Quality Assurance and Global Optimization

Michael R. Bussieck!, Arne Stolbjerg Drud?, Alexander Meeraus', and Armin
Pruessner!

1 GAMS Development Corp., 1217 Potomac Street, NW
Washington, DC 20007, USA
{MBussieck, AMeeraus, APruessner}@gams.com
http://www.gams.com
2 ARKI Consulting & Development A/S, Bagsvaerdvej 246 A
2880 Bagsvaerd, Denmark ADrud@arki .dk
http://www.conopt.com

Abstract. GAMS Development and ARKI Consulting use Quality As-
surance (QA) as an integral part of their software development and soft-
ware publishing process. Research and development in the global opti-
mization area has resulted in promising implementations. Initiated by
customer demand, we have been adding three different global codes,
BARON, LGO, and OQNLP, to our portfolio of nonlinear optimization
solvers. As part of our QA effort towards the integration and testing of
these new global solvers an open architecture for reliability and perfor-
mance testing of mixed-integer nonlinear optimization codes has been
released. This open testing framework has been placed in the public do-
main (www.gamsworld.org) to serve our customers, and researchers in
general, by making reproducible tests a practical proposition. We give
examples illustrating the quality assurance process for obtaining perfor-
mance results for local and global nonlinear and mixed-integer nonlinear
programming solvers, using the existing framework tools described in
this article.

1 Introduction

The research and development efforts in the area of global (nonlinear) opti-
mization codes have increased significantly in recent years, and a number of
large-scale implementations have been successfully deployed in specialized re-
search environments. To make these systems more widely available to users of
optimization system, the global solvers need to be integrated into a modeling
system that manages problem formulation and guides the solution process. In
this paper we report on the quality assurance aspects of transforming a research
product into a reliable commercial product. When introducing new solver tech-
nology into the marketplace, there are additional difficulties besides technical
problems, due to the inherent risk to the customer using commercially unproven
technology. Furthermore, the potential failure of a single global optimization
code today can reduce the confidence level in future global optimization solvers.

2 M. R. Bussieck et al.

This risk is comparable to the introduction of mixed-integer linear (MIP) solvers
in the 1960s and 1970s.

To address some of the problems associated with introducing a new technol-
ogy into a mature modeling environment, we have decided to share our internal
quality assurance tools and make them available to everyone. Quality Assur-
ance (QA), the process of assuring the quality of one organization’s outcome,
is in our case means to assure our customers of reliable, state-of-the-art tech-
nology. Although QA has become an essential component in most industrial
and commercial undertakings, however, it has been more or less ignored by the
Mathematical Programming (MP) community. This should not come as a sur-
prise, since the main market for MP is the academic literature. Running the risk
(again) of annoying some our colleagues, we would like to draw some historical
analogies.

We, the optimization modelers, are in a transition from a slow and inefficient
cottage industry, similar to manufacturing just prior to the Industrial Revolu-
tion. Lone experts during this period painstakingly manufactured hand-tooled,
customized items. We are now transitioning to an industrial, customer-driven en-
vironment with standards, interchangeable parts, and low-cost, highly-reliable
components. This transition is typical for engineering and problem solving, ac-
tivities trying to maximize the use of existing parts and components and break-
ing larger problems into smaller, more tractable items. Standards are essential
to increase the reliability and effectiveness of our products. Customers demand
quality, which is itself a fuzzy concept (a bit like beauty being in the eye of the
beholder). Quality Management and Standards have developed into an indus-
try by itself, and ISO 9000, the International Standard Organization’s Quality
Management System Standard, has become the mainstay of many industries.

Another way to look at this positive development is the shift of the central
theme in practical modeling. The first phase was dominated by algorithmic is-
sues. Problem representations were defined by algorithms, and performance test-
ing focused on detailed algorithmic issues. A good example is the seminal paper
by Crowder, Dembo and Mulvey [3] on computational experiments. The second
phase is dominated by data and model representation issues. This phase has re-
sulted in a number of algebra-based modeling systems pioneered by LINDO [18],
GAMS [1] and AMPL [7] (in that chronological order). We are now transitioning
into a third phase dominated by real-life problem solving. There has been a per-
manent shift from a scientific, supply-driven regime into a market-oriented, user
demand-driven business environment. In this environment, quality has become
a central issue, as in any other industry.

