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The problem of global optimization is pivotal in a variety of
scientific fields. Here, we present a robust stochastic search
method that is able to find the global minimum for a given cost
function, as well as, in most cases, any number of best solutions for
very large combinatorial “explosive” systems. The algorithm iter-
atively eliminates variable values that contribute consistently to
the highest end of a cost function’s spectrum of values for the full
system. Values that have not been eliminated are retained for a
full, exhaustive search, allowing the creation of an ordered pop-
ulation of best solutions, which includes the global minimum. We
demonstrate the ability of the algorithm to explore the conforma-
tional space of side chains in eight proteins, with 54 to 263 residues,
to reproduce a population of their low energy conformations. The
1,000 lowest energy solutions are identical in the stochastic (with
two different seed numbers) and full, exhaustive searches for six
of eight proteins. The others retain the lowest 141 and 213 (of
1,000) conformations, depending on the seed number, and the
maximal difference between stochastic and exhaustive is only
about 0.15 Kcal/mol. The energy gap between the lowest and
highest of the 1,000 low-energy conformers in eight proteins is
between 0.55 and 3.64 Kcal/mol. This algorithm offers real oppor-
tunities for solving problems of high complexity in structural
biology and in other fields of science and technology.

M any problems in life sciences and in other fields of science
and technology are of high complexity, thus requiring
sophisticated methods of searching and scoring to achieve the
ability to study and to simulate them by means of a computer
simulation. An excellent search method coupled with a highly
reliable scoring method should allow comparisons to some
natural phenomena. In this article, we have taken the approach
of comparing best populations found by a stochastic search
method to a full, exhaustive search, as the crucial test of this
method. However, comparisons to experimental results also are
included. The problem chosen to exemplify this method is the
positions of side chains in proteins, which is essential for both
theoretical and experimental purposes. On the theoretical side,
it is a subproblem in de novo protein structure prediction. It is
essential for structure-based drug design (1), for inverse folding
and threading algorithms (2), for predicting the effect of muta-
tions on structure (3), for ab initio predictions of tertiary
structure (4), for homology-based modeling (5), and others.
From the x-ray crystallographer’s point of view, it could speed
the placement of side chains using the electron density maps of
the main chain before refinement calculations. The main limi-
tation is the large amount of possible conformations that each
side chain may adopt (6). An exhaustive search of all possible
conformations is beyond the scope of state of the art computers.

Current strategies for side chain addition to a given backbone
differ in three categories. The first is the conformational space
of each side chain. In continuous space methods (7, 8), any side
chain torsion angle may be sampled. Discrete space methods are
based on the assumption that side chains exist in energetically
preferred conformations called rotamers, which are local min-
ima conformers that have been sampled by statistical analysis of
known structures (9-14). Discrete space methods cannot predict
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conformations that are not present in the rotamer database.
There is no agreement regarding the optimal size of a rotamer
library. Several groups showed that large rotamer databases that
contain very rare conformations do not necessarily yield better
predictions than smaller databases (15-18). On the other hand,
Xiang & Honig (19) have recently extended the accuracy of
predictions with an extensive rotamer library. Rotamer data-
bases also can be classified as backbone dependent and backbone
independent. The former are based on a relationship between
the side chain conformation and the local backbone conforma-
tion (20-21), whereas the latter are not (7, 16, 22).

The second category is the scoring or cost function for
evaluating solutions. Energy-based methods rely on nonbonding
terms (6, 15, 16, 18, 23-25). The assumption is that the lower the
energy, the more accurate the prediction. Knowledge-based
methods also were proposed: Sutcliffe et al. (26) suggested a
procedure for building side chains using spatial information from
side chains in topologically equivalent positions—as far as such
a correlation may be observed—and most probable conforma-
tions of the side chains in the respective secondary structure
type. Sali & Blundell (27) described a comparative protein-
modeling method designed to find the most probable structure
for a sequence, given its alignment with related structures. Bower
et al. (28) located residues in their most favorable backbone-
dependent rotamers and systematically resolved the conflicts
that arise from that structure.

