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Abstract

Constraints on downside risk, measured by shortfall probability, expected shortfall
etc., lead to optimal asset allocations which differ from the mean-variance optimum.
The resulting optimization problem can become quite complex as it exhibits multiple
local extrema and discontinuities, in particular if we also introduce constraints restrict-
ing the trading variables to integers, constraints on the holding size of assets or on the
maximum number of different assets in the portfolio. In such situations classical op-
timization methods fail to work ef£ciently and heuristic optimization techniques can
be the only way out. The paper shows how a particular optimization heuristic, called
threshold accepting, can be successfully used to solve complex portfolio choice prob-
lems.

JEL codes: G11, C61, C63.

Keywords: Portfolio Optimization, Downside Risk Measures, Heuristic Optimization,
Threshold Accepting.
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1 Introduction

The fundamental goal of an investor is to optimally allocate his investments among
different assets. The pioneering work of [Markowitz, 1952] introduced mean-variance
optimization as a quantitative tool which carries out this allocation by considering the
trade-off between risk – measured by the variance of the future asset returns – and
return. The assumptions of the normality of the returns or of the quadratic investor’s
preferences allow the simpli£cation of the utility optimization problem in a relatively
easy to solve quadratic program.

Notwithstanding its popularity, this approach has also been subject to a lot of criticism.
Alternative approaches attempt to conform the fundamental assumptions to reality by
dismissing the normality hypothesis in order to account for the fat-tailedness and the
asymmetry of the asset returns. Consequently, other measures of risk, such as Value
at Risk (VaR), expected shortfall, mean semi-absolute deviation, semi-variance and so
on are used, leading to problems that cannot always be reduced to standard linear or
quadratic programs. The resulting optimization problem often becomes quite complex
as it exhibits multiple local extrema and discontinuities, in particular if we introduce
constraints restricting the trading variables to integers, constraints on the holding size
of assets, constraints on the maximum number of different assets in the portfolio, etc.

In such situations, classical optimization methods do not work ef£ciently and heuristic
optimization techniques can be the only way out. They are relatively easy to imple-
ment and computationally attractive. The use of heuristic optimization techniques
to portfolio selection has already been suggested by [Mansini and Speranza, 1999],
[Chang et al., 2000] and [Speranza, 1996]. This paper builds on work by [Dueck and Winker, 1992]
who £rst applied a heuristic optimization technique, called Threshold Accepting, to
portfolio choice problems. We show how this technique can be successfully employed
to solve complex portfolio choice problems where risk is characterized by Value at
Risk or Expected Shortfall.

In Section 2, we outline the different frameworks for portfolio choice as well as the
most frequently used risk measures. Section 3 gives a general representation of the
threshold accepting heuristic we use. The performance and ef£ciency of the algorithm
is discussed in Section 4 by, £rst, comparing it with the quadratic programming so-
lutions in the mean-variance framework and, second, applying the algorithm to the
problem of maximizing the expected portfolio value under constraints on the portfolio
expected shortfall or VaR. Section 5 concludes.
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2 Portfolio choice models

In this section we describe the most frequently used risk measures as well as the
different frameworks for portfolio choice they give rise to.

2.1 The mean-variance formulation

Mean-variance optimization is certainly the most popular approach to portfolio choice.
In this framework, the investor is faced with a trade-off between the pro£tability of his
portfolio, characterized by the expected return, and the risk, measured by the variance
of the portfolio returns. The £rst two moments of the portfolio future return are suf-
£cient to de£ne a complete ordering of the investors preferences. This strong result
is due to the simplistic hypothesis that the investors’ preferences are quadratic or that
the returns are normally distributed.

Denoting by xi, i = 1, . . . , nA, the amount invested in asset i out of an initial capital
v0 and by ri, i = 1, . . . , nA, the assets log-returns over the planning period, the
expected return on the portfolio de£ned by the vector x = (x1, x2, . . . , xnA

)′ is
given as

µ(x) =
1

v0
x′E(r) .

The variance of the portfolio return is

σ2(x) = x′Qx ,

where Q is the matrix of variances and covariances of the vector of returns r.

Thus the mean-variance ef£cient portfolios, de£ned as having the highest expected
return for a given variance and the minimum variance for a given expected return, are
obtained by solving the following quadratic program

min
x

x′Qx
∑

j xjrj ≥ ρ v0

∑

j xj = v0

x`
j ≤ xj ≤ xu

j j ∈ P .

