
Global optimizationGlobal optimization

Honors CompilersHonors Compilers
April 16April 16thth 2002 2002

Data flow analysisData flow analysis
To generate better code, need to examineTo generate better code, need to examine
definitions and uses of variables beyond basic blocks.definitions and uses of variables beyond basic blocks.
With use-definition information, various optimizingWith use-definition information, various optimizing
transformations can be performed:transformations can be performed:
ll Common Common subexpressionsubexpression elimination elimination
ll Loop-invariant code motionLoop-invariant code motion
ll Constant foldingConstant folding
ll Reduction in strengthReduction in strength
ll Dead code eliminationDead code elimination

Basic tool: iterative algorithms over graphsBasic tool: iterative algorithms over graphs

The flow graphThe flow graph

Nodes are basic blocksNodes are basic blocks
Edges are transfers (conditional/unconditionalEdges are transfers (conditional/unconditional
jumps)jumps)
For every node B (basic block) we define the setsFor every node B (basic block) we define the sets
•• PredPred (B (B) and) and succsucc (B) (B) which describe the graph which describe the graph

Within a basic block we can easily single pass)Within a basic block we can easily single pass)
compute local information, compute local information, typically a settypically a set
•• Variables that are assigned a value : Variables that are assigned a value : def (B) def (B)
•• VariablesVariables that are operands: that are operands: use (B)use (B)

Global information reaching B is computed from theGlobal information reaching B is computed from the
information on all information on all PredPred (B) (forward propagation) or (B) (forward propagation) or
 SuccSucc (B) (backwards (B) (backwards
propagation)propagation)

Example: live variable analysisExample: live variable analysis

DefinitionDefinition: a variable is a live if its current value is: a variable is a live if its current value is
used subsequently in the computationused subsequently in the computation
UseUse: if a variable is not live on exit from a block, it: if a variable is not live on exit from a block, it
does not need to be saved (stored in memory)does not need to be saved (stored in memory)
LiveinLivein (B) and (B) and LiveoutLiveout (B) are the sets of variables (B) are the sets of variables
live on entry/entry from block B.live on entry/entry from block B.
ll LiveoutLiveout (B) = (B) = ∪∪ liveinlivein (n) over all n (n) over all n ee succsucc (B) (B)
ll A variable is live on exit from B if it is live in any A variable is live on exit from B if it is live in any

successor of Bsuccessor of B
ll LiveinLivein (B) = (B) = liveoutliveout (B) (B) ∪∪ use (B) use (B) –– defsdefs (B) (B)
ll A variable is live on entrance if it is live on exit or used A variable is live on entrance if it is live on exit or used

within Bwithin B
ll Live (Live (BBexitexit) =) = ff
ll On exit nothing is live On exit nothing is live

LivenessLiveness conditions conditions

z :=..
..x * 3

..y+1 ..z -2

y, z live

x, y live

Example: reaching definitionsExample: reaching definitions

DefinitionDefinition: the set of computations (quadruples): the set of computations (quadruples)
that may be used at a pointthat may be used at a point
UseUse: compute use-definition relations.: compute use-definition relations.
In (B) = In (B) = ∪∪ out (p) for all p out (p) for all p ee predpred (B) (B)
ll A computation is reaches the entrance to a block if itA computation is reaches the entrance to a block if it

reached the exit of a predecessorreached the exit of a predecessor
Out (B) = in (B) + Out (B) = in (B) + gengen (B) (B) –– kill (B) kill (B)
ll A computation reaches the exit if it is reaches the entranceA computation reaches the exit if it is reaches the entrance

and is not recomputed in the block, or if it is computedand is not recomputed in the block, or if it is computed
locallylocally

In (In (BBentryentry) =) = ff
ll Nothing reaches the entry to the programNothing reaches the entry to the program

Iterative solutionIterative solution

Note that the equations are monotonic: if out (B) increases, inNote that the equations are monotonic: if out (B) increases, in
(B(B’’) increases for some successor.) increases for some successor.
General approach: start from lower bound, iterate untilGeneral approach: start from lower bound, iterate until
nothing changes.nothing changes.