Accurate computer location of protein side chains is a com-
plicated task because of the large number of minimum energy
conformers on the potential energy surface, even with a rigid
backbone. Conventional methods for side chain addition usually
result in a single structure of the protein, which is then compared
with an experimental structure, if available. The conformational
space is disregarded, although protein function and molecular
recognition depend on structural plasticity (29), and conforma-
tional flexibility of receptor proteins is considered to be one of
the major factors that affect ligand docking (30).

Our algorithm focuses on the third category, the search
strategy, and not on the energy function or the rotamer library.
There are numerous examples of search strategies for highly
complex problems. Metropolis Monte Carlo methods (15),
Gibbs sampling Monte Carlo (18), Neural networks (31), Con-
formational Space Annealing (32), Genetic and Evolutionary
Algorithms (33-35), Simulated Annealing (6), Mean Field Op-
timization (23), and Locally Enhanced Sampling (8). Combina-
torial Searches (21, 24, 33) are used on discrete conformers and
may be followed by a continuous minimization in the final stage
of refinement. It should be noted that there is no guarantee that
any of the above will converge to a valid solution. Another widely
used method is Dead End Elimination (DEE). It is based on the
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identification of rotamers that are absolutely incompatible with
the global minimum energy conformation, eliminating rotamers
that cannot contribute to local energy minima of a certain or
higher order. Conformations composing such rotamers can be
qualified as dead ending (30, 36, 37). If enough rotamers can
be eliminated by recursive applications, the global minimum
can be found (38, 39). If no conditions can be established to
eliminate further rotamers during the calculation, DEE might
not converge. The global minimum can be found by an exhaus-
tive search of the remaining rotamers (38), provided the re-
maining search space is not prohibitively large. Because of the
mechanism of elimination of rotamers in DEE, there is little
chance of forming an optimal population of solutions.

However, a combination of DEE with the A* algorithm (40)
has been suggested for constructing a population of low-energy
side chain conformations in proteins, and was used for con-
structing partition functions. The A* algorithm approach may
find the best N solutions, but it is restricted to relatively small
proteins. The largest protein solved by this algorithm so far
contained 68 amino acids, which comprise about 10*> combina-
tions—depending on the complexity of the rotamer library—
whereas proteins with a much larger number of combinations are
common. As a “stand alone” algorithm (without the DEE
preprocessing stage) the A* algorithm reaches a maximum of
10%! combinations. An effective search by the A* algorithm must
have a good estimate of the cost to reach a goal node. Estimation
is problematic because of interactions between residues that
have not yet been assigned. Those limitations raise the need for
a robust algorithm that finds the global minimum and the lowest
energy conformations in larger systems. Such a search algorithm
is presented here.

Methods

The Search Technique. The code uses a backbone-dependent
rotamer library (13, 21, 28, 41). We used the August 1997 update
of the rotamer library of Dunbrack & Karplus, with united atoms
(42). Energy is computed by Eq. 1 with the AMBER nonbonding
12-6 Lennard—Jones and electrostatic energy terms (43), where
A, jis the repulsion parameter for the two (i, j) atoms, B, ; is their
attractive polarizability parameter, g; is the partial charge, r; ; is
the distance between atoms, and ¢ is the dielectric constant. A
distance-dependent dielectric constant of ¢ = r has been used.
The nonbonded energy is calculated for interactions with the
backbone and with other residues’ rotamers. If the nonbonded
energy term exceeds the value of 10 Kcal/mol for a given pair of
atoms, it is truncated at 10 Kcal/mol.
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As suggested by Bower ef al. (28) and implemented in the
SCWRL (Side Chains With a Rotamer Library) algorithm, every
rotamer is given a local energy based on its probability in the
backbone-dependent rotamer library. Energies are taken from
the probabilities of the backbone-dependent rotamer library, as
—In(protamer/Po), Where py is the probability of the most probable
rotamer, and pProtamer 1S the probability of a given rotamer
(assuming kT = 1). The search strategy includes several steps:
() Steric clashes elimination stage and preliminary rotamer
location. The input for the calculation are the backbone (N, C,,
C, O) coordinates of a protein with a known, high-resolution
structure. Those, together with standard bond lengths and bond
angles from AMBER 4.1 (43) and with ¢ and i angles of the
backbone are used to create the initial placement of possible
rotamers for each residue. Possible disulfide bonds between
cysteine residues are calculated by the distance between sulfur
atoms. All rotamers that clash with the backbone are excluded
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by a threshold value of 18 Kcal/mol. If all rotamers of a residue
clash with the backbone, the rotamer with the lowest “clash
energy”’ remains. The algorithm treats single rotamers as part of
the backbone; i.e., other rotamers that clash with those residues
also will be excluded. The algorithm also searches for all side
chain clashes between rotamer i of amino acid j and rotamer k
of amino acid 1. The algorithm excludes such pairs from being
part of the solution, and, therefore, they are not sampled in the
stochastic stage (see below).

