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GLOBAL OPTIMIZATION METHOD FOR SOLVING
THE MINIMUM MAXIMAL FLOW PROBLEM�
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The problem of minimizing the flow value attained by maximal flows plays an important and interesting role
to investigate how inefficiently a network can be utilized. It is a typical multiextremal optimization problem, which
can have local optima different from global optima. We formulate this problem as a global optimization problem with
a special structure and propose a method to combine different techniques in local search and global optimization.
Within the proposed algorithm, the advantageous structure of network flow is fully exploited so that the algorithm
should be suitable for handling the problem of moderate sizes.

Keywords: Minimum maximal flow; Global optimization; Optimization over efficient sets; Adjacent vertex search;
Branch and bound

1 INTRODUCTION

Consider a directed network N(V , E, s, t, c), where V is the set of m � 2 nodes, E is the set of
n arcs, s is the single source node, t is the single sink node, and c is the vector of arc capacities.
A vector x of dimension n is said to be a feasible flow if it satisfies the system of conservation
equations and capacity constraints:

Ax � 0� 0 � x � c, (1.1)

where A is the well-known node–arc incidence matrix restricted to the node set V ��s, t�, whose
size is then m � n. We denote by X the set of feasible flows, i.e.,

X � �x � x 	 R
n� Ax � 0� 0 � x � c�. (1.2)

A vector x 	 X is called a maximal flow if there does not exist x � 	 X such that x � 
 x and
x � �� x . We denote the set of all maximal flows by X M . Further, let ��(s) and ��(s) denote
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the sets of arcs leaving and entering the source node s, respectively. Then the total amount of
flow, called the flow value, of x is given by�

h���(s)

xh �
�

h���(s)

xh . (1.3)

The problem to be considered in this article is the minimization of the flow value over the set
of all maximal flows, i.e.,

P

�����min dx

s.t. x 	 X M ,

where d is an n-dimensional row vector defined as

dh �

���
��

1 if h 	 ��(s)

�1 if h 	 ��(s)

0 otherwise.

(1.4)

Problem P was considered in Refs. [27,28] and is closely related to the uncontrollable
flow raised by Iri [18,19]. It arises from the following situation. Considering the maximum
flow problem, we usually take it for granted that each arc flow is controllable, i.e., we can freely
increase and decrease it as long as the conservation equations and capacity constraints are kept
satisfied. However, in the situation where we are not able or allowed to reduce the given arc
flow, we may fail to reach a maximum flow and get stuck in an undesired maximal flow. With
such restricted controllability, we may end up with different maximal flows depending on the
initial flow as well as the way of augmentation. Therefore the minimum of the flow values that
are attained by maximal flows will play a prominent role in evaluating how inefficiently the
network can be utilized. Note that the problem encompasses the minimum maximal matching
problem, which is known to be NP-hard, e.g., [14].

Since the set X M is in general nonconvex, Problem P is one of the typical multiextremal
optimization problems. See e.g., Refs. [15,17].Actually, the set X M can be considered as the set
of all efficient solutions of the multiple objective programming problem (vector optimization
problem)

MO

�����vector max x

s.t. x 	 X,

so that Problem P is a special case of the class of optimization problems over an efficient
set. Solution methods for optimization problems over an efficient set can be found e.g., in
Refs. [2,4,5,7,8,11,16,20,23,25,30,32,33,36–38]. A common feature of these methods is, how-
ever, that they can be only successfully applied to problems where the underlying multiple
objective programming problem has a small number of objective functions.

In the present article, we first formulate the underlying problem equivalently as a linear
program with an additional nonconvex constraint, and then propose a method to combine
local and global optimization techniques for solving the resulting problem in a way that the
advantageous network problem structure will be successfully applied.

The equivalent formulation of Problem P is discussed in the next section. Suitable linear
program relaxations of this equivalent problem is established in Section 3. Section 4 presents
different local and global optimization techniques which are used for the establishment of the
combination algorithm in Section 5. The convergence of the combination algorithm depends
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on the branching procedure within a branch and bound scheme for checking global optimality.
The case of finite convergence is discussed in Section 4 while establishing the branch and
bound method using integral rectangular division for the branching procedure. For the use
of simplicial branch and bound procedure, some kind of approximate optimal solutions is
introduced in Section 5 so that the combination algorithm yields an approximate optimal
solution after finitely many iterations. The final section contains an illustrative example and
some conclusions.

2 EQUIVALENT PROBLEM FORMULATIONS

In this paper we denote by R
k and Rk the set of k-dimensional column vectors and the set of

k-dimensional row vectors, respectively. As mentioned in the previous section, the set X M of
maximal flows is exactly the efficient set of MO. From well-known results in multiple objective
programming, e.g., Refs. [6,26,29,35], there is a compact subset, say �, of Rn�� � �λ � λ 	

Rn� λ > 0� such that a point x belongs to X M if and only if it maximizes λx over X for some
λ 	 �, i.e.,

X M � �x � x 	 X� λx 
 φ(λ) for some λ 	 ��, (2.1)

where
φ(λ) � max�λy � y 	 X�. (2.2)

In what follows we denote by e the row vector of ones and by Zn the set of n-dimensional
integral row vectors. The following theorem shows that a finite set of integral points of Rn��

suffices as �.

THEOREM 2.1 �1 � �λ � λ 	 Zn� e � λ � ne� suffices as � in (2.1).

To prove the above theorem we need the following lemmas.
Let 
x 	 R

n be a given maximal flow. Further let F be the index set defined by F �

�h � h 	 E� 
xh � ch� and 
F � E�F . Note that F �� �. We refer to a directed path from node
i to node j as an i– j path.

LEMMA 2.2 Let G be the graph of node set V and arc set 
F .

