Global optimization

Honors Compilers
April 16" 2002

Data flow analysis

0 generate better code, need to examine
definitions and uses of variables beyond basic blog

ith use-definition information, various optimizing
ransformations can be performed:

Basic tool: iterative algorithms over graphs

The flow graph

odes are basic blocks

dges are transfers (conditional/unconditional
jlumps)

or every node B (basic block) we define the sets
=) and which describe the graph

ithin a basic block we can easily single pass)
ompute local information,
= Variables that are assigned a value :
= Variables that are operands:

lobal information reaching B Is computed from t
nformation on all Pred (B) (forward propagation)

Succ (B) (backwards
Propagation)

Example: live variable analysis

. a variable is a live If its current value Is
sed subsequently in the computation

. If a variable is not live on exit from a block, It
does not need to be saved (stored in memory)

Ivein (B) and Liveout (B) are the sets of variables
Ive on entry/entry from block B.

A variable is live on exit from B if it is live in any
successor of B

A variable is live on entrance if it is live on exit or usec
within B

On' exit nething Is live

Liveness conditions

Example: reaching definitions

. the set of computations (quadruples)
hat may be used at a point

. compute use-definition relations.

e A computation is reaches the entrance to a block if it
reached the exit of a predecessor

e A computation reaches the exit if it is reaches the entra
and is not recomputed in the block, or if it is computed
[o]er=1])Y,

o . \othing rEaches themeninysterthé program

|[terative solution

ote that the equations are monotonic: if out (B) increases
B increases for some successor.

eneral approach: start from lower bound, iterate until
othing changes.
Initially in (b) =f for all b, out (b) = gen (b)
change := true;
while change loop
change := false;
forall b e blocks loop
in (b) = E out (p), forall p e pred (b);
oldout := out (b);
out (b) := gen (b) E in (b) —kill (b);
If oldout /= out (b) then change := true; end If;
end loop;
end loop;

Workpile algorithm

Instead of recomputing all blocks, keep a queue o
odes that may have changed. Iterate until queue

empty:
not empty (queue)
dequeue (b);
recompute (b);

If b has changed, engueue all its
SUCCEeSSOrS;

Betterng@lgonitians Usemnoedesorderings:

Example: available expressions

. computation (triple, e.g. x+y) that ma
pe available at a point because previously comput

. common subexpression elimination

ocal information:
e exp_gen (b) is set of expressions computed in b

e exp_Kkill (b) is the set of expressions whose operands are
evaluated in b

e Computation is available on entry if it is available on exit
from predecessors

|[terative solution

guations are monotonic: If out (b) decreases, In (
an only decrease, for all successors of b.
Initially

or other blocks, let U be the set of all expresions,
hen

Iterate until no changes: in (b) can only decrease.
Inal value Is at most the empty set, so convergen
s guaranteed in a fixed number of steps.

Use-definition chaining

he closure of available expressions: map each
occurrence (operand in a quadruple) to the
guadruple that may have generated the value.

set of quadruples that may have compute
he value of o

Inverse map: . set of occurrences that ma
se the value computed at Q.

finding loops In flow-graph

A node nl n2 if all execution paths that
each n2 go through n1l first.

he entry point of the program dominates all nods
n the program

he entry to a loop dominates all nodes in the looj

A |oop Is identified by the presence of a (back) ed
rom a node n to a

Data-flow equation:

a dominator of a node dominates all its
nredecessers

Loop optimization

computation (X op y) IS within a loop If
e X and y are constant
e ud (x) and ud (y) are all outside the loop

e There is one computation of x and y within the loop, anc
that computation is invariant

guadruple Q that is loop Iinvariant can be moved
o the of the loop Iff:
e Q dominates all exits from the loop
e Q is the only assignment to the target variable in the log

e There Is no use of the target variable that has another
definition.

Strength reduction

Specialized loop optimization:

An induction variable in a loop takes values that
orm an arithmetic series:

here | is the loop variable] =0, 1, ... ,cand k a
onstants. J IS a basic induction variable.

an compute , replacing multiplication
ith addition

If | iIncrements by ¢, © increments by

eneralization to polynomials in j: all multiplicatio
an be removed.

Important for loops over multidimensional arrays

Induction variables

or every induction variable, establish a triple (var
ncr, init)

he loop variable v is (v, 1, V)
Any variable that has a single assignment of the

IS an Induction variable
. By
U, c¢cp*incr, c+c

IS a static constant.

Insert after incrementing |
Remoyvenehginalg@assignmentioghk

Global constant propagation

Domain Is set of values, not bit-vector.

btatus of a variable iIs (¢, non-const, unknown)
Ike common subexpression elimination, but instee
f Intersection, define a merge operation:

e Merge (c, unknown) = c

e Merge (non-const, anything) = non-const

e Merge (c1, c2) = if cl = c2 then cl else non-const

nitially all variables are unknown, except for explic
onstant assignments