In this paper we discuss some of the elements of an effective QA framework.
In §2 we give a brief overview of the history of the GAMS modeling language and
discuss the technical principles of modeling languages. We also discuss general
global optimization and some issues associated with the quality assurance of
global solvers. In §3 we describe the necessary tools for effective quality assurance
testing, and in §4 we stress the importance of open testing architectures. In §5

Quality Assurance and Global Optimization 3

we give examples implementing the framework we have described, and finally,
in §6, we draw conclusions.

2 DModeling Languages and Global Optimization Codes

The use of modeling languages has greatly simplified the solution of large-scale
practical problems, both in academia and in industry. Because of its large and
wide-ranging client base, GAMS has a deep impact on nonlinear programming
(NLP) solver technology, and thus a responsibility for providing high quality and
reliable commercial (local and global) NLP solvers.

In this section we describe some of the principles of modeling languages and
some issues specific to global optimization codes which need to be addressed by
any effective quality assurance framework.

2.1 Basic Technical Principles

Throughout the evolution as a company, GAMS has adhered to three basic
technical principles:

Separation of model and solution methods: Separating the model from
the various solution methods incorporated within that model ensures that
the user is not locked into any particular method, and can switch rapidly
between models at no additional cost. For example, users can seamlessly
switch local and global solvers. This separation of model and solution method
is now accepted as a standard approach to general modeling.

Computing platform independence: Platform independence ensures imme-
diate application on any user’s configuration, and eliminates conversion costs.
Although most modeling systems in the commercial world are on the Win-
dows platform, customer decisions are often influenced by availability across
platforms.

Multiple solvers, platforms, and model types: To create the most flexi-
ble general model, GAMS’ software incorporates solvers available from both
the academic and the commercial worlds. Multiple solver, platform, and
model type flexibility enables the user to tackle problems involving lin-
ear programs (LP), MIP, NLP, mixed-integer nonlinear programs (MINLP),
mixed complementarity problems (MCP), mathematical programs with equi-
librium constraints (MPEC), stochastic programming, and models written
in MPSGE, a language for solving computable general equilibrium(CGE)
models.

2.2 Global Optimization Principles

Most practical models involving nonlinearities are developed in a modeling lan-
guage, and most NLP and MINLP solvers are linked to a modeling system. In our
modeling system, GAMS, we try to improve the reliability of NLP modeling and

4 M. R. Bussieck et al.

thereby reduce the risk for our customers by offering a portfolio of NLP solvers
(BARON, CONOPT, LGO, MINOS, MOSEK, OQNLP, PATHNLP, SNOPT -
see [8] and the references therein) implementing a variety of different algorithms
(interior point, GRG, SLP, SQP). This approach improves the probability of
solving our customers’ models.

Solving MINLP problems involves the sequential solution of a large number
of NLP sub-problems (either in a branch-and-bound, extended cutting plane,
or outer approximation algorithm), which increases the chance of failure of the
overall algorithm. Our MINLP solvers DICOPT and SBB have been built around
this chance of failure. By enabling these solvers to access any NLP sub-solver in
our portfolio we effectively minimize the chance of failure. The use of a multi-
solver architecture helps in cases of solver failure, and overcomes the weakness
inherent in local optimization codes (local solutions, in particular local infeasi-
bility). Nonlinear modelers have coped with this weakness by providing good
starting points, and have implemented their own multi-start methods (usually
with random points) at a modeling language level.

The incentive structure for developers of global optimization algorithms such
as BARON [19], LGO [17], and OQNLP [20] in the academic environment is very
different from that faced in a commercial setting. Algorithms in the academic
world are operated in expert mode by the developers themselves, and are of-
ten highly specialized to meet the requirements of an abstract problem class.
Commercial solvers, however, are deployed by users who have no interest in the
algorithm itself but want to solve their business problem by using the algorithm
in a black box mode. Instead of delivering extraordinary performance requiring
substantial use of specific options or code tweaking, a commercial solver has to
work reliably with decent performance in all cases using default settings. In case
of algorithmic failure, the solver has to terminate gracefully and issue suggestions
on how to overcome the failure.

