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Abstract

A new potential smoothing method, the shifted-tophat (or
stophat) is presented. This method uses a tophat function as the
smoothing kernel, instead of the gaussian used in conventional meth-
ods. Stophat smoothing is applied, as part of the Potential Smooth-
ing and Search (PSS) procedure for global optimization, to several
biomolecular problems, including polyalanine helices, united-atom and
all-atom models of enkephalin, and rigid helices from glycophorin.

I Introduction

Global optimization of molecular structure is one of the classic problems of
theoretical chemistry and biophysics. The problem can be stated simply: for
a given molecule, what is the conformation with the lowest potential energy?
Although simple to state, this problem is quite difficult to solve in a general
way. Conformational space grows exponentially with molecular size, making
systematic searching difficult for all but the smallest problems. Moreover,
the number of local minima usually grows rapidly as well, with the result that
straight-forward optimization methods tend to get trapped in local minima
and fail to find the global minimum.

A variety of approaches exist to deal with this difficulty. One of the most
common is simulated annealing, which uses either Monte Carlo or molecu-
lar dynamics to sample conformational space at high temperatures, where
even large energy barriers are easily crossed (1). By gradually lowering the
temperature, the conformational sampling can be focused on lower energy
regions of phase space. In principle, as the temperature approaches 0K, only
the global minimum energy structure remains. In practice, simulated an-
nealing is not deterministic, because of the prohibitive computational cost
of a sufficiently long trajectory. Rather, even long trajectories have a finite
chance of finding several different minima, depending on the topology and
roughness of the potential energy surface.

The thermodynamic importance of any specific conformation is deter-
mined by the Boltzmann factor E/kBT , where E is the potential energy for
the conformation. Thus, simulated annealing can be viewed as a rescaling of
the energy surface; high temperatures effectively scale the energies and make
the surface flatter and thus easier to search, at the cost of diminishing the
favorability of the low energy states. However, the molecular dynamics and
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Monte Carlo methods used with simulated annealing generate a Boltzmann
distribution at each temperature, rather than proceeding directly toward a
minimum. Combined with the exponential dependence of the barrier-crossing
time on barrier height and the exponential growth in the number of barri-
ers with system size, this makes simulated annealing inefficient for global
optimization.

Potential smoothing methods take an alternative approach to the prob-
lem. If global optimization is difficult because the potential surface has many
local minima and large barriers, why not simply alter the potential energy
surface to eliminate them? Smoothing methods transform the potential sur-
face in such a way that the number of minima is greatly reduced and global
optimization is easy. The degree of surface deformation is then gradually
decreased, such that the global minimum on the deformed surface can be
tracked back to the original undeformed surface.

There are several distinct methods which proceed along these lines, in-
cluding the diffusion equation method (2; 3; 4; 5), gaussian density annealing
(6; 7), the effective diffused potential (8; 9; 10), and gaussian packet anneal-
ing (11). In all of these methods, discrete atoms are replaced by gaussian
distributions. The interactions between the distributions result in a smoother
potential surface with fewer minima.

These methods have a variety of physical interpretations, but there are
strong mathematical similarities. For example, in gaussian density annealing,
one tracks the classical atomic probability density as a function of tempera-
ture; as the temperature gets small, the density converges about a single low
energy conformation (6). To make the problem mathematically tractable,
the atomic distributions are assumed to be well modeled by single gaussians.
Shalloway’s packet annealing method further generalizes this approach, al-
lowing the distributions to be represented by the sum of multiple gaussians,
which can split and merge over the course of the calculation, to better capture
both conformational and vibrational heterogeneity (11).

Verschelde et al. interpret the gaussian distributions to be the result of
atomic fluctuations (9). By again assuming a gaussian form for the fluctu-
ations, they are able to analytically calculate the entropy associated with
them. This entropy is combined with the smoothed potential energy to cre-
ate an effective potential (10). In the limit that the true atomic fluctuations
are well-described by gaussians, the effective potential is identical to the free
energy. All of these methods share essentially identical functional forms for
the smoothed van der Waal’s and electrostatic interactions, as does the orig-
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inal diffusion equation method of Piela et al.(2). For a further discussion of
the theoretical relationships between these methods, see the reviews by Piela
and Schelstraete et al.(12; 13).

Thus far, we have discussed smoothing methods in terms of the substi-
tution of probability distributions for discrete atomic locations. However,
we can equivalently focus instead on the many-dimensional potential en-
ergy surface. Calculating the interaction between two atomic distributions
is equivalent to averaging the potential energy surface, using the convolution
of the two distributions as a weighting function. In the case where the dis-
tributions are gaussians, this leads to a weighting function which is also a
gaussian. This is not the case with other distributions. For example, repre-
senting the atoms with tophat or impulse distributions would be equivalent
to averaging the surface using a 2-step impulse function.

In the atomic distribution view of smoothing, the use of gaussians has
obvious physical significance. However, if one views smoothing as an empir-
ical transformation applied to the surface, the choice of smoothing kernels
becomes a matter of mathematical and computational convenience. If the
primary goal of the smoothing is to simplify conformational searching, it
may be the case that other functional forms offer advantages over gaussians.
For example, the method of bad derivatives uses a tophat function in place
of a gaussian, with a number of advantages (14). Most importantly, this
form of smoothing is effective for molecular conformational optimization.
Also, the tophat width λ exactly determines the length scale of averaging,
which aids interpretation of the resulting deformations. The method of bad
derivatives, moreover, does not require that the potential function be dif-
ferentiable, which allows the application of novel scoring functions, such as
the Boltzmann weight. However, the method of bad derivatives calculates
the energies and forces in the form of a numerical derivative, which becomes
computationally expensive for larger systems.