(1)

for different values of ρ, where ρ is the required return on the portfolio and P is the
set of assets in the portfolio. The vectors x`

j , xu
j , j ∈ P , represent constraints on the

minimum and maximum holding size of the individual assets in the optimal portfolio.
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The implementation of the Markowitz model with nA assets requires nA estimates of
expected returns, nA estimates of variances and nA(nA−1)/2 correlation coef£cients.

There exist several ef£cient algorithms for mean-variance optimization. Early suc-
cessful parametric quadratic programming methods include the critical-line algorithm
and the simplex method. For more recent developments see work by [Perold, 1984] as
well as reviews in [Pardalos, Sandström and Zopounidis, 1994] and [Mansini and Speranza, 1999]
and references therein.

2.2 Mean downside-risk framework

In practice investors are more concerned about the risk that their portfolio value falls
below a certain level. That is the reason why different measures of the downside-risk
are considered in the asset allocation problem. If we denote by v the future portfo-
lio value, i.e. the value of the portfolio by the end of the planning period, then the
probability

P (v < VaR) (2)

that the portfolio value falls below the VaR level is called the shortfall probability.

The conditional mean value of the portfolio given that the portfolio value has fallen
below VaR, called the expected shortfall, is de£ned as

E(v | v < VaR) . (3)

Other risk measures used in practice are the mean semi-absolute deviation

E(|v − Ev| | v < Ev)

and the semi-variance
E((v − Ev)2 | v < Ev) ,

where we consider only the negative deviations from the mean.

Maximizing the expected value of the portfolio for a certain level of risk characterized
by one of the measures de£ned above leads to alternative ways of describing the in-
vestor’s problem (e.g. [Leibowitz and Kogelman, 1991], [Lucas and Klaassen, 1998]
and [Rockafellar and Uryasev, 2000]). Earlier related work had suggested a safety-
£rst approach (see e.g. [Arzac and Bawa, 1977] and [Roy, 1952]) and [Rustem, Becker and Marty 2000]
discusses a worst-case approach.
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For example, if the risk pro£le of the investor is determined in terms of VaR, a mean-
VaR ef£cient portfolio would be the solution of the following optimization problem:

max
x

Ev

P (v < VaR) ≤ β
∑

j xj = v0

x`
j ≤ xj ≤ xu

j j ∈ P .

(4)

In other words, such an investor is trying to maximize the future value of his portfolio,
requiring the probability that the future value of his portfolio falls below VaR not to
be greater than β.

Furthermore, it would be realistic to consider an investor who cares not only for the
shortfall probability, but also for the extent to which his portfolio value can fall below
the VaR level. In this case, the investor’s risk pro£le is de£ned via a constraint on
the expected shortfall tolerated ν if the portfolio value falls below VaR. Then the
mean-expected shortfall ef£cient portfolios are solutions of the following program for
different values of ν:

max
x

Ev

E[v | v < VaR] ≥ ν
∑

j xj = v0

x`
j ≤ xj ≤ xu

j j ∈ P .

(5)

3 The threshold accepting optimization heuristic

Heuristic approaches prove useful in situations where the classical optimization meth-
ods fail to work ef£ciently. Heuristic optimization techniques like simulated anneal-
ing [Kirkpatrick et al., 1983] and genetic algorithms [Holland, 1975] are used with
increasing success in a variety of disciplines. The reason for their success is that they
are relatively easy to implement and that the cost of computing power is no longer a
matter of concern.

Threshold accepting (TA) was introduced by [Dueck and Scheuer, 1990] as a deter-
ministic analog to simulated annealing. It is a re£ned local search procedure which
escapes local minima by accepting solutions which are not worse by more than a given
threshold. The algorithm is deterministic in the sense that we £x a number of iterations
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and explore the neighborhood with a £xed number of steps during each iteration. The
threshold is decreased successively and reaches the value of zero in the last iteration.

The threshold accepting algorithm has the advantage of an easy parameterization, it
is robust to changes in problem characteristics and works well for many problem in-
stances. An extensive introduction to threshold accepting is given in [Winker, 2000].

Let us formalize our optimization problem as f : X → R where X is a discrete set
and where we may have more then one optimal solution de£ned by the set

Xmin = {x ∈ X | f(x) = fopt} (6)

with

fopt = min
x∈X

f(x) . (7)

The threshold accepting heuristic described in algorithm 1 will, after completion, pro-
vide us with a solution x ∈ Xmin or a solution close to an element in Xmin. The
complexity of the algorithm is O(niter × steps).