Since its introduction, the GAMS system has provided nonlinear modeling
to a wide audience of academic and commercial users. Global solvers can be
almost seamlessly integrated into the portfolio of nonlinear solvers, offering a new
service to our customers and opening a new market to global solver providers.
The risk for our customers of investing in new solver technology can be reduced
by providing access to quality assurance results for global solvers and a plug-
compatible interface that allows painless transition from local solvers to global
ones.

Global Optimization Specific Issues Global optimization requires special
attention to several specific issues. These issues include:

Termination criteria: While the termination criteria for local solvers is con-
cise (satisfying the Karush-Kuhn Tucker conditions), the stopping criteria for
global codes is ambiguous. Mutli-start methods use different starting points
to converge to different local optima, thereby maximizing the probability
that one of the local solutions is indeed the global optima. Unfortunately,

Quality Assurance and Global Optimization 5

the algorithm cannot determine precisely if a current local optima is the
global optima.

Problem bounds: Global solvers generally require modification of the original
problem. In particular, global solvers can usually only guarantee global opti-
mality if the problem is bounded for both variables and expressions (bound-
ing box principle).

Limited algebra: Some global optimization solvers do not support all func-
tions. In particular, many global solvers cannot handle black-box-type func-
tions, where only function evaluations are returned. In particular, many re-
quire detailed knowledge of the algebra involved in the function itself.

Solution quality metrics: While for linear and local nonlinear solvers robust-
ness and efficiency metrics are sufficient in characterizing solver performance
and assure quality, for global optimization solvers quality of solution is an-
other descriptive metric of performance. When analyzing global solver per-
formance, higher solution quality is often obtained at a cost of efficiency.
Thus, users should consider if feasibility of the (local) solution and efficiency
or global optimality at a cost of efficiency is the primary criteria.

2.3 Quality Assurance

Although reproducibility of test results has been accepted as a critical step in
most scientific fields, computational results in our field can rarely be reproduced.
Limited access to test cases, non-reproducible methods for collecting results, and
non-standard analysis tools seem to prevent the low-cost replication of such re-
sults by an independent auditor. Based on our experience, we rank the replica-
tion of quality assurance results as the most critical factor for establishing a new
solver technology in the commercial world.

In the next section we discuss the necessary components for an effective
quality assurance framework.

3 Effective Quality Assurance Testing

The key ingredients for effective testing are diverse test cases, efficient data
collection tools, and automated data analysis tools.

The choice of test problems for benchmarks is difficult and inherently sub-
jective. While there is no consensus on choosing appropriate models, the use
of standard model libraries is important to ensure that testing is performed
with a wide selection of models from diverse application areas. Consider that a
particular solver may be fine-tuned for specific applications. The use of diverse
standard model libraries reduces the risk of bias if a solver is fine-tuned for a
specific family of models and allows more objective cross-comparisons of various
solvers.

Most optimization engines or solvers output model statistics, objective func-
tion, resource time and general solve information. Many benchmarks and per-
formance analyses involve either manually extracting the necessary information

6 M. R. Bussieck et al.

from the log output or writing solver and optimization engine-specific scripts
to parse the output and extract the data to be analyzed. This can be cumber-
some and is error prone and generally must be tailored to the specific engine or
solver. In order to simplify the quality assurance process, data collection must
be automated.

Finally, few standard performance metrics exist and the reproducibility of
performance tests is often not a practical proposition. By introducing automated
tools and standard performance measurements, we enable the quality assurance
process to be inexpensive, efficient, and reproducible.

3.1 Test Cases

Testing global and local optimization solvers requires access to a collection of
test models, including toy models, academic application models and, most im-
portantly, for our purposes, commercial application models (which are in general
difficult to collect due to the proprietary nature of most commercial models).
While academic application models are useful in their own right, they do not al-
ways address the same problem types and model structure a commercial model
may. In order to assure a new solver technology’s quality in the commercial
world, any practical model library should contain commercial application mod-
els as well.
Our publicly available collection of NLP and MINLP models is:

GAMS Model library: http://www.gams.com/modlib/modlib.htm, with
more than 250 models from over 18 application areas.