This paper presents the results of analytically smoothing the potential
energy surface using a tophat smoothing kernel. Section II contains a deriva-
tion of gaussian smoothing, tophat smoothing, and shifted-tophat (stophat)
smoothing, as applied to molecular mechanics potential functions. Section
III describes the potential smoothing and search (PSS) procedure. Section
IV describes the application of stophat smoothing to a number of molecular
systems (butane, polyalanine, enkephalin, and glycophorin), with emphasis
on its efficiency at global optimization. Finally, Section V will compare the
physical interpretation and computational performance of stophat smoothing
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to gaussian smoothing and simulated annealing.

II Derivations

II-A Gaussian smoothing

Many smoothing methods operate by replacing the potential function with
an appropriately weighted average value. Mathematically, the smoothed
function is defined via an integral of the potential function, multiplied by
a suitable weighting function or kernel, k(~x):

F( ~x0, λ) =

∫
F (~x)k( ~x0, ~x, λ) d~x∫
k( ~x0, ~x, λ) d~x

(1)

In this notation, ~x is a (3N − 6)-dimensional vector (for an N atom system)
representing all degrees of freedom for the system, the integral is over all of
phase space, and F is the average of F , subject to weighting by k.

The most common choice of smoothing kernel is

k( ~x0, ~x, λ) = exp

(
−(~x− ~x0)

2

λ

)
, (2)

a Gaussian of width λ centered at ~x0. The degree of smoothing is con-
trolled by varying λ; larger values of λ result in more averaging, producing
a smoother F , while limλ→0F = F .

Equation 1 is not convenient for molecular calculations involving empir-
ical forcefields where the total potential is calculated as a sum of a large
number of terms. However, the integral in Equation 1 can be rewritten as
a sum of integrals over the individual terms. In the general case each en-
ergy term depends on all of the coordinates ~x0, requiring integration over
the full (3N − 6)-dimensional space. However, in the most common case of
a pairwise potential, each term depends on the three variables specifying the
vector between two atoms. The integration over the other dimensions does
not affect the average, and can be ignored. If the terms in the potential
are pairwise and depend solely on distance, the integral for each term can
be reduced to a 1-dimensional integral (15). For clarity, we will summarize
the derivation here. We begin by considering the smoothing of a single pair-
wise potential term F ( ~x0). Since F depends solely on the magnitude of ~x0,
we can change coordinate systems to place one atom at the origin, and the
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other along the z axis, at (0, 0, x0). In this coordinate system, an arbitrary
vector ~x = (r cos θ sinφ, r sin θ sinφ, r cosφ), where r, θ, and φ have their
conventional meaning from spherical coordinates. Using this notation, we
can rewrite the numerator of the exponential term in Equation 2 as

(~x− ~x0)
2 = r2 + x2

0 − 2rx0 cosφ (3)

Substituting this back in to Equation 1 (written in spherical coordinates)
and performing the trivial integration over θ yields

F( ~x0, λ) =
2π

(
√

πλ)3

∫ ∞
0

dr

∫ π

0

r2F (r) exp
[
−
(

x2
0 + r2

λ

)]
exp

[(
2x0r cos φ

λ

)]
sinφ dφ

(4)
Only the final exponential depends on φ, so we can calculate it separately

as∫ π

0
exp

[(
2x0r cosφ

λ

)]
sinφ dφ =

λ

2x0r

{
exp

[
2x0r

λ

]
− exp

[−2x0r

λ

]}
(5)

Substituting this result back into Equation 4, we obtain

F( ~x0, λ) =
1

x0

√
πλ

∫ ∞
0

rF (r)

{
exp

[
−(r − x0)

2

λ

]
− exp

[
−(r + x0)

2

λ

]}
dr

(6)
Setting F to be a typical potential energy term (for instance, 1/x for

the coulomb potential) allows us to recover the standard diffusion equation
potential functions (2). This procedure can only be applied to functions F
where an analytic solution for the integral in Equation 6 exists. As a result,
F must diverge no faster than r−1 as r → 0, or the integrand will diverge at
the origin.

II-B Tophat Smoothing

An alternative choice of smoothing kernel is an impulse or tophat function.
Specifically,

k( ~x0, ~x, λ) =

{
1 for |~x− ~x0| ≤ λ
0 otherwise

, (7)

which selects out a (hyper)sphere of radius λ surrounding ~x0. As above,
each pairwise potential term will depend on three variables, allowing us to
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neglect the other dimensions in the integral. Substituting this kernel back
into Equation 1 and assuming λ ≤ | ~x0| gives

F(x0, λ) =
3

4πλ3

∫ x0+λ

x0−λ
dr
∫ cos−1

(
x2
0+r2−λ2

2x0r

)
0

dθ
∫ 2π

0
F (r)r2 sin θ dφ (8)

Performing the integrals over θ and φ yields

F(x0, λ) =
3

2λ3

∫ x0+λ

x0−λ
r

(
λ2 − x2

0 − r2

2x0r
+ 1

)
F (r) dr (9)

If λ > | ~x0|, the region of integration contains the origin, and the boundaries
on the integral are different:

F(x0, λ) =
3

2λ3

[∫ λ−x0

0
2r2F (r) dr +

∫ λ+x0

λ−x0

r

(
λ2 − x2

0 − r2

2x0r
+ 1

)
F (r) dr

]
(10)

Together, Equations 9 and 10 are analogous to Equation 6. Given a function
F , they allow us to derive a tophat-smoothed functional form F . As with
gaussian smoothing, F must diverge no faster than r−1 at the origin.

