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Abstract. GloptiPoly is a Matlab/SeDuMi add-on to build and solve
convex linear matrix inequality relaxations of the (generally non-convex)
global optimization problem of minimizing a multivariable polynomial
function subject to polynomial inequality, equality or integer constraints.
It generates a series of lower bounds monotonically converging to the
global optimum. Global optimality is detected and isolated optimal so-
lutions are extracted automatically. In this paper we first briefly de-
scribe the theoretical background underlying the relaxations. Following
a small illustrative example of the use of GloptiPoly, we then evaluate
its performance on benchmark test examples from global optimization,
combinatorial optimization and polynomial systems of equations.

1 Introduction

GloptiPoly is a Matlab3 freeware that builds and solves convex linear matrix
inequality (LMI, see [VB96]) relaxations of (generally non-convex) global opti-
mization problems with multivariable real-valued polynomial objective function
and constraints. The software solves a series of convex relaxations of increas-
ing size, whose optima are guaranteed to converge monotonically to the global
optimum of the original non-convex optimization problem.

GloptiPoly solves LMI relaxations with the help of the semidefinite pro-
gramming (SDP) solver SeDuMi [SDM99], taking full advantage of sparsity and
special problem structure. Optionally, a user-friendly interface called DefiPoly,
based on Matlab Symbolic Math Toolbox, can be used jointly with GloptiPoly
to define the optimization problems symbolically with a Maple-like syntax.

GloptiPoly is aimed at small- and medium-scale problems. Numerical experi-
ments illustrate that for most of the problem instances available in the literature,
the global optimum is reached exactly with LMI relaxations of medium size, at
a relatively low computational cost.
3 Matlab is a trademark of The MathWorks, Inc.
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GloptiPoly requires Matlab version 5.3 or higher [Mat01], together with the
freeware solver SeDuMi version 1.05 [SDM99]. For installation instructions and
a comprehensive user’s guide, see

www.laas.fr/∼henrion/software/gloptipoly

2 Theoretical background

GloptiPoly is based on the theory of positive polynomials and moments described
in [Las01,Las02] and briefly summarized in the sequel.

2.1 Introduction

Consider the general nonlinear optimization problem

P → p∗ := min
x∈Rn
{g0(x) | gk(x) ≥ 0, k = 1, . . .m} (1)

where all the gk(x) : Rn → R are real-valued polynomials of R[x1, . . . , xn]. Equal-
ity constraints are allowed via two opposite inequalities, so that (1) describes all
optimization problems that involve polynomials. In particular, it encompasses
non-convex quadratic problems as well as discrete optimization problems (e.g.
0-1 nonlinear programming problems).

The idea behind the methodology of GloptiPoly is to build up a sequence
of convex semidefinite relaxations of P of increasing size and whose sequence of
optimal values converges to the global optimal value p∗ = inf P.

The original idea can be traced back to the pioneering Reformulation Lin-
earization Technique (RLT) of [SA90,SA99] where additional redundant con-
straints (products of the original ones) are introduced and linearized in a higher
space (lifting) by introducing additional variables (e.g. xixj = yij) so as to ob-
tain a LP-relaxation. Convergence was proved for 0-1 nonlinear programs. Later,
Shor [Sho87,Sho98] also proposed a lifting procedure to reduce any polynomial
programming problem to a quadratic one and then use a semidefinite relaxation
to obtain a lower bound of p∗, see also the more recent work [Nes00]. Then,
the striking certified good approximation of Goemans and Williamson for the
MAX-CUT problem [GW95], obtained from a simple SDP (or LMI) relaxation
definitely excited the curiosity of researchers for SDP relaxations. However, ex-
cepted for the LP-relaxations of Sherali and Adams in 0-1 problems, no proof of
convergence was provided.

The proof of convergence of the LMI relaxations defined in [Las01,Las02] and
used in GloptiPoly is based on recent results of real algebraic geometry concern-
ing the representation of polynomials, strictly positive on a semi-algebraic set;
see also [Par00] for a related approach. It turns out that the primal and dual
LMI relaxations of GloptiPoly match both sides of the dual theories of moments
and positive polynomials.

Indeed, while the primal relaxations aim at founding the moments of a prob-
ability measure with mass concentrated on some global minimizers of P, the
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dual relaxations aim at representing the polynomial g0(x)− p∗, nonnegative on
the (semi-algebraic) feasible set K of P, as a linear combination of the gi’s with
weights being polynomials that are sums of squares, as in Putinar’s representa-
tion of polynomials, strictly positive on a semi-algebraic set [Put93].

In brief, the primal LMI relaxations {Qi} of P are relaxations of the problem
(equivalent to P)

p∗ = min
µ
{
∫
g0 dµ |µ(K) = 1},

where the minimum is taken over all the probability measures on the feasible set
K of P, whereas the dual relaxations {Q∗i } solve

max
ρi,{qk}

{ρi | g0(x)− ρi = q0 +
m∑
k=1

gk(x)qk(x)}, (2)

where the unknowns {qk} are polynomials, all sums of squares, and with degree
at most 2i. For a brief account of these two dual points of view, the interested
reader is referred to [Las01,Las02] and the references therein.

The increasing size of the relaxations reflects the effort in the degree 2i needed
in (2) for ρi to be as closed as desired to p∗ (and often to be exactly equal to
p∗).