GLOBALLib: http://www.gamsworld.org/global/globallib.htm, with
more than 390 scalar NLP models.

MINLPLib: http://www.gamsworld.org/minlp/minlplib.htm, with about
180 scalar MINLP models. Also see [2].

MPECLib: http://www.gamsworld.org/mpec/mpeclib.htm, which produces
over 10,000 NLP models .

New models are added continuously to these model libraries. In order to add
commercial models with proprietary data, we make use of the CONVERT utility.

Translating Models Using CONVERT For commercial application models,
where proprietary data should be hidden, GAMS provides the CONVERT tool,
which translates a model into scalar format. This hides all proprietary parts of
a model and makes public access to customer models possible.

Modeling languages such as GAMS or AMPL have a rich syntax that is
usually based on sets and indexed variables, equations, and parameters. This
syntax, and the corresponding structure in the model and the data, is very
useful for the model developer. However, usually such structures are not used by
the solvers. Most solvers see the world as a list of variables, X; to X,,, a list of
equations or constraints, F; to E,,, and the relationship between these variables
and equations, as represented in some form. As long as the model seen by the

Quality Assurance and Global Optimization 7

solver remains unchanged, it is therefore acceptable for a translator to remove
the structure. The GAMS translator CONVERT transforms models into a very
simple, internal scalar format. This internal format can then be written out in
many different formats. With GAMS as output format, the scalar model consists
of the following:

Declarations of the variables, with extra declarations for the subsets of pos-
itive, integer, or binary variables,

— Declarations of the equations,

The symbolic form of these equations, and

— Assignment statements for non-default bounds and initial values.

All operations involving sets are unrolled, and all expressions involving pa-
rameters are evaluated and replaced by their numerical values. Since there are
no sets or indexed parameters in the scalar models, most of the differences be-
tween modeling systems have disappeared. Therefore, the GAMS format can be
easily transformed into another language’s format. For example, in AMPL the
keyword ”var” is used instead of ” Variable,” bounds and initial values are writ-
ten using a different format, the equation declarations are missing, the equation
definitions start with ”subject to E;” instead of " E;..”, and a few operators are
named differently.

There are a few cases where a model cannot be translated into a partic-
ular language because special functions (e.g. errorf) or variable types (e.g.
SemiCont) are not available in that language. GAMS models have an objective
variable rather than an objective function. If there is one defining equation for
a given variable, CONVERT will eliminate the objective variable and will intro-
duce a real objective function for formats that support objective functions (e.g.
AMPL). For more details on CONVERT see [2].

Other issues which impact the translation include scaling of the model and
presolve capabilities by the particular solver or optimization engine. In general,
long term strategies should include a mathematical programming standard scalar
format, which allows automorphic translation to and from this format. This
has been accomplished for linear model with the long-accepted standard MPS
format [9] and recently work focused on a broader set of models has been done
by introducing a format based on XML [13].

3.2 Data Collection Tools

Reproducible data production and collection requires an automated system that
provides information about the testing environment (version of software, hard-
ware, etc.), and status, performance, and exception information for the indi-
vidual test case. Such a system is automatically available in GAMS through the
trace facility for all solvers connected. The trace facility provides access to model
statistics, non-default input options, and solver and solution statistics and writes
information conveniently to an ASCII interface. Table 1 shows the possible trace
file column headers and the associated data.

8

M. R. Bussieck et al.

Table 1. GAMS Trace Facility ASCII Interface (current trace file data)

Heading Description

Filename GAMS model filename
Modeltype LP, MIP, NLP, etc.
Solvername

NLP def. Default NLP solver

MIP def. Default MIP solver
Juliantoday start day/time of job
Direction 0=min, 1=max

Equnum Total number of equations
Varnum Total number of variables
Dvarnum Total number of discrete variables
Nz number of nonzeros

Nlnz number of nonlinear nonzeros
Optfile 1=optfile included, 0=none
Modelstatus GAMS model status
Solverstatus GAMS solver status

Obj Value of objective function
Objest Estimate of objective function
Res used Solver resource time used (sec)
Iter used Number of solver iterations
Dom used Number of domain violations
Nodes used Number of nodes used

The resulting data can easily be analyzed for example through user automa-
tion scripts, Excel spreadsheets or some of the online tools available as part of
Performance World: http://www.gamsworld.org/performance.

