XXVI General Assembly of European Geophysical Society Nice, France, 26 - 30 March 2001 HSC10/ Water Resources Engineering: Hydroinformatics

Global optimisation techniques in water resources management

Andreas Efstratiadis and Demetris Koutsoyiannis Department of Water Resources National Technical University of Athens

The nonlinear unconstrained optimization problem

Find an optimiser \mathbf{x}^* such that:

$$f(\mathbf{x}^*) = \min f(\mathbf{x}), \, \mathbf{a} < \mathbf{x} < \mathbf{b}$$

Main assumptions:

- The control variables are continuous and bounded.
- All constraints are handled either using penalty functions or via simulation.

Typical handicaps:

- Due to non-convexity, f may have many local optima.
- The partial derivatives of *f* may not be calculable and a numerical approximation of them is usually impractical.
- An analytical expression of *f* may not be available.
- The evaluation of *f* may be very expensive or time-consuming.

In real-world applications, a highly accurate solution is neither *possible* (due to uncertainties and errors in the underlying model or data) nor *feasible* (because of the unacceptably high computational effort).

An overview of nonlinear optimization techniques

Deterministic local optimisation methods:

- Gradient methods (e.g., steepest descend, conjugate gradient, quasi-Newton or variable metric methods).
- Direct search methods (e.g., downhill simplex, rotating directions).

Global optimization methods:

- Set covering techniques.
- Pure random search.
- Adaptive & controlled random search.
- Multiple local search.
- Evolutionary & genetic algorithms.
- Simulated annealing.
- Tabu search.

Global optimisation algorithms involve the evaluation of the function usually at a *random sample* of points in the feasible parameter space, followed by subsequent manipulations of the sample using a combination of *deterministic* and *probabilistic* rules. They guarantee *asymptotic convergence* to the global optimum.

• Combined algorithms (e.g., shuffled complex evolution, simplexannealing).

Genetic algorithms

Main concepts:

- Inspired from the process of natural selection of biological organisms.
- Representation of control variables on a chromosome-like (usually binary string) structure.
- Search through a population of points (individuals), not a single point.
- A fitness value is assigned to each solution, expressing its quality measure.
- Genetic operators are applied in order to create new generations.

Genetic operators:

- Selection: Chooses the fittest individual strings to be recombined in order to produce better offsprings; a probabilistic mechanism (i.e., a roulette wheel) is used, allocating greater survival to best individuals.
- **Crossover**: Recombines (exchanges) genes of randomly selected pairs of individuals with a certain probability.
- **Mutation**: Randomly changes genes in the chromosomes with a certain (small) probability, thus keeping the population diverse and preventing form premature convergence onto a local optimum.

A. Efstratiadis and D. Koutsoyiannis, Global optimisation techniques in water resources management 9

The shuffled complex evolution method (Duan et al., 1992)

Main concepts:

- Combination of probabilistic and deterministic approaches.
- Systematic evolution of a complex of points spanning the parameter space.
- Competitive evolution.
- Complex shuffling.

Description of the algorithm:

- A random set of points (a "population") is sampled and partitioned into a number of *complexes*
- Each of the complexes is allowed to evolve in the direction of global improvement, using *competitive evolution* techniques that are based on the downhill simplex method.
- At periodic stages in the evolution, the entire set of points is *shuffled* and reassigned to new complexes to enable information sharing.

Simulated annealing

Principles of the annealing process in thermodynamics:

- For *slowly cooled* thermodynamical systems (e.g., metals) nature is able to find the minimum energy state, while the system may end in an amorphous state having a higher energy if it is cooled quickly.
- Nature's minimisation strategy is to allow the system sometimes to go *uphill* as well as downhill, so that it has a chance to escape from a local energy minimum in favor of finding a better, more global minimum.
- For a system at a given temperature *T*, its energy is probabilistically distributed among all energy states *E* according to the Bolzmann function:

$$\operatorname{Prob}(E) \sim \exp(-E/kT)$$

• The lower the temperature, the less likely is any significant uphill step.

