
of techniques is available for robust pole placement
design of such a type of systems in the continuous-
time domain, most of them relying on the concept of
pole region assignment by relaxation of the nominal



closed-loop specifications. By defining an admissible
region Γ for the location of the perturbed poles, it is
possible, under certain conditions, to design a fixed
feedback gain controller that guarantees simultaneous
Γ-stabilization for a family of plant models. This idea
may be further extended to consider the combination
of several performance requirements as well, for in-
stance, constraints on the rise time, settling time, over-
shoot, and so on. The immediate disadvantage of this
procedure is that there is no direct assessment of the
robust performance in the controller design. In view
of this, Söylemez and Munro (1997) introduced the
concept of pole coloring which will be adopted in
this paper. The main idea is to consider the pairing
between the nominal and perturbed closed-loop poles
when computing the feedback gains, through the min-
imization of a cost function of the form:

Ja = min
q=1,...,n!

(
max

i=1,...,n
fi

)
(9)

for all possible uncertain plant models Mp. Here, n
is the order of the closed-loop system, and each fi is
a robustness assessment function which increases as a
perturbed closed-loop pole λp

i moves away from the
nominal closed-loop pole λo

i with which it is paired.
Given n λo

i and as many λp
i , there are n! possible

permutations for pairing them, and the minimization
in (9) aims to choose the best one. The natural way
to define fi is to consider the perturbed poles to stay
in disks centered around the nominal poles, so the
following index can be used:

fi = |λo
i − λp

i | (10)

Note that as the distance between the λo
i and the as-

sociated λp
i reduces, the perturbed closed-loop sys-

tem looks more like the nominal one. The power of
this idea is reinforced by the combination in index fi

of all the above mentioned closed-loop performance
specifications, which can be nicely achieved through
a suitable normalization of each individual cost func-
tions (Söylemez and Munro, 1997). Furthermore, it
is possible in this way to consider dominant poles to
stay in smaller disks and allow the far left poles of the
complex plane to live in larger disks. While such mea-
sures have obvious significance for the continuous-
time domain, there seems to be no immediate way of
rewriting them in the z-plane. This fact stems from the
evidence that a disk in the s-plane is not reproduced
equally in the z-plane due to the nonlinearity involved
in the transformation. Besides, some of the most in-
tuitive performance specifications in the s-plane are
lost when transposed to the discrete-time domain, for
instance: constant real part lines in the s-plane are
mapped into circles centered at z = 0 in the z-plane;
constant damping lines in the s-plane are mapped into
logarithmic spirals in the z-plane.

For most practical situations, this problem can be
reasonably well circumvented by approximating such
a spiral by a circle whose center coordinates (xc, 0)
and radius r fulfill the relation:

xc(1 − xc) = αr(1 − r) (11)

with α being an arbitrary constant less than unity
(Ackermann, 1993). Figure 1 is an illustration of this
idea taken from a recent study (Impram et al., 2001). It
depicts the ζ = 0.2 spiral and the circle with (0.17, 0),
r = 0.75 and α = 0.75. Note that only a small region
around z = 1 is left out by this approximation which
actually has an implicit advantage; it puts an upper
bound on the settling time ts (see the circle drawn in
dashed lines which corresponds to ts ≈ 2.38 sec).
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Fig. 1. The unit circle (solid line), the ts ≈ 2.38 sec

circle (dashed line), the ζ = 0.2 spiral (solid
line), and the circle (dotted line) approximating
the latter.

Having determined the desired region for the closed-
loop poles, it is worth pointing out that if the objective
is merely to put the λp

i inside this region, then this can
be achieved by choosing a pole placement controller
such that the cost function:

Jb = max
i=1,...,n

|λp
i − xc| (12)

satisfies Jb < r for all possible uncertain plant mod-
els, Mp. However, since the aim here is also to pair
the λp

i with the λo
i , a more sophisticated cost function

is defined as:

J = max
Mp




Ja , if r > max
i=1,...,n

|λp
i − xc|

Jb , if r < max
i=1,...,n

|λp
i − xc| (13)

where Ja is the same as in (9) with the fi as given in
(10), and Jb is as defined above in (12).