(i) G is acyclic and does not contain an s–t path or a t–s path.
(ii) For each node i 	 V ��s, t� at least one of the following two cases occurs:

Case 1: G has neither an s–i path nor a t–i path.
Case 2: G has neither an i–s path nor an i–t path.

Proof The assertion (i) is clear from the fact that 
x is a maximal flow. Let i be an arbitrary
node and suppose that Case 1 of (i) does not occur, i.e., there is either an s–i path or a t–i path.
If there is an s–i path, we have by (i) that there is neither an i–s path nor an i–t path, and if
there is a t–i path, we see that there is neither an i–s path nor an i–t path. These correspond
to Case 2. �

Next let a� denote the row of the incidence matrix A of the network corresponding to node
� 	 V ��s, t�. Suppose we are given a nonempty subset U of V ��s, t� and let

��
E (U)��h � h � (i, j) 	 E� i 	 U � j 	 V �U� (2.3)

��
E (U)��h � h � (i, j) 	 E� j 	 U � i 	 V �U�. (2.4)
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Then it will be readily seen from the definition of the incidence matrix that

�
��U

a� �
�

k���

E (U )

ek �
�

k���

E (U )

(�ek), (2.5)

where ek is the kth unit vector of Rn .

LEMMA 2.3 For each h 	 
F it holds that

eh � αh

�
��Vh

a� �
�
k�F

βhkek �
�

k�E��h�

γhkek (2.6)

for some αh 	 ��1, 1�, Vh � V ��s, t�, βhk 	 �0, 1� and γhk 	 �0, 1�.

Proof Let h � (i, j) and consider the following two cases.

Case 1 Node i satisfies the condition of Case 1 of Lemma 2.2.
Let

V�
h � �� � � 	 V � there is an �–i path of G�. (2.7)

Then we see from Lemma 2.2 that s, t, j �	 V�
h and that no arcs of 
F come into V�

h from

its complement V�
h � V �V�

h . Therefore the cut (V�
h , V�

h ) consists of the three sets of arcs:
��

�F
(V�

h ), ��
F (V�

h ) and ��
F (V�

h ). By (2.5) we obtain

�
��V�

h

a� �
�

k���

�F
(V�

h )

ek �
�

k���

F (V�

h )

ek �
�

k���

F (V�

h )

(�ek), (2.8)

which is rewritten as, since h 	 ��
�F
(V�

h ),

�
��V�

h

a� � eh �
�

k���

�F
(V�

h )��h�

ek �
�

k���

F (V�

h )

ek �
�

k���

F (V�

h )

(�ek). (2.9)

Thus we obtain

eh �
�

��V�

h

a� �
�

k���

F (V�

h )

ek �

�
�� �

k���

F (V�

h )

ek �
�

k���

�F
(V�

h )��h�

ek

	

� . (2.10)

Case 2 Node i satisfies the condition of Case 2 of Lemma 2.2.
Since node i satisfies the condition of Case 2 and arc h � (i, j) is in 
F , node j also satisfies
that condition. Let V�

h � �� � � 	 V � there is a j–� path of G�. Then we see s, t, i �	 V�
h and

that no arcs of 
F go from V�
h into V�

h � V �V�
h , and the cut (V�

h , V�
h ) consists of ��

�F
(V�

h ),

��
F (V�

h ) and ��
F (V�

h ). Therefore

�
��V�

h

a� �
�

k���

�F
(V�

h )

(�ek)�
�

k���

F (V�

h )

(�ek)�
�

k���

F (V�

h )

ek (2.11)

��eh �
�

k���

�F
(V�

h )��h�

(�ek)�
�

k���

F (V�

h )

(�ek)�
�

k���

F (V�

h )

ek . (2.12)
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Hence

eh �

�
��� �

��V�

h

a�

	

��

�
k���

F (V�

h )

ek �

�
�� �

k���

F (V�

h )

ek �
�

k���

�F
(V�

h )��h�

ek

	

� . (2.13)

This completes the proof. �

Proof of Theorem 2.1 By Lemma 2.3 we see for each h 	 
F

eh �
�

k�E��h�

γhkek � αh

�
��Vh

a� �
�
k�F

βhkek (2.14)

for some αh 	 ��1, 1�, Vh � V ��s, t�, βhk 	 �0, 1� and γhk 	 �0, 1�. Adding these equations
over h 	 
F and the identities eh � eh for h 	 F , we obtain�

k�E

λkek �
�

��V��s,t�

δ�a� �
�
k�F

ζkek, (2.15)

where λk � 1 �
�

h�E��k� γhk for k 	 E , ζk �
�

h�F βhk � 1 for k 	 F , and δ� is appropri-
ately defined for � 	 V ��s, t�. Note that

1 � λk � 1 � (n � 1) � n (2.16)

for k 	 E and ζk 
 0 for k 	 F . Let λ �
�

k�E λkek . Clearly, λ 	 �1. Then for any feasible
flow x it holds that

λ 
x �
�
k�E

λkek 
x �
�

��V��s,t�

δ�a� 
x �
�
k�F

ζkek 
x (2.17)

�
�
k�F

ζk 
xk �
�
k�F

ζkck (2.18)



�
k�F

ζkxk �
�

��V��s,t�

δ�a�x �
�
k�F

ζkekx � λx, (2.19)

meaning that the maximal flow 
x maximizes λx over the set of feasible flows. �

By the property that φ(αλ) � αφ(λ) for α > 0, any compact subset of Rn�� whose conical
hull contains the conical hull of �1 works as �. Therefore we could replace � by the simplex

�2 �



λ � λ 	 Rn� λ 
 e�

n�
i	1

λi � M

�
(2.20)

if M is sufficiently large.

COROLLARY 2.4 n2 suffices for M defining �2 of (2.20).

