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ABSTRACT

In this paper, we present a new method for cell placement. The method is based on a new metric for
wirelength that ensures no overlap among cells sharing common nets (repeller model). Moreover, new
forces working on the cells are added to the new metric to attract the cells to the less dense regions and
help spread out the cells within the placement area. Minimizing traditional metrics (linear or quadratic)
results in a placement with substantial amount of overlap. The methodology iterates between global
optimization and slicing the placement area to diminish cell overlap and attain uniform distribution of
the cells within the placement floor. To help cells spread out, hard constraints are added to the problemin
each iteration resulting in a further constrained version of the original problem. Unlike these approaches,
no hard constraints are required in the new approach. Besides, the new metric is convex and versatile in
the sense that it can be applied to placement problems with no fixed cells (i.e, FPGAS).

A preliminary version of the new placement method (referred to as ARP: Attractor-Repeller Placer)is
tested using a set of MCNC benchmarks [17] and the results obtained are very competitive with up-to-
date results reported in the literature.

1. INTRODUCTION

Cell placement is the subtask of the VLSI circuit layout that involves arranging the cells on the chip area
such that the layout is routable and the overall area of the chip is minimum. Other objectives include
minimum delay, minimum power consumption and minimum heat [2, 24, 7]. A common objective
function in performing the placement is minimizing total wire-length such that overlap among cells
is prevented. In [19], a force-directed formulation of the placement problem is proposed and applied
to a set of industrial boards. The immense increase in problem size quickly lead to more powerful
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techniques. Currently, placement methods that can handle large design instances can be divided into two
classes based on how they deal with cell overlap while computing the placement. In the first class, the
placement methods start with an initial placement and iteratively modifies the existing placement in an
endeavor for better one. The placement is kept overlap-free during the search process. In this class of
methods, Simulated Annealing based placers [22, 21] have been successful in handling large circuits.
The second class involves exhaustive slicing of the placement floor associated with partitioning the set
of the cells. Within this class, Min-cut ([16],[1],[13]) based placers have been successfully applied
to industrial circuits. Analytic (quadratic or linear) objective function combined with partitioning the
placement area [14, 10, 8] are also within this class of placers that can handle large instances.

Analytic placement techniques have acquired the attention of many researchers since they produce
good solution quality in reasonable times. The quadratic objective has been used in most of the analytic
approaches to placement [14, 2, 24, 6]. Linear objectives have been used by Gordian-L [8] method and
recently a new approximation to the linear objective function for wire-length has been proposed in [4].
Numerical stability problems associated with linear objective functions made the quadratic objective
more attractive. Using either metric, the placement is generated by optimizing the wire-length objective
function. The result of the optimization process is typically a placement with great deal of overlap
among the cells. To attain uniform distribution of cells on the placement area (fully utilize the placement
area), most placement methods use min-cut partitioning. For instance, in [23], min-cut partitioning is
used to create hierarchical subproblems. In [14, 2, 24] min-cut partitioning combined with first moment
(center-of-gravity) constraints is used to induce further constrained version of the initial problem.

Typically, upon the first iteration of the optimization process, most of the cells collapse in the cen-
ter of the layout region. Such a placement is not adequate for creating legal placement as the amount
of overlap among the cells is substantial and cells are not near their final positions. In Gordian [14],
Ritual [2] and Pcube [24], upon the first iteration, partitioning and first moment constraints are intro-
duced. Specifically, the placement floor is partitioned into four quadrants with four different centers of
gravity. Subsequently, the set of cells is partitioned into four by assigning each cell to one of the differ-
ent quadrants of the placement floor. New constraints are added to the formulation resulting in a more
constrained problem. The global optimization is performed again with the added constraints resulting
in a better spread of the cells on the placement area. Following, each quadrant is again sliced into four
sub-quadrants and the global optimization is performed again. The execution is terminated when each
cell has been assigned to a distinct sub-quadrant.

The partitioning approach eventually leads to a final solution with minimum overlap. However, the
fact that hard (center-of gravity) constraints are required to spread out the cells makes the problem harder
to solve. Besides, performing the min-cut partitioning consumes a significant amount of computational
efforts. Furthermore, solution quality may be deteriorated as a consequence of possible erroneous as-
signment of cells to the different partitions.

These deficiencies motivated researchers to seek an alternative to the partitioning approach as a
means of spreading out the cells during the computation of the global placement. In [10], a free parti-
tioning directed-force method is proposed in which additional forces have been added to the traditional
quadratic wire-length. The added force vector contains forces working on the cells in the = and y direc-
tions. The existence of the force vector ensures that connected cells are placed such that their locations
are spatially shifted. The force vector is computed as a function of the cell coordinates, and the supply
and demand concept which requires moving cells from dense to sparse regions on the on the placement
area. The force vector is updated in every iteration. In this approach, finding a placement is transformed



into determining the cell force vector. The method has been successfully applied to large industrial cir-
cuits. A disadvantage of the approach is the fact that determining the force vector requires computing
the solution to Poisson’s equation which can be computationally expensive, especially for large size
instances.