 Initially in (b) = Initially in (b) = ff for all b, out (b) = for all b, out (b) = gengen (b) (b)
 change := true; change := true;
 whilewhile change change looploop
 change := false; change := false;
 forallforall b b ee blocks blocks looploop
 in (b) = in (b) = ∪∪ out (p), out (p), forallforall p p ee predpred (b); (b);
 oldoutoldout := out (b); := out (b);
 out (b) := out (b) := gengen (b) (b) ∪∪ in (b) in (b) –– kill (b); kill (b);
 ifif oldoutoldout /= out (b) /= out (b) thenthen change := true; change := true; end if;end if;
 end loopend loop;;
 end loopend loop;;

WorkpileWorkpile algorithm algorithm

Instead of Instead of recomputingrecomputing all blocks, keep a queue of all blocks, keep a queue of
nodes that may have changed. Iterate until queue isnodes that may have changed. Iterate until queue is
empty:empty:

 whilewhile not empty (queue) not empty (queue) looploop
 dequeuedequeue (b); (b);
 recomputerecompute (b); (b);
 if b has changed, if b has changed, enqueueenqueue all its all its

successors;successors;
 end loopend loop;;

Better algorithms use node orderings.Better algorithms use node orderings.

Example: available expressionsExample: available expressions

DefinitionDefinition: computation (triple, e.g. x+y) that may: computation (triple, e.g. x+y) that may
be available at a point because previously computedbe available at a point because previously computed
UseUse: common : common subexpressionsubexpression elimination elimination
Local information:Local information:
ll exp_genexp_gen (b) is set of expressions computed in b (b) is set of expressions computed in b
ll exp_kill (b) is the set of expressions whose operands areexp_kill (b) is the set of expressions whose operands are

evaluated in bevaluated in b
in (b) = in (b) = nn out(p) for all p out(p) for all p ee predpred (b) (b)
ll Computation is available on entry if it is available on exitComputation is available on entry if it is available on exit

from from allall predecessors predecessors
out (b) = out (b) = exp_genexp_gen (b) (b) ∪∪ in (b) in (b) –– exp_kill (b) exp_kill (b)

Iterative solutionIterative solution

Equations are monotonic: if out (b) decreases, in (bEquations are monotonic: if out (b) decreases, in (b
can only decrease, for all successors of bcan only decrease, for all successors of b..
InitiallyInitially
 in (in (bbentryentry) =) = ff , out (, out (bbentryentry) =) = e_gene_gen ((bbentryentry))
For other blocks, let U be the set of all For other blocks, let U be the set of all expresionsexpresions,,
thenthen
 out (b) = U- e_kill (b)out (b) = U- e_kill (b)
Iterate until no changes: in (b) can only decrease.Iterate until no changes: in (b) can only decrease.
Final value is at most the empty set, so convergenceFinal value is at most the empty set, so convergence
is guaranteed in a fixed number of steps.is guaranteed in a fixed number of steps.

Use-definition chainingUse-definition chaining

The closure of available expressions: map eachThe closure of available expressions: map each
occurrence (operand in a quadruple) to theoccurrence (operand in a quadruple) to the
quadruple that may have generated the value.quadruple that may have generated the value.
udud (o): (o): set of quadruples that may have computed set of quadruples that may have computed
the value of othe value of o
Inverse map: Inverse map: dudu (q) (q) : set of occurrences that may : set of occurrences that may
use the value computed at q.use the value computed at q.