Proof Let 
x be a maximal flow. By Theorem 2.1 it maximizes λx over the feasible flows for
some λ 	 Rn such that 1 � λh � n for each h 	 E . Let 
λ � (n2/

�
h�E λh)λ. Then since n2 
�

h�E λh , 
λ lies in �2 defined for M � n2 and 
x maximizes 
λx over the feasible flows. �
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Theorem 2.1 implies that Problem P can be solved in theory by the following method.
For each integral vector λ 	 �1 identify the optimal face F(λ) of max�λx � x 	 X�, and solve
min�dx � x 	 F(λ)� for a solution x(λ). Note that any point of F(λ) is a maximal flow, and it is
readily seen that x(λ�) such that dx(λ�) � min�dx(λ) � λ 	 �1� is a solution of P . However,
the integral points to be considered amount to nn , so that this method is not practical.

Remark 2.5 The optimal face F(λ) is an outer semicontinuous mapping when considered
as a point to set mapping, i.e., for a sequence �λν� converging to λ any cluster point of the
sequence �xν� with xν 	 F(λν) is contained in F(λ). See Exercise 1.19 of Rockafellar and
Wets [24]. Then dx(λ) is a lower semicontinuous function in λ, i.e., lim infν dx(λν) 
 dx(λ)

for any sequence �λν� converging to λ. Therefore for a given ε > 0 each λ has a neighborhood
such that dx(λ�) 
 dx(λ)� ε holds for any λ� in the neighborhood. This means that it is very
likely that λ’s with large objective function values dx(λ) make a cluster. Thus the divide and
conquer principle or the branch and bound method should work efficiently.

The above arguments yield two different representations of the set X M of maximal flows:

X M ��x � x 	 X� λx 
 φ(λ) for some λ 	 �1� (2.21)

��x � x 	 X� λx 
 φ(λ) for some λ 	 �2�, (2.22)

each of which will in the following sections provide a scheme for solving the problem. Now
Problem P is written equivalently as

P

���������

min dx

s.t. x 	 X

λx � φ(λ) 
 0

λ 	 �,

where � is either �1 or �2 with M � n2.

LEMMA 2.6 Assume that each arc capacity ch is a nonnegative integer. Let XV denote the set of
vertices of the polytope X, and let 
x 	 XV � X M .Then, whenever �x � x 	 X M � dx < d 
x� �� �,
there exists x 	 X M � XV such that dx � d 
x � 1.

Proof Note first that d is an integral vector. Then this lemma is a direct consequence of the
two well-known facts that each vertex of X is an integral vector and that Problem P has an
optimal solution in the vertex set of X . �

3 LINEAR PROGRAM RELAXATION

In this section we explain a linear program relaxation of Problem P . For the sake of further
argument, we consider the following problem with λ restricted to a polytope, say S, contained
in �:

P(S)

������������

min dx

s.t. Ax � 0

0 � x � c

λx � φ(λ) 
 0

λ 	 S.
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Let

(S) � min�φ(λ) � λ 	 S�. (3.1)

Our method for constructing linear program relaxations of Problem P(S) is based on the
following result.

LEMMA 3.1 Let �λ1, . . . , λq � be the vertex set of S. Then Problem P(S) is relaxed to the
following linear program in variables x� 	 R

n for � � 1, . . . , q �


P(S)

���������������������

min
q�

�	1

dx�

s.t. Ax� � 0 for � � 1, . . . , q

x� 
 0 for � � 1, . . . , q
q�

�	1

x� � c

q�
�	1

λ�x� �
(S) 
 0,

i.e., the optimal value 
µ(S) of Problem 
P(S) yields a lower bound of the optimal value of
Problem P(S).

Proof We show that for any feasible solution (x, λ) of Problem P(S) there exists a feasible
solution (x1, . . . , xq) of Problem 
P(S) satisfying

dx �

q�
�	1

dx�. (3.2)

Since λ 	 S,

λ �

q�
�	1

β�λ� (3.3)

for some nonnegative numbers β� (� � 1, . . . , q) such that
�q

�	1 β� � 1. Define

x� � β�x for � � 1, . . . , q. (3.4)

Then clearly
�q

�	1 x� � x and (x1, . . . , xq) satisfies the first three constraints of 
P(S).
For the last constraint we have

q�
�	1

λ�x� �

q�
�	1

λ�β�x � λx 
 φ(λ) 
 
(S), (3.5)

where the last two inequalities follow from the assumption that (x, λ) is feasible to
P(S) and from the definition of 
(S) in (3.1). �

Remark 3.2 If Problem 
P(S) is infeasible, so is Problem P(S). In this case we
set 
µ(S) � ��.
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Remark 3.3 The value 
(S) is determined in two different ways, both of which
come from the bilinearity of λx . The first way is


(S)�min
λ�S

max
x�X

λx

�min�r � λ 	 S� r 
 λx for all x 	 X�

�min�r � λ 	 S� r 
 λx� for all x� 	 XV �.

Note that we need not know all vertices of X in advance if we use the so-called
column generation technique in solving this problem. Applying the well-known minimax
theorem yields the second way:


(S)�min
λ�S

max
x�X

λx

�max
x�X

min
λ�S

λx

�max�r � x 	 X� r � λx for all λ 	 S�

�max�r � x 	 X� r � λ�x for � � 1, . . . , q�.

In either way 
(S) is obtained by solving a linear programming.

Remark 3.4 The relaxation problem 
P(S) is a multicommodity flow problem with a side
constraint, to which various techniques for the multicommodity flow problem can be applied,
e.g., Lagrangian relaxation, column generation approach or Dantzig-Wolfe decomposition,
resource-directive decomposition, and basis partitioning method in Ref. [1]. Here we explain
first the column generation approach, and then the Lagrangian relaxation technique.