II-C Stophat Smoothing

The shifted tophat (or stophat) smoothing method is derived in much the
same way as the tophat method. We proceed as we did before, but rather
than selecting a sphere centered at ~x0 as in Equation 7, we center it at ~x0+λẑ.
Instead of Equation 8, we obtain for all λ

F(x0, λ) =
3

4πλ3

∫ x0+2λ

x0

dr

∫ cos−1

(
(x0+λ)2+r2−λ2

2(x0+λ)r

)
0

dθ r2 sin θ

∫ 2π

0
dφ F (r)

=
3

4λ3

∫ x0+2λ

x0

−r

(
x2

0 + 2x0λ + r2 − 2r(x0 + λ)
x0 + λ

)
F (r) dr (11)

Unlike gaussian and tophat smoothing, stophat remains well-defined even
for functions which diverge rapidly as r → 0. This is because the integral
contains no contribution from the potential function for r < | ~x0|.

Stophat smoothing is not strictly an average of the total potential, and
cannot be derived from Equation 1. While each individual energy term is
averaged according to a tophat kernel, the locus of integration varies for
different atom pairs.
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II-D Application of Stophat Smoothing to Forcefield
Terms

Non-Bonded Terms

Stophat smoothing is directly applied to the non-bonded terms of standard
forcefields simply by choosing F appropriately and solving the integral in
Equation 11. For example, the stophat smoothed Coulomb function is cal-
culated as

Ucoul(x0, λ) =
3

4λ3

∫ x0+2λ

x0

−r
(
x2

0 + 2x0λ+ r2 − 2r(x0 + λ)

x0 + λ

)
1

r
dr

=
1

x0 + λ
(12)

Figure 1 shows the behavior of the Coulomb potential as λ increases.
Unlike gaussian smoothing methods, stophat can be directly applied to

the Lennard-Jones 6-12 potential. Solving the integral

ULJ(x0, λ) =
3

4λ3

∫ x0+2λ

x0

−r

(
x2

0 + 2x0λ + r2 − 2r(x0 + λ)
x0 + λ

)[(
σ

r

)12

− 2
(

σ

r

)6
]

dr

(13)
gives

U6(x0, λ)) =
−2σ6

x3
0(x0 + 2λ)3

(14)

and

U12(x0, λ) =
σ12(15x6

0 + 90λx5
0 + 288λ2x4

0 + 522λ3x3
0 + 648λ4x2

0 + 432λ5x0 + 128λ6)

15x9
0(x0 + 2λ)9

(15)
for the r−6 and r−12 terms, respectively. Figure 2 demonstrates how the
Lennard-Jones function is modified by stophat smoothing. Unlike gaus-
sian smoothing, which tends to increase the effective van der Waal’s radius,
stophat smoothing moves the repulsive barrier closer to the origin.

Torsions

Torsion terms depend on the cosine of the torsional angle defined by the po-
sitions of four atoms. Because the smoothing derivations explicitly assume
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that the energy function is pairwise and dependent only on distance, a differ-
ent approach is needed. We adopt here the convention used by Pappu et al.,
treating the torsion as a 1-dimensional function of the dihedral angle (16).
Moreover, given the symmetry and periodicity of torsional angles, it seems
logical to forgo the shifting used in the stophat method, and apply tophat
smoothing instead. Accordingly, the smoothing integral is

Utors(φ0, λt) =
1

2λt

∫ φ0+λt

φ0−λt

cos (nφ) dφ

=
1

2nλt

[sin (nφ0 + nλt)− sin (nφ0 − nλt)]

= cos (nφ0)
sin (nλt)

nλt

(16)

In this notation, λt is the angular smoothing parameter in radians. Clearly,
there are a variety of choices one could make to relate λt to the linear smooth-
ing parameter λ. Pappu et al. chose this scaling factor based on the extent
of diffusion along torsional degrees of freedom, a reasonable physical choice
given their use of the diffusion equation method (17). A different choice is
made here; since stophat smoothing averages over a specific lengthscale, we
attempt to match the lengthscale of torsional averaging to that of the non-
bonded terms. Specifically, we tracked the distance between the two atoms
at the ends of the dihedral (the 1-4 distance), and chose

λt =
λ

∂D14

∂φ

(17)

Using the notation shown in Figure 3, we can write the 1-4 distance as

D14 =
√

d2
1 + d2

2 + d2
3 − 2(d1d2 cos θ1 + d2d3 cos θ2 − d1d3[cos θ1 cos θ2 − sin θ1 sin θ2 cos φ])

(18)
and the derivative as

∂D14

∂φ
=
d1d3 sin (θ1) sin (θ2) sin (φ)

D14

(19)

Using realistic bond lengths and angle values, we computed the probability
distribution function for ∂D14

∂φ
over all values of the dihedral. Based on this

distribution, we chose to use λt/λ = 2.5 rad/Å. It should be noted that
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the results of optimizations using stophat smoothing are not particularly
sensitive to this choice.

Stophat smoothing of torsions effectively amounts to a multiplication by
sin (nλ)/(nλ), where n is the periodicity of the torsional potential. When
nλ = π, the torsion term is zero for all values of φ. If nλ > π, the torsion
term is nonzero, with its sign inverted. This undesirable behavior is an
artifact of the periodicity of the torsion term. To eliminate it, we set all
torsion energies for which nλ ≥ π to zero.

III Potential Smoothing and Search Proce-

dure

The potential smoothing and search (PSS) protocol used here is essentially
that of Pappu et al., so we will merely summarize it here (17). The energy
of an arbitrary starting structure is minimized on a series of potential en-
ergy surfaces of increasing deformation, until a surface with few minima is
reached. At that point, the deformation is gradually reduced, with minimiza-
tions at each stage, so that the minimum from the highly deformed surface
can be tracked back to the original undeformed surface. The technique can
be made more effective by performing local searching as the deformation is
reduced. Specifically, when the smoothing parameter λ is reduced below a
certain threshold, we perform a normal node search from the current local
minimum. The normal modes are calculated from the Hessian. The system
is successively translated along individual modes; once a maximum is passed
the system is reminimized. If any of the resulting minima are lower than
the original minimum, the procedure is repeated starting from the new min-
imum. These calculations were run using a version of the PSS program from
TINKER modified to use stophat smoothing (18).

