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The Morse potential is a simple model pair potential that has a single parameter ρ which

determines the width of the potential well and allows a wide variety of materials to be

modelled. Morse clusters provide a particularly tough test system for global optimization

algorithms, and one that is highly relevant to methods that are to be applied to find the

optimal configuration of a biomolecule. In particular, large ρ values are very challenging

and, until now, no unbiased global optimization method has been able to detect all the

(putative) global minima at ρ = 14 for clusters with up to N = 80 atoms. In this paper

we introduce some techniques for transforming the original Morse potential that allow us to

considerably increase the efficiency in locating the known global minima and also to discover

some new optimal clusters. These methods are promising candidates for application to the

optimization of biomolecules.

(Morse potential; global optimization; basin-hopping; two-phase local search)

1. Introduction

Test problems have played an important role in the field of global optimization, aiding the

development of new algorithms by providing a means to benchmark their efficiency [11].

Lennard-Jones clusters have become just such an archetypal test problem for global opti-

mization algorithms that specialize in finding the lowest energy ‘molecular’ configuration,

be it a cluster, a biomolecule or a crystal [30], with probably hundreds of published appli-

cations to this problem. There is probably no equivalent test system for the protein folding
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problem, at least when modelled in a continuous configuration space,1 and many of the most

successful algorithms for Lennard-Jones clusters have been subsequently applied to optimize

polypeptides and proteins.

The choice of Lennard-Jones clusters as a test system is for a number of reasons. The

Lennard-Jones potential is extremely simple. Excellent putative global minima have now

been tabulated for clusters with up to 309 atoms [28, 29]. Lennard-Jones clusters have also

become a model system for understanding a wide range of cluster properties, such as their

structure, thermodynamics, dynamics and energy landscapes, allowing the ease or difficulty

of global optimization to be correlated with these cluster properties [8].

However, Lennard-Jones clusters have a number of deficiencies as a test system. Firstly,

they are rather structurally uniform. Virtually all of the global minima in the relevant size

range are based on Mackay icosahedra [25]. Secondly, for systems of their dimensionality

Lennard-Jones clusters are relatively easy to optimize. This is because the potential energy

landscapes for these systems give rise to strong funnelling properties, directing the system

down towards the global minimum [6]. For example, even though there are an estimated 1021

geometrically distinct minima for a 55-atom Lennard-Jones cluster, the basin-hopping algo-

rithm is able to find the global minimum from a random starting point after only sampling

on average 150 of those minima [30].

The most difficult Lennard-Jones clusters to optimize occur at the few sizes where the

global minimum has a structure that is not in fact based on the Mackay icosahedron. In these

cases, the energy landscape has a double-funnel topography, where the dominant funnel leads

down to icosahedral structures and there is a second narrower, and less accessible, funnel

leading down to the global minimum [6]. Typically, these examples are one or two orders

of magnitude more difficult [15]. That a few examples are the most meaningful tests of the

performance of an algorithm is probably not the behaviour one wants from a test system.

Rather it is much better to have a more uniform difficulty.

Because of these deficiencies, Morse clusters have been suggested as a much more rigorous

alternative test system [7]. The Morse pair potential [23] as a function of the interatomic

distance r between two atoms is defined as

vρ(r) = [exp{ρ(1− r)} − 1]2 − 1,

1For proteins modelled on a lattice the archetypal test system is probably the HP model [14]. However,
global optimization techniques for systems in discrete and continuous spaces have substantial differences.
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and so a N -atom Morse cluster, MN , has a potential energy given by

MorseN(X; ρ) =
∑
i<j

vρ (‖Xi −Xj‖) .

Here X is the 3N -dimensional vector of atomic coordinates, and Xi is the 3-dimensional vec-

tor of coordinates of the i-th atom. The potential has a single parameter, ρ, that determines

the width of the well (Fig. 1), thus allowing it to capture aspects of the interactions for a

wide range of materials. For example, the Lennard-Jones potential has the same curvature

at the bottom of the well when ρ=6; for this value of ρ the structural behaviour of the two

systems is very similar. Approximating the interactions between C60 molecules by a pair

potential gives ρ=13.6, whereas appropriate values for interactions between alkai metals are

typically about ρ=3.1.