(Il) Stochastic stage. It is obvious that in the case of a large
biological system such as a protein, a very large combinatorial
problem results. In Hydrolase (1arb; ref. 44), for example, there
are 2.4 X 10'% alternative positioning options after step I. A
stochastic algorithm is used to reduce the size of the problem. In
the protein, the side chain rotamers in dy amino acids are
unknown. For each amino acid there is usually more than one
rotamer, but only one would give the lowest energy. Let X; = (x;1,
Xj2 ... Xjq0) be a conformation of the protein that includes
randomly picked rotamers for dy amino acids. For each confor-
mation Xj, the energy E; = E(X;) may be calculated according
to the energy function described above. The objective is to find
the conformation that minimizes E. Because it is impossible to
evaluate all of the alternative conformations because of the large
number of combinations, the following steps are taken: (i)
Sample at random n conformations of the large population of
combinations X; = (xll, X125 - xldo), oL, X, = (x,,l, Xp2y o v s
Xndo), where xq; is a randomly picked rotamer for the first amino
acid in the first conformation, and x,; is a randomly picked
rotamer for the same amino acid in the n'" conformation. We use
n = 1,000 to create a large enough number of protein confor-
mations and compute the corresponding energy values: E; =
E(Xy) to E, = E(X,).

(if) Construct the distribution Fz(n = 103). Ff is the set of
energies of all of the N-sampled conformations for the full
protein. Define cutoff points H and L in Fg. H contains all
variable values satisfying E; = F(1 — «), where Fg(a) is the
a—th percentile of Fg, and L contains all variable values
satisfying E; = Fr(a). The number of conformations in each of
Hand L isng =n X a. Whenn = 1,000 conformations and « =
0.01 (1%) for highest and lowest energy conformations, ny = a X
n = 0.01 X 1,000 = 10, so L = 10 and H = 10. In other words,
H stands for the 10 highest energy conformations, and L stands
for the 10 conformations with the lowest energy. (iii) Construct
the vector & for all rotamer variables corresponding to the
conformations in H. The vector £ is the element-wise intersec-
tion of all of the rotameric states in H, in the following manner:
if all rotameric states in H share the same rotamer at component
J (corresponding to x,; of conformation X,), then h; =
rotamer_number; otherwise, #; = 0 (no common rotamer for j
in all high-energy conformations.) (iv) Construct the vector / for
rotamer variables corresponding to the conformations in L.
Unlike vector 4, more than one rotamer may appear for each
amino acid j up to a maximum of 7 values in /;. It is the union
of all rotamers of component j that appear in the low-energy
conformations of L. (v) Compare /4 and /. If both /; and /; have
a similar rotamer, it will remain as a viable rotameric state,
because it contributes also to low-energy values. However, if 4;
does not correspond to any element of /;, then the corresponding
rotamer h; will be evicted from subsequent iterations. If an
amino acid has only one rotamer, it will not be evicted from
subsequent iterations because it is the only remaining solution.
(vi) Repeat steps i to iv for the reduced set of variables’ values
until the number of possible combinations of all variables is
smaller than a user-defined “end of stochastic stage criteria”.

