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Part 1

Description of

GloptiPoly



Brief description

GloptiPoly is written as an open-source, gen-

eral purpose and user-friendly Matlab software

Optionally, problem definition made easier with

Matlab Symbolic Math Toolbox, gateway to

Maple kernel

Gloptipoly solves small to medium non-convex

global optimization problems with multivari-

able real-valued polynomial objective functions

and constraints

Software and documentation available at

www.laas.fr/∼henrion/software/gloptipoly

http://www.laas.fr/~henrion/software/gloptipoly


Metholodogy

GloptiPoly builds and solves a hierarchy of suc-
cessive convex linear matrix inequality (LMI)
relaxations of increasing size, whose optima are
guaranteed to converge asymptotically to the
global optimum

Relaxations are built from LMI formulation of
sum of squares (SOS) decomposition of posi-
tive multivariable polynomials

LMIs solved with Jos Sturm’s SeDuMi

In practice convergence is ensured fast,
typically at 2nd or 3rd LMI relaxation



LMI relaxation technique

Polynomial optimization problem

min g0(x)
s.t. gk(x) ≥ 0, k = 1, . . . ,m

When p? is the global optimum, SOS represen-

tation of positive polynomial

g0(x)− p? = q0(x) +
∑m
k=1 gk(x)qk(x) ≥ 0

where unknowns qk(x) are SOS polynomials

similar to Karush/Kuhn/Tucker multipliers

Using LMI representation of SOS polynomials

successive LMI relaxations are obtained by in-

creasing degrees of sought polynomials qk(x)

Theoretical proof of asymptotic convergence...

..but no tight degree upper bounds (not yet)



LMI relaxations: illustration

Non-convex quadratic problem

max 2x2
1 + 2x2

2 − 2x1x2 − 2x1 − 6x2 + 10
s.t. −x2

1 + 2x1 ≥ 0
−x2

1 − x
2
2 + 2x1x2 + 1 ≥ 0

−x2
2 + 6x2 − 8 ≥ 0.

LMI relaxation built by replacing each

monomial xi1x
j
2 with a new decision variable yij

For example, quadratic expression

−x2
1 − x

2
2 + 2x1x2 + 1 ≥ 0

replaced with linear expression

−y20 − y02 + 2y11 + 1 ≥ 0

New decision variables yij satisfy non-convex

relations such as y10y01 = y11 or y20 = y2
10



LMI relaxations: illustration (2)

Relax these non-convex relations by enforcing

LMI constraint

M1
1 (y) =

 1 y10 y01
y10 y20 y11
y01 y11 y02

 ≥ 0

Moment or measure matrix of first order

relaxing monomials of degree up to 2

We remove the rank constraint on matrix M1
1 (y)

First LMI relaxation of original global

optimization problem is given by

max 2y20 + 2y02 − 2y11 − 2y10 − 6y01 + 10
s.t. −y20 + 2y10 ≥ 0

−y20 − y02 + 2y11 + 1 ≥ 0
−y02 + 6y01 − 8 ≥ 0
M1

1 (y) ≥ 0



LMI relaxations: illustration (3)
To build second LMI relaxation, we must increase size
of moment matrix so that it captures expressions of
degrees up to 4

Second order moment matrix reads

M2
2 (y) =


1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


Constraints are also relaxed with additional variables
Second LMI features feasible set included in first LMI feasible set,
thus providing a tighter relaxation

max 2y20 + 2y02 − 2y11 − 2y10 − 6y01 + 10

s.t.