Let Y � �x � x 	 R
n
�� Ax � 0�, then Y is a pointed convex cone, and is a conical hull

of a finite number of nonzero vectors, say g1, . . . , gr 	 R
n
�. Let G be the n � r matrix of

these column vectors, then each x 	 Y is written as x � Gα for some α 	 R
r
�. Problem


P(S) is then �������������������

min
q�

�	1

dGα�

s.t.
q�

�	1

Gα� � c

q�
�	1

λ�Gα� �
(S) 
 0

α� 
 0 for � � 1, . . . , q.

Suppose we have a simplex multiplier vector (π, π0) 	 Rn�1 corresponding to a feasible
basis, and search for a nonbasic variable to be pivoted in. Noting the reduced cost of the
nonbasic variable α�

i is given by

dgi � (�πgi � π0(λ�gi )) � (d � π � π0λ�)gi ,

the problem to be solved is

min
�	1,...,q

min
i	1,...,r

(d � π � π0λ�)gi � min
�	1,...,q

min
y�Y

(d � π � π0λ�)y.
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Note that for each �, miny�Y (d � π � π0λ�)y is a shortest path and cycle problem. When the
minimum value above is nonnegative, the current basic solution is optimal to 
P(S).

Next consider the Lagrangian relaxation problem with a multiplier τ 
 0����������������

min
q�

�	1

dx� � τ

�

(S)�

q�
�	1

λ�x�

�

s.t. Ax� � 0 for � � 1, . . . , q

x� 
 0 for � � 1, . . . , q
q�

�	1

x� � c.

For each j � 1, 2, . . . , n let

λmax
j � max�(λ�) j � � � 1, . . . , q�

and let d �(τ ) 	 Rn be the vector whose j th component d �j (τ ) is defined by

d �j (τ ) � d j � τλmax
j .

Then clearly for a feasible solution (x1, . . . , xq)

q�
�	1

d �(τ )x� �

q�
�	1

(d � τλ�)x�,

so that the above Lagrangian relaxation can be relaxed further by the problem����������������

min
q�

�	1

d �(τ )x� � τ
(S)

s.t. Ax� � 0 for � � 1, . . . , q

x� 
 0 for � � 1, . . . , q
q�

�	1

x� � c,

which is actually equivalent to the following minimum cost network flow problem in
n variables:



P(S)

������
min d �(τ )x � τ
(S)

s.t. Ax � 0
0 � x � c.

An efficient choice for the multiplier τ can be taken using the well-known parametric linear
programming technique. See for example Refs. [1,3,10].

The dual problem of 
P(S), denoted by 
D(S), is written as


D(S)

�������
max �vc � z
(S)

s.t. u� A � v � zλ� � d for � � 1, . . . , q

(v, z) 
 0,

where uk 	 Rm , v 	 Rn , z 	 R.
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LEMMA 3.5 A nonnegative vector (v, z) satisfies the constraints of 
D(S) together with some
u1, . . . , uq 	 Rm if and only if for any λ 	 S there is u(λ) 	 Rm such that u(λ)A � v � zλ � d .

Proof The ‘‘if’’ part is readily seen by setting u� � u(λ�) for � � 1, . . . , q . To show
the ‘‘only if’’ part, let λ be a given vector of S. Then λ �

�q
�	1 β�λ� for some nonnega-

tive β�’s with
�q

�	1 β� � 1. Let u(λ) �
�q

�	1 β�u�. Then

u(λ)A � v � zλ �

� q�
�	1

β�u�

�
A � v � z

� q�
�	1

β�λ�

�

�

q�
�	1

β�(u� A � v � zλ�) � d. �

The lower bound 
µ(S) has the following properties, which will be utilized within the branch
and bound procedure.

LEMMA 3.6 Suppose � �� S2 � S1 � �. Then

�� < 
µ(S1) � 
µ(S2). (3.6)

Proof Suppose (v, z) is a feasible solution of 
D(S1) together with (u1, . . . , uq). Then
by Lemma 3.5, we see that (v,w, z) is a feasible solution of 
D(S2) with some (u�1, . . . , u�q ).
Since the objective function value of 
D(S) is determined solely by (v, z), we see the mono-
tonicity 
µ(S1) � 
µ(S2). The fact that�� < 
µ(S1) is a direct consequence of the boundedness
of the feasible region of 
P(S1). �

We now show that the relaxation problem 
P(S) can be substantially simplified when
S is a hyper rectangle.

LEMMA 3.7 If λ � λ�, then φ(λ) � φ(λ�).

Proof Let 
x be a point of X that maximizes λx over X . Since 
x 
 0 we have (λ� λ�) 
x � 0,
and hence

φ(λ) � λ 
x � λ� 
x � φ(λ�). (3.7)

�

LEMMA 3.8 Let �λ1, . . . , λq � be the vertex set of S � � and suppose λ1 
 λ� 
 λq

for all � � 1, . . . , q. Then Problem 
P(S) is equivalent to the problem


P �(S)

���������

min dx

s.t. Ax � 0

0 � x � c

λ1x � φ(λq ) 
 0

in n variables.



MINIMUM MAXIMAL FLOW PROBLEM 405

Proof Note that λq � λ� for all � � 1, . . . , q implies that λq � λ for all λ 	 S. Then
by Lemma 3.7 we have 
(S) � φ(λq ).

Let (x1, . . . , xq) be a feasible solution of 
P(S) and let x �
�q

�	1 x�. Then clearly
Ax � 0 and 0 � x � c. Furthermore, since x� 
 0 we obtain

λ1x � λ1

q�
�	1

x� �

q�
�	1

λ1x� 


q�
�	1

λ�x� 
 
(S)

dx �

q�
�	1

dx�.