Necessary components of a simulated annealing algorithm:

- A generator of random changes in the configuration of the system.
- An objective function (analogue of energy) to be minimised.
- A control parameter *T* (analogue of temperature) and an annealing cooling schedule, which describes the gradual reduction of *T*.

A. Efstratiadis and D. Koutsoyiannis, Global optimisation techniques in water resources management 11

An evolutionary annealing-simplex algorithm

Main concepts:

- Combination of the robustness of simulated annealing in rugged problems with the efficiency of local optimisation methods in simple search spaces.
- Generalisation of the simplex method to be competitive and stochastic.
- Introduction of follow-up strategies to escape from local optima.

Description of the algorithm:

- An initial population *P* is randomly generated into the feasible space.
- At each iteration a simplex is formulated, by choosing n + 1 points from *P*.
- The simplex is reflected from a randomised "worst" vertex \mathbf{x}_{w} .
- If the reflection point \mathbf{x}_r is either not accepted or $f(\mathbf{x}_r) < f(\mathbf{x}_w)$, the simplex is moved downhill according to the Nelder-Mead criteria performing randomised expansion, contraction or shrinkage steps.
- If \mathbf{x}_r is accepted albeit being worse than \mathbf{x}_w , trial expansion steps are taken along the uphill direction in order to "climb" the hill and explore the neighboring area. If any trial step success, a random point is generated far from the population and replaces \mathbf{x}_r according to a mutation probability.

Evaluation and comparison of optimisation methods

General methodology:

- Multiple runs of each problem, starting from stochastically independent initial conditions (e.g., different initial population).
- Evaluation of the *effectiveness* (i.e., probability of locating the global optimum) and *efficiency* (i.e., convergence speed) of each algorithm.

Differences between real-world and mathematical applications:

- The properties of the response surface as well as the citation of the global optimum are not known a priori.
- Due to the computational effort for each function evaluation, it is likely to stop the optimisation procedure before convergence criteria are satisfied.

Algorithms examined:

- Downhill simplex (source code adapted from Press et al., 1992).
- Simple genetic algorithm (source code adapted from Goldberg, 1989).
- Shuffled complex evolution (source code adapted from Duan et al., 1994).
- Evolutionary annealing-simplex (original code).

A. Efstratiadis and D. Koutsoyiannis, Global optimisation techniques in water resources management 13

Function name	n	Number of optima	Downhill simplex	Genetic algorithm	SCE-UA	Annealir simple
Sphere	10	1	93(212)	100 (45463)	100 (5159)	100 (412
Hozaki	2	2	4 (18205	81 (26731)	100 (296)	100 (32
Goldestein- Price	2	4	49 (5028)	96 (26731)	99 (449)	100 (55
Rozenbrock	2	1	85 (6560)	65 (27374)	100 (1191)	100 (61
Rozenbrock	10	1	0 (372)	0 (45463)	99 (11105)	26 (1084
Griewank	10	> 1000	73 (603)	89 (52853)	100 (5574)	91 (276
Michalewicz	2	unknown	2 (27518)	31 (27048)	44 (438)	51 (140
Integer step	10	1	0 (48011)	4 (45463)	1 (2350)	100 (332
Average			38.3	58.3	80.0	83.5

References

- Duan, Q., S. Sorooshian, and V. Gupta, Effective and efficient global optimization for conceptual rainfall-runoff models, *Water Resources Research*, 28(4), 1015-1031, 1992.
- Duan, Q., S. Sorooshian, and V. Gupta, Distribution diskette for the shuffled complex evolution (SCE-UA) method, 1994.
- Goldberg, D. E., *Genetic Algorithms in Search, Optimization and Machine Learning*, Addison-Wesley Publishing Company, 1989.
- Koutsoyiannis, D., Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology, *Water Resources Research*, 35(4), 1219-1229, 1999.
- Nalbantis, I., and D. Koutsoyiannis, A parametric rule for planning and management of multiple-reservoir systems, *Water Resources Research*, 33(9), 2165-2177, 1997.
- Nelder, J. A., and R. Mead, A simplex method for function minimization, *Computer Journal*, 7(4), 308-313, 1965.
- Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes in C*, 2nd edition, Cambridge University Press, Cambridge, U. K., 1992.