3.3 Data Analysis Tools

In addition to custom programs for processing testing results, we have imple-
mented a variety of performance measurement tools. Together with experts in
the field of benchmarking at Performance World, we have also extended and
developed new ways to present testing results in an easy and consistent way.

In particular, the tools as part of the PAVER server (Performance Analysis
and Visualization for Efficient Reproducibility) [15], accessible online at

http://www.gamsworld.org/performance/paver

can be used for performance analysis of performance data collected in trace
files in an automated fashion. The server provides automation and visualization
tools for automatically generating HTML-based reports of submitted trace files
and gives information on robustness, efficiency and solver quality of solution.
Users can submit up to 8 trace files (each containing performance data for a

Quality Assurance and Global Optimization 9

i il vaessoge o gnmShorigamsworklong = ID
Mectage Bt Search Udites Spel Checher Privicy e Opoons

- CR - ™ R R S - R R B AR

Fizr Eran P a6 AP hh b S BEAEE TS COeTE
Fiirpi-Tix Frank Pl e TR bk b BT Comit
Ta g e g warrkd ey
[
==
Tuhwn gl

v I i ‘

Peuage fpeai Gkl ocount Tk e (Bloe Beb

Fram L T Gadanl Fucstasd | Cramsd Sirm
L] L]
T iirn
b o Pk AL e et
123 I DeaE MMIEEN wEE,

R zip file with youor acalar sodal b aktackad.
Plasas inspect mswo.TEC for warnlngs and cranslacion
incapabalities .

Regards,

The CHEZXE TRdR

Fig. 1. GMS2XX/CONVERT E-mail submission and results

particular solver) online, and the server will automatically generate quality and
performance reports and do cross-comparisons of all solvers.

Test Cases: The CONVERT tool is also available as an e-mail based transla-
tion service (GMS2XX) at GAMS World

http://www.gamsworld.org/translate.htm

to facilitate the translation of GAMS models into other modeling languages,
such as AMPL, BARON, CplexLP, CplexMPS, LGO, LINGO, and MINOPT.
Users submit their model as an e-mail attachment to gms2xx@gamsworld.org
with the translation language listed in the subject line. The translated model
is then returned via e-mail attachment. Figure 1 shows the process of con-
verting the MINLPLib model nvs01.gms from GAMS to AMPL via the
GMS2XX translation service. Table 2 shows the original model nvs01.gms
and the converted AMPL model ampl .mod.

Data Collection Tools: The trace facility has an open API and allows ASCII
trace file importing and exporting. Non-GAMS users can therefore produce a

10 M. R. Bussieck et al.

Table 2. GMS2XX Example: Part of original GAMS Model nvs01.gms and translated
model ampl.mod using the GMS2XX translation service

nvs01l.gms
* MINLP written by GAMS Convert at 02/21/03 13:01:13
* Equation counts
* Total E G L N X ¢
* 4 2 2 0 0 0 0
* Variable counts
* X b i sls s2s sc si
* Total cont binary integer sosl sos2 scont sint
* 4 2 0 2 0 0 0 0
* FX 0 0 0 0 0 0 0 0
* Nonzero counts
* Total const NL DLL
* 10 3 7 0
*
* Solve m using MINLP minimizing objvar;

Variables i1,i2,x3,objvar;
Positive Variables x3;
Integer Variables il,i2;
Equations el,e2,e3,e4;

el.. 420.169404664517*sqrt (900 + sqr(il)) - x3*ilxi2 =E= 0;
e2.. - x3 =G= -100;
e3.. 296087.631843+(0.01+0.0625%sqr(i2)) /(7200 + sqr(il))-x3 =G= 0;

ampl.mod

MINLP written by GAMS Convert at 02/21/03 14:03:38
#
Reformulation has removed 1 variable and 1 equation

var il integer := 100, >= 0, <= 200;
var i2 integer := 100, >= 0, <= 200;
var x3 := 100, >= 0, <= 100;

minimize obj: 0.04712385%1i2%(900 + i11°2)70.5;
subject to
el: 420.169404664517*sqrt(900 + i172) - x3*il*i2 = 0;

e2: - x3 >= -100;
e3: (2960.87631843 + 18505.4769901875%i2°2)/(7200 + i1°2) - x3 >= 0;