Another approach to partitioning free placement used nonlinear programming [9]. Specifically, a
target estimate is subtracted from the quadratic wire-length of each pair of connected cells and the re-
sulting function is squared. The idea is that, upon minimization, a target estimate is maintained between
the geometric locations of each pair of connected cells. The algorithm proceeds by performing global
optimization followed by legalizing the placement (removing cell overlap). The process is repeated until
a maximum number of iterations is exceeded, or the improvement in wire-length over three successive
iterations is either worse or not significant compared to the best wire-length obtained so far. However, the
proposed model is not convex and consequently, a global minima is not guaranteed. Also, it is not clear
if the combination of global optimization and legalizing the placement lead to a uniform distribution of
the cells with the placement area.

In this work we present a new formulation of wire-length that (like the work in [9, 10]) ensures
no overlap between connected cells (that is, cell repeller model). We propose several convex functions
that attain the desired repelling model. The repeller model accounts for cells sharing common nets, but
cells with no common nets may still overlap, and accordingly uniform spread out of the cells within the
placement floor may not be accomplished using only the repeller model. To force cells to spread out, we
propose adding new forces to the repeller model that acts on the cells in the dense regions and force them
to move towards the sparse regions on the placement floor. Like the approach in [10], in our approach, the
placement problem problem (which has always been formulated as constrained problem), is modeled as
unconstrained optimization problem. This has the advantage of optimizing a simpler problem. A major
impact of our formulation would be on cell placement with no fixed cells (i.e, 1/0 pads). This is owing to
the fact that, in the absence of fixed cells, the traditional formulation of wire-length lacks the capability
of forcing cells apart even by a small margin. In such scenario, the partitioning approach would fail too.
This is because, fixed cells attract movable cells to the boundaries of the chip, and accordingly play a
crucial role in spreading the cells in the absence of any cell-repelling forces. Thus, for the traditional
formulations to work, the existence of the 1/O pads is extremely important. In our formulation, however,
the existence or absence of the 1/O pads is not as important as in case of the traditional formulation.
This is because, as we will see later, cell overlap is diminished by the cell repellers and the uniform
distribution of the cells within the placement area is a result of the joint efforts of the cell repellers and
cell attractors. Furthermore, our repeller model is versatile in the sense that it is applicable to a variety
of problems where a target distance is desired between connected components.

2. PRELIMINARIES

A circuit netlist is represented by undirected hypergraph G(V, E) where V. = {vy,vq,---,v,} IS the
set of vertices, and £ = {ej,eq, -+, €, } IS the set of edges of the hypergraph. The set of vertices
represents the cells to be placed and the set of edges represents the signal nets connecting the cells. The
hypergraph is converted into a graph (that is, a hypergraph with hyper-edge sizes of 2) via either a star
or a cliqgue model [4]. Each edge ¢, is assigned a positive weight w;. The placement task seeks to place
the cells within the XY —plane of the placement floor such they do not overlap. Depending on whether a
linear or quadratic measure is used, the cost of an edge connecting a pair of cells z and 7 with geometric



locations (z;,y;) and (z;, y;) is the weighted [, or the squared [, norm of the difference position vector
(x; — xj,y; — y;). Assuming a quadratic measure, the total cost is given as the sum of the cost over all
edges; that is:
dr,y)= Y wil(zi — ;)" + (4 — y;)"] 1)
1<i<<N

Formulation (1) can be written in matrix form:
1 1
Ow,y) = 5x Cx+dx + 5y Cy +djy +t 0

Vectors x and y denote the coordinates of the NV movable cells; matrix C is the Hessian matrix; vectors
d! and d] and the constant term t result from the contributions of the fixed cells. Normally the first
moment constraints are added to force the distribution of the cells to be uniform around the center of the
placement area. It follows that the quadratic placement model is given as:

Min ¢(x,y)
s.t. Az =0,
Ayy = by
lo <z < u,
ly < yi <uy

where A, and A, are ¢ x n matrices; ¢ is the number of regions into which the placement area has
been partitioned. The ¢ x 1 vectors b, and b, represent the centers of the g regions. The parameters /,,
ug, 1, and wu, are lower and upper bounds on the = and y coordinates of the cells. Clearly, the above
optimization problem can be split into two 1-dimensional subproblems and each subproblem can then
be solved independently.

3. NEW FORMULATION

As we indicated previously, we propose several functions that achieve the desired cell-repelling model.
The following theorem presents the details of the new models.

Theorem 1 Let ¢ : R™ — R, and given by ¢ =|| v ||3, and v = (vy, v, -, v,,) IS m-dimensional
vector, then 1(¢) = ¢ + p(¢) is convex for ¢ € [1,00), provided p(¢) € {—In((),e'~¢}.

The detailed proof of this theorem is presented in [11]. It includes two scenarios depending on whether
vector v is independent or dependent (That is, whether the elements of v are independent or dependent
variables). In the first scenario, we proved that the function »(() is convex for ¢ > 1, quasi-convex when
¢ = 1 and non-convex when ¢ < 1. In the second scenario, we studied the case when vector v=u —r
where u and r are m—dimensional vectors. Specifically, we proved that function »(() is quasi-convex
when || u ||2> 1and || r ||2> 1, and strictly convex if || u ||2> 1 and || r ||2> 1, and either the elements
of u or r are constant.