The Morse clusters show a wide variety of structural behaviour as a function of ρ. As

ρ is increased the structures of the global minima change from polytetrahedral to Mackay

icosahedral to decahedral to close-packed [7]. The potential energy landscape also changes

character with ρ. Firstly, as ρ is increased the number of minima increases rapidly, changing

the landscape from smooth to rough [21]. On this basis alone, one expects the difficulty of

global optimization to increase with ρ. Therefore, from the global optimization perspective

ρ < 6 is the less interesting regime, since optimization is easier than for Lennard-Jones

clusters.

Secondly, the energy landscape is much more likely to have a multiple-funnel character at

larger values of ρ [9], further increasing the difficulty of global optimization. Usually, there

are a variety of low-energy configurations, mainly decahedral and close-packed, that are

structurally very different and so well-separated in configuration space. This feature makes

Morse clusters especially relevant to biomolecules, where, although there is an evolutionary

pressure to make the energy landscapes of proteins sufficiently funnel-like that the protein

can fold in a biologically appropriate time scale [3], it is still common to find structures that

act as traps hindering the folding process, both in experiment [13, 26] and simulations [1, 12].

Analyses of energy landscapes show that such traps correspond to additional funnels on the

energy landscape [16, 17, 22, 24].

The combination of these effects makes the global optimization of Morse clusters at ρ=10

and 14 a very challenging task, and one which is orders of magnitude more difficult than

Lennard-Jones clusters. A database of putative Morse cluster global minima is available

up to N=80 [4]. This was obtained through a combination of the application of global
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Figure 1: The Morse potential for different values of ρ, as labelled.

optimization algorithms and the generation of candidate structures on the basis of structural

insight into the problem [7]. It has since been used as a global optimization test system [27],

but, until now, no unbiased global optimization algorithm has managed to obtain all the

global minima. In this paper, we attempt just such a task.

2. Basin-Hopping and Funnel Landscapes

The landscape of a smooth potential function E(X) with many local minima such as the

Morse energy function can be viewed as a collection of basins of attraction, each associated

with a local minimum. A gradient-based local optimization procedure such as a steepest

descent, Newton, or quasi-Newton algorithm, when initiated at a point in a given basin

of attraction, will converge to the associated local minimum. One strategy for the global

minimization of such energy functions is to combine a standard gradient-based local search

method for finding local minima with a global method for searching over the various basins

of attraction. This general approach has come to be known as ‘basin-hopping’ [29].

Basin-hopping algorithms typically search the space of local minima by moving between

adjacent local minima across a common basin boundary. This search strategy can be par-

ticularly effective on landscapes where the local minima are organized into a few large-scale

funnels [15]. A funnel consists of a collection of local minima such that all monotonically

descending sequences of successively adjacent local minima entering the funnel terminate at

the funnel bottom. Note that all monotonically descending sequences must eventually enter

a funnel, and clearly a downwardly biased search over adjacent local minima is a reasonable
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strategy to locate a funnel bottom. Note also that the global minimum lies in the set of

funnel bottoms.

For any given point X and local search procedure LS, let LS(X) be the local minimum

of the energy function E(X) that is obtained by applying LS to the starting point X. A

typical basin-hopping algorithm produces a sequence of local minima from the iteration

X [i+1] = LS(X [i] + S)

where S is a random perturbation used to escape the current basin of attraction. The size of

S is controlled to reach only nearby (and usually adjacent) local minima. Additionally, an

acceptance/rejection step that depends on the energy change E(X [i+1])−E(X [i]) is applied

to bias the search toward lower energy values. Thus the sequence {X [i]} can be viewed as a

Markov chain on a finite state space consisting of the local minima of E(X). The transition

probabilities are determined by the distribution of the perturbations S as well as the details

of the acceptance/rejection rule.