There are several choices one must make in the use of PSS, namely the
number and placement of smoothing levels (known as the smoothing sched-
ule), the maximum value for λ, the number of normal modes searched, the
value of λ at which searching commences, and the degrees of freedom to
be minimized. When using gaussian smoothing, we typically followed the
choices made by Pappu et al.(17). For stophat smoothing, we used a larger
maximum value for λ, but the same smoothing schedule and search protocol.

We used simulated annealing as an alternative global optimization
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method, using the ANNEAL program from the TINKER simulation package
(18). Except where otherwise noted, the molecule was subjected to 100 ps
of dynamics at 1000 K, after which the temperature was linearly reduced
to 0 K over the course of 100 ns. The final structure from the trajectory
was then energy minimized using the truncated newton method. The RAT-
TLE algorithm was used to constrain all bonds containing hydrogen to their
equilibrium lengths. The temperature was controlled using the Berendsen
weak-coupling method (19).

Several different potential functions were used for the present calculations,
including OPLS, OPLS-AA, CHARMM, and AMBER (20; 21; 22; 23; 24).
The bond and angle terms were not smoothed. When using gaussian smooth-
ing, the Lennard-Jones function was approximated as a sum of two gaussians.
Stophat smoothing does not require this approximation, and directly uses
the Lennard-Jones functional form. To improve stability when searching
the OPLS, OPLS-AA, and AMBER potentials, non-zero van der Waal’s pa-
rameters (σ = 0.3, ε = 0.01) were added to prevent hydrogens from fusing
with other atoms during minimization from highly strained structures. Addi-
tionally, for OPLS and OPLS-AA the AMBER-style trigonometric improper
dihedrals were replaced with CHARMM-style harmonic functions. These
changes do not significantly perturb the structures and relative energies of
the minima. For the sake of clarity, all reported energies were calculated
following minimization using the standard form for the potential function.

IV Results

The effect of smoothing the potential energy surface is to reduce the number
of minima and the magnitude of the barriers between them. This results
in a surface far more amenable to conformational searching and global opti-
mization. Gaussian smoothing and stophat both accomplish this task, but
in very different ways. In this section, we apply the PSS protocol to sev-
eral biomolecular problems, and compare the effectiveness of gaussian and
stophat smoothing.

IV-A Butane

The simplest molecule containing a rotational degree of freedom is a united
atom model of butane. As such, it makes a good model system for comparing
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the behavior of gaussian and stophat smoothing. We constructed a butane
molecule using the OPLS potential and calculated the total potential energy
as a function of the dihedral angle, restraining bonds and angles to their
ideal values. Figure 4 shows the potential energy as deformed by stophat
and gaussian smoothing. The stophat behavior is very straightforward; as λ
is increased, the barriers between minima diminish smoothly, and the gauche
and trans minima disappear at roughly the same rate, until the energy curve
is flat. The locations of the minima are largely unchanged.

The gaussian smoothing behavior is quite different. The amplitude of the
cis barrier increases for small values of λ, and gradually widens, shifting the
gauche minimum until it merges into the trans minimum. This is a conse-
quence of the effective increase in van der Waal’s radius induced by gaussian
smoothing. However, as λ grows beyond about 1 Å2, the barrier starts to
decrease. This is because the gaussian approximation to the Lennard-Jones
potential is finite at the origin, and thus in the limit of large λ will smooth to
zero at all distances. If it were possible to instead use the true Lennard-Jones
potential, with a pole at the origin, the barrier would continue to grow and
spread for all values of λ.

IV-B Polyalanine Peptides

The next set of examples we considered were varying lengths of capped
polyalanine. It is a well-known result that the α-helix is the most stable
in vacuo structure, for polyalanine beyond a certain length (25; 26). We
examined polyalanine peptides from 8 to 40 residues in length, applying the
PSS procedure using stophat and conventional gaussian smoothing. The
peptides were constructed using ideal bond lengths and angles and all back-
bone dihedrals set to 180◦. Only the backbone φ and ψ angles were varied
in the course of the PSS calculations. All of the PSS calculations used a
pentic smoothing schedule, with 250 levels. All normal modes were searched
at each level while λ was being reduced. The maximum smoothing value for
stophat smoothing was 80 Å. This value was chosen by tracking the number
of minima for enkephalin using the OPLS potential. Gaussian smoothing
calculations were performed using λmax values of 10 Å2 (the value used by
Pappu et al.) and 25 Å2 (17). The OPLS united-atom forcefield, modified as
discussed above, was used for all calculations. Upon completion of the PSS
procedure, a final minimization was performed, using the standard OPLS
potential, during which the backbone φ, ψ, and ω dihedrals were varied. For
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comparison purposes, each peptide was also constructed with ideal α-helical
angles (φ = −57◦, ψ = −47◦, ω = 180◦), and minimized in the the same way.
All minimizations were run until the RMS gradient per torsion was 0.0001
kcal/mol-radian.

The results are summarized in Table I. For all peptides longer than 8
residues, the α-helix appears to be the global minimum energy structure.
Gaussian smoothing with λmax = 10Å2 finds the correct answer for pep-
tides up to 14 residues, after which it finds a much less favorable extended
sheet structure. If λmax = 25Å2, this success can be extended to 16 residue
peptides, after which this procedure fails in a similar fashion.