To adapt the model to the placement problem, we letu = p;, = (z,,y;) and r = p,; = (x;,y,) be the
position vectors of the geometric locations of cells 7 and ;. We also let v = p;, — p; and we define

2
w;; i — D
Zij — ( J || pd p] ”2) (3)



where || p; — p; |I5= (z: — x;)* + (y; — y;)* is the squared I, norm of p; — p; (that is, the squared distance
between the geometric locations of the pair of connected cells « and j), w;; is the connectivity weight
between the connected cells, and d > 0 is constant. Geometrically, z;; is a circle of radius d.

According to our proof in [11], it follows that the function

0 Otherwise

wherez = {z;; : 4,5 = 1,2..., N} and p(z;;) € {—In(z;;) — 1,e*~* — 2} is convex if, at least, one
cell is fixed. The non-convex portion of f(z) (corresponding to z;; € [0,1)) is flattened out giving f(z) a
tea-cup shape. The fact that f(z) is flat in the interval z;; € [0, 1] implies that f(z) has multiple solutions
in this region. However, line search numerical optimization methods concludes the search once the first
optimal answer is encountered. This observation suggests that if the initial solution is outside the flat
region (that is each z;; > 1), the search will be terminated when z,; = 1 (geometrically, it means that
z;; 1S reduced to a unit circle). That is, the optimization process will conclude that z;; = 1 is the optimal
answer. From (3), z;; = 1 implies that the weighted squared distance between the geometric locations
of the pair of connected cells equals an estimate of d units. Thus, f(z) is a repeller model. Clearly, if
p(zi;) = 0 and d = 1, the repeller model f(z) reduces to the traditional wire-length formulation given

by (1).

f(z) _ { Zlgiq‘SN Zij + ,O(Z,'j) Zi5 > 1 @)

4. CELL SPREADING

The repeller model ensures no overlap among connected cells. However, cells sharing no common nets
still overlap as they are not accounted for in the repeller model. In fact, the repeller engine can achieve
cell spreading if the estimate d in (3) is set to a relatively larger value with respect to the average cell
dimensions; that is width and height. However, we found that increasing the intensity of the repelling
engine (which corresponds to setting d to a higher value) causes excessive stretching of the short nets,
and accordingly disperse highly connected cells on the placement floor. The result is a deterioration in
the total wire-length. To spread out the cells without deteriorating the wire-length, we propose adding
new forces to the repeller model to regulate the distribution of the cells within the placement floor. The
basic idea of our approach is to force cells to spread over the placement area without restricting their
movement. Specifically, the new forces attract cells to sparse regions within the placement area. That
is, they encourage a cell to move to a sparse region in a direction conforming with the direction of
the cell movement. The approach involves adding dummy fixed cells to the less dense regions of the
placement floor and establishing connections between these new fixed cells and the movable cells in the
dense regions. The new connections are, in fact, new nets added to the netlist. It follows that during
the computation of the global placement, the dummy fixed cells exert additional forces on the movable
cells and force them to move towards the less dense regions where the dummy fixed cells reside. Thus,
movable cells fill the sparse regions, and accordingly better cell spreading is achieved in each iteration.

The first step involves identifying dense and sparse regions on the placement area. In the following
section, we present how these regions are identified.

4.1. ldentifying Dense and Spar se Regions

The procedure of identifying dense and sparse regions depends on the cell distribution and the variability
of cell area (generally, cell width and height is not the same for all cells). Specifically, for each cell :



with geometric location (x;, y;), an £,, x £, rectangular window w; centered at (x;, y;) is imposed on the
placement floor and the total area A, of all cells with centers enclosed by w; is computed; i.e:

r
E ok
A, = Z CoCh
k=1

where & and ¢ are the width and height of cell & and r is the number of cells enclosed by window w;.
Next, region R; surrounded by w; is regarded sparse only if

A < Ay
where

Ay = lply
In our implementation, /,, and ¢, have been expressed as linear functions of the chip width 1 and chip
height H and adaptively varied from iteration to another; i.e:

Ew = OétW
and

Eh = OétH
where a is a constant that is updated from iteration to iteration according to *

(o7 3N ] :0.95&,5, t:]_,Q,"',I

where ¢ is the iteration number, Z is the total number of iterations and «; = 0.1. Cells that have been
collapsed in a sparse region are not considered when new sparse regions are being identified. Each sparse
region R; is then split into 4 quadrants and the center of the sparsest quadrant (in terms of number of cells
that fall inside a quadrant) (=, ) become a center of a new cell attractor. A cell attractor is, merely, a
dummy fixed cell located at (=, y" ). Figure (1) illustrates an example of sparse and dense regions. Let
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R / Re  x
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~ X X X
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Figure 1: Region R, is dense, while regions R,, R3 and R, are sparse.