In this paper we consider three forms of basin-hopping:

i) BH, the original basin-hopping algorithm2 of Wales and Doye [29]. The point X [i+1] is ac-

cepted or rejected according the Metropolis criterion, that is, all downhill steps (E(X [i+1]) <

E(X [i])) are accepted, and uphill steps (E(X [i+1]) > E(X [i])) are accepted randomly with

probability

p = e(E(X[i+1])−E(X[i]))/T

Here T > 0 is a preselected ‘temperature’ parameter that remains fixed (i.e., no annealing is

done) throughout a given run. If the step is rejected, new random perturbations S are gen-

erated until a step is accepted. Starting from a random initial local minimum, the Markov

chain is extended for as long as desired (usually at least several thousand steps), and there

are usually no absorbing states if the distribution of S is properly selected. A putative global

minimum is the lowest energy state visited.

ii) MSBH (Monotonic Sequence Basic-Hopping), a variant due to Leary [15] that attempts to

exploit the funnel structure of the landscape more aggressively than BH. MSBH is basically

BH at a temperature T=0, that is, only downhill steps are accepted, so the sequence of

2The same algorithm was developed independently in the protein folding community and called Monte
Carlo with minimization [18].
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states is monotonically descending in energy. Once the sequence enters a given funnel, it will

proceed on an energetically descending path to the funnel bottom, which is an absorbing

state in the Markov chain. After a funnel bottom is recognized by the lack of progress in

a sufficiently large number of attempted moves, the Markov chain is restarted from a new

randomly selected local minimum. MSBH can be viewed as a multistart approach that sam-

ples funnel bottoms. It can be particularly effective if the number of funnel bottoms is small

compared to the number of local minima, and the probability for entering the correct funnel

associated with the global minimum is reasonably large.

iii) TP-MSBH (Two-Phase MSBH), due to Locatelli and Schoen [20], who introduce a mod-

ified energy function

EG(X) = E(X) +G(X)

where G(X) is a geometrically-inspired penalty term. Let LSG(X) be the local minimum of

EG(X) obtained by initiating a local search procedure at X. LSG(X) is then used as the

starting point for a local search of E(X), that is,

X [i+1] = LS(LSG(X
[i] + S))

Thus two local searches, one on the landscape of EG(X) and a second on the landscape of

E(X), are performed at each step (see Section 3 for more details). As in MSBH, the step is

accepted if it improves the energy E(X), and otherwise a new perturbation is attempted. The

entire procedure is restarted from a new random local minimum of E(X) after a prescribed

number of step attempts with no progress. The effect of the first phase local optimization

on the landscape of EG(X) is to bias the search toward local minima of E(X) with specific

shape-related geometrical properties. As seen below, this can greatly increase the probability

of entering the proper funnel and finding the global minimum.

Wales and Doye [29] note that basin-hopping algorithms for the global minimization of

E(X) in effect search a transformed piecewise constant ‘plateau’ energy function P (X) =

E(LS(X)) where the the landscape of P (X) consists of interlocking plateaus, each covering

a given basin of attraction at a height equal to the energy of the local minimum in the

basin. Much of the power of basin-hopping methods derives from the fact that, unlike

global search methods applied directly to E(X), there are no energetic barriers for moving

downhill between plateaus, and basin crossing can easily take place at any point along a
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basin boundary with no necessity to search for special boundary crossing points such as first

order transition points.

3. Two-Phase local searches

In this section Two-Phase (TP) local searches, already introduced in Section 2, are described

in more detail. The formal scheme of TP local searches is the following.

Procedure: TwoPhaseLocOpt(U);

Phase I: find

Y = [Y1, . . . , YN ] = arg localminMorsemod
N (X)

using U = [U1, . . . UN ] ∈ R3N as the starting point;

Phase II: find

Z = [Z1, . . . , ZN ] = arg localminMorseN(X; ρ) (1)

using Y as a starting point;

end: return(Z).

Given a starting point U , the first phase returns a local minimum of a modified potential

Morsemod
N , while in the second phase such local minimum becomes the starting point of a

local search driving to a local minimum of the original potential. While the second phase

has the important task of driving the search back to the space of local minima of the original

potential, the first phase can considerably increase the speed at which optimal clusters are

detected in particular through the choice of a modified potential that allows the funnel

structure of the landscape to be modified in such a way that the funnel containing the global

minimum is favoured with respect to the others [5]. Therefore, the efficiency of TP local

searches strongly depends on the modified potential. In this paper we employ the following

modified potential (see also [19], [20]):

