Detecting global optimality and extracting solutions in GloptiPoly

Didier HENRION ${ }^{1,2}$ Jean-Bernard LASSERRE ${ }^{1}$

${ }^{1}$ LAAS-CNRS Toulouse
${ }^{2}$ ÚTIA-AVČR Prague

Part 1

Description of GloptiPoly

Brief description

GloptiPoly is written as an open-source, general purpose and user-friendly Matlab software

Optionally, problem definition made easier with Matlab Symbolic Math Toolbox, gateway to Maple kernel

Gloptipoly solves small to medium non-convex global optimization problems with multivariable real-valued polynomial objective functions and constraints

Software and documentation available at
www.laas.fr/~henrion/software/gloptipoly

Metholodogy

GloptiPoly builds and solves a hierarchy of successive convex linear matrix inequality (LMI) relaxations of increasing size, whose optima are guaranteed to converge asymptotically to the global optimum

Relaxations are built from LMI formulation of sum of squares (SOS) decomposition of positive multivariable polynomials

LMIs solved with Jos Sturm's SeDuMi
In practice convergence is ensured fast, typically at 2 nd or 3rd LMI relaxation

LMI relaxation technique

Polynomial optimization problem
$\min g_{0}(x)$
s.t. $\quad g_{k}(x) \geq 0, \quad k=1, \ldots, m$

When p^{\star} is the global optimum, SOS representation of positive polynomial

$$
g_{0}(x)-p^{\star}=q_{0}(x)+\sum_{k=1}^{m} g_{k}(x) q_{k}(x) \geq 0
$$

where unknowns $q_{k}(x)$ are SOS polynomials similar to Karush/Kuhn/Tucker multipliers

Using LMI representation of SOS polynomials successive LMI relaxations are obtained by increasing degrees of sought polynomials $q_{k}(x)$

Theoretical proof of asymptotic convergence... ..but no tight degree upper bounds (not yet)

LMI relaxations: illustration

Non-convex quadratic problem

$$
\begin{array}{ll}
\max & 2 x_{1}^{2}+2 x_{2}^{2}-2 x_{1} x_{2}-2 x_{1}-6 x_{2}+10 \\
\text { s.t. } & -x_{1}^{2}+2 x_{1} \geq 0 \\
& -x_{1}^{2}-x_{2}^{2}+2 x_{1} x_{2}+1 \geq 0 \\
& -x_{2}^{2}+6 x_{2}-8 \geq 0 .
\end{array}
$$

LMI relaxation built by replacing each monomial $x_{1}^{i} x_{2}^{j}$ with a new decision variable $y_{i j}$

For example, quadratic expression

$$
-x_{1}^{2}-x_{2}^{2}+2 x_{1} x_{2}+1 \geq 0
$$

replaced with linear expression

$$
-y_{20}-y_{02}+2 y_{11}+1 \geq 0
$$

New decision variables $y_{i j}$ satisfy non-convex relations such as $y_{10} y_{01}=y_{11}$ or $y_{20}=y_{10}^{2}$

LMI relaxations: illustration (2)

Relax these non-convex relations by enforcing LMI constraint

$$
M_{1}^{1}(y)=\left[\begin{array}{c|ll}
1 & y_{10} & y_{01} \\
\hline y_{10} & y_{20} & y_{11} \\
y_{01} & y_{11} & y_{02}
\end{array}\right] \geq 0
$$

Moment or measure matrix of first order relaxing monomials of degree up to 2

We remove the rank constraint on matrix $M_{1}^{1}(y)$
First LMI relaxation of original global optimization problem is given by
$\max 2 y_{20}+2 y_{02}-2 y_{11}-2 y_{10}-6 y_{01}+10$
s.t. $-y_{20}+2 y_{10} \geq 0$
$-y_{20}-y_{02}+2 y_{11}+1 \geq 0$
$-y_{02}+6 y_{01}-8 \geq 0$
$M_{1}^{1}(y) \geq 0$

LMI relaxations: illustration (3)

To build second LMI relaxation, we must increase size of moment matrix so that it captures expressions of degrees up to 4
Second order moment matrix reads

$$
M_{2}^{2}(y)=\left[\begin{array}{c|ll|lll}
1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
\hline y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
\hline y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{array}\right]
$$

Constraints are also relaxed with additional variables Second LMI features feasible set included in first LMI feasible set, thus providing a tighter relaxation

Numerical example (1)