This means that 
µ(S) 
 
µ�(S), where 
µ�(S) is the optimal objective function value of 
P �(S).
Let x be a feasible solution of 
P �(S) and let x1 � x , x2 � � � � � xq � 0. Then (x1, . . . , xq)

clearly satisfies the constraints of 
P(S), meaning 
µ(S) � 
µ�(S). �

From Lemma 3.8 if we take �1 as � and consider a hyper rectangle S � �λ � λ 	 �1� λ �

λ � 
λ� contained in �1, then, although S has as many as 2n vertices, the relaxation problem

P �(S) has only n variables as Problem P(S) does. This might be an advantage of using �1.

However, the simplicity of 
P �(S) can be to its disadvantage because 
λx � φ(λ) 
 0 is
a too much relaxed constraint of λx � φ(λ) 
 0. Therefore we propose below an improve-
ment with aid of the concave envelope of the bilinear term λx and an approximation of the
function φ(λ).

LEMMA 3.9 Let S � �λ � λ 	 �1� λ � λ � 
λ�, and let V be a nonempty subset of X M � XV .
Then the problem


P ��(S, V )

������������������

min dx

s.t. Ax � 0

0 � x � c

g1
k (λk, xk)� tk 
 0 for k 	 E

g2
k (λk, xk)� tk 
 0 for k 	 E�

k�E

tk � λv 
 0 for v 	 V

is a relaxation problem of P(S), where

g1
k (λk, xk)� ckλk � λk xk � λkck

g2
k (λk, xk)� 
λk xk .

Proof First note that 
P ��(S, V ) is equivalent to�����������

min dx

s.t. Ax � 0

0 � x � c�
k�E

min�g1
k (λk, xk), g2

k (λk, xk)� 
 max�λv � v 	 V �.
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The left hand side
�

k�E min�g1
k (λk, xk), g2

k (λk, xk)� of the last constraint is the concave
envelope of λx on the set S � �x � x 	 R

n� 0 � x � c� (see, for example, Corollary 3.6 of [34]
and Theorem IV.7 of [17]), and hence�

k�E

min�g1
k (λk , xk), g2

k (λk, xk)� 
 λx (3.8)

holds on this set. On the other hand, since V � X M � XV ,

φ(λ) � max�λx � x 	 X� 
 max�λv � v 	 V �. (3.9)

Then combining (3.8) and (3.9) yields the assertion. �

Remark 3.10 When V contains a vertex, say v such that λ v � φ(λ), the constraints of

P ��(S, V ) implies the constraint 
λx � φ(λ) 
 0 in the relaxation 
P �(S). In fact, let (λ, x, t) 	

Rn � R
n � R

n be feasible to 
P ��(S, V ). Then
�

k�E tk 
 λv, implying
�

k�E tk 
 λ v �

φ(λ). On the other hand 
λx �
�

k�E g2
k (λk, xk) 


�
k�E tk . Then we see 
λx � φ(λ) 
 0 is

satisfied.

The algorithm to be proposed contains a local search procedure, Section 4.1, in which we
generate a series of extreme maximal flows, that is, points of X M � XV . By keeping these, we
can make the set V at no extra cost. However, it is recommended to add v and as well as the
point 
v such that 
λ 
v � φ(
λ) to the set V .

Remark 3.11 For an incumbent value α let

�k �min�xk � Ax � 0� 0 � x � c� dx � α�

uk �max�xk � Ax � 0� 0 � x � c� dx � α�

for each k 	 E . Then we have only to consider feasible flows satisfying �k � xk � uk for all
k 	 E . Hence we could replace 0 � xk � ck in the above argument by �k � xk � uk to obtain

g1
k (λk, xk)� ukλk � λ k xk � λ kuk

g2
k (λk, xk)� �kλk � 
λk xk � 
λk�k,

which might strengthen the relaxation.

4 LOCAL SEARCH AND CHECKING UP GLOBAL OPTIMALITY

4.1 Local Search

The algorithms for the optimization over the efficient set proposed by Philip [22], Ecker and
Song [12], Fülöp [13] and Bolintineanu [9] are mainly based on the technique of moving
from an efficient vertex to an efficient neighbor with a smaller objective function value via an
efficient edge. In this section, following their argument we will explain a local search technique
called Adjacent Vertex Search Procedure.

We say that a maximal flow is extreme if it is a vertex of the set of feasible flows X . It is
known, e.g. in Refs. [21,26,35], the set of maximal flows X M is connected, and all extreme
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maximal flows are connected by paths of edges consisting of maximal flows. Thus, starting from
an extreme maximal flow, we could reach an optimal solution of Problem P by a series of pivot
operations in theory. However, we cannot decrease the objective function value monotonically
along the path as we trace, i.e., we might be eventually caught by a non-optimal extreme
maximal flow none of whose neighboring extreme maximal flows have a smaller objective
function value. When this occurs, it is a local minimum solution. See for example Ref. [9].

The Adjacent Vertex Search (AVS) Procedure goes as follows. We denote by �x, x �� the
edge of X connecting x and x � for x, x � 	 XV and

NM (x) � �x � � x � 	 XV � X M � �x, x �� � X M �.

Adjacent Vertex Search (AVS) Procedure
��Initialization��
Find x0 	 XV � X M . If NM (x0) � �, then x0 is an optimal solution of P . Otherwise, set
k � 0 and go to Step k.
��Step k��

�k1� If �x � x 	 NM (xk)� dx < dxk� �� �, choose xk�1 from this set, let k � k � 1 and go
to Step k.

�k2� Otherwise, set v � xk and stop.

Note that the initial extreme maximal flow x0 is easily found by choosing an arbitrary
positive vector λ and maximizing λx over X . The AVS Procedure generates a sequence of dis-
tinct extreme maximal flows x0, x1, . . . , xk with decreasing objective function values, which
implies owing to the integrality property that dxk � dx0 � k. When the relaxation problem

P ��(S, V ) is used in the branch and bound procedure, we accumulate these extreme maximal

flows as the initial set V .