A= {(3;(117 y;)v (:C(zzv y2)7 T (3;37 yg)}
be the set of locations of the ¢ cell attractors. The attractors in A are used to divide the set of cells among
the different identified sparse regions on the placement floor. Precisely, for each cell ; an attractor is
selected based on a certain cell-attractor assignment criteria. Subsequently, a connection is established
between cell - and the selected cell attractor. In other words, a new two-cell net is added to the netlist of
the circuit. The details of the cell-attractor assignment are presented in the following section.

1We need to stress that thisformulais empirical and it is entirely based on experimentation with the benchmarks.




4.2. Cédl-Attractor Assignment

When assigning cells to sparse regions, the aim is to attain cell spreading while preventing any possi-
bility of excessive stretching of short nets in subsequent iterations. In general, the deterioration in net
wire-length is correlated with the distance between its cells and the attracting dummy cells in the sparse
regions. Greater distances normally correspond to excessive net stretching. Thus, the criteria to assign
a cell to a sparse region (or equivalently cell attractor) should be based on how many distance units that
separates the geometric location of that cell from the geometric location of the dummy attracting cell in
that particular sparse region. Based on this, we propose general cell-attractor assignment criteria that
can be expressed in terms of the distance between the geometric locations of the cells and the attractors.
Specifically, the criteria are based on the well known inequality between the minimum, harmonic mean,
geometric mean, arithmetic mean and maximum of a set or a sequence of positive numbers [18]. To for-
malize the discussion, let D' = {d;, d,, - - -, d,} be the sequence or set of distance between the geometric
location of cell ; and that of each attractor (dummy cell) in A. To facilitate the analysis, we assume D*
is the set of distance between the geometric location of cell  and the attractors in the z-direction. For
instance d, = |x; — x}] is the distance (in the z-direction) between cell i and the attracting dummy cell
with coordinates (z., y}).
The harmonic mean of the nonnegative sequence of numbers D' is defined as

; q
H(D") =
(D) 1/di+1/dy+ ...+ 1/d,

The geometric mean of the same sequence is defined as
G(D') = (dydy .. .d,)""
and the arithmetic mean is given by

d+dy+ ... +d,
q

A(D) =

We also define

Dmin = min{dl, dg, e ,dq}
and

Diaw = maz{di,dy,...,d,}

For the finite sequence of positive numbers D*, we have [18]
Dmin S H(Dl) g G(Dl) S A(Dl) S Dmaz (5)

with equality if and only if
dlzdgz...:dq

Inequality (5) provides a set of an intact criteria to control the degree of cell spreading and accord-
ingly the extent of net stretching. For instance, if D,,;, is used as a cell-attractor assignment criterion,
cell 2 will be connected to an attractor in the closest zone of sparse regions. In such case, cell : would
be displaced by a relatively small distance with respect to its most recent geometric location in the sub-
sequent iteration. Thus, excessive stretching in its nets is not highly likely to take place. If H(D') is



employed as a cell-attractor assignment criterion, each cell  will be assigned to a cell attractor located in
a sparse region that is at least (or it can be at most) H (D) units from its most recent location, depending
on whether H(D") is used as lower (or upper) bound on the distance separating cell : from the different
sparse regions. Hence, more spreading but more stretching in short nets is expected compared to the
previous case.

To make the discussion formal, let sy, s,, s3 and s4 be disjoint subsets such that

P«
D' =U;_;s;

and are given by ’
S = {dk : Din < dy, < H(Dl),k = 1,...,(]}

so={dy: HD') <dy < G(D'),k=1,...,q}
SSZ{dk : G(Dl) Sdk <A(Dl)7k: 177(]}
S4:{dk:A(Di) gdk SDmar,k: 1,...,(]}

Each subset or subsequence s; corresponds in essence to a group of cell attractors or equivalently a group
of sparse regions. In fact, each group of sparse regions represents a sparse zone on the placement floor.
The group of sparse regions located at distances given in s; represents the closest sparse zone to cell :.
Subset or subsequence s, corresponds to the next closest sparse zone to cell 7 and so on.

Clearly, inequality (5) provides an ordering of the sparse zones according to how far they are from
cell 7. It follows that, a cell attractor can be selected based on inequality (5) and the corresponding
ordering of the sparse regions given by s;, s, s3 and s,. Dispersion of the distance sequence D' gives
clues on how to select a cell attractor for cell ;. Specifically, the variability o(D") of sequence D!

a(D")

Q(,Dl) = A(D’)

(where o(D") is the standard deviation of sequence D' given by o(D') = \/é Si_,(d — A(D))?) can
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Figure 2: Region R, is dense while regions R, and R are sparse. Cell C, located in R, with geometric
location (1, y1) is hooked to the dummy fixed cell C with coordinates (2, ys) where x5 and y; are the x
and y coordinates of C, and C3 (which are the closest cells to C; in the = and y directions respectively).
Note that Dz (25) and Dy(:7) are the distances in the = and y directions between cell ; and cell ;.

be utilized to characterize the dispersion of the distance sequence. Accordingly o(D') provides clues
on a suitable zone of sparse regions where cell : can be displaced to. If o(D") is small, then any group



of cell attractors can be chosen without expecting any major change in the solution (o(D"?) is zero, or
equivalently o(D*) is zero, implies that cell 7 is at equidistant from all cell attractors). On the other
hand, if o(D?) is relatively large, then a group can be selected depending on the circuit design style, size
and netlist sparsity. For instance, thresholds of o(D") can be designated for each group of cell attractors
based on experimentation with different problem size and design style.