On the other hand, stophat smoothing finds the global minimum struc-
ture for all but one of the peptides considered; a helix-turn-helix was found
for the 30 residue peptide. Moreover, the intermediate structures in the PSS
calculation are quite different from those seen using gaussian smoothing.
Gaussian smoothing is driven by the “pushing out” of the van der Waal’s
potential, which causes the molecule to assume a maximally extended con-
formation at large λ. By contrast, van der Waal’s repulsion exists only at
very short distances in stophat smoothing (see Figure 2), with the result that
the molecules become more compact at high smoothing levels. The struc-
tures for intermediate λ values all have i:i+2 and i:i-2 hydrogen bonds. This
can be seen in Figure 5, which shows the intermediate structures formed by
the 22 residue peptide. This hydrogen bonding pattern appears early in the
calculation, while the molecule is still extended, and is maintained as the
molecule explores a variety of compact structures. It only disappears upon
the formation of α-helical structure, at λ = 1Å. This basic pattern is retained
in all of the longer peptides, although there is some variation in the λ value
where helices form.

One of the major advantages of gaussian smoothing in global optimization
is its determinate nature. If the energy surface is deformed sufficiently, the
starting structure does not affect the final answer. The maximally deformed
structure is necessarily extended, making conformational trapping unlikely.
It is not immediately clear that stophat must behave in the same way, since
its maximally deformed structures are compact. To demonstrate that the
stophat results are not due to the highly symmetric starting structure, we
generated 20 different structures for the 16 residue peptide, with the φ and ψ
angles chosen randomly from the β-sheet region of the Ramachandran plot,
and performed PSS on each, using the same protocol. To test the ability of
stophat smoothing to undo existing favorable interactions, we also started a
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PSS calculation from the β-sheet structure produced by the gaussian smooth-
ing PSS run. All of these calculations produced the same helical structure
and energy as the calculation starting from the perfectly extended state.

IV-C Enkephalin

For our next test case, we attempted to locate the minimum energy structure
of Met-Enkephalin, an unblocked peptide with the sequence Tyr-Gly-Gly-
Phe-Met. We did the conformational search using all cartesian degrees of
freedom, using the PSS procedure with gaussian and stophat smoothing,
and using simulated annealing. Four separate forcefields were used, one using
united atoms (OPLS), and three all-atom forcefields (OPLS-AA, CHARMM,
and AMBER).

The all-atom forcefields have no potential term which penalizes chiral
inversion. This is not a problem for most applications, since the barrier to
inversion is of order 1000 kcal/mol, due mostly to angle strain. However,
the normal mode search procedure used by PSS is athermal, and can cross
these barriers. We chose to prevent this by adding flat-bottomed harmonic
improper dihedral terms to each chiral center (the Cαs for Tyr, Phe, and
Met). Two terms were used for each center, each of which contained the
Cα and three of the four atoms bound to it. The potential term was zero
for dihedrals between 0 and 70 degrees, and climbed harmonically with a
spring constant of 1 kcal/mol-degree2 beyond that. Physically reasonable
conformations are rarely far from 35◦, so these terms have no effect on the
low-energy structures with correct chirality while penalizing inversions by
approximately 2500 kcal/mol. This restraint is necessary because for two
of the three all-atom potentials, the global minimum energy structure has a
chiral inversion, which stophat detects.

The PSS protocols used for the various calculations all used 250 cubically
distributed smoothing values, and involved searching all torsional modes once

λ < 5. For gaussian smoothing, λmax = 30Å
2
, while for stophat smoothing

λmax = 80Å. More expensive PSS protocols, using more smoothing levels,
larger λmax, and beginning searching at higher smoothing values, produced
identical results. For comparison purposes, we also attempted to find the
optimum enkephalin structure for each force field using simulated annealing.
Forty independent trajectories were run using OPLS, while 20 trajectories
were run using each of the all-atom force fields. Several runs were required
because simulated annealing is not a deterministic process and multiple trials
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can produce different results.
The results of the searches are summarized in Table II. In each case,

PSS with stophat smoothing finds the lowest energy structure on the poten-
tial energy surface. However, in two cases (OPLS-AA and AMBER), the
structures found involved inversions of chirality of a single Cα (Tyr-1 for
OPLS-AA, Met-5 for AMBER). These structures, while energetically most
favorable, are not accessible to enkephalin in its biologically relevant form.
Accordingly, the calculations were rerun with restraints designed to disfa-
vor the inversions, as described above. The restrained calculations did not
find the global minimum of the biologically-relevant surface. For AMBER,
stophat found the second-best minimum while for OPLS-AA it found the
third-best structure.

PSS with gaussian smoothing found the chirally-correct minimum on two
of the potential surfaces (OPLS-AA and CHARMM), but not the others. It
found the second best structure for united-atom OPLS, and the fourth-best
for AMBER. Gaussian smoothing never produced a structure with inverted
chirality.

The 100 ns simulated annealing runs find the minimum energy
biologically-relevant structure some fraction of the time, with the other tra-
jectories producing structures with energies as much as 3.5 kcal/mol higher.
For OPLS-AA, we performed an additional 1 µs annealing run, using an
exponential cooling schedule. The structure it produced had an energy 2.3
kcal/mol higher than the global minimum, indicating that even a tenfold
increase in trajectory time is not sufficient to render the annealing procedure
deterministic.

Table III contains the backbone dihedrals for the structures discussed
in Table II. Most of the structures found fall into two clusters. The global
biologically-relevant minima on the OPLS-AA, CHARMM, and AMBER sur-
faces are quite similar. PSS with gaussian smoothing finds this same basic
fold on the OPLS surface as well. The global minimum on this surface,
found by stophat smoothing and simulated annealing, is quite different, in-
volving a physically unlikely hydrogen bond between one of the oxygens of
the C-terminus and that residue’s amide hydrogen.

The structures found by stophat smoothing on the OPLS-AA surface with
and without chirality constraints are also very similar. This is unlikely to
be a coincidence, but rather reflects the effects of averaging on the surface.
When the surface is smoothed, each interaction is replaced an average of
that interaction over a range of distances; the interactions which make the
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chirally inverted structure most favorable are averaged into the smoothed
energy for the chirally correct structure, even if inversion is forbidden. The
inverted structure found using AMBER is also similar to the one found with
restraints.