Quality Assurance and Global Optimization 11

Custom
Analysis
AMPL, sove |Collect Trace
> MINOPT, ... ™3Information ~N_ web
Models
A A nsci
CONVERT/ Import/ PAVER
GMS2XX Export
GAMS GAMS GAMS_ trace
—1 Models save | Facility
GAMS trace
Analysis

Fig. 2. Quality Assurance Process. The process is system and software independent at
each phase. Models can be translated to other languages, benchmark runs performed
with any optimization engine, and subsequent analysis done using web-based, GAMS,
or customized tools

trace file by any preferred method, for example by writing scripts to parse the
log output from an optimization engine or manually writing a trace record.

Data Analysis Tools: All performance tools are implemented in open source
GAMS programs. Free access to these programs for users without a GAMS
system is guaranteed through the Web interface PAVER described previ-
ously. The server is not restricted to trace files obtained through GAMS
for generating performance analysis reports but can accept data from any
optimization engine providing trace-like data files.

The open architecture and steps in the quality assurance process are illustrated
in Figure 2. A user with a GAMS system can solve the model and automati-
cally capture solve and model statistics via the trace file utility. The data can
be analyzed then via GAMS or the PAVER web interface. Users of other mod-
eling systems or optimization engines can use the GMS2XX tool to convert the
model to another language. Once solved with this other engine, trace files can be
created either manually or through some other automated fashion. Analysis can
then proceed either customized or through the PAVER web interface. Note also
that the ASCII trace interface allows simple import and export of data between
GAMS and other formats.

4 Examples

In this section we illustrate how to create reproducible quality assurance results
and performance results for local and global NLP and MINLP solvers using the
framework described previously.

12 M. R. Bussieck et al.

Performance Profile

100

90

80

70 |
2
A

Percent Of Models Solved
4,
o

w S
S S5
;‘ sz
.
T
N
.
.
\
|]
|
[]
]
[§
N
L]

/ BARON default —+—
BARON 0p2 —----- -

BARON op3 ------

BARON op4 &

N
o

S~

BARON op5 —-m- -
BARON op6 ---o--
CAN_SOLVE ---e---

o

H
o
Ll L

10 100 1000
Time Factor

Fig. 3. PAVER Performance Profiles for LMP1 models. Graphs show measure of com-
petitiveness of each “solver” in terms of efficiency. BARON with option 6 is the most
efficient (see the profile for Time Factor = 1, solving 65% of the models the fastest. In
terms of probability of success, BARON default has the highest rating. Roughly 95%
of the models can be solved by BARON default given any amount of time

4.1 NLP Example: Linear multiplicative models

The first example involves 50 different instances of the NLP model 1mp1.gms
(linear multiplicative models [12]) found in the GAMS Model Library. We used
the global optimization code BARON and ran it in default mode and with five
different option files, specifying varying solver options to fine tune for this par-
ticular class of problems. We specified a time limit of 300 seconds. Performance
data was collected via trace files from within GAMS and we used the PAVER
web submission utility to compare performance.

The PAVER results returned via e-mail give a variety of information including
robustness and efficiency information, as well as quality of solution. We show the
performance profiles results [4] which provide a measure of competitiveness of a
solver.

Figure 3 shows competitiveness of each BARON run with various options if
we are interested only in solver efficiency. At a Time Factor of 1 (x-axis), the
graph shows the percentage of models solved the fastest by a particular solver. In
particular, BARON with option 6 (BARON op6) solves 65% of the models the
fastest. As Time Factor goes to oo, the graph gives solver robustness information,
indicating the percentage of models a solver can solve at all given any amount
of time. In this case BARON default has the highest probability of success at

Quality Assurance and Global Optimization 13

roughly 95%. Also note the graph associated with CAN_SOLVE, which shows the
probability of success that any one of the six ”solvers” can solve the models.