The value of « that is used to determine ng should be selected
with care. If ny is too large, no rotamers will be eliminated. If n,
is too small, an unjustified elimination of rotamers might occur.
At best, ng should be adjusted by the number of possible
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Fig. 1. Values of no for 2 to 29 possible rotamers of a single residue that lead

to elimination with high certainty. Each number of rotamers has an associated
value of ng (2). The larger the number of rotamers, the smaller is no. For each
given number of rotamers and n, the percentage of certainty is calculated (O).

rotamers of each amino acid, to allow an equal probability for the
elimination of rotamers. To explain the determination of «, let
us assume that each rotamer is not affected by interactions with
any other amino acid in its environment. The ng values for 2 to
29 possible rotamers of a single residue that would lead to the
correct rotamer elimination with a certainty >99.983% are
presented (Fig. 1). Those values were calculated in the following
manner. Given a residue with three rotamers, if we want to
remove one rotamer with a certainty (Peorrect) higher than
99.99%, the error probability (Perror) must be smaller than 0.01%
(0.0001). For erroneously evicting a rotamer, it must first appear
in all of the high-energy conformations. In this case, the prob-
ability is (1/3)"°. In addition, this rotamer must not appear in any
low-energy conformation. In this case the probability is (2/3).
The total error probability is Peyror = (1/3)"°(2/3)"°. Thus, one
may tune the calculation to nearly 100% confidence by employ-
ing the general formula in Eq. 2, where m is the number of
variable values (rotamers).

) )
Permr =\ o [2]
m m

When m = 1 (there is one rotamer) Peror = 0. Assigning a value
of Perror = 0.0001 and solving the equation for m = 3 leads to
a value of nyp = 6.12. When ny is very large, Perror = 0, but the
odds of evicting any variable value are very low. Thus, we employ

Table 1. Systems selected for comparison

Number of

combinations for

the n¢ values from Fig. 1, which allow eviction of variable values,
with Peorreet = 99.983-99.9988%.

(1) End of search. Once there are less than M combinations
remaining (M ~ 10°), an exhaustive search is conducted to yield
the N lowest energy conformers of the protein.

Results

A Test of the Search Method's Validity. To test the accuracy and
efficiency of our method, we impose our stochastic algorithm to
find the lowest energy combinations—given the constraints of
the energy function and the rotamer library—and compare them
to the results of an exhaustive search. We applied the stochastic
algorithm to eight high-quality x-ray structures (resolution < 1.5
A, R factor < 0.17) of proteins taken from the Protein Data
Bank (45) with various sizes (54 to 263 residues) that were chosen
to cover a range of protein-fold families as shown (Table 1).
These proteins are: rubredoxin (5rxn) (46), ovomucoid third
domain (2ovo) (47), erabutoxin B (3ebx) (48), ribosomal protein
(1ctf) (49), ribosomal protein (1whi) (50), lysozyme (2ihl) (un-
published work), endonuclease (2end) (51) and hydrolase (1arb)
(44). We limited the number of rotamers each residue could
adopt by employing the most probable rotamers from the
SCWRL backbone-dependent rotamer library (28), so that the
exhaustive, full search calculation may end in a reasonable
computer (CPU) time.

Two stochastic searches were conducted for each test protein.
A seed number of 100,000 was used for the first search and was
replaced by 8,242,117 in the second. In Fig. 2 4 and B, we
compare the energies resulting from the two stochastic searches
to the exhaustive one for the 1,000 low-energy conformations.
When employing a seed number of 100,000, the low-energy
conformations were identical by the stochastic and the exhaus-
tive searches in all of the proteins except lctf. In 1ctf (Fig. 24),
the first 213 solutions were identical, and the 1,000th solution
differed by 0.08 Kcal/mol. In the second stochastic search with
a seed number of 8,242,117, the low energy conformations were
identical in the stochastic and the exhaustive searches in all of the
proteins except 2ovo (Fig. 2B), where the first 141 solutions were
the same and the 1,000th solution differed by 0.15 Kcal/mol.

The Search Method's Efficiency. By applying our algorithm for
rotamer prediction, computing time grows linearly and not
exponentially, with an increase in the number of residues. The
algorithm was applied to the eight proteins with an initial
number of rotamer combinations that range from 1.06 X 10% to
2.4 X 10'% as shown (Table 1). The In(number of combinations)