4.2 Checking Up Global Optimality

We present in this subsection two Branch and Bound (BB) Procedures for handling the follow-
ing problem:

CGO(α)

�������
For a given integer α, find an extreme maximal flow

v 	 X M � XV such that dv � α,

or show that there does not exist such a point.

As shown in Section 2, for the description of the set X M , we can use one of two sets �1
and �2. The set �1 defined in Theorem 2.1 consists of all integral vectors contained in the
rectangle �λ � λ 	 Rn� e � λ � ne�, while the set �2 is an (n � 1)-simplex defined in (2.20).
Before presenting two branch and bound procedures for handling Problem CGO(α) according
to �1 and �2, respectively, we propose here two kinds of division process called integral
rectangular division and simplicial division.

4.2.1 Integral Rectangular Division

Let S � �1 be a rectangle with integral bound vectors, which contains more than one integral
vector and is defined by

S � �λ � λ 	 Rn� λ � λ � 
λ�,
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where λ and 
λ are integral vectors of Rn such that λ � 
λ. Further, let S1, . . . , Sq be rectangles
with integral bound vectors having the following properties:

q�
i	1

Si � S,

Si � Sj � � for i �� j,
q�

i	1

(Si � Zn) � S � Zn .

Then we say that �S1, . . . , Sq � is an integral rectangular division of the rectangle S.
As a special case of this division, we consider the following integral rectangular bisection.

Let λ� 	 S such that λ� �� 
λ, and let � 	 �1, . . . , n� such that λ�� < 
λ�, (note that such an index
� exists, whenever S contains more than one integral vector). For each real number t , denoting
by �t� the largest integer which is less than or equal to t , we define two rectangles

S1 ��λ � λ 	 S� λ� � �λ����

S2 ��λ � λ 	 S� λ� 
 �λ��� � 1�.

Then, it is easy to verify that �S1, S2� is an integral rectangular division of S. We say that S is
divided into �S1, S2� by an integral rectangular bisection using the point λ�.

4.2.2 Simplicial Division

Let S be an (n � 1)-simplex with vertex set SV � �λ1, . . . , λn�. Choose a point λ� 	 S�SV ,
which is uniquely represented as

λ� �

n�
i	1

βiλi , βi 
 0 (i � 1, . . . , n),

n�
i	1

βi � 1.

For each i such that βi > 0, construct the simplex Si obtained from S by replacing the vertex
λi by λ�, i.e., Si � co�λ1, . . . , λi�1, λ

�, λi�1, . . . , λn�, where coA denotes the convex hull of
a set A. This division is called a radial simplicial division.

When λ� is the midpoint of a longest edge of S, then we obtain two subsimplices. This
special case is called a simplicial bisection.

As discussed in the preceding section, our BB Procedures are based on the linear relaxation

P(S) or 
P ��(S) of the subproblem P(S) with λ restricted to a subset S � �, where � is either

�1 or �2. The branching process subdivides � into finitely many subsets yielding a class
of subproblems to be solved. In the algorithm to be proposed we repeatedly apply the AVS
Procedure, which provides a local minimum incumbent solution vν , and then one of the BB
Procedures to check up the global optimality of vν . The chosen BB procedure starts with the
number α � dvν � 1 and the class R of subsets S of � such that 
µ(S) � α, and also with the
set V of extreme maximal flows obtained so far. In the BB1 we denote the optimal value of
the relaxation problem 
P ��(S, V ) by 
µ(S) for the simplicity of notation.

Branch and Bound Procedure (BB1) (according to �1)
��Initialization��
Set k � 0 and R0 � R.
��Step k��



MINIMUM MAXIMAL FLOW PROBLEM 409

�k1� Set µk � min� 
µ(S) � S 	 Rk� and choose Sk 	 Rk such that 
µ(Sk) � µk . Divide
Sk into Sk1, . . . , Skp by an integral rectangular division and set Rk � Rk��Sk� �

�Sk1, . . . , Skp�,
�k2� For j � 1, . . . , p do:

(a) If �Skj � Zn � � 1, then do:
(i) Set Rk � Rk��Skj �.

(ii) Choose λ 	 Skj � Zn and solve max�λx � x 	 X�, yielding the optimal face
F(λ).

(iii) Solve min�dx � x 	 F(λ)�, yielding a vertex solution x(λ).
(iv) Set V � V � �x(λ)�.
(v) If dx(λ) � α, then set w � x(λ) and go to �k4�. Otherwise, go to Endfor.

(b) If �Skj � Zn � > 1, then do:
(i) Solve 
P ��(Skj , V ), yielding the optimal value 
µ(Skj ) and an optimal solution

y if feasible ( 
µ(Skj ) � �� when infeasible).
(ii) If 
µ(Skj ) > α, then set Rk � Rk��Skj � and go to Endfor.

(iii) If y 	 X M , then identify the minimal face F of X containing y, solve min�dx �

x 	 F� for a vertex solution w and set V � V � �w�.
(iv) Go to �k4�.

Endfor
�k3� IfRk �� �, then set Rk�1 � Rk , k � k � 1 and go to ��Step k��. Otherwise, set R � �

and quit.
�k4� Set R � �S � S 	 Rk� 
µ(S) � dw � 1� and quit.

THEOREM 4.1 Procedure BB1 terminates after finitely many iterations, either yielding an
extreme maximal flow with an objective function value being less than or equal to α, or
indicating that such a maximal flow does not exist. In other words, Procedure BB1 solves
Problem CGO(α) finitely.

Proof Each subsequence of rectangles, �Sq�, generated throughout Procedure (BB1) such
that Sq�1 � Sq for all q , must be finite, since every Sq contains at least one element from Zn .