Quadratic problem 3.5 in [Floudas/Pardalos 99]

$$
\begin{array}{ll}
\min & -2 x_{1}+x_{2}-x_{3} \\
\mathrm{s.t.} & x_{1}\left(4 x_{1}-4 x_{2}+4 x_{3}-20\right)+x_{2}\left(2 x_{2}-2 x_{3}+9\right) \\
& +x_{3}\left(2 x_{3}-13\right)+24 \geq 0 \\
& x_{1}+x_{2}+x_{3} \leq 4, \quad 3 x_{2}+x_{3} \leq 6 \\
& 0 \leq x_{1} \leq 2, \quad 0 \leq x_{2}, \quad 0 \leq x_{3} \leq 3 .
\end{array}
$$

To define this problem with GloptiPoly we use the following Matlab/Maple script

$$
\begin{aligned}
& \text { >> } \mathrm{P}=\text { defipoly(\{'min }-2 * x 1+x 2-x 3^{\prime}, \ldots \\
& \text { ['x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)' ... } \\
& \text { ' }+\mathrm{x} 3 *(2 * x 3-13)+24>=0 \text { '] , . . } \\
& \text { ' } \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3<=4 \text { ', ' } 3 * \mathrm{x} 2+\mathrm{x} 3<=6 \text { ', ... } \\
& \text { '0<=x1', 'x1<=2', '0<=x2', '0<=x3', 'x3<=3'\}, ... } \\
& \text { 'x1,x2,x3'); }
\end{aligned}
$$

To solve the first LMI relaxation we type

$$
\begin{aligned}
& \text { >> output }= \\
& \text { output }= \\
& \text { status: } 0 \\
& \text { crit: }-6.0000 \\
& \text { sol: }\}
\end{aligned}
$$

Field status $=0$ indicates that it is not possible to detect global optimality with this LMI relaxation, hence crit $=-6.0000$ is a lower bound on the global optimum

Numerical example (2)

Next we try to solve the second, third and fourth LMI relaxations

```
>> output = gloptipoly(P,2)
output =
    status: 0
        crit: -5.6923
        sol: {}
    >> output = gloptipoly(P,3)
    output =
        status: 0
        crit: -4.0685
        sol: {}
>> output = gloptipoly(P,4)
output =
    status: 1
        crit: -4.0000
            sol: {[3x1 double] [3x1 double]}
>> output.sol{:}
ans =
    2 . 0 0 0 0
        ans =
                                0.5000
    0.0000
    0.0000
    0.0000
    3.0000
```

Both second and third LMI relaxations return tighter lower bounds on the global optimum

Eventually global optimality is reached at fourth LMI relaxation (certified by status $=1$)

GloptiPoly also returns two globally optimal solutions:

$$
x_{1}=2, x_{2}=0, x_{3}=0
$$

and

$$
x_{1}=0.5, x_{2}=0, x_{3}=3
$$

leading to

$$
\text { crit }=-4.0000
$$

Numerical example (3)

Number of LMI variables (M) and size of relaxed LMI problem (N) increase quickly with relaxation order:

Relaxation	LMI opt	M	N
1	-6.0000	9	24
2	-5.6923	34	228
3	-4.0685	83	1200
4	-4.0000	164	4425
5	-4.0000	285	12936
6	-4.0000	454	32144

..yet fourth LMI relaxation was solved in about 2.5 seconds on a PC Pentium IV 1.6 MHz

Complexity

d : overall polynomial degree $(2 \delta=d$ or $d+1)$
m : number of polynomial constraints
n : number of polynomial variables
M : number of LMI decision variables
N : size of LMI

$$
\begin{aligned}
& M=\binom{n+2 \delta}{2 \delta}-1 \\
& N=\binom{n+\delta}{\delta}+m\binom{n+\delta-1}{\delta-1}
\end{aligned}
$$

When n is fixed:

- M grows polynomially in $O\left(\delta^{n}\right)$
- N grows polynomially in $O\left(m \delta^{n}\right)$

Features

General features of GloptiPoly:

- Certificate of global optimality (rank checks)
- Automatic extraction of globally optimal solutions (multiple eigenvectors)
- 0-1 or ± 1 integer constraints on some of the decision variables (combinatorial optimization problems)
- Generation of input and output data in SeDuMi's format
- Generation of moment matrices associated with LMI relaxations (rank checks)
- User-defined scaling of decision variables
(to improve numerical behavior)
- Exploits sparsity of polynomial data