Energy gap' in

Kcal/mol between Residues* with

comparing Average RMSD' for the 1,000th different y; among
PDB Number of exhaustive and 1,000 lowest energy ~ conformer and the lowest 1,000 energy
Name code Size combinations* stochastic* conformers, A global minimum conformers, %
Rubredoxin 5rxn 54 3.90 x 10?7 1.26 X 10° 2.20 1.64 14.6
Ovomucoid third 20vo 56 1.06 X 1025 8.49 x 107 2.03 3.64 16.7
domain
Erabutoxin B 3ebx 62 1.50 X 1031 6.37 X 108 2.50 1.35 12.3
Ribosomal protein  1ctf 68 3.23 X 1034 3.58 X 108 2.33 3.28 6.4
Ribosomal protein 1whi 122 4.97 X 1073 8.49 x 107 2.48 3.33 5.9
Lysozyme 2ihl 129 2.17 X 1081 5.66 X 107 2.26 1.98 5.7
Endonuclease 2end 137 1.31 X 1082 2.01 x 10° 2.68 3.03 5.9
Hydrolase 1arb 263 2.40 X 10105 1.61 X 10° 2.24 0.55 3.0

*After backbone clashes are relieved.
TFor a calculation with all the rotamers.
*Except Gly and Ala.

Glick et al.

PNAS | January 22,2002 | vol.99 | no.2 | 705

BIOPHYSICS

CHEMISTRY



slochastic seed1 energies

stochastic seed1 emor

axhaustive and stochastic
sead? energies

Energy {Kcalimal)

stochastic seed2 aror 1 0.02

\ - 0.01

000
AERRYIEROERCIERRERZSRERESR

1
2
5
a5

13
141
168
197
226
283
am

B Conformation number
-103.50 0.18
stochastic sead? armor
-104.00 \ 0.16
-104.50 0.14
= stochastic seed2 energies Az
2 -105.00 E
B \ 0.10 =
X 10550 ,!E
= 008 &
2 exhaustive and seed! energies E
£ .108.00 I
w 0.06
-106.50 stochastic seed1 error - 0.04
-107.00 \ 0.02
107.50 0.00
e e r e ===
TEMPRAESHRESISHERBIBREBIZEE
Conformation number
Fig. 2. Comparison of stochastic searches when employing two different

seed numbers to an exhaustive search on two test proteins. Lowest energy
conformations (1,000) are presented. Error is calculated as the energy differ-
ence between the given conformation in the stochastic and exhaustive
searches. (A) Ribosomal protein (1ctf). (B) Ovomucoid third domain (2ovo).

vs. the number of iterations is depicted (Fig. 3). The number of
iterations to convergence ranged between 516 for 2ovo (1.06 X
10% combinations) to 4,441 for larb (2.4 X 10'%). The ratio
between the combinations for these two proteins is 2.26 X 108,
whereas the ratio between the iterations was 8.6. The 129
residues of 2ihl required 1,894 iterations to end the stochastic
stage, whereas the 263 residues of larb needed 4,440 iterations.
The number of starting combinations for these two was 2.17 X
1001 vs. 2.40 X 10'9, respectively.

Comparison of the Algorithm to Experimental Results. Results (Table
1) are given for the average RMSD (root mean square deviation)
of the lowest energy populations of 1,000 conformations for each

N

In{number of combinations)

o _idacdl

Fig. 3.
proteins.

In(number of combinations) vs. the number of iterations for eight
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protein. The values are between 2.03 to 2.68. The lowest energy
conformations (data not shown) did not have, in most proteins,
the lowest RMSD to the x-ray structure. The energy gap between
the lowest and highest energies among the low-energy popula-
tions ranges between 0.55 for larb to 3.64 for 2ovo. Among the
thousand results, we find (last column in Table 1) that a relatively
small number of residues (expressed as percentage) deviate from
the crucial x;, which is the angle closest to the backbone and
affects most strongly the conformation of the side chain. We
evaluated the number of side chains in each protein that adopted
multiple positions by calculating the percentage of residues
(except Ala and Gly) with different x; among the 1,000 lowest
energy conformations found by our search method. An angle x;
that deviates by 30° or more from the rest was considered as
different. For example, rubredoxin contains (Table 1, line a) 48
residues that are neither Ala nor Gly. We found that seven
residues exhibited y; deviations, thus 14.6%.