It is obvious that the above cost function is not an-
alytically differentiable. Furthermore, it is, in gen-
eral, multi-modal and hence it is not possible to
use gradient-based optimization algorithms. There-
fore, genetic algorithms (Goldberg, 1989) will be em-
ployed in this paper as a search mechanism to locate
the global minimum of (13).

4. EXPERIMENTAL RESULTS

A ‘helicopter’ laboratory setup was used to experi-
mentally validate the proposed control technique. The



setup consists of a beam attached to a fixed pole such
that it can freely rotate in the horizontal and vertical
planes. At both ends of the beam, DC motors with pro-
pellers are mounted. One propeller is used to control
the vertical angle (pitch), the other one the horizontal
angle (yaw), see Figure 2. The objective is to control
the motors such that attitude of the beam follows a
specified reference trajectory.

pitch

yaw

u1

u2

Fig. 2. The helicopter setup.

This system has two control inputs, u1 and u2, which
are the voltages applied to the motors to control the
yaw and the pitch, respectively. These inputs are com-
manded through a D/A card from a computer. There
are four measured outputs: the two angles of the beam
(yaw and pitch, in radians) and the angular veloc-
ities of the two propellers. To evaluate the robust
pole placement controller, only the pitch controller is
considered, by setting u1 equal to zero. A linearized
model was derived from the nonlinear model equa-
tions based on elementary physical insight. In the
pitch plane, the beam is basically a physical pendulum
which, when excited, exhibits poorly damped oscil-
lations around its stable equilibrium. This is because
the axis of rotation is above the center of gravity. The
motor is modeled as a first-order linear system and the
force generated by the propeller is proportional to the
propeller’s angular velocity ω:

τ ω̇ + ω = K1u2 (14)

α̈ + bα̇ + K2 sinα = K3ω (15)

with α being the beam’s angular position (pitch), τ
being the time constant of the motor (including the
propeller), K1 the gain from the control signal to the
propeller’s velocity, b the damping (viscous friction)
of the beam’s motion, K2 a constant related to the
influence of the gravity force and K3 the gain from
the propeller’s velocity to the angular acceleration of
the beam.

These parameters were identified from input–output
data measured on the system with a sampling period
of 0.1 sec. Six data sets were recorded for different
ranges of the pitch angle, yielding a family of six
different discrete-time plants whose step responses
are shown in Figure 3. It is clear that the system
exhibits different damping and stationary gain through
its domain of operation, which confirms its nonlinear
dynamic characteristics. In the sequel these 6 models
will be considered sufficient to describe the entire
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Fig. 3. Step responses from the six identified models.

operating envelope of the system, and therefore will
be used to design a robust pole placement controller.

The nominal closed loop poles, λo
i , were chosen to

be {0, 0.5743 ± j0.1247, 0.926 ± j0.093}. This
choice gives the rise time of 1.55 sec and the damping
ratio ζ of about 0.58 which corresponds to about
10% overshoot, the settling time of approximately
5.15 sec and a dead-time of one sampling period.
The dead-time is due to the implementation of the
real-time controller (using the Real-Time Toolbox of
MATLAB) and is thus regarded as a pure delay in the
system’s input. Besides, notice that the pair {0.926 ±
j0.093} is much more dominant than the other poles.
Given that there is parametric uncertainty in the plant,
it would be quite unrealistic to think that the perturbed
closed-loop system can be made to have the above
performance characteristics. Therefore, the procedure
described in Section 3 is here applied, by first defining
the center coordinates and the radius of the circle that
best approximates the constant damping line, ζ =0.58,
in the z-plane.
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Fig. 4. The unit circle, the ζ =0.58 spiral (solid line),
the nominal closed-loop poles (�) and two ap-
proximating circles with center coordinates xc =
0.47 and xc = 0.4 with radius r1 = 0.48 and
r2 = 0.55, respectively (dashed lines).