In our implementation, we applied the new placement method to standard-cell design style which
is widely used in ASIC (Application Specific Integrated Circuits). In this design style, as we pointed
out in previous chapters, cells are rectangular in shape with same height but not necessarily same width.
Also, short nets represent the majority of the nets in this design style [12]. Based on our experience, we
found that connecting cells to cell attractors corresponding to the distance subsequence s, (closest zone
of sparse regions) yields the least net stretching and quite good cell spreading. Accordingly, the results
reported in this paper are all based on cell spreading obtained through establishing connections between
each cell and the closest dummy fixed cell in the closest zone of cell attractors, see Figure (2).

5. THE ATTRACTOR-REPELLER MODEL

We are now in a position to give the full Attractor-Repeller model for the global placement; i.e:

Min  f(z) + g(z) + h(y) (6)

s.t
ly Sy S uy

Parameters /., 1,, u, and u, are lower and upper bounds on z and y. The first term, f(z), represents
the repelling terms or shortly the repellers and is given by equation (4). The second and the third terms,
g(x) and h(y), represent the attracting terms or simply the attractors. We repeat again, for each movable
cell, a connection is established with the closest cell attractors in the = and y directions. It follows that,
the geometric location of the cell attractor to which a movable cell is hooked with is given by the = and
y coordinates of the closest cell attractor in the = and y directions respectively, see Figure (2). In other
words, Each movable cell : is assigned to an attractor with a coordinate (z*, y%) where x and v are the
closest attractors to cell « in the = and y directions respectively. Accordingly, g(x) and h(y) are given as

glz) = 3 min{(zi—x,)" -, (w: — 23)’}

1<i<N

h(y)= > man{(yi—va)’,---, (i — y1)*}
1<i<N
Before we conclude this section, we would like to point out that throughout the remaining parts of the
paper, we will refer to formulation (6) as the Attractor-Repeller (AR) formulation (or model), and to the
new placement method (based on the AR model) as the Attractor-Repeller Placer (ARP).



6. THE ATTRACTOR-REPELLER PLACER: BASIC ALGORITHM

Figure (3) illustrates the flow of the new placement algorithm ARP. Following the parsing of the circuit
information, the quadratic formulation of wire-length is solved to obtain an initial placement. Obviously,
the majority of cells are on top of each other with only a small portion shifted towards the boundaries of
the placement area as a result of the attracting forces due to the 1/0 pads. In the subsequent iterations, the
algorithm proceeds iteratively via minimizing the AR model. In each iteration, following the termination
of the global optimization, the AR model is updated as a result of the new connections between the
movable cells and the cell attractors. Specifically, based on the resulting cell positioning, dense and
sparse regions are identified according to the window-based technique presented previously. Next, the
global placement is legalized through snapping the cells to the rows to ensure the starting solution in the
next iteration is outside the flat region of f(z). The next step involves improving the global placement
slightly through a sequence of cell swapping and cell displacement within and among the different rows.
The idea behind perturbing the global placement for better positioning of the cells is to increase the
likelihood of connecting cells to cell attractors in sparse regions that enclose, or at least, located near
their final ideal positions. In other words, by improving the current cell positioning, we hope to displace
highly connected cells to the same zone on the placement floor so that in the subsequent iteration they
end up hooked to the same cell attractors. In each iteration, new attractors are created and attractors

Output: Input:
global placement circuit information

Stopping criteria is
satisfied

Global Optimization:
(QP model)

Stopping criteria is

not satisfied
Create Attractors:
based on current cell distribution

Cell-Attractor Assignment:

improve placement slightly and assign each cell to
closest attractor . Update AR model accordingly.

Global Optimization:
Attractor-Repeller (AR) model

Figure 3: An outline of the new global placement method ARP.

from the previous iteration are deleted. As depicted in Figure (3), the sequence of creating attractors,
establishing new connections with cell attractors and, solving the updated AR model continues until the
termination criteria is met. Specifically, the algorithm stops when the number of iterations exceeds an
upper bound X, or if the ratio of the total area of the identified sparse regions to that of the placement
area is < x%. Experimentally, we found that 5 < X < 10 and x = 10% are quite sufficient to yield
uniform cell spreading and accordingly adequate utilization of the placement area.

The solution methodology used is a quasi-Newton nonlinear algorithm that calculates a step direction
based on the gradient and an approximation to the Hessian [5]. It then performs a line search along
that direction to minimize the objective function, generating a new iterate. The optimization stops if
the difference in the objective function values over two successive iterations is sufficiently small. The
Hessian approximation is generated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.



This method has the advantage of having super-linear convergence rate.

7. QUALITATIVE ANALYSIS

In this section, we present a qualitative analysis. In particular, we consider the effect of the repellers and
attractors on the spreading of the cells, and the effect of the attractors on the convergence of the global
optimization.