Morsemod
N (X) = min

∑
i<j

(vρ′ (‖Xi −Xj‖) (2)

+µ‖Xi −Xj‖ (3)

+(max{0, ‖Xi −Xj‖2
W −D2})2

)
(4)
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where

‖Xi −Xj‖W =

(
3∑

k=1

wk(X
k
i −Xk

j )
2

) 1
2

is the weighted distance between two atoms. Note that ρ′, µ,D are nonnegative parameters,

while w1 = 1 and w2, w3 ∈ [0, 1], w2 ≥ w3. In the following, we comment on the different

terms of the modified potential and the different impact that such terms have on the per-

formance of TP-MSBH. Term (2) is the original Morse potential but with a parameter ρ′

which is possibly different with respect to ρ. Parameter ρ′ allows to control the degree of

smoothness of the modified potential: as ρ′ increases the landscape of the modified potential

becomes rougher and rougher and the number of local minima increases. The computations

show that the choice ρ′ = ρ is often quite appropriate, although in some cases there may be

some advantage from using ρ′ �= ρ.

Term (3) is a linear penalization of distance between atoms (typical values for µ range be-

tween 0 and 0.5). Its effect is that of disfavouring clusters containing atom pairs at large

distance, thus favouring compactness of the clusters. While the use of this term gave some

benefits during the optimization of Lennard-Jones clusters (see [20]), its relevance for the

optimization of Morse clusters with large ρ values is less obvious and, as we will see, in the

computations, setting µ = 0 is often a feasible choice.

Term (4) is undoubtedly the most relevant one. It is a weighted diameter penalization term,

i.e. it strongly penalizes large weighted distance between atoms, more precisely weighted

distance significantly larger than D (parameter D is often chosen between one or two units

smaller than the expected diameter of the cluster, whose increase is proportional to N1/3

and whose estimated value is returned by appropriate formulae). It also favours compact

structures but whose shapes can be very different according to the choice of parameters w2

and w3. Indeed, if w2 = w3 = 1, then we are favouring spherical shapes, but as we de-

crease one of or both the weights w2 and w3 we favour more oblate or prolate shapes. The

advantages of using different weights w2 and w3 were already noticed in some cases for the

optimization of Lennard-Jones clusters (see [20]) but for the very difficult Morse clusters

with large ρ values the advantages are much more evident because of the larger variability

of the shapes of these clusters. An important question about parameters w2 and w3 is the

following: are there unique values for the weights w2 and w3 which are appropriate for all

the Morse clusters? Unfortunately, the answer is no. As it will become clear in Section 4,

weights w2 and w3 which are extremely successful for some N values, completely fail for
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other N values. The optimal choice of w2 and w3 for a given N value seems to be related

to the moments of inertia of the corresponding optimal cluster (see Section 5) and these

moments vary considerably with N for Morse clusters with large ρ value. This may seem to

be bad news because we, of course, do not know optimal clusters in advance and, therefore,

we cannot choose the best values for w2 and w3. However, in fact TP-MSBH appears to be

a quite robust method with respect to the choice of w2 and w3. Indeed, even choices that

are not too close to the moments of inertia often allow us to detect the optimal clusters

very efficiently. In spite of the large variability of the moments of inertia, the computational

results in Section 4 will show that almost all optimal Morse clusters at ρ = 14 for N up to

80 can be detected by TP-MSBH coupled with Forward/Backward procedures using only

five different sets of parameters, often much more efficiently than with MSBH.

4. Computational results

The first extensive computations of global minima of Morse clusters were described in [7]

and made available on the WWW in the Cambridge Cluster Database (CCDB) [4]. These

included putative global minima for N ≤ 80 and ρ = 3, 6, 10, 14. The global minima were

found by a combination of the BH algorithm and direct construction guided by the authors’

experience with global minima of the Morse and other potentials. BH by itself was able to

find all the initial results for ρ = 3, 6, and 10, and all but six for ρ = 14. Later improved

global minima for N = 61 and 68 , ρ = 10 (61B’ and 68D’ in the CCDB) were found by W.

Branz and noted in [9] and for N = 30, ρ = 14 (30D’) by D. J. Wales using BH.