Algorithm 1 Pseudo-code for the threshold accepting algorithm.
1: Initialize niter and steps

2: Initialize sequence of thresholds thr , r = 1, 2, . . . ,niter

3: Generate starting point x0 ∈ X

4: for r = 1 to niter do
5: for i = 1 to steps do
6: Generate x1 ∈ Nx0 (neighbor of x0)
7: if f(x1) < f(x0) + thr then
8: x0 = x1

9: end if
10: end for
11: end for

The parameters of the algorithm are the number of iterations niter , the number of
steps per iteration steps and the sequence of thresholds th . In practice, we start with
the de£nition of the objective function, which can be a non-trivial task if f comprises
several dimensions. Second, we construct a mapping N : X → 2X which de£nes for
each x ∈ X a neighborhood N (x) ⊂ X . Third, we de£ne the sequence of thresholds
by exploring the neighborhood of randomly selected elements x ∈ X .

These different steps of the implementation and parameterization of the algorithm will
be illustrated with the application presented in the following section.
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4 Application

The working of the TA algorithm is £rst illustrated by solving the standard mean-
variance optimization problem. The solution is also computed with the quadratic pro-
gramming algorithm which will be used as a benchmark. Second we apply the TA
algorithm to a non-convex optimization problem with integer variables and a variety
of integer constraints such as holding and trading size.

For the following application we use a data set publically available from OR-Library1

at http://mscmga.ms.ic.ac.uk/jeb/orlib/portinfo.html. The set
contains 291 observations of weekly prices for the period from March 1992 to Septem-
ber 1997 for assets from the following £ve indices: Hang Seng (31 assets), DAX 100
(85 assets), FTSE 100 (89 assets), S&P 100 (98 assets) and Nikkei (225 assets). The
reported results refer to the S&P 100 case.

4.1 Benchmarking the TA algorithm

The standard mean-variance optimization problem has already been de£ned in (1).
The following is a reformulation of the problem where the initial capital v0 has been
normalized to one:

min
ω

ω′Qω

ω′r ≥ ρ

ι′ω = 1

ωl
j ≤ ωj ≤ ωu

j j ∈ P .

The composition of the portfolio is de£ned by the shares ωi = xi/v
0.

De£nition of the objective function

The variance can now be minimized by exploring with the threshold accepting algo-
rithm 1 the elements in the set X which satisfy the constraints. However, a better way
is to accept solutions which violate the return constraint in the search process. This
can be done by minimizing the following objective function

F (ω) = V (ω) + p (ρ−R(ω))

1[Beasley, 1990], [Beasley, 1996].
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where V (ω) and R(ω) denote respectively the variance and the return of a portfolio
de£ned by ω and where p is a penalty function de£ned as

p =

{

c if R(ω) < ρ
0 otherwise.

with c a scaling factor.

De£nition of neighborhood

To generate a point x1 in the neighborhood Nx0 of a given point x0 we draw with a
probability 1/nA two assets i and j out of all nA assets. The amount of i and j in the
portfolio is ωi, respectively ωj . We then sell an amount qr of asset i and buy for the
corresponding amount asset j. After this move the amount of i and j in the portfolio
is ωi− qr, respectively ωj + qr. The amount qr changes from iteration to iteration and
the sequence qr, r = 1, . . . ,niter has to be tuned according to the problem nature.

Algorithm 2 De£nition of neighborhood.
1: Select two assets i and j with probability 1/nA

2: t = qr

3: if (ωi − t) ≥ ωl
i then

4: ωi = ωi − t
5: else
6: t = ωi

7: ωi = 0
8: end if
9: if (ωj + t) ≤ ωu

j then
10: ωj = ωj + t
11: else
12: cash = cash + ωj + t− ωu

j

13: ωj = ωu
j

14: end if

In order to avoid short selling and to respect the constraints on the holding size of
the assets, the procedure for the selection of a neighbor solution must be re£ned.
Algorithm 2 describes the procedure of the selection of a neighbor solution in detail.
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De£nition of thresholds

In order to de£ne the sequence of thresholds, we compute the empirical distribution of
the distances between values of the objective function at random points and its neigh-
bors. As the distance between neighbors depends on the parameter qr, the distribution
has to be computed for each value of qr.

In the following application we choose niter = 3 and steps = 3000. The parameter
qr decreases linearly from 0.05 to 0.005 during the 3 iterations.

Figure 1 shows the empirical distribution of the distances between the objective func-
tion values of neighbors of 5000 randomly drawn portfolios. In the left panel we rep-
resent the distribution for the points generated in the £rst iteration where qr = 0.05
whereas in the right panel we have the distribution of the points generated during the
second iteration with qr set to 0.025.