Cell Attractors

Movable Cells

(@

| R K K X AR 3

XX XK X HHNHKX XN

xxxxxxxxxxxxxxxxxxxxxxx

Figure 4: Benchmark Primaryl: cell spreading after each pass using no repellers, p(z;;) = 0and d =1
in f(z) (“+” represent locations of movable cells, ”x” represent locations of fixed cells (I/O pads), and
“0” represent locations of attractors).

7.1. Attractors-Repellersand Cell Spreading

Cell attractors and repellers complement each other in the sense that cell repellers prevent connected
cells from folding on top of each other and cell attractors prevent excessive displacement of connected
cells by the cell repellers.
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Figure 5: Cell spreading using strict repeller model. “+” represents movable cells and “x” represents
fixed cells.

To demonstrate this, and to draw a general conclusion on whether a combination of attractors and
repellers is better or not, we conducted different scenarios in which



e repellers are in-activated; i.e, p(z;;) = 0 and d = 1 in equation (4). That is, the AR model is
reduced to a combination of quadratic estimate of wire-length and cell attractors.

e no attractors (i.e, g(z) = 0 and h(y) = 0 in equation (6) are used and the model reduces to a strict
repelling engine.

¢ the AR model (the combination of attractors and repellers) is used.
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Figure 6: Benchmark Primaryl: cell spreading after each iteration ( “+” represents locations of mov-
able cells, “x” represents locations of 1/0 pads on the chip periphery, and “0” represents locations of
attractors).

The industrial MCNC circuits listed in Table (1) are used in each scenario. To discern between the
different scenarios, Figures demonstrating spreading of cells and attractor distribution for benchmark
Primaryl are presented.

Figure (4) illustrates cell spreading in the first scenario. Part (a) shows the initial solution obtained
via minimizing a quadratic wire-length objective function. Parts (b)-(d) illustrates the spreading after
including the cell attractors. Clearly, no substantial improvement in cell spreading with respect to the
first iteration is noteworthy. This is owing to the fact that in the absence of the repelling forces, the
attraction forces between the connected cells outweigh the forces exerted by the cell attractors. In other
words, the attraction forces between the connected cells overwhelmingly dominate the resultant forces
acting on the cells.

On the contrary, Figure (5) demonstrates cell spreading in the second scenario in which no attractors
are included and the model is strictly repelling. Clearly, the amount of cell spreading is remarkable,
but the resultant wire-length is found to be higher and extra efforts by the final placement improver are
necessary to offset this undesirable effect. As we suggested previously, this is owing to the fact that, a
strictly repelling engine tends to stretch short nets and accordingly deteriorate total wire-length.

Figure (6) illustrates cell spreading in the third scenario (AR model). Part (a) shows the initial solu-
tion obtained from minimizing the quadratic wire-length. Clearly, the majority of the cells are clustered
in the center of the placement region and the amount of overlap between the cells is substantial. The
cell attractors (shown as circles in the Figure) are created according to the current cell positions. In parts
(b)-(c), the global optimization involves minimizing the AR model. Better spreading of the cells can
be noticed in each iteration compared to the preceding iterations. In the second iteration, clusters of
overlapped cells tend to move to same sparse regions and in subsequent iterations, some of these clusters



tend to flatten out filling existing empty space in their immediate neighborhood on the placement floor.
In this scenario, there is a trend of improvement in both cell spreading and wire-length reduction in each
subsequent iteration. Figure (7) illustrates the variability or relative spread of the average wire-length as
the global optimization is carried out for a finite number of iterations (specifically, the algorithm is exe-
cuted for each benchmark and the average of wire-length across all benchmarks is computed). Clearly,
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Figure 7: Variability of average wire-length over the different iterations of the algorithm.

the wire-length decreases as the algorithm proceeds from one iteration to another. In fact, for some
benchmarks, we observed that if the algorithm is executed for a fairly large number of iterations, the
wire-length obtained is quite close to the final answers obtained after improving (using the final placer)
the initial placement generated from a relatively smaller number of iterations.

Figure 8: Variability of average wire-length versus the scaling parameter &, (equation (7)).

Figure (8), depicts the variability of the average wire-length as a function of the intensity of the
repelling forces (that is, parameter d in equation (4)). Based on experimentation, we found that there
is correlation between the intensity of the repelling forces required to spread the cells apart (prohibit
overlap) and average cell width of a particular circuit. Accordingly, the following empirical formula for
estimating d is used:

d= vV

h ™

where w, is the average cell width (which is constant for a given circuit) and & is scaling factor. In
fact formula (7) was found quite useful. To examine the correlation between parameter d (which reflect




the strength of the repelling terms) and the wire-length, parameter % is varied between 0.01 to 2.5 for
each test case. Experimentally we found that, on average, £ = 1 (or equivalently d = ,/w,) yields best
answers in terms of wire-length. This is demonstrated in Figure (8). No correlation between d and the
speed of convergence of the global optimization is observed.

7.2. Cdl Attractorsand Conver gence of the Global Optimization

As we have shown in [11], the attractor-repeller objective function is convex as long as the whole circuit
forms one set; that is the netlist graph is connected and there exist, at least, one fixed cells. The convexity
and smoothness of the objective function improves as the number of fixed cells increases.