It is also instructive to examine the path by which the different search
methods find the global minimum energy structure. When applied to
CHARMM enkephalin, all three methods considered find the same struc-
ture by very different paths. The qualitative differences in the intermediate
structures can be seen by considering the molecule’s radius of gyration over
the course of the search. Figure 6 plots the minimized structure for each PSS
level for enkephalin using the CHARMM potential. The curve for gaussian
smoothing shows that the intermediate structures are very extended. By
contrast, the intermediate structures for stophat smoothing are very com-
pact, more so even than the final structure. These behaviors are both driven
by the deformation of the van der Waal’s potential; gaussian smoothing in-
creases effective van der Waal’s radii, while stophat smoothing decreases
them. Simulated annealing also increases the radius of gyration, although
not as dramatically. In this case, the expansion is driven by entropic fac-
tors, specifically the greater conformational space available to an extended
molecule.

IV-D Glycophorin

Previous work from this laboratory successfully applied the PSS procedure
to the packing of rigid transmembrane helices (16). That work demonstrated
that, starting from either experimental or ideal α-helices, this procedure cor-
rectly finds the global minimum energy structure on the OPLS potential
surface, and that this structure is quite similar to the experimental one (Cα
RMS deviation of 0.64 and 0.73 Å, starting from experimental and ideal he-
lices, respectively). We have repeated this work, using the PSS procedure
with stophat smoothing. The protocol used was very similar to that used by
Pappu et al.: 100 smoothing levels on a cubic schedule, searching all rigid
body normal modes, minimizing until the gradient was 0.0001 kcal/mol-Å
per degree of freedom, with λmax = 10Å (16). For the purposes of these cal-
culations, electrostatics were ignored; the potential function consisted solely
of interhelical van der Waal’s interactions.

This procedure correctly locates the global minimum structure indepen-
dent of the starting conformation. The structure generated differs very
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slightly from that reported by Pappu et al., because those calculations used a
2-gaussian approximation for the Lennard-Jones function as opposed to the
more conventional 6-12 functional form used with stophat smoothing (16; 17).
These structures are nearly identical, with a heavy-atom RMS difference of
0.02 Å. Reminimizing the gaussian smoothing structure using the pure OPLS
potential produces the structure calculated with stophat smoothing, with an
energy -39.4632 kcal/mol. This structure is shown in Figure 7.

V Discussion

Many of the standard smoothing methods, such as the Diffusion Equation
Method (2), the Effective Diffused Potential (8), Gaussian density annealing
(6), and Gaussian Packet Annealing (11), have a built in physical intepre-
tation: atoms are represented as gaussian probability distributions, which
smooths the potential energy surface. Alternatively, one can focus on the
energy landscape, and the effects these methods have upon it. Gaussian
smoothing as applied using the diffusion equation is an averaging procedure,
where each point on the many-dimensional potential surface is replaced with
an average of that surface, weighted by a gaussian centered at that point.
Because this scheme weights nearby points more heavily, the change in the
energy of a conformation as the smoothing value is increased yields informa-
tion about similar conformations. For example, the relative favorability of
low entropy conformations (narrow minima surrounded by steep walls) will
be dramatically lessened on smoothed surfaces. The analogy between this
behavior and that of temperature in simulated annealing has been explored
elsewhere (27).

Moreover, it may be possible to interpret the overall structure of an en-
ergy landscape by examining the way minima merge together as the surface
deformation is increased. This interpretation is complicated by the fact that
gaussian smoothing has no single lengthscale, in that the gaussian smoothing
kernel extends over all of conformational space. While it is true that distant
points on the energy surface have less effect than the immediate environment,
there is no clean dividing line.

Smoothing methods exist which have a finite transformation lengthscale.
For example, the tophat kernel used in the method of bad derivatives has a
finite range, unlike a gaussian. The deformed energy surface corresponds to
a local average, calculated by averaging the (3N − 6)-dimensional potential
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surface over the volume of a hypercube with sides of length λ. This formula-
tion is advantageous, in that it is unnecessary to compute an analytic form
for the deformed surface; the original, undeformed surface is evaluated at the
corners of the cube, and the gradient of the smoothed surface is calculated
in the form of a numerical derivative. Since only energies are involved in this
process, any scoring function can be used, even if it is discontinuous or hard
to differentiate. For example, the method of bad derivatives can be applied
directly to the Boltzmann factor exp (−E/kBT ), which is be extremely dif-
ficult with other smoothing procedures. Unfortunately, the method of bad
derivatives is computationally costly, with gradient evaluation scaling O(N3)
in the number of atoms, as opposed to O(N2) for standard molecular mechan-
ics forcefields. Moreover, the volume of integration lacks symmetry; using a
cube instead of a sphere imposes orientation dependence on the averaging on
the procedure.

Tophat smoothing (derived in Section II-B) can be viewed as the analytic
equivalent of the method of bad derivatives. It is once again a local average,
calculated by integrating the total potential over a hypersphere. The analytic
functional forms for smoothing the coulomb and van der Waal’s potentials
are complicated, but energy calculation scales O(N2). This makes it a very
promising method for studying the properties of the potential hypersurface.

Unlike tophat and gaussian smoothing, stophat smoothing is not an aver-
age over the total potential energy hypersurface. Each individual energy term
is averaged over a sphere, but the center of that sphere is shifted outward
toward larger interatomic separations. As a result, different interactions are
averaged over distinct regions of the (3N − 6)-dimensional space. This com-
plicates physical interpretation of the smoothed surface. However, stophat
smoothing appears to have some practical benefits, as described above. More-
over, there is some precedent for smoothing methods not involving averaging.
For example, the distance scaling method operates by redefining the inter-
atomic distance r before inserting it into the standard potential functions
(28). Other workers have used functional forms with softer repulsive barriers
to moderately smooth the surface (29).

