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Abstract. The CGU (convex global underestimator) global optimization method is used to
predict the minimum energy structures, i.e. folded states, of small protein sequences.
Computational results obtained from the CGU method applied to actual protein sequences
using a detailed polypeptide model and a differentiable form of the Sun/Thomas/Dill
potential energy function are presented. This potential function accounts for steric
repulsion, hydrophobic attraction, andϕ/ψ pair restrictions imposed by the so called
Ramachandran maps. Furthermore, it is easily augmented to accommodate additional
known data such as the existence of disulphide bridges and any other a priori distance
data. The Ramachandran data is modeled by a continuous penalty term in the potential
function, thereby permitting the use of continuous minimization techniques.
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1.  Introduction

Macromolecules, such as proteins, require specific 3-dimensional conformations
to function properly. These “native” conformations result primarily from intramo-
lecular interactions between the atoms in the macromolecule, and also intermolec-
ular interactions between the macromolecule and the surrounding solvent.
Although the folding process appears to be quite complex, the instructions guid-
ing this process are believed to be completely specified by the one-dimensional
primary sequence of the protein or nucleic acid: external factors, such as helper
(chaperone) proteins, present at the time of folding have no effect on the final state
of the protein. Many denatured proteins and nucleic acids, for example, spontane-
ously refold into functional conformations once denaturing conditions are
removed. Indeed, the existence of aunique native conformation, in which residues
distant in sequence but close in proximity exhibit a densely packed hydrophobic
core, suggests that this 3-dimensional structure is largely encoded within the
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sequential arrangement of these hydrophobic (H) and polar (P) amino acids. The
assumption that such hydrophobic interaction is the single most dominant force in
the correct folding of a protein also suggests that simplified potential energy func-
tions, for which the terms involve only pairwise H-H attraction and steric repul-
sion, may be sufficient to guide computational search strategies to the global
minimum representing the native state.

Machine based prediction strategies, such as the one described in this paper,
attempt to lessen the reliance on experts by developing a completely computa-
tional method. Such approaches are generally based on two assumptions. First,
that thereexists a potential energy function for the protein; and second that the
folded state corresponds to the structure with the lowest potential energy (mini-
mum of the potential energy function) and is thus in a state of thermodynamic
equilibrium.

2.  The Polypeptide Model

Computational search methods are not yet fast enough to find global optima in
real-space representations using accurate all-atom models and potential functions.
A practical conformational search strategy requires both a simplified, yet suffi-
ciently realistic, molecular model with an associated potential energy function
which consists of the dominant forces involved in protein folding, and also a glo-
bal optimization method which takes full advantage of any special properties of
this kind of energy function. In what follows, we describe such a model and an
associated global optimization algorithm.

Each residue in the primary sequence of a protein is characterized by its back-
bone components NH-CαH-C′O and one of 20 possible amino acid sidechains
attached to the central Cα atom.The 3-dimensional structure of macromolecules is
determined by internal molecular coordinates consisting of bond lengthsl
(defined by every pair of consecutive backbone atoms), bond anglesθ (defined by
every three consecutive backbone atoms), and the backbone dihedral anglesϕ, ψ,
andω, whereϕ gives the position of C′ relative to the previous three consecutive
backbone atoms C′-N-Cα, ψ gives the position of N relative to the previous three
consecutive backbone atoms N-Cα-C′, andω gives the position of Cα relative to
the previous three consecutive backbone atoms Cα-C′-N. Figure 2.1 illustrates this
model.