As indicated previously (Figure (3)), the AR model is used after the first iteration (an initial solution
is generated in the first iteration via minimizing a quadratic model; i.e, p(z;;) = 0 and d = 1 and no
attractors exist). Figure (9-a) shows the variability (relative spreading) of the algorithm run time as a
function of the number of iterations. The relationship between the algorithm run time and the number of
attractors is illustrated in Figure (9-b) (precisely, the algorithm is executed for many iterations and the
average run time as well as the average number of attractors are computed and plotted in Figure (9)).

Figure 9: Variability of run time. (a) versus passes (b) versus number of attractors.

Examining these Figures, it is clear that there is a substantial decrease in the run time after the first
iteration. That suggests a strong correlation between the convergence of the global optimization and the
existence of the cell attractors. On average, the percentage of decrease in run time in the second iteration
(that is, when the cell attractors are added) is almost 62%. That is, on average, the run time improves by
an average of 62% compared to the first iteration. After the second iteration, the rate of decrease in run
time is relatively lower, but its general trend is downward.

Based on these observations, it is evident that there is a strong tendency of the optimization process
to converge in a much shorter time when the attractors exist. Again, this indicates that the smoothness
and curvature (convexity) of the objective function improve as the number of fixed cells in the circuit
increases.

8. NUMERICAL RESULTS

The new method is implemented in C' language on a Sun-Ultral/140 workstation. Half-perimeter wire-
length (HPWL) is used in estimating the wire-lengths. The HPWL has been used in other results pre-
sented in the literature ([20, 21, 22, 14, 15]), since rectilinear wiring is typically used in routing a circuit.



As a final placer, we used a Tabu-search based local improvement algorithm that had been developed in
collaboration with other members in our group [3].

To assess the new placement method ARP, we consider comparing solution quality and efficiency
(computation times) of ARP to the state-of-art placers. Specifically, Simulated Annealing (SA), and a
combination of analytic and iterative improvement based placers. Namely, TimberWolf v6.0 (TW v6.0)
[20], TimberWolf v7.0 (TW v7.0) [22, 21] and Gordian/Domino [14, 15].

TW v7.0 [22, 21] is the latest release of TimberWolf placement package. It has two modes of oper-
ation, namely, a flat mode and hierarchical mode. In the flat mode, the original netlist is placed. In the
hierarchical mode, however, the original netlist is clustered into various levels of netlists. At each level,
SA tries to find an optimal placement for the clustered netlist, followed by flattening the netlist. Sub-
sequently, the flattened netlist is admitted to the next level and the process is repeated until the original
netlist is placed. The clustering approach has the advantage of greatly reducing the complexity of the
circuit and consequently, reducing the computational efforts required to solve the problem.

The method of Gordian [14] has been described in the introduction. The method of Domino is
an iterative improvement technique that has been applied to initial placements generated by Gordian
[15]. In Domino, the placement problem is modeled as a transportation problem and network flow
algorithms are employed to solve the resulting optimization problem. Specifically, cells positioned near
each other in the existing placement are considered for improvement. The iterative process produces a
sequence of intermediate placements. In each iterative step, an improved placement is generated from the
current placement. The process terminates when after several generations no significant improvement is
obtained.

The metrics used in the comparison of the new method ARP and the other different approaches are
total wire-length and longest-row width which reflect solution quality, and computation times which
typify the efficiency of the method. Longest row width determines chip width and accordingly total
chip area. Thus, longest row width is an important parameter in the assessment of a given placement.
Numerical results of the other approaches are taken from the literature [21]. For some benchmarks, no
results have been reported in [21] and their entries in the results tables are left empty.

Tables (2), (3) and (4) list the final wire-length, longest row width and computation times for ARP
and the other approaches. The reported computation times include times for final placements. ARP out-
performs TW v6.0, TW v7.0 and Gordian/Domino on the majority of the benchmarks. For benchmark
Ind3, ARP outperforms TW v6.0 but lacks compared to TW v7.0 and Gordian/Domino, and for bench-
mark Bio and Prim2, ARP lacks insignificantly compared to TW v7.0 in flat mode (FM). We suspect a
different positioning of the 1/0 pads compared to the other methods, or a scaling problem is the reason
for this difference in results.

On average, ARP achieves 7.78%, 1.02%, 3.96% and 8.68% reduction in wire-length compared to
TW v6.0, TW v7.0-FM, TW v7.0-H (Hierarchical) and Gordian/Domino respectively.

Tables (3) and (6) show comparisons of longest row width obtained by ARP and the other approaches.
On average, ARP outperforms TimberWolf v6.0 and TimberWolf v7.0 by 4.28% and 0.13%. No longest
row width was reported for Gordian in [21] to compare to.