[ −y20 + 2y10 ? ?
−y30 + 2y20 −y40 + 2y30 ?
−y21 + 2y11 −y31 + 2y12 −y22 + 2y12

]
� 0

(
−y20 − y02
+2y11 + 1

)
? ?(

−y30 − y12
+2y21 + y10

) (
−y40 − y22

+2y31 + y20

)
?(

−y21 − y03
+2y12 + y01

) (
−y31 − y13

+2y22 + y11

) (
−y22 − y04

+2y13 + y02

)
 � 0


−y02 + 6y01 − 8 ? ?(
−y12 + 6y11
−8y10

) (
−y22 + 6y21
−8y20

)
?(

−y03 + 6y02
−8y01

) (
−y13 + 6y12
−8y11

) (
−y04 + 6y03
−8y02

)
 � 0

M2
2 (y) � 0



Numerical example (1)

Quadratic problem 3.5 in [Floudas/Pardalos 99]

min −2x1 + x2 − x3

s.t. x1(4x1 − 4x2 + 4x3 − 20) + x2(2x2 − 2x3 + 9)
+x3(2x3 − 13) + 24 ≥ 0

x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6
0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3.

To define this problem with GloptiPoly we use the
following Matlab/Maple script

>> P = defipoly({’min -2*x1+x2-x3’,...
[’x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)’ ...
’+x3*(2*x3-13)+24>=0’],...

’x1+x2+x3<=4’, ’3*x2+x3<=6’,...
’0<=x1’, ’x1<=2’, ’0<=x2’, ’0<=x3’, ’x3<=3’}, ...
’x1,x2,x3’);

To solve the first LMI relaxation we type

>> output = gloptipoly(P)
output =

status: 0
crit: -6.0000
sol: {}

Field status = 0 indicates that it is not possible to de-
tect global optimality with this LMI relaxation, hence
crit = -6.0000 is a lower bound on the global optimum



Numerical example (2)

Next we try to solve the second, third and fourth LMI relaxations

>> output = gloptipoly(P,2) >> output = gloptipoly(P,3)
output = output =

status: 0 status: 0
crit: -5.6923 crit: -4.0685
sol: {} sol: {}

>> output = gloptipoly(P,4)
output =

status: 1
crit: -4.0000
sol: {[3x1 double] [3x1 double]}

>> output.sol{:}
ans = ans =

2.0000 0.5000
0.0000 0.0000
0.0000 3.0000

Both second and third LMI relaxations return tighter lower bounds
on the global optimum

Eventually global optimality is reached at fourth LMI relaxation
(certified by status = 1)

GloptiPoly also returns two globally optimal solutions:

x1 = 2, x2 = 0, x3 = 0

and

x1 = 0.5, x2 = 0, x3 = 3

leading to

crit = -4.0000



Numerical example (3)

Number of LMI variables (M) and size of re-

laxed LMI problem (N) increase quickly with

relaxation order:

Relaxation LMI opt M N
1 -6.0000 9 24
2 -5.6923 34 228
3 -4.0685 83 1200
4 -4.0000 164 4425
5 -4.0000 285 12936
6 -4.0000 454 32144

..yet fourth LMI relaxation was solved in about

2.5 seconds on a PC Pentium IV 1.6 MHz



Complexity

d: overall polynomial degree (2δ = d or d+ 1)

m: number of polynomial constraints

n: number of polynomial variables

M : number of LMI decision variables

N : size of LMI

M =

(
n+ 2δ

2δ

)
− 1

N =

(
n+ δ
δ

)
+m

(
n+ δ − 1
δ − 1

)

When n is fixed:

• M grows polynomially in O(δn)

• N grows polynomially in O(mδn)



Features

General features of GloptiPoly:

• Certificate of global optimality (rank checks)

• Automatic extraction of globally optimal

solutions (multiple eigenvectors)

• 0-1 or ±1 integer constraints on some of the

decision variables (combinatorial optimization

problems)

• Generation of input and output data in

SeDuMi’s format

• Generation of moment matrices associated

with LMI relaxations (rank checks)

• User-defined scaling of decision variables

(to improve numerical behavior)