Benchmark examples
 Continuous problems

Mostly from Floudas/Pardalos 1999 handbook

About 80 \% of pbs solved with LMI relaxation of small order (typically 2 or 3) in less than 3 seconds on a PC Pentium IV at 1.6 MHz with 512 Mb RAM

Six-hump camel back function

Benchmark exmaples
 Discrete problems

From Floudas/Pardalos handbook and also Anjos' Ph.D (Univ Waterloo)

By perturbing criterion (destroys symmetry) global convergence ensured on 80% of pbs in less than 4 seconds

MAXCUT on antiweb $A W_{9}^{2}$ graph

Benchmark examples
 Polynomial systems of equations

From Verschelde's database and Frisco INRIA project Real coefficients \& solutions only

Out of 59 systems:

- 61% solved in $\mathrm{t}<10$ secs
- 20% solved in $10<\mathrm{t}<100$ secs
- 10% solved in $t \geq 100$ secs
- 9% out of memory

No criterion optimized
No enumeration of all solutions

Intersections of seventh and eighth degree polynomial curves

Part 2

Extracting solutions

Detecting global optimality

Global optimization problem

$$
\begin{aligned}
p^{\star}=\min _{x} & g_{0}(x) \\
\text { s.t. } & g_{i}(x) \geq 0, i=1,2 \ldots
\end{aligned}
$$

Let $\operatorname{deg} g_{i}(x)=2 d_{i}-1$ or $2 d_{i}$ and $d=\max _{i} d_{i}$
LMI relaxation of order k

$$
\begin{aligned}
p_{k}^{*}=\min _{y} & \sum_{\alpha}\left(g_{0}\right)_{\alpha} y_{\alpha} \\
\text { s.t. } & M_{k}(y) \succeq 0 \\
& M_{k-d_{i}}\left(g_{i} y\right) \succeq 0, i=1,2 . .
\end{aligned}
$$

with solution y_{k}^{*}
Hierarchy with convergence guarantee

$$
p_{d}^{*} \leq p_{d+1}^{*} \leq \cdots \leq p_{k^{*}}^{*}=p^{*} .
$$

for (generally) small k^{*}
Sufficient condition for global optimality rank of moment matrices

$$
\operatorname{rank} M_{k}\left(y_{k}^{*}\right)=\operatorname{rank} M_{k-d}\left(y_{k}^{*}\right)
$$

Need for extraction procedures

Because rank condition is only sufficient any other global optimality certificate is welcome

Solution extraction procedure suggested by Arnold Neumaier

Inspired by Chesi, Garulli, Tesi, Vicino (IEEE CDC 2000)

Based on the work by Corless, Gianni, Trager (ACM ISSAC 1997)

Key ideas:

- Cholesky decomposition of moment matrix
- column reduced echelon form
- computation of common eigenvalues

Who is Cholesky ?

André Louis Cholesky (1875-1918) was a French military officer (graduated from Ecole Polytechnique) involved in geodesy

He proposed a new procedure for solving least-squares triangulation problems

He fell for his country during World War I

Work posthumously published in
Commandant Benoît. Procédé du Commandant Cholesky. Bulletin Géodésique, No. 2, pp. 67-77, Toulouse, Privat, 1924.

Nice biography in
C. Brezinski. André Louis Cholesky. Bulletin of the Belgian Mathematical Society, Vol. 3, pp. 45-50, 1996.

I. - MOTICES SCIENTIFIQUES

Commandant BENOH'

NOTE SUR UNE METHODE DE RÉSOLUTION DES E EQUATIONS NORMALES PROVENANT DE L'APPLICATION DE La méthode des moindres carrés a di systeme D'ĖQUATIONS LINÉAIRES EN NOMBRE INFÉRIEUR A CELUI DES INGONNUES. - APPLICATION DE LA METHODE A LA RÉSOLJTION DUN SYSTEME DEFINI D'ÉQUATIONS LINÉAIRES.

iProcedé du Commandant Chonesky *.!