As for computation times, the results are illustrated in Tables (4) and (7) (computation times of the
other approaches are scaled). Evidently, ARP consumes less computation times to place each test case
compared to the other approaches. On average, ARP outperforms TimberWolf v6.0 by 83%, TimberWolf
v7.0 (flat mode) by 87%, TimberWolf v7.0 (Hierarchical mode) by 7.6% and Gordian/Domino by 13.8%.



| Circuit || Cels | Pads | Nets | Pins [ Rows |

Fract 125 24 147 462 6
Priml 752 81 904 5526 16
Struct 1888 | 64 1920 | 5471 21
Ind1 2271 | 580 || 2478 | 8513 15
Prim2 2907 | 107 || 3029 | 18407 28
Bio 6417 | 97 5742 | 26947 46
Ind3 15059 | 374 || 21940 | 176584 | 54
Avg.small || 21854 | 64 || 22124 | 82601 80
Avq.large || 25114 | 64 || 25384 | 82751 86

Table 1: MCNC Benchmarks used as test cases

| Ckt [ TW6 | TW7.FM | TW7.H | Gord/Dom | ARP |

Fract - - - - 0.034
Priml1 || 1.0 0.93 0.99 1.08 0.79
Prim2 || 3.71 3.53 3.72 4.02 3.61
Struct - - - - 0.34
Ind1 - - - - 1.50
Bio 1.97 1.8 1.88 1.98 1.83
Ind3 || 48.38 43.08 44.67 44.94 48.12
Avgs || 6.72 6.45 6.13 6.42 6.06
Avg.l || 6.93 6.50 6.81 7.16 6.54

Table 2: Wire Length Comparison, TW v7.0 flat and hierarchical modes, Gordain/Domino and ARP

| Ckt [ TW6 | TW7.0 | ARP |
Fract - - 704
Prim1 || 5260 | 5100 | 5170
Prim2 || 8380 | 8210 | 8201
Struct | - - 2360
Ind1 - - 4810
Bio | 5114 | 4936 | 4928
Ind3 || 28832 | 26368 | 26176
Avg.s || 9560 | 9128 | 9080
Avg.l || 9744 | 9400 | 9344

Table 3: Chip width comparison: TimberWolf v7.0 and ARP. Width is measured in microns.



[ Ckt ] TW6 | TW7.FM [ TW7.H | Gor/Dom | ARP |

Fract - - - 12
Priml || 467 488 130 168 95
Prim2 || 3127 4307 736 542 504
Struct - - - 116
Ind1 - - - - 376
Bio 8606 12224 1273 1553 1290
Ind3 || 38619 | 70873 5156 6087 4253
Avg.s || 54681 | 78248 7657 10261 8534
Avg.l || 56802 | 97612 9175 12403 | 11202

Table 4: Run-time comparison in CPU seconds: TimberWolf v7.0 in flat and hierarchical modes, Gor-
dian/Domino and ARP.

Ckt TWv6 | TW7.FM | TW7.H | Gor/Dom

%impr. | %impr. | %impr. | %impr.
Priml +21 +15 +20.2 +26.8
Prim2 +2.7 -2.2 +2.9 10.2
Bio +7.1 -1.64 +2.9 +7.5
Ind3 +0.53 -104 -7.2 -6.6
Avg.s +9.8 +6.0 +1.1 +5.6
Avgl || +56 0.6 +3.9 +8.6

| avg. | +7.78 | +1.02 | +3.96 | +8.68 |

Table 5: Relative wirelength improvement with respect to other approaches (+ means ARP is better).

Ckt || TWv6.0 | TW V7.0

%impr. | %impr.
Priml +1.7 -1.3
Prim2 +2.1 +0.11
Bio +3.6 +0.16
Ind3 +9.2 +0.73
Avg.s +5.0 +0.53
Ava.l +4.1 +0.60

| avg. | +4.28 | +0.13 |

Table 6: Relative chip-width improvement with respect to other approaches (+ means ARP is better).



Ckt TWvV6 | TW7.FM | TW7.H | Gor/Dom
%impr. | %impr. | %impr. | %impr.
Priml +79 +80 +27 +3.8
Prim2 +83 +88 +31 +7.0
Bio +85 +89 -1.3 +17
Ind3 +88 +93 +17 +30
Avg.s +84 +89 -10 +16
Avgl | +80 +88 -18 +9
| avg. | +83 | +87 | +76 | +138 |

Table 7: Relative CPU time improvement with respect to other approaches (+ means ARP is better).

9. CONCLUSION

Future placement tools face new challenges as placement tasks are much more complicated due to the
immense complexity of the new generations of integrated circuits. In light of this fact, we presented new
formulations for estimating the wire-length in global placement. We proposed a new procedure to force
cells to spread out within the chip area without causing any excessive stretching of the nets. Moreover,
We proposed a new generic placement algorithm based on the new formulation. A study of the different
parameters of the algorithm is presented including empirical formulae for these parameters.

The feasibility of the approach is demonstrated using a set of MCNC standard cell benchmarks. We
that the results are comparable to the other popular placers (despite the fact that our implementation is
not optimized and was chiefly intended to the show the feasibility of the approach).

Future work should focus on accounting for timing information and other constraints like power
dissipation. Also, as we indicated in the introduction, the new approach can be applied to circuits with
no fixed cells, FPGA placement for example. In fact, applying the new approach to FPGA placement is
our next target.
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