Discussion

We present a stochastic search technique and an example of its
possible applications, exploring a given conformational space of
proteins’ side chains. The algorithm successfully explores the
conformational space of various sizes of proteins and can deal
with a large number of combinations after eliminating rotamers
that clash with the backbone. The robustness of the stochastic
algorithm in handling complex combinatorial searches is clearly
demonstrated (Fig. 2 4 and B and Fig. 3). Comparing it to an
exhaustive search proves the reliability of the stochastic algo-
rithm in reproducing most of the population of lowest energy
conformations. In all proteins, the global minimum has been
consistently detected. The 1,000 low-energy conformations were
identical in the stochastic and the exhaustive searches in 14 of 16
comparisons, whereas 2 cases had a smaller set of lowest energy
conformations that were identical in the two searches. Even in
these cases, with 141/1,000 and 213/1,000 identical lowest
conformations, the prevailing contributors to the molecular
partition function are included, and may subsequently be used to
estimate the conformational entropy. Indeed, Leach & Lemon
(40) used low-energy rotamer combinations to evaluate the
partition function and, thus, calculated the side chain contribu-
tion to the conformational entropy of the folded protein. One
must bear in mind that both our method and Leach & Lemon’s
method are conducted in discrete space. A numeric comparison
to entropy values obtained from continuous searches may give
further insight into the reliability of a discrete search. Full
conformational freedom of the backbone is required to extract
real entropy values for proteins.

Table 1 presents the energy gaps between the 1,000th con-
former and the global minimum of each protein. These energy
differences indicate that the rotamers have a considerable
degree of conformational flexibility that varies between the
different proteins: it is 0.55 Kcal/mol for 1arb and 3.64 Kcal/mol
for 2ovo. The energy gap variations between proteins may reflect
the relative flexibilities of their side chains and should be studied
further in connection with other indices of flexibility. Also, the
lack of relations between protein size and energy gap warrants
further examination.

The algorithm presented here belongs to the class of heuristic
solutions. One of the tools used to assess the quality of our results
is changing the seed number. Like other stochastic heuristic
methods, our algorithm is not immune to such an effect.
Nevertheless, we demonstrated that the algorithm found the
global minimum in all of the proteins, when employing different
seed numbers. Thus, the global minimum has been retained and
not evicted in any of the large number of iterations for each of
the proteins. In these test cases we have demonstrated that by
combining two different seed numbers we succeeded in finding
all of the required low-energy populations. Also, it should be

Glick et al.



noted that no accidental eviction of values is possible: each such
eviction is a result of a systematic test. Those values that are not
evicted remain for the final exhaustive step, in which all their
combinations are evaluated. Thus, each one of the total of initial
values must be probed and either evicted or retained for the final
full search.

The hub of this work is a search methodology and neither a
rotamer library nor a cost function. Most deviations from
maximal accuracy may be caused by the size limitation of the
rotamer library and the deficiencies of the energy function.
Indeed, the current rotamer library’s best possible RMSD for the
tested proteins (found by positioning the rotamer that is closest
to the x-ray structure) is between 0.94 A to 1.52 A. A way to
overcome the search-space limitation was suggested by Mendes
et al. (52); it presents a rotamer as a continuous ensemble of
conformations that cluster around the classic rigid rotamer. A
different approach to expanding the search space was recently
devised by Honig and coworkers (19), which achieved accurate
predictions by using an extensive rotamer library containing over
7,560 members, in which bond lengths and bond angles were
taken from the database rather than simply assuming idealized
values. Further, the performance of CHARMM (53) was better
than that of AMBER in that work. The limitations of the force
field are noticeable mostly in the fact that, in most proteins, the
lowest energy conformations did not have the lowest RMSD
from the x-ray structure.

Currently, there are four main methods to study the confor-
mational space of a given protein: x-ray crystallography, NMR,
molecular dynamics (MD), and rotamer library-based methods.
Experimental information of biomolecular structure and con-
formations has its own limitations. X-ray crystallography usually
supplies a single structure which reflects the biomolecule in the
highly ordered crystal lattice, as opposed to the more physio-
logically relevant solution environment of an NMR structure.
The former might be biased toward specific conformational
substates in the crystal, which may not be among the ensemble
of conformations in solution (54). Observation of alternate
rotamers is beyond the detection limits of conventional x-ray
crystallographic techniques, except at the very highest resolu-
tion. At least 10% of all side chains in proteins adopt multiple,
discrete conformations in carefully refined crystal structures
(55). MacArthur & Thornton (56) found a significant and
unexpected correlation between y; mean values and resolution,
mainly for small flexible side chains. All of the data support the
hypothesis that this observation reflects local conformational
flexibility and disorder, which at low resolution might be inter-
preted as a single distorted conformer.