4.2 MINLP Example: Models from Gupta and Ravindran

In this example we choose 24 MINLP models from [10], available as part of the
MINLPLib. We ran all available GAMS MINLP solvers (BARON, DICOPT,
OQNLP, SBB). We also ran MINLP, a branch and bound code based on FILTER
by Fletcher and Leyffer [14]. The solver MINLP was run remotely through the
Network-Enabled Optimization Server (NEOS) [5], [11], [16], an online server
for solving optimization problems. All solvers were run using a time limit of 20
seconds. All performance information for GAMS solvers was collected in trace
files. For the MINLP solver run remotely through the NEOS server, we wrote a
script to parse the output and create a trace file.

In order to evaluate solver performance we wrote a GAMS script to compare
objective value information. The script also computes absolute and relative gaps
and compares CPU time. The script first reads the trace file with the performance
data, computes statistical information and then writes the output to a standard
text file. The program is listed below.

MINLP Example: GAMS Analysis Script

$set col julian,dir,eqnum,varnum,dvarnum,nz,nlnz,opt,modelstat
$set col %coll,,solvestat,obj,objest,res,iter,dom,nodes
Set col /hecol%/,

c(col) /modelstat,solvestat,obj,objest,res,nodes/

Alias(ul,u2,*);
$eolcom ,#

*¥=== Read in trace file

Table tracedata(*,*,col)

$ondelim

modelname,solvername, %col’%

$offlisting

$call cat trace.trc minlpbb.csv | cut -d, -f1,3,6- > trace.tmp
$include trace.tmp

$onlisting

$offdelim

s

*=== Extract driving sets
Set modelname, solvername;
loop((ul,u2,)$tracedata(ul,u2,’julian’),
modelname(ul) = yes;
solvername (u2) = yes;

)

14 M. R. Bussieck et al.

parameter srep(ul,u2,col)
mstat (ul,u2);

*¥=== Load reference solution
$gdxin minlpstat
$load mstat

*¥=== Select columns

srep(modelname,solvername,c) =
tracedata(modelname, solvername,c);

srep(modelname, ’Reference’,’obj’) =
mstat (modelname, ’BestInt’);

Parameter gap;
gap (modelname,solvername, ’agap’) =
round (srep (modelname,solvername, ’obj’)
- srep(modelname, ’Reference’,’obj’),3);
gap (modelname, solvername, ’agap’) $(
srep (modelname,solvername, ‘modelstat’)<>1
and srep(modelname,solvername,’modelstat’)<>2
and srep(modelname,solvername, ’modelstat’)<>8
) = inf;
gap (modelname,solvername, ’rgap’) =
gap (modelname,solvername, ’agap’)
/ abs(srep(modelname,’Reference’,’obj’));
gap (modelname,solvername,’obj’) =
srep(modelname,solvername, ’obj’);
gap (modelname,solvername,’cpu’) =
srep(modelname,solvername,’res’);

display srep, gap;

The output created by the script shows the computed parameters srep and
gap. It shows the objective function value, the absolute and relative gaps, as
well as the CPU time used for a subset of models for each of the solvers in the
comparison.

MINLP Example: GAMS Analysis Script

-——= 167 PARAMETER gap

obj agap rgap cpu
NVSO1.0QNLP 15.806 3.336 0.268 2.218
NVSO1.BARON 12.470 0.110
NVSO1.SBB 12.470 0.410
NVS01.DICOPT 12.470 0.035
NVSO1.MINLPBB 12.470 20.000
NVS02.0QNLP 6.575 0.611 0.102 20.046

NVS02.BARON 5.964 0.080

Quality Assurance and Global Optimization 15

NVS02.SBB 5.964 0.437
NVS02.DICOPT 5.964 0.346
NVS02.MINLPBB 5.964 20.000
NVS03.0QNLP 16.000 20.015
NVS03.BARON 16.000 0.060
NVS03.SBB 16.000 0.305
NVS03.DICOPT 16.000 0.069
NVS03.MINLPBB 16.000 20.000
NVS04.0QNLP 0.720 0.265
NVS04 .BARON 0.720 0.050
NVS04.SBB 0.720 0.195
NVS04.DICOPT 2.120 1.400 1.944 0.227
NVS04 .MINLPBB 0.720 20.000

