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Abstract 
 
A new method is presented for the computation of the lowest energy configurations of 
atomic clusters. It is based on recently developed set oriented numerical algorithms for 
the global optimization of nonlinear functions. Its underlying idea is to combine 
multilevel subdivision techniques for the computation of fixed points of dynamical 
systems with well known branch and bound methods. We describe how this method can 
be used to find global minima of silicon nanoclusters in the SCC-DFTB energy surface. 
Due to the insufficient experimental evidence of structures of silicon clusters, local 
minima that are near to the global minimum, are also important. 
PACS codes: 02.60.Pn, 36.40.-c 
Keywords: Global geometry optimization, Branch and bound methods, Discrete 
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1. Introduction:  
 
The global optimization of any function with many degrees of freedom is one of the most 
difficult questions of current research both from the mathematical and the physical point 
of view. In applications in physics and chemistry, one is interested in all the minima of an 
interacting-potential surface for atomic structures (e.g. molecules, clusters, amorphous 
systems) with 3N degrees of freedom, where N is the number of atoms. But there is a 
particular interest to find the global minimum of the energy function since the most likely 
growth behaviour and preferential growth forms can be realized from these atomic 
structures. There are two central problems of cluster geometry optimization: one is the 
almost exponential growth of the number of local minima with the cluster size, the other 
is that the details of the potential have a strong influence on the number and the 
conformation of local and global minima. Simulated annealing [1], genetic algorithms 
[2], basin-hopping [3], energy landscape paving (ELP) [4] are a couple of methods which 
are frequently used for geometry optimization of clusters. In [5, 6] a new global geometry 
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optimization strategy has been proposed which is applied to the ab-initio potential 
surface. In this paper, we present a new set oriented numerical algorithm for global 
optimization [7] and how to apply it to the self-consistent-charge tight-binding-density-
functional (SCC-DFTB) [8,9] energy function to obtain the lowest energy configurations 
of silicon nanoclusters. In contrast to the methods mentioned above, this approach is 
global in nature. That is, it directly and reliably finds the global minimum instead of 
jumping from one local minimum to the other in order to eventually reach the global one.   
 
 
2. The Global Optimization Method: 
 
The basic idea of this method is to view iteration schemes for local optimization – e.g. 
Newton’s method or conjugate gradient methods – as dynamical systems, and to compute 
coverings of their fixed points in phase space using set oriented methods for the 
computation of invariant sets of dynamical systems [10]. This idea has already been used 
in [11] and here it is combined with well-known branch and bound methods [12]. More 
concretely we obtain set coverings of the global minimizers of a given nonlinear 
objective function RR →ng :  [7]. This approach will be used in Section 3 to find the 
global minimum of the quantum-mechanical SCC-DFTB energy hypersurface for silicon 
clusters.    
We consider discrete dynamical systems of the form 
                                        )(1 kk xfx =+ , k= 0, 1, 2, …  

with nnf RR →: . 
For the purpose of global optimization,  f is chosen to be an iteration scheme for local 
optimization, e.g. )()()( 12 xgxgxxf ∇∇−= −  in case of Newton’s method. Using the 
multilevel subdivision procedure described below set coverings of all those fixed points 
of f which correspond to the global minimizers of g, i.e. all points nx R∈  with 

)(min)( ygxg
ny R∈

= , can be computed [7].     

We start with an initial collection 0C  consisting of a single rectangle 

{ } n
iii

n nibxaxB RR ⊂=<<∈= ,,1,:0 �  (also called box in the sequel) in phase space. 
For k = 1,2,3,… successively refined collections kC   are inductively obtained from 1−kC  
in two steps: 
1. Subdivision: 
Construct a refined collection kC  via bisection of all the boxes 1−∈ kCB  along the i-th    
coordinate direction, where i is varied cyclically with k, i.e. i=((k-1) mod n)+1, if n is the 
dimension of the phase space.  
2. Selection: 
Define the new collection kC  to contain only those boxes B of kC  which fulfill the 
following two conditions: 

(a) ∅≠∩ BBf )( . The boxes B in phase space with ∅=∩ BBf )(  cannot contain 
fixed points of f and thus no local or global minimizers of g. These boxes have to 
be deleted from the covering. Since in general f(B) cannot be computed directly 
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this condition is usually discretized using a finite set of sample points within the 
box B. The selection criteria then reads: 