The MSBH algorithm was applied in the current study and found all the ρ = 3, 6, and 10

cases, including 61B’ and 68D’ , and most of the ρ = 14 cases, including 30D’. MSBH also

discovered the new 78D’, ρ = 6 ’double icosahedron’ putative global minimum. The ρ = 3

cases proved to be far easier than comparably sized Lennard-Jones (LJ) clusters, while the

ρ = 6 cases were of similar difficulty. However, particularly for N > 40, ρ = 10 and 14,

a few cases required extraordinary computational effort as measured by a number of trials

(monotonic sequence starts from a random initial state) almost two orders of magnitude more

than the most dificult Lennard-Jones clusters in the same size range. All of the Lennard-

Jones optimal clusters were found with MSBH within 1000 trials [15], whereas quite a few of

the Morse cases for the larger values of ρ required more than 1000 trials for a single hit. In five
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Table 1: The five sets of parameters employed in the TP-MSBH computations. The depen-
dence of the parameter D on cluster size is given in parentheses.

D µ w2 w3

P1 3.5(N ≤ 60)-4 0.1 1 1
P2 3(N ≤ 60)-3.5 0 1 0.7
P3 3 0 0.8 0.8
P4 2.5 0 0.75 0.5
P5 2(N ≤ 60)-2.5 0 0.5 0.5

instances for the larger clusters at ρ = 14, current putative Morse global minima have not yet

been obtained by MSBH. Thus MSBH falls slightly short of meeting the challenge implicit in

the observation in the CCDB that no unbiased global optimization method has been able to

find all of the current putative global minima for N ≤ 80 for the four ρ values. Here unbiased

means not incorporating detailed foreknowledge of the properties and morphological forms

of known Morse global minima. Examples of biased algorithms include searching over highly

restricted domains such as fcc, Mackay icosahedral, or Marks decahedral lattices [25, 28],

which would necessarily preclude hitting any global minima outside those domains, and

seeding algorithms with structures likely to be related to the global minima being sought

[31].

In the remainder of this section we present and comment on computational results ob-

tained using TP-MSBH, which show that algorithm easily meets the CCDB challenge. For

economy of presentation, we restrict attention here primarily to 41 ≤ N ≤ 80 and ρ = 14,

the most difficult cases for MSBH. However, we have successively applied TP-MSBH to all

the remaining cases covered in the CCDB, as well as some intermediate values of ρ for which

putative global minima structures are given in the CCDB but explicit global optimizations

have not previously been performed. The modified Morse function (see Section 3, eqs.

2–4) depends on a number of adjustable parameters, the most important of which are the

diameter penalty weights w1, w2, w3 and the diameter threshold D. Here we fix ρ′ = ρ, and

µ = 0, except when using the spherically symmetric weight set with all weights equal to 1, in

which case we set µ = 0.1 (the use of µ is not strictly necessary, but we have found the fixed

setting µ = 0.1 to be more useful than not in the spherically symmetric case). As discussed

in Section 3, good ranges for D can be found systematically from N , so the diameter penalty

weights are the primary parameters of interest.

Our testing has shown that usually a significant range of diameter penalty weights are

effective for a given case, and a close match to an ‘optimal’ set of weights is not necessary
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Table 2: Number of successes in 50 random runs for the five different parameter sets.
N P1 P2 P3 P4 P5 FB N P1 P2 P3 P4 P5 FB
41 0 0 0 2 0 61 0 0 0 0 0
42 0 0 0 0 0 f 62 0 4 0 0 0
43 0 0 0 1 0 63 0 21 0 25 0
44 0 0 0 0 0 f 64 1 18 0 26 0
45 0 0 0 0 0 b 65 0 6 0 3 0
46 0 0 0 0 3 66 0 8 0 0 0
47 0 0 0 0 1 67 0 3 0 0 0
48 0 0 0 4 28 68 5 0 0 0 0
49 0 0 0 29 14 69 0 1 8 1 0
50 0 47 0 5 0 70 0 7 5 7 0
51 0 31 0 13 0 71 3 2 49 12 0
52 0 21 1 4 0 72 0 0 45 7 0
53 1 4 1 0 0 73 1 0 25 1 0
54 0 0 0 0 0 b 74 2 0 47 18 36
55 0 0 0 0 0 b 75 11 0 44 8 5
56 1 0 0 0 0 76 2 0 38 3 6
57 1 0 0 0 0 77 0 0 11 10 11
58 39 1 12 0 0 78 0 0 0 5 4
59 39 0 19 0 0 79 1 0 0 0 0
60 25 0 20 0 0 80 0 0 0 0 0 f