Fortunately, these 9n-6 parameters (for ann-residue structure) do not all vary
independently. In fact, some of these (7n-4 of them) are regarded as fixed since
they are found to vary within only a very small neighborhood of an experimen-
tally determined value. Among these are the 3n-1 backbone bond lengthsl
between the pairs of consecutive atoms N-C′ (fixed at 1.32Å), C′-Cα (fixed at
1.53 Å), and Cα-N (fixed at 1.47Å). Also, the 3n-2 backbone bond anglesθ
defined by N-Cα-C′ (110˚), Cα-C′−N (114˚), and C′-N-Cα (123˚) are also fixed at



MOLECULAR STRUCTURE PREDICTION BY GLOBAL OPTIMIZATION 3

their ideal values. Finally, then-1 peptide bond dihedral anglesω are fixed in the
trans (180˚) conformation. This leaves only then-1 backbone dihedral angle pairs
(ϕ,ψ) in the reduced representation model. These also are not completely indepen-
dent; in fact, they are severely constrained by known chemical data (the Ram-
achandran plot) for each of the 20 amino acid residues.

Furthermore, since the atoms from one Cα to the next Cα along the backbone
can be grouped into rigidplanar peptide units, there are no extra parameters
required to express the 3-dimensional position of the attached O and H peptide
atoms. These bond lengths and bond angles are also known and fixed at 1.24Å
and 121˚ for O, and 1.0Å and 123˚ for H.

 A key element of this simplified polypeptide model is that each sidechain is
classified as either hydrophobic or polar, and is represented by only a single “vir-
tual” center of mass atom. Since each sidechain is represented by only the single
center of mass “virtual atom” Cs, no extra parameters are needed to define the
position of each sidechain with respect to the backbone mainchain. The twenty
amino acids are thus classified into two groups, hydrophobic and polar, according
to the scale given by Miyazawa and Jernigan in [4].

Corresponding to this simplified polypeptide model is a potential energy func-
tion also characterized by its simplicity. This function includes just three compo-
nents: a contact energy term favoring pairwise H-H residues, a steric repulsive
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term which rejects any conformation that would permit unreasonably small inter-
atomic distances, and a main chain torsional term that allows only certain preset
values for the backbone dihedral angle pairs (ϕ,ψ). Since the residues in this
model come in only two forms, H (hydrophobic) and P (polar), where the H-type
monomers exhibit a strong pairwise attraction, the lowest free energy state is
obtained by those conformations with the greatest number of H-H “contacts” (see
[1], [7]). Despite its simplicity, the use of this type of potential function has
already proven successful in studies conducted independently by Sun, Thomas,
and Dill [8] and by Srinivasan and Rose [6]. Both groups have demonstrated that
this type of potential function is sufficient to accurately model the forces which
are most responsible for folding proteins. The specific potential function used ini-
tially in this study is a simple modification of the Sun/Thomas/Dill energy func-
tion and has the following form:

(1)

whereEex is the steric repulsive term which rejects any conformation that would
permit unreasonably small interatomic distances,Ehp is the contact energy term
favoring pairwise H-H residues, andEϕψ is the main chain torsional term that
allows only those (ϕ,ψ) pairs which are permitted by the Ramachandran plot. In
particular, the excluded volume energy termEexand the hydrophobic interaction
energy termEhp are defined in this case as follows:

, and

 where .

The excluded volume termEex is a soft sigmoidal potential wheredij  is the inter-
atomic distance between two Cα atoms or between two sidechain center of mass
atoms Cs, dw = 0.1Åwhich determines the rate of decrease ofEex, deff = 3.6Å for
Cα atoms and 3.2Å for the sidechain centroids which determine the midpoint of
the function (i.e. where the function equals 1/2 of its maximum value). The con-
stant multiplierC1 was set to 5.0 which determines the hardness of the sphere in
the excluded volume interaction. Similarly, the hydrophobic interaction energy
termEhp is a short ranged soft sigmoidal potential wheredij  represents the inter-
atomic distance between two sidechain centroids Cs, d0 = 6.5Å anddt = 2.5Å
which represent the rate of decrease and the midpoint ofEhp, respectively. The
hydrophobic interaction coefficientεij  = -1.0 when both residuesi andj are hydro-
phobic, and is set to 0 otherwise. The constant multiplierC2 = 1.0 determines the
interaction value and is the equivalent of 1/5 of one excluded volume violation.
The model is not very sensitive to the pair of constantsC1 andC2 provided thatC1