L: Gummandant d'Artillerie Cholesky, du Service giographique de l'armee, tui pendaut la grande ghterti, a imagind, au cours do secherelaes sur la compersalion des riseatr frodestiques, urn procerctut très ingétienx do résolution des equations dites nommales, obtentes par application de la mélhode des moindues carrés à des équations lineoires en nombre inféreur a celui des inconnues, Il on a conclu une méthode générale de résolution des équations linéai ress,
Nous suivrons, pour tidenapnstration de cette methode, la progression mome qui a serf an Commendant Cholesky pour

1. Dr liatitlerie coloniale, ancien ompier geodésien an Seryice geographique de I'zarméset aus Service géographique de l'Indo-Ghine. Membre du Comite national français de Gbedésie et Gúphysique.
a. Sur te Commandant Clotesty, tue a lennemi le 31 aodt ige

Cholesky factorization

Extract Cholesky factor V of moment matrix

$$
M_{k}\left(y_{k}^{\star}\right)=V V^{\prime}
$$

Matrix V has r columns, corresponding to r globally optimal solutions $x_{j}^{\star}, j=1,2, \ldots, r$ (provided global optimum was reached)

Denote

$$
v=\left[1 x_{1} x_{2} \ldots x_{n} x_{1}^{2} x_{1} x_{2} \ldots x_{1} x_{n} x_{2}^{2} x_{2} x_{3} \ldots x_{n}^{2} \ldots x_{n}^{k}\right]^{\prime}
$$

a basis for polynomials of degree at most k
By definition of the moment matrix:

$$
M_{k}\left(y_{k}^{\star}\right)=V^{\star}\left(V^{\star}\right)^{\prime}
$$

where

$$
V^{\star}=\left[\begin{array}{llll}
v_{1}^{*} & v_{2}^{*} & \cdots & v_{r}^{*}
\end{array}\right]
$$

and v_{j}^{\star} is polynomial basis v evaluated at solution x_{j}^{\star}
Extracting solutions amounts to finding linear transformation between Cholesky factors V and V^{\star}

Reduction to column echelon form

Next step is reduction of V into column echelon form

$$
U=\left[\begin{array}{ccccc}
1 & & & & \\
\star & & & & \\
0 & 1 & & & \\
0 & 0 & 1 & & \\
\star & \star & \star & & \\
& \vdots & & \ddots & \\
0 & 0 & 0 & \cdots & 1 \\
\star & \star & \star & \cdots & \star \\
& \vdots & & & \vdots \\
\star & \star & \star & \cdots & \star
\end{array}\right]
$$

by Gaussian elimination with column pivoting
Each row in $U=$ monomial x_{α} in basis v
Pivot entry in $U=$ monomial $x_{\beta_{j}}$ in generating basis of the set of solutions

In other words, denoting

$$
w=\left[\begin{array}{llll}
x_{\beta_{1}} & x_{\beta_{2}} & \ldots & x_{\beta_{r}}
\end{array}\right]^{\prime}
$$

it holds

$$
v=U w
$$

for all solutions $x_{j}^{*}, j=1,2, \ldots, r$

Multiplication matrices

For each first degree monomial x_{i} extract from U the r-by- r multiplication matrix N_{i} containing coefficients of product monomials $x_{i} x_{\beta_{j}}$ in generating basis w, i.e. such that

$$
N_{i} w=x_{i} w \quad i=1,2, \ldots, n
$$

If monomial $x_{i} x_{\beta_{j}}$ is not represented in U, then extraction algorithm fails and order k of LMI relaxation must be increased

Given matrices N_{i} finding scalars x_{i} is an eigenvalue problem

Extracting solutions amounts to solving an eigenvalue problem

Eigenvectors w are shared by matrices N_{i} so it is a particular common eigenvalue problem

Common eigenvalue problem

Build combination of multiplication matrices

$$
N=\sum_{i=1}^{n} \lambda_{i} N_{i}
$$

where λ_{i} are random positive numbers (summing up to one)

Compute ordered Schur decomposition

$$
N=Q T Q^{\prime}
$$

where

$$
Q=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{r}
\end{array}\right]
$$

is orthogonal and T upper triangular
Finally, due to orthogonality of vectors q_{i}, i th entry in solution vector x_{j}^{\star} is given by

$$
\left(x_{j}^{*}\right)_{i}=q_{j}^{\prime} N_{i} q_{j}, i=1,2, \ldots, n, j=1,2, \ldots, r
$$

Number of solutions

No easy way to control number of extracted solutions in case of multiple global optima

Number of solutions $=$ rank of moment matrix, but enforcing rank in an LMI is a difficult nonconvex problem

By default GloptiPoly minimizes the trace (sum of eigenvalues) of the moment matrix, which may indirectly minimize the rank (number of non-zero eigenvalues)

Practical experiments reveal that low rank moment matrices ensure faster convergence of LMI relaxations to global optimum