−1 0 0.56 1 2

x 10
−4

0

0.5

0.75

1

q
r
 = .05

−1 0.29 1 2

x 10
−4

0

0.6

1

q
r
 = .025

Figure 1: Empirical distribution of distances between x0 and neighbors x1.

If for example we want to reject 25% most distant neighbors in the £rst iteration and
40% in the second, we must choose a threshold sequence of 10−6

[

56 29 0
]

. We
observed that such threshold sequences are robust to different sets of random points
and to different data sets.

We solve the mean-variance optimization problem for an investment opportunity set
composed of the nA = 98 assets in S&P 100 with the above parameter setting and
we compare it with the solution given by the QP algorithm. Weights in the optimal
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portfolio are allowed to be any real number between 0 and 1 and the maximum number
of assets is not restricted.

Figure 2 illustrates how the algorithm searches its way to the solution for ρ = 0.0085
lying on the ef£cient frontier computed with QP 2. At the optimal solution the expected

0.5 1.23 2

x 10
−3

1

5

8.5

10
x 10

−3

Variance of portfolio

E
x
p
e
c
t
e
d
 
r
e
t
u
r
n

Starting point

Solution

Figure 2: Working of the TA algorithm (S&P 100).

return and the variance are practically the same for the QP and TA algorithms. The
optimal portfolio contains assets 34, 42, 82 and 89. Weights of the assets in the optimal
portfolio for both algorithms are given in Figure 3. These results con£rm the good
performance of the TA algorithms.

2The ef£cient frontier values are provided in the data set we used.
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34 42 82 89
0

0.1

0.2

0.3

0.4

Figure 3: Composition of the optimal portfolio for QP (left bars) and TA (right bars).

4.2 Mean downside risk optimization

Our second illustration of the working of the TA algorithm is a non-convex optimiza-
tion problem with integer variables and a variety of constraints such as holding and
trading size. We remind that this kind of problem cannot be solved with standard
QP methods. The solution of the resulting mixed-integer programming model can be
tackled by heuristic methods (see e.g. [Mansini and Speranza, 1999]) which provide
an approximation of the exact solution.

In the following, the quantity of each asset in the portfolio is restricted to be an in-
teger number. The generation of neighbors x1 ∈ N 0

x to a given solution x0 is again
performed by drawing randomly two assets i and j. We then sell ki assets i, transfer
the amount to the cash and buy kj assets j from cash. In order to make sure that each
transfer is of approximatively the same amount, the number of assets ki and kj to be

transferred are de£ned as ki = dmax p0

p0

i

e and kj = dmax p0

p0

j

e, where p0 is the vector of

current asset prices. This procedure is summarized in algorithm 3 where we omit the
details necessary to check for short selling and holding constraints.

Algorithm 3 De£nition of neighborhood in the case of integer variables.
1: Randomly select asset i to sell
2: xi = xi − ki

3: cash = cash + ki p0

i

4: Randomly select asset j to buy
5: xj = xj + kj

6: cash = cash− kj p0

j

Using the S&P 100 data set as in the previous problem, we compute the solutions of
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the mean-VaR and the mean-ES problems de£ned in (4) and (5).

Dealing with integer variables and introducing cardinality constraints and constraints
on the minimum and th maximum holding size, leads to the following reformulation
of the mean-VaR problem:

max
x

Ev

P (v < VaR) ≤ β

x′ p0 = v0

#{P} ≤ K
⌈

ωl
j v0

p0

j

⌉

≤ xj ≤
⌊

ωu
j v0

p0

j

⌋

j ∈ P

where xj , j ∈ P are the integer quantities of each asset in the portfolio and K is
the maximum number of assets allowed in the portfolio. Similarly, for the mean-ES
problem we have

max
x

Ev

E(v | v < VaR) ≥ ν

x′ p0 = v0

#{P} ≤ K
⌈

ωl
j v0

p0

j

⌉

≤ xj ≤
⌊

ωu
j v0

p0

j

⌋

j ∈ P .

The uncertainty about future returns, i.e. about future portfolio value v, is modeled
through a set of possible realizations, called scenarios. Scenarios of future outcomes
can be generated relying on a statistical model, past returns or experts’ opinions. In our
application they are randomly drawn from the empirical distribution of past returns.