Etotal Eex Ehp Eϕψ+ +=

Eex

C1

1.0 exp dij deff–( ) dw⁄( )+
----------------------------------------------------------------

i j
∑=

Ehp εi j f dij( )
i j– 2>
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1.0 exp dij d0–( ) dt⁄( )+
----------------------------------------------------------=
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is larger thanC2. Figure 2.2 shows the combined effect of the energy termsEex +

Ehp for a pair of H-H residues.
The final term in the potential energy function,Eϕψ, is the torsional penalty

term allowing only “realistic” (ϕ,ψ) pairs in each conformation. That is, sinceϕ
andψ refer to rotations of two rigid peptide units around the same Cα atom (see
Figure 2.1), most combinations produce steric collisions either between atoms in
different peptide groups or between a peptide unit and the side chain attached to
Cα (except for glycine). Hence, only certain specific combinations of (ϕ,ψ) pairs
are actually observed in practice, and are often conveyed via the Ramachandran
plot, such as the one in Figure 2.3, and the ϕ-ψ search space is therefore very

much restricted.

Figure 2.2 Combined Potential Function
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Use of the Ramachandran plot in determining protein structure is essential in
order to restrict theϕ-ψ plane to those regions observed for actual protein mole-
cules. While most other global optimization methods for protein structure predic-
tion also depend on this property, they are invariably forced to use some variant of
simulated annealing (or any other method based on random sampling rather than
gradient information) to perform the optimization due to the lack of a smooth, i.e.
differentiable, representation forEϕψ. This, in turn, results in a very slow local
minimization process. Our approach, however, is to model the Ramachandran data
by a smooth function which will have the approximate value zero in any permitted
region, and a large positive value in all excluded regions. This “penalty term” is
therefore differentiable and will be easily computed.

A key observation in the construction of the functionEϕψ is that the set of
allowable (ϕ,ψ) pairs form compact clusters in theϕ-ψ plane. By enclosing each
such cluster in an appropriately constructed ellipsoid, we may use the ellipsoids to
define the energy termEϕψ. In particular, given p regions (ellipsoids) R1, R2,...,
Rp, containing the experimentally allowable (ϕ,ψ) pairs (see Figure 2.4), we desire

the energy termEϕψ to satisfy

(2)

whereβ is some large constant penalty. To obtain such an energy term, we first
represent theith ellipsoid Ri by a quadratic functionqi(ϕ,ψ) which is positive defi-
nite (both eigenvalues positive) and satisfiesqi(ϕ,ψ) = 0 on the boundary of the
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ellipsoid Ri, qi(ϕ,ψ) < 0 in the interior of Ri, andqi(ϕ,ψ) > 0 in the exterior. By
simply constructing a sigmoidal penalty term of the form

(3)

where the constantsγi > 0 determine the rate by whichEϕψ approaches 0 orβ near
an ellipsoid boundary, then it is easy to see thatEϕψ ≅ 0 in the ellipsoid’s interior,
andEϕψ ≅ β at distant exterior points, thus satisfying Eq (2). Figure 2.5showsEϕψ

as a function ofqi(ϕ,ψ) for a single ellipsoid with the values ofβ = 1 and γ1 = 5.
Figure 2.6 illustrates the 3-dimensional plot ofEϕψ (for β = 1, and allγi = 100) for
the data provided in Figure 2.4. Likewise, Figure 2.7 shows the 2-dimensional
topographical map for that same function.

Figures 2.8 and 2.9 show the Ramachandran plots for GLY and PRO, respec-
tively. The corresponding 3-dimensional plots ofEϕψ for these same residues are
shown in Figures 2.10 and 2.11. Since these two residues differ substantially from
the other 18 residues in their Ramachandran data, they require different forms for
the penalty termEϕψ. In summary, although there are 20 different amino acid resi-
dues, since 18 of these exhibit very similar torsional, i.e. (ϕ,ψ), distributions, only
three forms of the torsional penalty termEϕψ are required: one for GLY, one for
PRO, and one for the remaining 18 residues.