If the procedure terminates at Step �k4�, then the point w is an extreme maximal flow
satisfying dw � α.

If the procedure terminates at Step �k3�, i.e.,R � �, then it follows that each subset S of �1
yields a lower bound 
µ(S) > α, which implies that there does not exist an extreme maximal
flow v 	 X M � XV , such that dv � α. �

Branch and Bound Procedure (BB2) (according to �2)
��Initialization��
Set k � 0 and R0 � R.
��Step k��

�k1� (a) Set µk � min� 
µ(S) � S 	 Rk� and choose Sk 	 Rk such that 
µ(Sk) � µk .
(b) Divide Sk into Sk1, . . . , Skp by a simplicial division and set

Rk � Rk��Sk� � �Sk1, . . . , Skp�,
�k2� For j � 1, . . . , p do:

(a) Solve 
P(Skj ), yielding the optimal value 
µ(Skj ) and an optimal solution
(x1

kj , . . . , xn
kj ) if feasible ( 
µ(Skj ) � �� when infeasible).

(b) If 
µ(Skj ) > α, then set Rk � Rk��Skj �.
(c) Let xkj �

�n
�	1 x�

kj .
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(d) If xkj 	 X M , then set y � xkj and go to �k4�.
Endfor

�k3� (a) If Rk �� �, then set Rk�1 � Rk , k � k � 1 and go to �k1�.
(b) Otherwise, set R � � and quit.

�k4� (a) Identify the minimal face F of X containing y and solve

min�dx � x 	 F�

for a vertex solution w.
(b) Set

R � �S � S 	 Rk� 
µ(S) � dw � 1�,

and quit.

If the Procedure BB2 terminates after finitely many iterations, then it either yields an extreme
maximal flow with an objective function value being less than or equal to α, or indicates that
such a maximal flow does not exist when R � �.

In the case that the procedure is infinite, it generates at least an infinite nested subsequence
�Sκ� of subsimplices such that Sκ�1 � Sκ for all κ . Below we show that the procedure will
generate an infinite sequence of flows converging to a minimum maximal flow, i.e., an optimal
solution of Problem P .

We recall the exhaustiveness of the division process introduced for the establishment of con-
vergence properties of branch and bound algorithms in global optimization (see, e.g., [31]).
An infinite nested sequence of subsets �Sκ �κ is said to be exhaustive if �
κ	1Sκ is a single-
ton. A simplicial division process is called exhaustive if each nested infinite subsequence of
subsets generated by it is exhaustive. It is well known that the simplicial bisection process is
exhaustive.

THEOREM 4.2 Assume that the division process is exhaustive and Procedure BB2 is
infinite. For each k let xk �

�n
�	1 x�

k , where (x1
k , . . . , xn

k ) is an optimal solution to 
P(Sk).
Then the sequence �xk� has an accumulation point, and each of them is an optimal solution of
Problem P.

Proof Since xk 	 X for each k and X is a compact set, the sequence �xk� has an accumulation
point in X . Let x� be an arbitrary accumulation point of �xk�, and let �xκ� be a subsequence
converging to x�. From Lemma 3.5 and the property that �µκ� is nondecreasing and bounded
from above by α, it follows that there exists a limit µ� of �µκ�. By using subsequences
if necessary, assume that µκ � µ� as κ ��, and �Sκ � is the corresponding subsequence
of simplices such that Sκ�1 � Sκ for all κ . Since the simplicial division is exhaustive, it
follows that


�
κ	1

Sκ � �λ��, (4.1)

and hence, denoting by λ�
κ (� � 1, . . . , n) the vertices of Sκ we have λ�

κ � λ� 	 �2 as κ ��

for i � 1, . . . , n. Thus, we have x� 	 X , λ� 	 �2, and λ�x� � φ(λ�) 
 0, which implies that
(x�, λ�) is a feasible solution of Problem P(�2), i.e. Problem P , and therefore, an optimal
solution of this problem with the optimal value dx� � µ�. �
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5 GLOBAL OPTIMIZATION ALGORITHM AND APPROXIMATE
OPTIMAL SOLUTION

Combining Procedure AVS with Procedure BB1 or BB2 in Section 4, we propose the following
algorithm for globally solving Problem P .

Global Optimization Algorithm (GOA)
��Initialization��
Compute an extreme maximal flow w0 	 XV � X M . If NM (w0) � �, then w0 is an optimal
solution of P . Otherwise, set ν � 1, R � ��� and go to Iteration ν.
�� Iteration ν��

�ν1� Apply AVS to Problem P starting from wν�1 and let vν be the extreme maximal flow
obtained. Set αν � dvν � 1 and go to Step ν2.

�ν2� Set R � �S � S 	 R� 
µ(S) � αν� and apply BB.
(a) If an extreme maximal flow wν with dwν � αν is found, set ν � ν � 1 and go to

Iteration ν.
(b) If BB terminates with an empty R, then stop (the point vν is an optimal solution

of P).

When BB2 is used in the algorithm GOA, it can be infinite. For the case that Procedure BB2 is
infinite, we introduce the following concept of approximate optimal solutions of Problem P .

DEFINITION 5.1 Given a real numberγ > 0, a flow x is called a γ -optimal solution of Problem
P if it satisfies the following conditions:

(i) There exists λ 	 � such that λx � φ(λ) 
 �γ , and
(ii) dx is a lower bound of the optimal value of Problem P.