In our data set we have T = 291 historical prices pt, t = 1, . . . , T . For each point in
time, we compute the realized return vector over the previous period as

rt
j = log(pt

j/p
t−1
j ) j = 1, . . . , nA

from which we draw the bootstrap sample of returns of dimension nS . The price
scenarios for the end of the planning period are computed as

ps = pT rs s = 1, . . . , nS .
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Introducing price scenarios in the previous mean-VaR and mean-ES formulations, we
obtain the following problem for the mean-VaR case

min
x

−
1

nS

nS
∑

s=1

x′ps

#{s |x′ps < VaR} ≤ β nS

x′ p0 = v0

#{P} ≤ K
⌈

ωl
j v0

p0

j

⌉

≤ xj ≤
⌊

ωu
j v0

p0

j

⌋

j ∈ P

and

min
x

−
1

nS

nS
∑

s=1

vs

1
#{s|vs<VaR}

∑

s|vs<VaR

vs ≥ ν

x′ p0 = v0

#{P} ≤ K
⌈

ωl
j v0

p0

j

⌉

≤ xj ≤
⌊

ωu
j v0

p0

j

⌋

j ∈ P

in the mean-ES.

Assuming an initial capital of v0 = 8000 000 we seek the portfolio which maximises
the expected return given the following constraints: shortfall probability β = 0.05 for
a VaR level of 7 700 000, minimum and maximum holding size for a particular asset
0.01 v0 respectively 0.40 v0 and a maximum of 5 assets in the portfolio. Figure 4
shows the results of the TA algorithm with the setting niter = 4 and steps = 1500.
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Figure 4: Search path of the TA algorithm for Mean-VaR.

The composition of the portfolio that TA found to be optimal is given in £gure 5.
It contains the assets {14, 23, 27, 51}. The smallest position is 413 500 in asset 27
and the maximum position is 3 200 000 in asset 23, which is the maximum allowed.
Thus the constraints on the holding size and the number of assets in the portfolio are
satis£ed.

This optimal portfolio has an expected return of E(v) = 8 062 400 with a shortfall
probability of 0.052 for a VaR level of 7 700 960, which almost fully satisfy the con-
straints.

14 23 27 51
0

1

2

3

4
x 10

6

Figure 5: Optimal portfolio computed by TA for the mean-VaR problem.
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For an investor it would be interesting to know what are the investment opportunities
in terms of expected return and downside risk. Intuitively, the higher the capital gain
one requires is, the bigger the downside risk that one accepts to run should be. We
can observe this in £gures 6 and 7 where we represent the ef£cient frontiers faced by
investors in stocks of the S&P 100 index. In both cases, the minimum and maximum
individual weights allowed are 0.01 and 0.30, the maximum number of assets in the
portfolio is restricted to 10, and the shortfall probability is required to be less than
β = 0.05.

In £gure 6, we give the ef£cient frontier for the Mean-VaR problem. We observe
that as the constraint on VaR becomes more conservative, the expected return on the
portfolio decreases. For instance, in the case where we do not allow the VaR level to
be below the initial portfolio value, the only solution returned by our algorithm is to
put almost everything in cash.
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e
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Figure 6: Mean-VaR ef£cient frontier.

In £gure 7, we give the ef£cient frontier for the Mean-ES problem. We notice that
the Mean-ES frontier is smoother than the Mean-VaR one. This can be explained by
the fact that the objective function itself in the former case is smoother given that ES
is computed as a mean. In both cases constraints (represented in the above £gures
by vertical dashed lines) may not be exactly satis£ed due to the integer nature of the
variables.
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Figure 7: Mean-ES ef£cient frontier.

5 Concluding remarks

In this paper we illustrate how heuristic optimization algorithms like the threshold
accepting method can be successfully applied to solve realistic non-convex portfolio
optimization problems. We show that, in the cases where these problems contain non-
linear and non-convex constraints, the heuristic methods are the only reasonable way
out. Examples of these situations can be problems where constraints on downside risk
preferences are introduced, where the solutions are required to be integers, etc.

The working of the threshold accepting algorithm is £rst illustrated by solving a stan-
dard mean-variance optimization problem. The solution is also computed with the
quadratic programming algorithm which is used as a benchmark and thus provides
some insight into the quality of the threshold accepting heuristic, which appears very
satisfactory.

In a second example we apply the threshold accepting algorithm in order to solve non-
convex optimization problems with integer variables and constraints on holding sizes
and portfolio set cardinality. The future return on the portfolio is maximized under
VaR and expected shortfall constraints.
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From our results we conclude that the threshold accepting algorithm opens new per-
spectives in the practice of portfolio management as it allows to deal easily with all
sorts of constraints of practical importance, it provides useful approximations of the
optimal solutions, it appears to be computationally ef£cient and is relatively easy to
implement. We also observed that the algorithm is robust to changes in problem char-
acteristics.
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