for successful application of the TP-MSBH algorithm. Thus a very general and effective

algorithm can be formulated by simply spreading a sufficiently large number of weight sets

fairly uniformly over the relevant portions of weight space so that at least one set is likely

to be effective. Since the weight space is of low dimension (in effect, 2-dimensional since w1

is fixed at 1.0) and the relevant region 0.0 ≤ w3 ≤ w2 ≤ 1.0 quite small, the algorithm can

effectively sample weight space with a manageable number of weight sets.

After a very limited amount of experimentation, we found that the five sets of parameters

P1-P5 given in Table 1 were sufficient to find all but one (N = 61) of the cases of interest

using 50 trials for each of the parameter sets. The results are reported in Table 2, where

each column P1-P5 reports the number of successes in 50 random runs of TP-MSBH with

the given set of parameters. For the sizes where the optimal cluster has not been detected

with any of the five set of parameters, column FB reports a f if the optimal cluster has

been detected by a forward procedure and a b if it has been detected by backward procedure

from a putative global minimum found at an adjacent size with the same parameter set.

The forward/backward procedures are commonly used in cluster optimization studies to take
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advantage of the fact that the global optima for adjacent size N and N+1 sometimes (but by

no means always) have very similar structures, differing only in the placement of usually one

and at most a few atoms, typically on the surface. Thus the removal or addition of an atom

at one size, in conjunction with some simple searches, is a useful technique for locating global

minima at the adjacent sizes. Here we limit the procedure to 100 random additions/deletions

of a single atom to/from the best configuration with N−1/N+1 atoms found by TP-MSBH.

For the sake of completeness we point out that the optimal configurations found by the

forward/backward procedures (those for N = 42, 44, 45, 54, 55, 80) can also be found directly

by TP-MSBH by simply increasing the number of random trials (never more than 1000 and

usually much less).

Along with the ‘obvious’ choice of the spherically symmetric weight set w1 = w2 = w3 =

1.0 in P1, the remaining four weight sets in P2 - P5 were selected primarily on the basis of

broad coverage of the weight space (see Fig. 2 in the next section) rather than by tuning

for specific results. The five sets of parameters employed here are not unique or the end

product of an extensive parmeter selection and optimization process, and certainly others

with good coverage of the weight space will work as well. Also, filling in gaps in the weight

space coverage of P1-P5 will give improved performance. For example, the single missed

case at N = 61 is easily found in 2 of 50 trials using a weight set P6 midway between P3

and P5. Also, the choice w2 = 0.6, w3 = 0.4, D = 2 in an area of weight space not well

covered by P1-P5 allows us to detect all optimal clusters for N = 41− 47 with much higher

success rates and without the use of forward/backward procedures. However, we emphasize

our aim is not to find optimal parameters for each N value but to show that a very limited

number of parameter sets is sufficient to find all optimal clusters and that an efficient and

robust algorithm can be constructed without excessive parameter tuning or foreknowledge

of the global minima being sought.

We have confirmed the effectiveness, efficiency and robustness of the TP-MSBH approach

proposed here by easily finding all previously known optimal clusters in the CCDB. Further

evidence of these properties is provided by the discovery or rediscovery by TS-MSBH of

several new putatively optimal clusters with improved energies relative to those known prior

to the current study. For N = 78 at ρ = 6 a new optimal cluster was first discovered

by MSBH, and later also found with a much higher success rate by TP-MSBH. For N =

24, 25, 45, 48, 51 at ρ = 8, new optimal clusters have been discovered by TP-MSBH. All these

new clusters are shown and described in Section 6.
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Several of the cases N = 41−80, ρ = 14 discussed in this section have proven to be enor-

mously difficult for the BH and MSBH algorithms. For more than half of the cases N > 60,

1000 trials of the MSBH algorithm has proven to be insufficient, and several required more

than 10,000 trials to achieve a single success. In five cases, neither version of single phase

basin-hopping to date has been successful despite extensive computational effort. In con-

trast, the TP-MSBH algorithm has consistently found all the global minima with only a few

hundred trials at each N value spread over a very limited number of parameter sets selected

for broad coverage of the parameter space. Thus the power and generality of the two phase

idea with a weighted diameter penalization is demonstrated by the reliably large amplifi-

cation relative to single phase approaches of the probability of hitting the global minimum

with at least one parameter set. This far outweighs the dilutive effect of distributing a given

number of trials over multiple parameter sets.