Using this concept, we modify Procedure BB2 slightly to obtain the finiteness of the global
optimization algorithm. Recall that λ1

k , . . . , λ
n
k are the vertices of Sk and (x1

k , . . . , xn
k ) is an

optimal solution of Problem 
P(Sk). The modification consists of the following additional
stopping criterion between (a) and (b) at step �k1� �

if
n�

�	1

λ�
k x�

k �
(Sk) 
 �δ, then stop. (5.1)

We will show in Theorem 5.2 below that xk �
�n

�	1 x�
k is an approximate optimal solution

of Problem P in the sense of Definition 5.1.

THEOREM 5.2 Assume that within Procedure BB2 the simplicial division is exhaustive, and
the additional stopping criterion (5.1) is used at Step �k1�. Then

(i) The global optimization algorithm always terminates after finitely many iterations; and
(ii) If Procedure BB2 terminates by the additional stopping criterion (5.1), then xk �

�n
�	1 x�

k
is a (δ � nε)-optimal solution of Problem P, where

ε � max�(λ�
k � λ��

k )x�
k � �, �� � 1, . . . , n�. (5.2)
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Proof We show that Procedure BB2 is finite. Then the finiteness of GOA follows immediately.
Suppose Procedure BB2 could be infinite. Then from Theorem 4.2, it would generate an

infinite sequence �xκ� converging to an optimal solution of Problem P . This implies that there
exists an index 
κ such that

n�
�	1

λ�
�κ x�

�κ �
(S �κ ) 
 �δ,

Thus, Procedure BB2 must stop at iteration 
κ.
Assume now Procedure BB2 terminates at step �k1� of Iteration k by stopping criterion

(5.1). From (5.2) it follows that for each � � 1, . . . , n and for any λ 	 Sk we have

λ�
k x�

k � λx�
k � ε,

which implies

λ

n�
�	1

x�
k 


n�
�	1

λ�
k x�

k � nε.

Let now λ� 	 Sk such that φ(λ�) � 
(Sk). Then

λ�xk � φ(λ�) � λ�
n�

�	1

x�
k � φ(λ�) 


n�
�	1

λ�
k x�

k �
(Sk)� nε,

which implies by (5.1) that
λ�xk � φ(λ�) 
 �(δ � nε).

Note that dxk � 
µ(Sk) is a lower bound of the optimal value of P by the choice of Sk . Then
by Definition 5.1 xk is a (δ � nε)-optimal solution of Problem P . �

6 AN ILLUSTRATIVE EXAMPLE AND CONCLUSIONS

To illustrate the global optimization algorithm GOA we consider the network with 4 � 2
nodes and 10 arcs shown in Fig. 1, where the number attached to each arc is the arc capacity
c1, . . . , c10.

FIGURE 1 Network with 6 nodes and 10 arcs.
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For this example, Procedure BB1 is chosen for checking up global optimality. Within BB1
a lower bound for each rectangle S is computed by solving Problem 
P ��(S, V ) in Lemma 3.9,
and the integral rectangular bisection is performed by the following rule.

Let (x(S), λ(S), t (S)) be an optimal solution of Problem 
P ��(S, V ). The rectangle S is then
divided into �S1, S2� by the integral rectangular bisection using λ(S) and index � chosen by
λ�(S) � max�λi (S) � λi (S) < 
λi , i � 1, . . . , n�.

��Initialization��
An extreme maximal flow is computed: w0 � (7, 3, 1, 4, 2, 1, 6, 1, 2, 8).

�� Iteration ν � 1��

�ν1� Applying AVS we obtain a local optimal solution v1 � (7, 3, 0, 4, 2, 1, 7, 0, 2, 8). Set
α1 � dv1 � 1 � 9.

�ν2� BB1 starts with the rectangle S0 � �λ 	 R10 � (1, . . . , 1) � λ � (10, . . . , 10)� and the
set V � �w0, v1�. Solving 
P ��(S0, V ) we obtain

µ(S0)� 7.2706,

x(S0)� (4.2706, 3.0, 0.5591, 4.0, 0.2706, 0.0, 6.7115, 0.2885, 0.0, 7.2706),

λ(S0)� (6.4908, 10.0, 6.0322, 10.0, 2.2177, 1.0, 9.6290, 3.5968, 1.0, 9.1794).

The solution x(S0) is not a maximal flow. We then divide S0 into two subrectangles using λ(S0)

and the index � � 7 chosen by the above rule.
At iteration 21 while handling the rectangle S � �λ 	 R10 � (6, 1, 8, 1, 1, 1, 10, 1, 1, 1) �

λ � (7, 10, 8, 10, 10, 10, 10, 10, 10, 5)�, we obtain by solving Problem 
P ��(S, V )


µ(S)� 9.0,

x(S)� (6.0, 3.0, 1.0, 4.0, 2.0, 0.0, 7.0, 0.0, 1.0, 8.0),

λ(S)� (6.8571, 10.0, 8.0, 10.0, 10.0, 1.0, 10.0, 2.0, 5.5, 5.0).

The point x(S) is a maximal flow with dx(S) � 9 � α1. So, we set w2 � x(S) and go to
iteration ν � 2. Procedure BB1 stops here with the set R21 consisting of 21 rectangles.

FIGURE 2 A minimum maximal flow (x�i , cA).
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�� Iteration ν � 2��

�ν1� Starting at w1 apply AVS to obtain a local optimal solution v2 � w1. Set α2 � dv2 �

9 � 1 � 8.
�ν2� Procedure BB1 continues with R21 and α2 � 8. BB1 terminates at iteration 893 with

R893 � �.

A global optimal solution x� � (6, 3, 1, 4, 2, 0, 7, 0, 1, 8) thus obtained with optimal value 9
is shown in Fig. 2, where (x�i , ci ) is given on each arc.

In this article we have combined different techniques in local search and global optimization
to propose the algorithm for solving the minimum maximal flow problem. The characteristic
property of this algorithm is that the advantageous network flow structure is fully exploited. A
detailed implementation and comparison of different procedures are left for future research.
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