Figure 4 shows two possibilities that clearly reflect the
dilemma involved in this choice: in order to encircle
all the nominal closed-loop poles while providing



the best damping line approximation, the circle with
the smallest radius should be adopted. In this case,
however, a valid region in the z-plane is left out
from the circle. This should not be a major concern,
however, since it is expected from the optimization
index defined in (13) that the pairing of the nominal
with the perturbed poles will occur as soon as all
perturbed poles are inside the circle. Simulations as
well as experimental results have indeed shown that
the choice for the r1 radius circle resulted in the best
control performance.

The parameters of the genetic algorithm were set as
follows: 10-bit binary encoding in a population size
of 100 individuals, with a crossover rate of 0.9 and
a mutation rate of 0.007. Reproduction is performed
by stochastic universal sampling and a generation
gap of 0.7. Finally, the values of J corresponding to
each member of the population were converted into
a fitness value through σ-scaling in order to prevent
premature convergence. After a series of computer
runs, the minimum of (13) is attained at 0.3628 for the
approximating circle with radius r1. Figure 5 shows
the convergence of the optimization algorithm up to
this point.
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Fig. 5. Convergence of the genetic algorithm.

The corresponding location of the perturbed poles
is shown in Figure 6. In this plot one can see the
clusters of perturbed poles around the dominant poles
0.926±j0.093, giving a clear image of the pole pairing
concept.

The corresponding unitary step responses of the
closed-loop system are shown in Figure 7. From this
plot, it is observed that the rise time is between 1.8
and 2.1 sec, the overshoot has a maximum of 8.22%,
while the settling time is in the worst case of 6.2 sec. In
view of this, it can be concluded that, besides the rise-
time, generally all the other nominal design specifica-
tions are reasonably well satisfied. Moreover, from the
comparison with the original open-loop step responses
previously shown in Figure 3, one may conclude that
the robust pole placement controller provided an over-
all reduction on the system’s uncertain behaviour.
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Fig. 6. Perturbed (•) and nominal (�) poles of the
closed-loop system for the approximating circle
with radius r1 (dashed line).
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Fig. 7. Step responses of the nominal (dashed line) and
perturbed (solid lines) closed-loop system.

The experimental results show a comparison between
the performance of a standard pole placement con-
troller (Section 2) and the robust pole placement con-
troller (Section 3). The standard controller is based on
a nominal model obtained as the average of the six
identified models. The results are shown in Figures 8
and 9, respectively.

The gains found for the standard pole placement con-
troller were K1 = 1.54 for the integrator gain, and
K2 = [16.30, 15.77, 1.68, 0.68] for the state vector
x(k) = [α(k), α̇(k), ω(k), u2(k − 1)] feedback gains.
It can be seen from Figure 8 a high activity in the con-
trol action. Besides, the overall closed-loop tracking
performance exhibits large overshoots while steady-
state errors are often visible.

In contrast, the robust pole placement controller re-
sulted in K1 = 0.88 for the integrator gain, and
K2 = [11.83, 10.65, 1.27, 0.49] for the state vec-
tor feedback gains, which are considerably smaller
than the ones obtained from the standard pole place-
ment design. This has a positive impact in reducing
the control action activity as can be seen in Fig-
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Fig. 8. Control performance of the standard pole
placement controller.
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Fig. 9. Control performance of the robust pole place-
ment controller.

ure 9, while providing a more robust controller de-
sign. Moreover, a reasonable tracking performance
could now be achieved, with small overshoots and
very small steady-state error. Note that the noisy be-
havior observed for positive setpoint values is due to a
peculiar noise characteristic of the pitch angle sensor.

5. CONCLUSIONS

This paper presented a robust pole-placement design
technique for discrete-time systems with uncertain
parameters. The controller design makes use of the
concept of pole pairing to compute the controller co-
efficients by means of the minimization of an appro-
priately defined objective function. For this purpose,
genetic algorithms have been employed as the op-
timization technique. Experimental real-time results
are presented for a laboratory-scale helicopter sys-
tem, showing the effectiveness and potential of this
approach in comparison with the standard pole place-
ment controller.
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