Eϕψ
β

1 e
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p

∑ xp γ– iqi
ϕ ψ,( )( )+

-------------------------------------------------------------=

Figure 2.5 Sigmoidal Penalty TermEϕψ for
β = 1 andγ1 = 5
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Figure 2.6 3-Dimensional Plot ofEϕψ (for β = 1.0)
Corresponding to the Ramachandran Data in Figure 2.4

ψ

ϕ

Figure 2.7 2-Dimensional Topographical Map
Corresponding to the Function Shown in Figure 2.6
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Figure 2.8 Ramachandran Plot for the
Residue GLY
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Figure 2.10 3-Dimensional Plot ofEϕψ (β = 1.0)
Corresponding to the Data for GLY in Figure 2.8

Figure 2.11 3-Dimensional Plot ofEϕψ (β = 1.0)
Corresponding to the Data for PRO in Figure 2.9
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3.  The CGU Global Optimization Algorithm

One practical means for finding the global minimum of the polypeptide’s potential
energy function is to use a global underestimator to localize the search in the
region of the global minimum. This CGU (convex global underestimator) method
is designed to fit all known local minima with a convex function which underesti-
mates all of them, but which differs from them by the minimum possible amount
in the discrete L1 norm (see Figure 3.1). The minimum of this underestimator is

used to predict the global minimum for the function, allowing a more localized
conformer search to be performed based on the predicted minimum (see Figures
3.2 and 3.3). A new set of conformers generated by the localized search then

serves as a basis for another quadratic underestimation over the reduced space.
After several repetitions, the global minimum can be found with reasonable assur-
ance.

This CGU method, first described in [5], has previously been applied success-
fully to a simpler “string of beads” model as described in [2]. In this paper, we

Figure 3.1 The Convex Global
Underestimator (CGU)
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Search Domain
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apply the CGU algorithm to the more realistic polypeptide model shown in Figure
2.1.

4.  Results for Small Polypeptides

The CGU algorithm was tested on five small polypeptides: met-enkephalin,
bradykinin, oxytocin, mellitin, and PSU-SEQ-9. To assess the accuracy of the
CGU computed structures as compared to the known structures, the distance
matrix error

was computed, where the pairwise distancesrij  are calculated over all Cα back-
bone atoms, and the superscript “c” indicates the “correct” target conformation
(usually obtained from the Brookhaven Protein Database).

Met-enkephalin, first used in computational protein folding studies by Scher-
aga’s group [3], is a small brain peptide that is a natural ligand for opiate receptor
cites. It is often used as an initial test case for folding algorithms because it is
small yet non-trivial. Met-enkephalin consists of only five residues (TYR-GLY-
GLY-PHE-MET), of which only three (TYR, PHE, and MET) are hydrophobic.
For this test case, the global minimum energy obtained by the CGU algorithm in
73 seconds (wall clock time) on an eight processor Dec Alpha workstation cluster
was -43.79 kcal/mol (using the modified Sun/Thomas/Dill energy function previ-
ously described). Figures 4.1 and 4.2 show the CGU computed “ball-and-stick”
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  r ij r ij
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–( )
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j i 1+=

N

∑
i 1=
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Figure 4.1 The CGU Determined Native Structure for
Met-Enkephalin: Ball-and-Stick Representation
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and “ribbon” representations for this peptide (as seen from the same viewpoint),
respectively.

Bradykinin, which is a hormone-like peptide that inhibits inflammatory reac-
tions, consists of nine residues (ARG-PRO-PRO-GLY-PHE-SER-PRO-PHE-
ARG), of which only two are hydrophobic (both PHE residues). The global mini-
mum energy obtained by the CGU algorithm in 382 seconds (6.4 minutes wall
clock time) on the eight processor Dec Alpha workstation cluster was -21.89 kcal/
mol. Figures 4.3 and 4.4 show the CGU computed representations for this peptide.