5 Conclusions

We have addressed the necessary steps for moving global optimization codes
from an academic research lab into the commercial production environment.
Reproducible quality assurance testing is the key to success. We have proposed
a testing framework, which includes model collections, data collection tools and
data analysis tools, and allow seamless testing inside the GAMS system, yet
remains open for outside use by non-GAMS customers and researchers in general.
We offer these models and tools along with our open invitation to use them
as a means to strengthen collaboration among all groups interested in quality
assurance for global optimization.

References

1. Brooke, A., Kendrick, D., Meeraus, A.: GAMS: A User’s Guide, The Scientific
Press, Redwood City, California (1988)

2. Bussieck, M. R., Drud, A. S., Meeraus, A.: MINLPLib - A Collection of Test
Models for Mixed-Integer Nonlinear Programming, Informs J. Comput., 15 (1)
(2003) 114-119

3. Crowder, H., Dembo, R. S., Mulevy, J. M.: On Reporting Computational Experi-
ments with Mathematical Software, ACM Transactions of Mathematical Software,
5 (2) (1979) 193-203

4. Dolan, E. D., Moré, J. J.: Benchmarking Optimization Software with Performance
Profiles, Math. Programming, 91 (2002) 201-213

5. Dolan, E. D.: The NEOS Server 4.0 Administrative Guide, Technical Memoran-
dum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne
National Laboratory (2001)

6. Dolan, E. D., Moré, J. J.: Benchmarking Optimization Software with COPS, Tech-
nical Memorandum ANL/MCS-TM-246, Argonne National Laboratory, Argonne,
Illinois (2000)

7. Fourer, R., Gay, D. M.: AMPL: A Modeling Language for Mathematical Program-
ming, The Scientific Press, Redwood City, California (1993)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. R. Bussieck et al.

GAMS Development Corp.: GAMS - The Solver Manuals, GAMS Development
Corp., Washington, D.C. (2003)

Gay, D. M.: Electronic Mail Distribution of Linear Programming Test Problems,
Mathematical Programming Society COAL Newsletter (1985)

Gupta, O. K. Ravindran, A.: Branch and Bound Experiments in Convex Nonlinear
Integer Programming, Management Science, 13 (1985) 1544-1546

Gropp, W., Moré, J. J.: Optimization Environments and the NEOS Server, In:
M. D. Buhmann and A. Iserles (Eds.), Approximation Theory and Optimization,
Cambridge University Press, Cambridge (1997) 167-182

Konno, H., Kuno, T.: Linear Multiplicative Programming, Math. Prog., 56 (1992)
51-64

Kristjansson, B.: Optimization Modeling in Distributed Applications: How New
Technologies such as XML and SOAP allow OR to provide web-based Services,
INFORMS Roundtable, Savannah, Georgia (2001)

Leyffer, S.: User Manual for MINLP_BB, University of Dundee Numerical Analysis
Report NA /XXX (1999)

Mittelmann, H., Pruessner, A.: A Server for Automated Performance Analysis and
Benchmarking of Optimization Software, submitted (2003)

NEOS: http://www-neos.mcs.anl.gov/ (1997)

Pintér, J. D: LGO - A Model Development System for Continuous Global Op-
timization. User’s Guide. (Current revised edition.), Pintér Consulting Services,
Halifax, Nova Scotia (2002)

Schrage, L. S.: LINDO - An Optimization Modeling System, Scientific Press series;
Fourth ed. Boyd and Fraser, Danvers, Massachussets (1991)

Tawarmalani, M., Sahinidis, N. V.: Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Soft-
ware, and Applications, Kluwer Academic Publishers, Dordrecht (2002)

Ugray, Z., Lasdon, L., Plummer, J., Glover, F.; Kelly, J., Marti, R.: A Multistart
Scatter Search Heuristic for Smooth NLP and MINLP Problems, INFORMS J.
Comp., to appear (2002)