finding loops in flow-graphfinding loops in flow-graph

A node n1 A node n1 dominatesdominates n2 if all execution paths that n2 if all execution paths that
reach n2 go through n1 first.reach n2 go through n1 first.
The entry point of the program dominates all nodesThe entry point of the program dominates all nodes
in the programin the program
The entry to a loop dominates all nodes in the loopThe entry to a loop dominates all nodes in the loop
A loop is identified by the presence of a (back) edgeA loop is identified by the presence of a (back) edge
from a node n to a from a node n to a dominatordominator of n of n
Data-flow equation:Data-flow equation:
 domdom (b) = (b) = nn domdom (p) (p) forallforall p p ee b b
 a dominator of a node dominates all its a dominator of a node dominates all its
predecessorspredecessors

Loop optimizationLoop optimization

A computation (x op y) is A computation (x op y) is invariantinvariant within a loop if within a loop if
ll x and y are constantx and y are constant
ll udud (x) and (x) and udud (y) are all outside the loop (y) are all outside the loop
ll There is one computation of x and y within the loop, andThere is one computation of x and y within the loop, and

that computation is invariantthat computation is invariant

A quadruple Q that is loop invariant can be movedA quadruple Q that is loop invariant can be moved
to the to the pre-headerpre-header of the loop of the loop iffiff::
ll Q dominates all exits from the loopQ dominates all exits from the loop
ll Q is the only assignment to the target variable in the loopQ is the only assignment to the target variable in the loop
ll There is no use of the target variable that has anotherThere is no use of the target variable that has another

definition.definition.
An exception may now be raised before the loopAn exception may now be raised before the loop

Strength reductionStrength reduction

Specialized loop optimization: Specialized loop optimization: formal differentiationformal differentiation
An induction variable in a loop takes values thatAn induction variable in a loop takes values that
form an arithmetic series: form an arithmetic series: k = j * ck = j * c00 + c + c11
Where j is the loop variable j = 0, 1, Where j is the loop variable j = 0, 1, …… , c and k are , c and k are
constants. J is a basic induction variable.constants. J is a basic induction variable.
Can compute Can compute k := k + ck := k + c00, replacing multiplication, replacing multiplication
with additionwith addition
If j increments byIf j increments by d d, , kk increments by increments by d * cd * c00
Generalization to polynomials in j: all multiplicationsGeneralization to polynomials in j: all multiplications
can be removed.can be removed.
Important for loops over multidimensional arraysImportant for loops over multidimensional arrays

Induction variablesInduction variables

For every induction variable, establish a triple (For every induction variable, establish a triple (varvar,,
incrincr, init), init)
The loop variable The loop variable vv is (is (vv, 1, v, 1, v00))
Any variable that has a single assignment of theAny variable that has a single assignment of the
form form k := j* ck := j* c00 + c + c11 is an induction variable is an induction variable
with (j, cwith (j, c0 0 * * incrincrjj, c, c11+ c+ c00
jj0 0))
Note that Note that cc00 * * incrincrjj is a static constant. is a static constant.
Insert in loop pre-header: Insert in loop pre-header: k := ck := c00 * j * j00 + c + c11

Insert after incrementing jInsert after incrementing j: k := k + c: k := k + c00 * * incrincrjj

Remove original assignment to kRemove original assignment to k

Global constant propagationGlobal constant propagation

Domain is set of values, not bit-vector.Domain is set of values, not bit-vector.
Status of a variable is (c, non-const, unknown)Status of a variable is (c, non-const, unknown)
Like common Like common subexpressionsubexpression elimination, but instead elimination, but instead
of intersection, define a merge operation:of intersection, define a merge operation:
ll Merge (c, unknown) = cMerge (c, unknown) = c
ll Merge (non-const, anything) = non-constMerge (non-const, anything) = non-const
ll Merge (c1, c2) = if c1 = c2 then c1 else non-constMerge (c1, c2) = if c1 = c2 then c1 else non-const

In (b) = Merge { out (p) } In (b) = Merge { out (p) } forallforall p p ee predpred (b) (b)

Initially all variables are unknown, except for explicitInitially all variables are unknown, except for explicit
constant assignmentsconstant assignments