The behavior of a van der Waal’s interaction under gaussian smoothing
is dominated by the peak at the origin. As λ increases, the peak figures
significantly into the averaging at larger atomic separations, with the result
that the repulsive wall “pushes outward”. During smoothing the function’s
behavior at physically relevant distances (roughly r ≥ 0.8σ) is polluted by
the very high peaks at short separations. As such, these short separations,
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which are not physically or thermodynamically relevant, affect the energetic
favorability of otherwise physically reasonable structures. As a result, gaus-
sian smoothing disfavors compact structures in favor of extended ones, since
the latter have fewer close van der Waal’s contacts. This effect would be
even more pronounced if it were possible to use a true Lennard-Jones func-
tion instead of the 2-gaussian approximation; the gaussian approximation
becomes zero everywhere as λ → ∞, while a Lennard-Jones function would
simply continue to push out, since the pole could not be smoothed away. To
a lesser extent, this effect is seen if one compares the smoothing behavior
of the 2-gaussian Lennard-Jones fit to that of a 4-gaussian fit. Because the
latter has a much higher value at zero separation, the degree of push out for
a given value of λ is greatly increased.

Gaussian smoothing diminishes the number of realistic minima on a sur-
face via two distinct mechanisms: 1) it flattens the surface, diminishing the
impact of torsional rotation and favorable long-range interactions, and 2) it
diminishes the volume of accessible conformations, by effectively expanding
the van der Waal’s radii until nearly all conformations are excluded. This be-
havior can be inferred from Figure 4, if one considers butane to be a model
for a torsion within a larger molecule. All of the minima found on a sig-
nificantly deformed surface will be extended; even those minima which can
be tracked to compact conformations on the undeformed surface are greatly
expanded. For example, Figure 6 shows that even at moderate smoothing
values, the enkephalin molecule has a very large radius of gyration, compared
to dynamics at 1000K.

By contrast, stophat smoothing explicitly ignores the short-range behav-
ior of the energy functions; the actual interatomic separation defines the min-
imum distance involved in the averaging. Instead of pushing out, the van der
Waal’s barrier moves to shorter distances with increasing λ (see Figure 2).
As a result, the volume of accessible conformational space is increased by
stophat smoothing. As a result, stophat smoothing does not decrease the
number of minima as dramatically as gaussian smoothing; even at relatively
large smoothing levels, both compact and extended minima are present. As λ
gets very large, the energy surface has a single, highly degenerate minimum,
where all bonds and angles are at their ideal values, and the molecule is free
to rotate about its torsions. The only states forbidden are those where two
atoms lie directly on top of each other. If λ is reduced, there are immediately
a significant number of minima, far more than on a corresponding gaussian-
deformed surface. It is not clear that this is a desirable behavior, since it
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appears that this would cause a PSS procedure to depend on the starting
structure. We have not experienced such difficulties, perhaps because the
barriers between the states are reduced at all deformations such that the
normal-mode search is able to compensate.

In choosing between various algorithms for global optimization, two cri-
teria are of primary importance: efficacy and computational cost. The above
results demonstrate that the PSS procedure using stophat smoothing is a
good global minimizer for a variety of molecular problems. However, to be
considered a useful alternative to standard optimization techniques, it must
also be at least comparably efficient computationally. We compared the
computational cost for optimizing enkephalin using the CHARMM poten-
tial, the only example where all three methods successfully locate the global
minimum. The results are summarized in Table IV. It is clear that the cost
per trial of PSS against 100 ns of dynamics favors smoothing. However, one
can run simulated annealing trajectories of any length, so the relevant quan-
tity is the effective cost to find the global minimum. We define the effective
cost as the cost per annealing trajectory multiplied by the number of inde-
pendent trials required to give a 90% chance of finding the global minimum
at least once, based on the success rates given in Table II. Using this met-
ric, it becomes clear that PSS is far more efficient than simulated annealing.
Moreoever, the balance would be tilted further in favor of smoothing for cases
like OPLS enkephalin, where the simulated annealing success rate was lower.

It could be argued that the computational cost would be reduced by
using a smaller number of longer simulated annealing trials. However, the 1
µs annealing run on enkephalin required more than 200 CPU hours and still
missed the global minimum by over 2 kcal/mol. This suggests that simulated
annealing trajectories long enough to consistently find the global minimum
are not computationally tractable for a molecule the size of enkephalin.

It is expected that the relative efficiency of smoothing over simulated an-
nealing will only increase with increasing problem size. The computational
cost of the local minimizations in PSS scale roughly as O(N3) with the num-
ber of atoms, while the amount of searching required scales at worst linearly
with the number of degrees of freedom, resulting in an O(N4) algorithm.
Analysis of the computational cost of simulated annealing is more compli-
cated. The number of conformational transitions required for equilibration at
each temperature scales O(M2), where M is the number of states available to
the system (30). Since M in turn generally scales exponentially with system
size for molecular examples, the algorithm as a whole scales exponentially.
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VI Conclusion