First example

Non-convex quadratic optimization

$$
\begin{aligned}
p^{*}=\max _{x} & \left(x_{1}-1\right)^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-3\right)^{2} \\
\text { s.t. } & \left(x_{1}-1\right)^{2} \leq 1 \\
& \left(x_{1}-x_{2}\right)^{2} \leq 1 \\
& \left(x_{2}-3\right)^{2} \leq 1
\end{aligned}
$$

First LMI relaxation yields $p_{1}^{\star}=-3$ and rank $M_{1}\left(y^{*}\right)=3$, extraction algorithm fails due to incomplete monomial basis

Second LMI relaxation yields $p_{2}^{\star}=-2$ and

$$
\operatorname{rank} M_{1}\left(y^{*}\right)=\operatorname{rank} M_{2}\left(y^{*}\right)=3
$$

so rank condition ensures global optimality

First example: Cholesky factor

Moment matrix of order $k=2$ reads
$M_{2}\left(y^{*}\right)=\left[\begin{array}{rrrrrr}1.0000 & 1.5868 & 2.2477 & 2.7603 & 3.6690 & 5.2387 \\ 1.5868 & 2.7603 & 3.6690 & 5.1073 & 6.5115 & 8.8245 \\ 2.2477 & 3.6690 & 5.2387 & 6.5115 & 8.8245 & 12.7072 \\ 2.7603 & 5.1073 & 6.5115 & 9.8013 & 12.1965 & 15.9960 \\ 3.6690 & 6.5115 & 8.8245 & 12.1965 & 15.9960 & 22.1084 \\ 5.2387 & 8.8245 & 12.7072 & 15.9960 & 22.1084 & 32.1036\end{array}\right]$

Positive semidefinite with rank 3

Cholesky factor

$$
V=\left[\begin{array}{rrr}
-0.9384 & -0.0247 & 0.3447 \\
-1.6188 & 0.3036 & 0.2182 \\
-2.2486 & -0.1822 & 0.3864 \\
-2.9796 & 0.9603 & -0.0348 \\
-3.9813 & 0.3417 & -0.1697 \\
-5.6128 & -0.7627 & -0.1365
\end{array}\right]
$$

satisfies

$$
M_{k}\left(y_{k}^{\star}\right)=V V^{\prime}
$$

First example: column echelon form

Gaussian elimination on V yields

$$
U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 3 & 0 \\
-4 & 2 & 2 \\
-6 & 0 & 5
\end{array}\right] \quad \begin{gathered}
1 \\
1
\end{gathered} x_{1} \quad x_{2} . \begin{gathered}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{gathered}
$$

which means that solutions to be extracted satisfy the system of polynomial equations

$$
\begin{aligned}
x_{1}^{2} & =-2+3 x_{1} \\
x_{1} x_{2} & =-4+2 x_{1}+2 x_{2} \\
x_{2}^{2} & =-6+5 x_{2}
\end{aligned}
$$

in polynomial basis $1, x_{1}, x_{2}$

First example: extraction

Multiplication matrices of monomials x_{1} and x_{2} in polynomial basis $1, x_{1}, x_{2}$ are extracted from U :

$$
N_{1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-2 & 3 & 0 \\
-4 & 2 & 2
\end{array}\right], \quad N_{2}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
-4 & 2 & 2 \\
-6 & 0 & 5
\end{array}\right]
$$

Random linear combination

$$
N=0.6909 N_{1}+0.3091 N_{2}
$$

Schur decomposition of $N=Q T Q^{\prime}$ yields

$$
Q=\left[\begin{array}{rrr}
0.4082 & 0.1826 & -0.8944 \\
0.4082 & -0.9129 & -0.0000 \\
0.8165 & 0.3651 & 0.4472
\end{array}\right]
$$

Projections of orthogonal columns of Q onto N yield the 3 expected globally optimal solutions

$$
x_{1}^{*}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] x_{2}^{*}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] x_{3}^{*}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Second example: minimum trace LMI

Polynomial system of equations

$$
\begin{array}{r}
x_{1}^{2}+x_{2}^{2}=1 \\
x_{1}^{3}+\left(2+x_{3}\right) x_{1} x_{2}+x_{2}^{3}=1 \\
x_{3}^{2}=2
\end{array}
$$

No objective function, so GloptiPoly minimizes the trace of the moment matrix

Extraction on 2nd LMI relaxation fails due to incomplete basis

3rd LMI relaxation yields two globally optimal solutions

$$
x_{1}^{*}=\left[\begin{array}{r}
0.5826 \\
-0.8128 \\
-1.4142
\end{array}\right] \quad x_{2}^{*}=\left[\begin{array}{r}
-0.8128 \\
0.5826 \\
-1.4142
\end{array}\right]
$$