• Exploits sparsity of polynomial data



Benchmark examples

Continuous problems

Mostly from Floudas/Pardalos 1999 handbook

About 80 % of pbs solved with LMI relaxation

of small order (typically 2 or 3) in less than 3

seconds on a PC Pentium IV at 1.6 MHz with

512 Mb RAM

Six-hump camel back function



Benchmark exmaples
Discrete problems

From Floudas/Pardalos handbook and also
Anjos’ Ph.D (Univ Waterloo)

By perturbing criterion (destroys symmetry)
global convergence ensured on 80 % of pbs
in less than 4 seconds

MAXCUT on antiweb AW 2
9 graph



Benchmark examples

Polynomial systems of equations

From Verschelde’s database and Frisco INRIA project
Real coefficients & solutions only

Out of 59 systems:
• 61 % solved in t < 10 secs
• 20 % solved in 10 < t < 100 secs
• 10 % solved in t ≥ 100 secs
• 9 % out of memory

No criterion optimized
No enumeration of all solutions
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Intersections of seventh and eighth degree polynomial curves



Part 2

Extracting solutions



Detecting global optimality

Global optimization problem

p? = minx g0(x)
s.t. gi(x) ≥ 0, i = 1,2..

Let deg gi(x) = 2di − 1 or 2di and d = maxi di

LMI relaxation of order k

p∗k = miny
∑

α(g0)αyα
s.t. Mk(y) � 0

Mk−di(giy) � 0, i = 1,2..

with solution y∗k

Hierarchy with convergence guarantee

p∗d ≤ p∗d+1 ≤ · · · ≤ p∗k∗ = p∗.

for (generally) small k∗

Sufficient condition for global optimality
rank of moment matrices

rankMk(y∗k) = rankMk−d(y∗k)



Need for extraction procedures

Because rank condition is only sufficient

any other global optimality certificate

is welcome

Solution extraction procedure suggested

by Arnold Neumaier

Inspired by Chesi, Garulli, Tesi, Vicino

(IEEE CDC 2000)

Based on the work by Corless, Gianni, Trager

(ACM ISSAC 1997)

Key ideas:
• Cholesky decomposition of moment matrix
• column reduced echelon form
• computation of common eigenvalues



Who is Cholesky ?

André Louis Cholesky (1875-1918) was a French
military officer (graduated from Ecole Polytechnique)
involved in geodesy

He proposed a new procedure for solving
least-squares triangulation problems

He fell for his country during World War I

Work posthumously published in
Commandant Benôıt. Procédé du Commandant Cholesky.
Bulletin Géodésique, No. 2, pp. 67-77, Toulouse,
Privat, 1924.

Nice biography in
C. Brezinski. André Louis Cholesky. Bulletin of the
Belgian Mathematical Society, Vol. 3, pp. 45-50, 1996.





Cholesky factorization

Extract Cholesky factor V of moment matrix

Mk(y?k) = V V ′

Matrix V has r columns, corresponding to r globally
optimal solutions x?j, j = 1,2, . . . , r (provided
global optimum was reached)

Denote

v =
[
1 x1 x2 . . . xn x

2
1 x1x2 . . . x1xn x

2
2 x2x3 . . . x

2
n . . . x

k
n

]′
a basis for polynomials of degree at most k

By definition of the moment matrix:

Mk(y?k) = V ?(V ?)′

where

V ? =
[
v∗1 v∗2 · · · v∗r

]
and v?j is polynomial basis v evaluated at solution x?j

Extracting solutions amounts to
finding linear transformation

between Cholesky factors V and V ?



Reduction to column echelon form

Next step is reduction of V into column echelon form

U =



1
?
0 1
0 0 1
? ? ?

... . . .
0 0 0 · · · 1
? ? ? · · · ?