The present work describes the derivation and performance of the stophat
smoothing method when applied to a variety of biomolecular examples. It
is clear that stophat smoothing is an effective tool for global optimization
as part of a potential smoothing and search protocol. As a result, it should
be a valuable tool for predicting the packing of transmembrane helices (16).
Furthermore, the fact that stophat smoothing lowers all barriers between con-
formations suggests that it could be coupled to stochastic sampling methods
such as molecular dynamics and Monte Carlo to efficiently generate thermo-
dynamic averages.
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Figure 1: The coulomb potential smoothed with stophat smoothing. Stophat
smoothing shifts the potential by λ.
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Figure 2: The Lennard-Jones potential smoothed with stophat smoothing.
The location of the repulsive wall moves inward with increasing λ. With
conventional forms of smoothing, the repulsive wall moves outward.
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Figure 3: Definition of D14 in terms of internal coordinates.
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Figure 4: Potential energy of united atom butane. Part A shows the poten-
tial as deformed by stophat, Part B by gaussian smoothing. The gaussian
smoothing energy curves in Part B have been shifted such that the energy
at φ = 180◦ remains constant.
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Figure 5: Structures assumed by a capped alanine 22-mer during PSS
smoothing. Structures A to F are the final structures from levels 148 (forward
smoothing), 268, 350, 395, 396, and 450 (λ = 5.81, 55.06, 6.22, 1.05, 1.00, 0.03
Å). The first structure exhibits the i:i+2 and i:i-2 hydrogen bonding pattern.
This pattern is preserved in each of the first four structures, as the molecule
gradually becomes more compact, forming a knot-like structure at level 395.
At level 396, the first helical structure appears. At level 450, the helix is
fully formed.
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Figure 6: Radius of gyration for enkephalin over the course of sample PSS
and simulated annealing trials using the CHARMM potential. The solid
and dotted lines are from 500-level PSS runs using gaussian and stophat
smoothing, respectively. The dashed line is from a 100 ns simulated annealing
run. The midpoint of the PSS calculations, where the smoothing value λ is
at its maximum, is marked by the vertical line. All three calculations located
the global minimum structure.
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Figure 7: Global minimum energy structure for the glycophorin A transmem-
brane helix dimer, found using PSS with stophat and gaussian smoothing.
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Length Helix Gaussian (λ = 10) Gaussian (λ = 25) Stophat
8 -292.6184 -293.3406 T -293.3329 T
10 -369.8012 -369.7823 H -369.7856 H
12 -447.3603 -447.2697 H -447.2723 H
14 -525.1728 -525.0305 H -525.1663 H
16 -603.1383 -582.6604 T -602.9653 H -603.1346 H
18 -681.2149 -652.2730 T -652.2909 T -681.1988 H
20 -759.3669 -727.2988 T -727.3048 T -759.3580 H
22 -837.5756 -837.5812 H -837.5813 H
24 -915.8280 -871.9698 T -915.8324 H
26 -994.1128 -941.8530 T -994.0976 H
28 -1072.4252 -1072.4017 H
30 -1150.7579 -1115.7017 H2
40 -1542.6341 -1542.6531 H

Table I: OPLS capped polyalanine minimized using PSS with torsional min-
imization and searching. The first column is the number of residues. The
second column is the energy for the structure built as an ideal helix, then
minimized in torsion space. The next three columns report the results of PSS
minimization from an extended conformation, for standard gaussian smooth-
ing with λmax = 10Å2, gaussian smoothing with λmax = 25Å2, and stophat
smoothing. “H” and “T” indicate helices and extended β-turns, respectively.
“H2” denotes that the minimization found a helix-turn-helix structure.

31



Model Method Energy Frequency
OPLS Stophat -304.2242

Gaussian -304.0738
Annealing -304.2242 0.15

OPLS-AA Stophat* -264.6201
Stophat -261.3666
Gaussian -263.3354
Annealing -263.3354 0.50

CHARMM Stophat -66.4162
Gaussian -66.4162
Annealing -66.4162 0.25

AMBER Stophat* -167.1609
Stophat -162.7474
Gaussian -162.3629
Annealing -164.2013 0.30

Table II: Energies for the enkephalin structures produced using different
forcefields and search methods. The first column indicates the potential
function used. The second column indicates the method used to generate the
structure (PSS using stophat and gaussian smoothing, simulated annealing).
The structures labelled “Stophat*” have Cαs with inverted chirality (Tyr-1
for OPLS-AA, Met-5 for AMBER), while the rows labelled “Stophat” were
run with restraints to prevent chiral inversion. The “Frequency” column in-
dicates the fraction of the simulated annealing trials that found the lowest
energy structure. The success frequency is either 1 or 0 for all PSS methods,
since they are deterministic.
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Model Method Tyr-1 Gly-1 Gly-3 Phe-4 Met-5
ψ φ ψ φ ψ φ ψ φ ψ

OPLS Stophat -70 127 44 -163 -59 -124 -11 -150 -175
Gaussian -47 -81 -57 -113 -114 -74 -46 -104 129

OPLS-AA Stophat* 47 105 78 109 -54 -81 60 66 72
Stophat 61 118 63 111 -51 -78 59 54 -114
Gaussian -37 -92 -50 -116 -128 -65 -48 -63 -58

CHARMM All -46 -87 -39 -127 -123 -69 -49 -65 -48
AMBER Global -60 -80 -32 -131 -124 -64 -54 -55 122

Stophat* 89 96 19 147 6 -148 61 49 -136
Stophat 74 137 21 117 -38 -73 62 39 -132
Gaussian 132 -161 41 83 -54 -65 176 -50 138

ECEPP Global 155 -160 71 80 -74 -117 12 -157 159

Table III: Backbone dihedrals for enkephalin structures produced using differ-
ent forcefields and search methods. The forcefields and methods are labelled
as in Table II. For AMBER, the backbone dihedrals for the global minimum
are also shown. All search methods produced the global minimum structure
for CHARMM. Backbone dihedrals for the global minimum for ECEPP-3
are taken from Reference (4).
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Method Time Effective Cost
Stophat 4.5
Gaussian 5.6
Annealing 29.8 238.4

Table IV: Computational cost of PSS and simulated annealing on enkephalin
using the CHARMM potential. The values are real elapsed times in hours for
computations performed on a 950 MHz Athlon PC running Linux, using a
modified version of TINKER 3.9 compiled with the Portland Group Fortran
compiler. The last column is an estimate of the effective cost of running a
sufficient number of simulated annealing runs to give a 90% chance of finding
the minimum energy structure.
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