5. Shape Factors and Diameter Penalty Weights

The shape of a cluster can be approximately described by shape factors representing the

ratios of the lengths of the minor, intermediate, and major axes of a ellipsoid with the same

principle moments of inertia. The 3 by 3 moment of inertia tensor (also known as the shape

tensor or radius of gyration tensor) for any configuration X of N identical atoms is defined

as

Qmn =
1

N

∑
j>i

(Xm
i −Xm

j )(Xn
i −Xn

j )

The eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 of Q correspond to the squared lengths of the equiva-

lent ellipsoid axes, with the eigenvectors representing the directions of the axes. The trace

Tr(Q) = λ1 +λ2 +λ3 is the squared radius of gyration, i.e., the mean square distance of the

atoms from the center of mass.

The weighted diameter penalization term for any pair (i, j) of atoms is an increasing

function of the quadratic form

‖Xi −Xj‖2
W =

3∑
k=1

wk(X
k
i −Xk

j )
2

defined by the weights 1 = w1 ≥ w2 ≥ w3 ≥ 0. The corresponding ellipsoids of constant

weighted diameter penalty are centered at the center of mass of the atom pair with principal

axes of length proportional to 1/(wk)
1
2 and directions along the coordinate axes.
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Suppose the eigenvalues of the moment of inertia tensor of the global minimum are known

in advance, and we wish to find diameter penalty weights that will work well in the TP-MSBH

algorithm to find that global minimum. The obvious choice w1 = 1, w2 = λ1/λ2, w3 = λ1/λ3

matches the shape of the ellipsoids of constant weighted diameter penalty to that of the

moment of inertia ellipsoid, thus penalizing configurations with the ‘wrong’ shape. Examples

of moment of inertia weights (w2, w3) are plotted in Fig. 2 for the cases N = 41−80, ρ = 14,

along with the weight sets P1 - P5 described in Section 4. The point (1, 1) corresponds to

spherical shapes, the bounding line w2 = w3 to oblate shapes, and the bounding right edge

w2 = 1 to prolate shapes.

Empirically we have found that moment of inertia penalty weights are always a reasonable

choice in the sense that all global minima have been found within 1000 runs (and usually

far fewer) with their use. Moreover they are often very good or even near optimal in terms

of approximately maximizing the probability of hitting the global minimum, and in difficult

cases, the success of TP-MSBH depends on a reasonable match of the diameter penalty

weights to the optimal cluster shape. Conversely, a relatively few weight sets such as P1 - P5

that, as seen in Fig. 2, are fairly uniformly distributed over the space of moment of inertia

shape factors, are sufficient to find all the global minima.

An example of the efficacy of matching penalty weights to moment of inertia shape factors

is the new double icosahedral global minimum for N = 78, ρ = 6 that was first found by

MSBH. This case is in fact quite difficult for that algorithm, which hit it only 3 times in 1000

runs. Using the moment of inertia weights w1 = 1.0, w2 = 0.9718, w3 = 0.4957 corresponding

to the rather extreme prolate shape of this structure, the TP-MSBH algorithm hit it in 410 of

1000 runs. Weight sets that are a poor match were far less successful. Similarly, exploration

of the weight space for the relatively difficult N = 67, ρ = 14 case found the best weights

attempted to be w1 = 1.0, w2 = 1.0, w3 = 0.7, in excellent agreement with the moment of

inertia weights w1 = 1.0, w2 = 0.9986, w3 = 0.6907 for this prolate shape. Also, the oblate

weight set P3 is the most successful of the five sets discussed in Section 4 for the oblate