... ...
? ? ? · · · ?


by Gaussian elimination with column pivoting

Each row in U = monomial xα in basis v

Pivot entry in U = monomial xβj in generating basis of
the set of solutions

In other words, denoting

w =
[
xβ1

xβ2
. . . xβr

]′
it holds

v = Uw

for all solutions x∗j, j = 1,2, . . . , r



Multiplication matrices

For each first degree monomial xi extract from

U the r-by-r multiplication matrix Ni
containing coefficients of product monomials

xixβj in generating basis w, i.e. such that

Niw = xiw i = 1,2, . . . , n

If monomial xixβj is not represented in U , then

extraction algorithm fails and order k of LMI

relaxation must be increased

Given matrices Ni finding scalars xi
is an eigenvalue problem

Extracting solutions amounts to
solving an eigenvalue problem

Eigenvectors w are shared by matrices Ni so

it is a particular common eigenvalue problem



Common eigenvalue problem

Build combination of multiplication matrices

N =
n∑
i=1

λiNi

where λi are random positive numbers
(summing up to one)

Compute ordered Schur decomposition

N = QTQ′

where

Q =
[
q1 q2 · · · qr

]
is orthogonal and T upper triangular

Finally, due to orthogonality of vectors qi, ith
entry in solution vector x?j is given by

(x∗j)i = q′jNiqj, i = 1,2, . . . , n, j = 1,2, . . . , r



Number of solutions

No easy way to control number of extracted

solutions in case of multiple global optima

Number of solutions = rank of moment matrix,

but enforcing rank in an LMI is a difficult non-

convex problem

By default GloptiPoly minimizes the trace (sum

of eigenvalues) of the moment matrix, which

may indirectly minimize the rank (number of

non-zero eigenvalues)

Practical experiments reveal that low rank

moment matrices ensure faster convergence of

LMI relaxations to global optimum



First example

Non-convex quadratic optimization

p∗ = maxx (x1 − 1)2 + (x1 − x2)2 + (x2 − 3)2

s.t. (x1 − 1)2 ≤ 1
(x1 − x2)2 ≤ 1
(x2 − 3)2 ≤ 1

First LMI relaxation yields p?1 = −3 and

rankM1(y∗) = 3, extraction algorithm fails due

to incomplete monomial basis

Second LMI relaxation yields p?2 = −2 and

rankM1(y∗) = rankM2(y∗) = 3

so rank condition ensures global optimality



First example: Cholesky factor

Moment matrix of order k = 2 reads

M2(y∗) =


1.0000 1.5868 2.2477 2.7603 3.6690 5.2387
1.5868 2.7603 3.6690 5.1073 6.5115 8.8245
2.2477 3.6690 5.2387 6.5115 8.8245 12.7072
2.7603 5.1073 6.5115 9.8013 12.1965 15.9960
3.6690 6.5115 8.8245 12.1965 15.9960 22.1084
5.2387 8.8245 12.7072 15.9960 22.1084 32.1036



Positive semidefinite with rank 3

Cholesky factor

V =



−0.9384 −0.0247 0.3447
−1.6188 0.3036 0.2182
−2.2486 −0.1822 0.3864
−2.9796 0.9603 −0.0348
−3.9813 0.3417 −0.1697
−5.6128 −0.7627 −0.1365


satisfies

Mk(y?k) = V V ′



First example: column echelon form

Gaussian elimination on V yields

U =



1 0 0
0 1 0
0 0 1
−2 3 0
−4 2 2
−6 0 5



1
x1
x2
x2

1
x1x2
x2

2
1 x1 x2

which means that solutions to be extracted

satisfy the system of polynomial equations

x2
1 = −2 + 3x1

x1x2 = −4 + 2x1 + 2x2
x2

2 = −6 + 5x2

in polynomial basis 1, x1, x2



First example: extraction

Multiplication matrices of monomials x1 and

x2 in polynomial basis 1, x1, x2 are extracted

from U :

N1 =

 0 1 0
−2 3 0
−4 2 2

 , N2 =

 0 0 1
−4 2 2
−6 0 5


Random linear combination

N = 0.6909N1 + 0.3091N2

Schur decomposition of N = QTQ′ yields

Q =

 0.4082 0.1826 −0.8944
0.4082 −0.9129 −0.0000
0.8165 0.3651 0.4472


Projections of orthogonal columns of Q onto N

yield the 3 expected globally optimal solutions

x∗1 =

[
1
2

]
x∗2 =

[
2
2

]
x∗3 =

[
2
3

]