     Bpf ∈)(  for at least one point p of a se of sample points { } Bpp m ⊂,,1 � . 
(b) ( ) kB αβ ≤ , where the quantities ( )Bβ  and kα  have to be chosen as follows: 

( )Bβ  must be a lower bound on the possible function values of g for points in B, 
i.e. ( ) { }BppgB ∈≤ :)(infβ .  The values kα , k=1,2,…  have to form a 
nonincreasing sequence of upper bounds on the global minimum of g. For the 
determination of kα  the values of the objective function obtained during the test 
point iteration for condition (a) can be used. kα  is then given by the lowest 
objective value found so far. Boxes with ( ) kB αβ >  cannot contain a global 
minimizer and are no longer taken into account. 

 
As indicated in Fig. 1. this algorithm produces a sequence of successively refined 
collections of boxes. During the course of the iteration more and more parts of the initial 
box, which cannot contain the global minimizers, are removed and only a small number 
of tiny boxes remain. Under reasonable assumptions on the bounds ( )Bβ  and kα  it can 
be shown that the computed coverings converge to the set of global minimizers of g for 

∞→k  [7]. In applications, however, the subdivision procedure is stopped when the 
boxes have reached a prescribed size. The exact locations of the global minimizers can 
then easily be found using local optimization methods for a few initial points per box. 
 
 
 

 
 
 
 

Fig. 1. Schematic description of the subdivision algorithm for global 
optimization of nonlinear functions. 
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3. Application to cluster optimization 
 

This set oriented new method is used to obtain the global minima of silicon nanoclusters. 
In our scenario the SCC-DFTB energy function is the objective function for the new 
branch and bound method. SCC-DFTB is a two-center tight-binding like approximation 
to the density functional theory. The Kohn-Sham [13] energy is transformed by 
decomposing the electron density into a sum of a reference density and a density 
fluctuation and by further expanding the exchange correlation energy around the 
reference density to second order in the density fluctuation. Then the expression of SCC-
DFTB energy is  
 

rep

N

BA
BAAB

occ

i
ii

DFTB
SCC EqqHE +� ∆∆+�=

,
0 2

1
|ˆ| γψψ  

 
The first term depends on the reference density and within a LCAO approach the 
corresponding matrix element of the Hamiltonian can be calculated under two-centre 
approximation. The second term represents the charge fluctuations, which are not 
included in a classical tight-binding scheme. ABγ  is an algebraic function which depends 
only on the distance between nuclei of two atoms A and B. 0qqq MullikenA −=∆  is the 
difference between the Mulliken population of the respective atom with the core charge 