Marks decahedron at N = 75, ρ = 14. Finally, extremely aspherical structures such as the

N = 41 − 47, ρ = 14 cases where the global minima have very flat decahedral shapes can

be among the most difficult for TP-MSBH using just the parameter sets P1-P5. The only

successful weight sets P4 and P5 for these cases are the best matches to the moment of inertia

weights. However, as mentioned in the previous section, considerably improved results can

be obtained with the addition of a weight set closer to the shape factors for theses cases.
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Figure 2: Moment of inertia weights w2 (horizontal axis) and w3 (vertical axis) for N =
41−80, ρ = 14, are plotted as points ‘*’ with coordinates (w2, w3). Weight sets P1 - P5 used
to find all global minima are plotted as points ‘o’. Cases discussed in the text are labelled
with the corresponding N value.

6. New global minima

The new global minima that were discovered during this research program are depicted in

Figure 3. All these new global minima have been added to the Cambridge Cluster Database

[4].

The 24-atom structure is formed from the 23-atom triple icosahedron by the addition

of a capping atom at the edge of the cluster. The ρ = 6 global minimum has the capping

atom at the other alternative 4-fold coordinate site. In the 23-atom triple icosahedron,

mentioned above, the centres of the three interpenetrating icosahedra form an equilateral

triangle. The new M25 global minimum also consists of three interpenetrating icosahedra,

but with their centres in an open ‘V’-shape. This structure has previously been found for

clusters interacting with the Dzugutov potential [10].

The 45-, 48- and 51-atom clusters are all incomplete Mackay icosahedra, but which have

a slightly different choice of vacant surface sites compared to the icosahedral global minima

previously located at these sizes. In particular, all three structures can be formed from the

icosahedral global minimum for the preceding size by the addition of an atom to a vertex

site that is only five coordinate, rather than to the edge site that completes the five-fold ring

around that vertex.
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At N = 87 a structure can be formed that is made up of two interpenetrating Mackay

icosahedra and is related to the 19-atom double icosahedron in the same way that the 55-atom

Mackay icosahedron is related to the 13-atom icosahedron. The new M78 global minimum is

formed from this double icosahedron by the removal of two triangular faces.

All these new global minima, except that for M78, occur at values of ρ where the basin-

hopping global optimization algorithm was not applied in the original study [7]. Instead,

the location of global minima that are only optimal at intermediate ρ values was dependent

on the ingenuity of the authors (or lack of it in these cases) of that paper in constructing

candidate structures.

48 51 78

452524

Figure 3: New Morse cluster global minima found during this research.

7. Conclusion and future research

We have shown that the two phase basin-hopping algorithm with shape-directing weighted

diameter penalties is a highly effective and robust global optimization methodology for Morse

clusters. A very limited parameter grid selected without detailed parameter tuning is suffi-

cient to detect all known optimal clusters and also to find new ones.

However, we have also shown that there seems to exist a ‘natural’ choice of the weight

parameters based on the cluster shape factors determined by the principle moments of inertia.

One possible aim for future research is to investigate more sophisticated strategies than the

current grid search that perhaps incorporate adaptive elements that exploit this connection.
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For example, the current weighted diameter penalty term is applied in a space-fixed, rather

than molecule-fixed, coordinate system. Thus the corresponding compressional forces will

be changed in the molecule-fixed system by simply rotating the cluster in the space fixed-

system, which does not seem appropriate if indeed we want to search over the space of cluster

shapes. The insertion of an explicit rotation step after each local optimization to align the

principle moment of inertia axes of the current iterate with the coordinate axes would more

closely couple the diameter penalty to cluster shape during the course of the optimization.

Although the transformations of the Morse potential outlined here have been designed

with clusters in mind, competing conformations in biomolecules are also likely to differ in

their shape. Therefore, these methods are potentially transferable to the global optimization

of biomolecules, such as in the protein folding problem. Even if the particularly penalty

functions that we use here are not the most appropriate, the principles of our approach

are still likely to apply: namely, the design of potential modifications that can discriminate

between competing structure, which are then used in a series of optimization runs that favour

different regions of shape space. Indeed, preliminary applications to protein-protein docking

[2] have been encouraging.
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