Second example: minimum trace LMI

Polynomial system of equations

x2
1 + x2

2 = 1
x3

1 + (2 + x3)x1x2 + x3
2 = 1
x2

3 = 2

No objective function, so GloptiPoly minimizes

the trace of the moment matrix

Extraction on 2nd LMI relaxation fails due to

incomplete basis

3rd LMI relaxation yields two globally optimal

solutions

x∗1 =

 0.5826
−0.8128
−1.4142

 x∗2 =

 −0.8128
0.5826
−1.4142





Second example: zero objective function

With zero objective function GloptiPoly at the
3rd LMI relaxation yields

rankM1(y∗) = 4 6= rankM2(y∗) = rankM3(y∗) = 6

so rank condition cannot ensure optimality

However, extraction algorithm returns 6
globally optimum solutions

x∗1 =

 −0.8128
0.5826
−1.4142

 x∗2 =

 0.5826
−0.8128
−1.4142



x∗3 =

 0.0000
1.0000
−1.4142

 x∗4 =

 1.0000
0.0000
−1.4142



x∗5 =

 0.0000
1.0000
1.4142

 x∗6 =

 1.0000
0.0000
1.4142


thus proving global optimality of LMI



Motzkin-like polynomial

Polynomial

1

27
+ x2y2(x2 + y2 − 1)

vanishes at |x| = |y| =
√

3/3 and

remains globally non-negative for real x and y

but cannot be written as an SOS



Some kind of magic in GloptiPoly

GloptiPoly finds approximate SOS
decomposition of Motzkin polynomial

With 8th LMI relaxation we obtain

1

27
+ x2y2(x2 + y2 − 1) =

32∑
i=1

a2
i q

2
i (x, y) + εr(x, y)

where ‖qi‖2 = ‖r‖2 = 1
and ε ≤ 10−8 < a2

i , deg qi ≤ 8

Cone of SOS polynomials is dense in set of
polynomials nonnegative over box [-1,1]

Numerical inaccuracy
helps finding higher degree

SOS polynomial close
to Motzkin polynomial



Constrained Motzkin polynomial

Additional redundant constraint

x2 + y2 ≤ R2

with R2 > 2/3 (includes the 4 global minima)

For R = 1 at the 3rd LMI relaxation we obtain

1

27
+ x2y2(x2 + y2 − 1) =

6∑
i=1

a2
i q

2
i (x, y) + (R2 − x2 − y2)

2∑
i=1

b2i r
2
i (x, y)

where deg qi ≤ 3, deg ri ≤ 2

R2 1 2 3 4 · · · ∞
LMI 3 4 5 6 · · · 8

Relevance of feasibility radius
in SDP solver and GloptiPoly



Conclusions

GloptiPoly is a general-purpose software with

a user-friendly interface

Pedagogical flavor, black-box approach,

no expert tuning required to cope with very

distinct applied maths and engineering pbs

Automatic detection of global optimality

and extraction of solutions

Not a competitor to highly specialized codes

for solving polynomial systems of equations or

large combinatorial optimization pbs

Numerical conditioning (Chebyshev basis) and

problem structure (Hankel/Toeplitz matrices)

deserve further study

See also Parrilo’s SOSTOOLS software



Further news

Major extension of GloptiPoly planned
(hopefully) for winter 2003

• Matlab classes for multivariate polynomials
and moment matrices
• general moment problems
• performance analysis for stochastic systems
in ecology and finance
• robust control problems
• relaxations of robust LMIs

Research efforts
• bilinearity in decision variables
• tailored interior-point algorithms

Regularly updated information at

www.laas.fr/∼henrion
www.laas.fr/∼lasserre

http://www.laas.fr/~henrion
http://www.laas.fr/~lasserre