Second example: zero objective function

With zero objective function GloptiPoly at the 3rd LMI relaxation yields $\operatorname{rank} M_{1}\left(y^{*}\right)=4 \neq \operatorname{rank} M_{2}\left(y^{*}\right)=\operatorname{rank} M_{3}\left(y^{*}\right)=6$ so rank condition cannot ensure optimality

However, extraction algorithm returns 6 globally optimum solutions

$$
\begin{aligned}
& x_{1}^{*}=\left[\begin{array}{r}
-0.8128 \\
0.5826 \\
-1.4142
\end{array}\right] \quad x_{2}^{*}=\left[\begin{array}{r}
0.5826 \\
-0.8128 \\
-1.4142
\end{array}\right] \\
& x_{3}^{*}=\left[\begin{array}{r}
0.0000 \\
1.0000 \\
-1.4142
\end{array}\right] \quad x_{4}^{*}=\left[\begin{array}{r}
1.0000 \\
0.0000 \\
-1.4142
\end{array}\right] \\
& x_{5}^{*}=\left[\begin{array}{l}
0.0000 \\
1.0000 \\
1.4142
\end{array}\right] \quad x_{6}^{*}=\left[\begin{array}{l}
1.0000 \\
0.0000 \\
1.4142
\end{array}\right]
\end{aligned}
$$

thus proving global optimality of LMI

Motzkin-like polynomial

Polynomial

$$
\frac{1}{27}+x^{2} y^{2}\left(x^{2}+y^{2}-1\right)
$$

vanishes at $|x|=|y|=\sqrt{3} / 3$ and remains globally non-negative for real x and y but cannot be written as an SOS

Some kind of magic in GloptiPoly

GloptiPoly finds approximate SOS decomposition of Motzkin polynomial

With 8th LMI relaxation we obtain

$$
\frac{1}{27}+x^{2} y^{2}\left(x^{2}+y^{2}-1\right)=\sum_{i=1}^{32} a_{i}^{2} q_{i}^{2}(x, y)+\varepsilon r(x, y)
$$

where $\left\|q_{i}\right\|_{2}=\|r\|_{2}=1$
and $\varepsilon \leq 10^{-8}<a_{i}^{2}$, deg $q_{i} \leq 8$
Cone of SOS polynomials is dense in set of polynomials nonnegative over box [-1,1]

Numerical inaccuracy helps finding higher degree SOS polynomial close to Motzkin polynomial

Constrained Motzkin polynomial

Additional redundant constraint

$$
x^{2}+y^{2} \leq R^{2}
$$

with $R^{2}>2 / 3$ (includes the 4 global minima)

For $R=1$ at the 3rd LMI relaxation we obtain

$$
\begin{aligned}
& \frac{1}{27}+x^{2} y^{2}\left(x^{2}+y^{2}-1\right)= \\
& \sum_{i=1}^{6} a_{i}^{2} q_{i}^{2}(x, y)+\left(R^{2}-x^{2}-y^{2}\right) \sum_{i=1}^{2} b_{i}^{2} r_{i}^{2}(x, y)
\end{aligned}
$$

where deg $q_{i} \leq 3, \operatorname{deg} r_{i} \leq 2$

$$
\begin{array}{c|cccccc}
R^{2} & 1 & 2 & 3 & 4 & \cdots & \infty \\
\hline \text { LMI } & 3 & 4 & 5 & 6 & \cdots & 8
\end{array}
$$

Relevance of feasibility radius in SDP solver and GloptiPoly

Conclusions

GloptiPoly is a general-purpose software with a user-friendly interface

Pedagogical flavor, black-box approach, no expert tuning required to cope with very distinct applied maths and engineering pbs

Automatic detection of global optimality and extraction of solutions

Not a competitor to highly specialized codes for solving polynomial systems of equations or large combinatorial optimization pbs

Numerical conditioning (Chebyshev basis) and problem structure (Hankel/Toeplitz matrices) deserve further study

See also Parrilo's SOSTOOLS software

Further news

Major extension of GloptiPoly planned (hopefully) for winter 2003

- Matlab classes for multivariate polynomials and moment matrices
- general moment problems
- performance analysis for stochastic systems in ecology and finance
- robust control problems
- relaxations of robust LMIs

Research efforts

- bilinearity in decision variables
- tailored interior-point algorithms

Regularly updated information at
www.laas.fr/~henrion
www.laas.fr/~lasserre