0q . The third term is the pairwise repulsive potential energy which is calculated as the 
difference between the DFT (density functional theory) total energy and the band-
structure energy in SCC-DFTB as a function of interatomic distance. In the new set 
oriented method (Section 2), the choice of proper phase space, initial box, iteration 
scheme (f) and the computation of lower bounds (β(B)) are essential to reach the global 
minimum of this energy hypersurface.  
Phase space and initial box (B0): In our global optimization approach, first an 
appropriate initial box 0B  has to be chosen. Since the SCC-DFTB energy function is 
invariant (i.e., it does not change its value) with respect to cluster rotation, translation and 
renumbering of the atoms, each particular cluster geometry with N atoms is represented 
by infinitely many points in the configuration space. Since the subdivision algorithm 
computes all global minimizers of g this has to be taken into account in order to avoid 
unnecessary computations. We therefore restrict ourselves to structures with the center of 
mass fixed to the origin. In addition, the phase space is chosen such that all cluster 
geometries, which differ only by rotation, are uniquely represented by a single point. 
Finally the atoms are numbered in such a way that their distances from the origin are 
always in descending order. One then ends up with only one point in phase space for each 
particular cluster geometry or at least with a finite number in the case when the 
numbering cannot be made unique. 
The size of the initial box 0B  is chosen such that all structures with a given maximal 
distance between the atoms are contained within this box. For this maximal distance we 
use the length of the linear chain of atoms since all low minima will have a more compact 
structure than this unfavourable state. 
Iteration scheme (f): The dynamical system f needed for the subdivision procedure is 
constructed using a small number of steps of a BFGS method with adaptive step size 
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applied to the silicon SCC-DFTB energy function in combination with a conversion 
between points in the chosen phase space. 
Lower bound (ββββ(B)): The computation of a lower bound ( )Bβ  of the energy for all 
structures contained in a given box B is a difficult task. For this purpose, first the possible 
distances of all pairs of atoms for the structures contained in the box under consideration 
are determined. If for a pair of atoms, the range of possible distances overlaps the silicon 
bond range (the bulk silicon bond length %15± ) it is assumed that there exists a 
structure in the box with a bond between these two atoms. Since the bulk energy is the 
ground state energy of silicon it is used as a lower bound on the contribution of this pair 
of atoms to the total energy. If for a particular pair of atoms no bond is possible for all 
structures in the given box no contribution to the total energy is taken into account. 
Summation over all pairs of atoms then gives the desired energy bound for structures in 
the box B.  
By using these proper parameters of the branch and bound method, we can reach the 
global minimum of the energy hypersurface. Since it is applied to silicon cluster 
optimization, some additional selection criteria can be used in the subdivision algorithm 
to delete boxes, which cannot contain the global minimizers. In this case, these criteria 
are evolved from the physical background of silicon and are as follows: 
If the distance between two atoms in a cluster is too small (2.0 a.u.), it is physically 
unfavourable. Boxes containing only such structures are immediately deleted from the 
current collection without any further time consuming computations of bounds or test 
point iterations. Other unfavourable structures, which should not be considered, are those, 
which consist of several disjoint pieces of smaller clusters. For a given box B a graph is 
built with a node for each atom. There will be an edge between two nodes if there exists a 
structure within the box, which may form a bond between the corresponding atoms. 
Using graph algorithms it can be detected if this graph is disconnected which implies that 
the box B contains only disconnected structures. The above conditions are also checked 
for each particular structure during the evaluation of the iteration scheme f in order to 
avoid unnecessary computation of energy and forces by the SCC-DFTB method. 
 
 
4. Result: 
 
We have tested the functionality of this new method by an application to a small number 
of atoms with the Lennard Jones potential. The global minima of clusters up to 15 atoms 
are computed and the results are in perfect agreement with the known minima. Then this 
method is applied to the more complicated SCC-DFTB potential. Since there exist both 
experimental [14,15] and theoretically [16-21] established structure information for 
silicon clusters up to 10 atoms, this new algorithm is used for structure optimization up to 
15 atoms.  Also here this new method reliably finds the structures (Fig. 2.), which are   
quite well-known for the SCC-DFTB method and for other methods.  Since our approach 
is global in nature and we did not find any new lowest minima structures, we can assume 
that no lower energy structures are present in this energy hypersurface.  
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5. Conclusion: 
 
This set oriented new method shows successful results for small silicon clusters to find 
the unique global minima in the multidimensional SCC-DFTB potential. Due to the 
insufficient experimental evidence of structures of silicon clusters, local minima, which 
are near to the global minimum, are also important and can be found using a slightly 
modified version of this method. While the branch and bound method is used for the 
DFTB potential, it is difficult to find good lower bounds. The ground state of the silicon 
represents the deepest energy state therefore the lower bound as defined here is certainly 

Si5 (3.172 eV/at) 

Si6 (3.22 eV/at) 

Si9 (3.75 eV/at) 

Si4 (3.02 eV/at) 

Si7 (3.66 eV/at) 

Si8 (3.67 eV/at) Si15 (3.91 eV/at) 

 
Fig.2. Binding energies with respect to spin polarized atoms in eV/atom 
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robust. But it would be desirable to have a tighter bound, since the cluster configurations 
do not always correspond to the bond morphology of the ideal silicon crystal. The lower 
bound of the total energy can be further improved using the harmonic approximation. In 
an advanced stage of the branch and bound method, the boxes become so small that the 
certified connection length (bond-length) always corresponds to the minimum energy 
position. If the connection length differs slightly from the bond length corresponding to 
minimum energy, one can use the harmonic energy function to compute the lower bound. 
The optimal connection length of the cluster may deviate from the crystalline length. 
Therefore this approximation can give a better lower bound, which can help to reach the 
global minimum more rapidly.   
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