We used the algorithm to explore the side chain conforma-
tional space of E. coli ribonuclease HI (57) and compared the
results to experimental and theoretical methods that offer an
insight into the multiple conformations that each side chain may
adopt under different conditions: x-ray crystallography, NMR,
and MD. Our algorithm found 82% of the multiple side chain
conformers in this case (data not shown). The advantage of our
algorithm is straightforward: it extends the single conformation
into a population of viable conformations.

Unlike x-ray crystallography, NMR suggests alternative con-
formations by deciphering the two-dimensional and three-
dimensional coupling maps (57, 58). NMR does not teach us
about the shape of the energy minima on the potential energy
surface. NMR of proteins is a long and tedious experiment
limited by the time scale of conformational variations, especially
in large proteins. In this case, our algorithm may be an additional
tool for suggesting alternative conformations. When NMR struc-
tures are available, our algorithm may be used to extend this
information by allowing the determination of the conformations’
energy weights, thus enabling an assessment of their contribution
to the overall population at equilibrium.
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Classical MD simulations suggest conformations that may not
be detected by NMR or by x-ray crystallography. With current
technology, MD simulations of systems consisting of tens of
thousands of atoms for a few nanoseconds are becoming more
common (59). However, relevant time scales for biomolecular
functions range from nanoseconds to more than seconds. The
time required to reach an equilibrium between different con-
formers of a protein by MD is prohibitive for such simulations,
and we may acquire only a glimpse of the protein’s behavior in
its surrounding. As a result, the ability of MD to detect the global
minimum or the population of lowest-energy conformations in
large biomolecules is limited. The reliability of our stochastic
algorithm in finding both has been demonstrated in this article.
Whereas MD trajectories imply a mechanism of conformational
interconversions, our stochastic approach, like Monte Carlo,
concentrates on products and not pathways, because of the
employment of discrete values and its nondeterministic nature.

Dill and Chan (60, 61) suggested that the native state of a given
protein corresponds to the global minimum in free energy, which
is not necessarily the computed global minimum potential
energy, even with a reliable function. The missing entropy
evaluation may be contributed partially by our algorithm, as it
yields most of the low-energy conformers. Our search offers, in
addition to finding the global minimum, the next N best solutions
for rotamers in large proteins without any mean field approxi-
mation and is unique in that sense. Thus, it may be used for
studying thermodynamic properties of complex molecular sys-
tems. The stochastic algorithm can treat more than 250 residues
(the maximum at this stage has been 2.29 X 10'% combinations,
with no optimization of the CPU time), which is more than any
algorithm known to us that is able to generate side chain
populations and not single minima. Another advantage is in its
ability to form populations by employing the stochastic algorithm
in a stand-alone mode without any preprocessing algorithm
(such as DEE, in the case of the A* algorithm). Also, one should
note that the numbers of combinations presented (Table 1) for
the stochastic algorithm refer to possible numbers of combina-
tions that remain after evicting rotamers that clash with the
backbone. Hence, the real number of possible combinations is
much higher. This algorithm can be applied to other issues (62)
of complex optimization.

It may be possible to simplify the combinatorial nature of the
side chain problem and reduce it to pairwise (36, 37, 38) or to
self-consistency (19) methods. However, such approaches can-
not produce an accurate or close approximation to the ensemble
of structures, the “best population” that may be crucial for the
physical and biological characteristics of a protein. Our method,
however, transcends the side chain issue that was used here as a
test case. We regard our comparison of these heuristic search
results to full exhaustive results as the most significant test of this
method’s performance and suggest it as a yardstick for future
comparisons of methodologies in this field and others.

Our approach for finding low-energy minima of a complex
biomolecular system is not necessarily limited to the life sciences.
After adjusting the number of sampled solutions in each itera-
tion (n) and cutoff points H and L in F to the specific nature
and complexity of the problem (i.e., the number of variable
values, which is the number of rotamers in this example), this
strategy may be used in other problems as long as the search
space is discrete and a reliable or reasonable cost function may
be used. This algorithm thus may evolve to be useful for other
fields such as telecommunications (to design efficient networks),
transportation, and economics.
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