Oxytocin is a pituitary hormone consisting of nine residues (CYS-TYR-ILE-
GLN-ASN-CYS-PRO-LEU-GLY) with a disulphide bridge between the CYS res-
idues (1 and 6). Five of the nine residues are hydrophobic (CYS, TYR, ILE, CYS
again, and LEU). The existence of the disulphide bridge greatly reduces the con-
formation space since the distance between the two CYS residues is effectively

Figure 4.2 The CGU Determined Native Structure f
Met-Enkephalin: Ribbon Representation

Figure 4.3 The CGU Determined Native Structure for
Bradykinin: Ball-and-Stick Representation
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fixed (and the CGU algorithm makes use of this property, see [2]). The global
minimum energy obtained by the CGU algorithm in 445 seconds (7.4 minutes
wall clock time) on the eight processor Dec Alpha workstation cluster was -
119.01 kcal/mol. The DME error for this structure (compared with “pdb1xy1.ent”
from the Brookhaven Protein Database) was 0.338 Ang. Figures 4.5 and 4.6 show

the CGU computed representations for this peptide.
Mellitin consists of 27 residues (GLY-ILE-GLY-ALA-VAL-LEU-LYS-VAL-

LEU-THR-THR-GLY-LEU-PRO-ALA-LEU-ILE-SER-TRP-ILE-LYS-ARG-
LYS-ARG-GLN-GLN-GLY) of which twelve are hydrophobic (ILE, ALA, VAL,

Figure 4.4 The CGU Determined Native Structure for
Bradykinin: Ribbon Representation

Figure 4.5 The CGU Determined Native Structure for
Oxytocin: Ball-and-Stick Representation
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LEU, and TRP). It is commonly found in bee venom and is responsible for an
increase in cell permeability. For this peptide, the global minimum energy
obtained by the CGU algorithm in 49692 seconds (13.8 hours wall clock time) on
the eight processor Dec Alpha workstation cluster was -903.38 kcal/mol. The
DME error for this structure (compared with “pdb2mlt.ent” from the Brookhaven
Protein Database) was 0.394 Ang. Figures 4.7 and 4.8 show the CGU computed

representations for this peptide.

Figure 4.6 The CGU Determined Native Structure for
Oxytocin: Ribbon Representation

Figure 4.7 The CGU Determined Native Structure for
Mellitin: Ball-and-Stick Representation
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PSU-SEQ-9 is not a naturally occurring peptide, but rather is a subpart of a
larger structure used in binding sperm to egg membranes. In this case, the native
structure for PSU-SEQ-9 is not known. The sixteen residue sequence (LEU-TYR-
PRO-GLN-ASP-ARG-PRO-ARG-SER-GLN-PRO-GLN-PRO-LYS-ALA-ASN)
for PSU-SEQ-9 involves only three hydrophobic residues (LEU, TYR, and ALA),
and the global minimum energy obtained by the CGU algorithm in 4488 seconds
(1.25 hours wall clock time) on the eight processor Dec Alpha workstation cluster
was -43.78 kcal/mol. Figures 4.9 and 4.10 show the CGU computed representa-

Figure 4.8 The CGU Determined Native Structure for
Mellitin: Ribbon Representation

Figure 4.9 The CGU Determined Native Structure for
PSU-SEQ-9: Ball-and-Stick Representation
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tions for this peptide.

5.  Conclusions

The CGU method has been shown to be both practical and effective in computing
the minimum energy structures for the small protein sequences tested. In those
cases for which a global solution is known, the DME between the CGU computed
and known structures is always observed to be less than 0.5 Ang. Furthermore, the
use of a differentiable representation ofEϕψ is crucial to permit the CGU method
(and, in fact, any other method based on continuous minimization) to proceed.
This penalty function approach to representing the Ramachandran data is a key
component of the modified Sun/Thomas/Dill potential function. Improvements in
the CGU algorithm, which are currently being investigated, should reduce the
computation times substantially. This will permit the application of the techniques
described here to the study of larger protein molecules.
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