2.2 Brief description of the methodology

Notation and definitions: Given any two real-valued symmetric matrices
A,B let 〈A,B〉 denote the usual scalar product trace(AB) and let A � B (resp.
A � B) stand for A−B positive semidefinite (resp. A−B positive definite). Let

1, x1, x2, . . . xn, x
2
1, x1x2, . . . , x1xn, x

2
2, x2x3, . . . , x

2
n, . . . , x

r
1, . . . , x

r
n, (3)

be a basis for the space Ar of real-valued polynomials of degree at most r, and
let s(r) be its dimension. Therefore, a polynomial p : Rn → R of degree r is
written

p(x) =
∑
α

pαx
α, x ∈ Rn,

where

xα = xα1
1 xα2

2 . . . xαnn , with
n∑
i=1

αi = k,

is a monomial of degree k with coefficient pα. Let p = {pα} ∈ Rs(r) be the vector
of coefficients of the polynomial p(x) in the basis (3).

Given an s(2r)-sequence (1, y1, . . . , ), let Mr(y) be the moment matrix of
dimension s(r) with rows and columns indexed by (3). For instance, to fix ideas,
consider the 2-dimensional case. The moment matrix Mr(y) is the block matrix
{Mi,j(y)}0≤i,j≤r defined by

Mi,j(y) =


yi+j,0 yi+j−1,1 . . . yi,j
yi+j−1,1 yi+j−2,2 . . . yi−1,j+1

. . . . . . . . . . . .
yj,i yi+j−1,1 . . . y0,i+j

 .
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Thus, with n = 2 and r = 2, one obtains

M2(y) =


1 y10 y01 y20 y11 y0,2

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


Another, more intuitive way of constructing Mr(y) is as follows. If Mr(y)(1, i) =
yα and Mr(y)(j, 1) = yβ , then Mr(y)(i, j) = yα+β , with α + β = (α1 +
β1, · · · , αn + βn). This defines a bilinear form 〈., .〉y on Ar, by 〈q(x), v(x)〉y :=
〈q,Mr(y)v〉, q(x), v(x) ∈ Ar, and if y is a sequence of moments of some measure
µy, then

〈q,Mr(y)q〉 =
∫
q(x)2 µy(dx) ≥ 0, (4)

so that Mr(y) � 0.
If the entry (i, j) of the matrix Mr(y) is yβ , let β(i, j) denote the subscript

β of yβ . Next, given a polynomial θ(x) : Rn → R with coefficient vector θ, we
define the matrix Mr(θy) by

Mr(θy)(i, j) =
∑
α

θαy{β(i,j)+α}. (5)

For instance, with

M1(y) =

 1 y10 y01

y10 y20 y11

y01 y11 y02

 and x 7→ θ(x) := a− x2
1 − x2

2,

we obtain

M1(θy) =

 a− y20 − y02 ay10 − y30 − y12 ay01 − y21 − y03

ay10 − y30 − y12 ay20 − y40 − y22 ay11 − y31 − y13

ay01 − y21 − y03 ay11 − y31 − y13 ay02 − y22 − y04

 .
In a manner similar to what we have in (4), if y is a sequence of moments of
some measure µy, then

〈q,Mr(θy)q〉 =
∫
θ(x)q(x)2 µy(dx),

for every polynomial q(x) : Rn → R with coefficient vector q ∈ Rs(r). Therefore,
Mr(θy) � 0 whenever µy has its support contained in the set {θ(x) ≥ 0}. The
matrix Mr(θy) is called a localizing matrix.

TheK-moment problem identifies those sequences y that are moment-sequences
of a measure with support contained in the semi-algebraic set K. In duality with
the theory of moments is the theory of representation of positive polynomials,
which dates back to Hilbert’s 17th problem. This fact will be reflected in the
semidefinite relaxations proposed later.
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LMI relaxations: Let P be the problem defined in (1) and let

K := {x ∈ Rn | gk(x) ≥ 0, k = 1, . . . ,m} (6)

be the feasible set associated with P.
Depending on its parity, let degree(gk) = 2vk−1 or 2vk, for all k = 0, 1, . . . ,m.

When needed below, for i ≥ maxk vk, the vectors gk ∈ Rs(2vk) are extended to
vectors of Rs(2i) by completing with zeros. As we minimize g0(x) we may and
will assume that its constant term is zero, that is, g0(0) = 0.

For i ≥ maxk∈{0,m} vk, consider the following family {Qi} of convex positive
semidefinite programs, or LMI relaxations of P:

Qi


min
y

∑
α

(g0)αyα

Mi(y) � 0
Mi−vk(gky) = 0, k = 1, . . . ,m,

with respective dual problems

Q
∗
i


min

X�0,Zk
−X(1, 1)−

m∑
k=1

gk(0)Zk(1, 1)

〈X,Bα〉+
m∑
k=1

〈Zk, Ckα〉 = (g0)α, ∀α 6= 0

where X,Zk are real-valued symmetric matrices, the “dual variables” associated
with the constraints Mi(y) � 0 and Mi−vk(gky) � 0 respectively, and where we
have written

Mi(y) =
∑
α

Bαyα; Mi−vk(gky) =
∑
α

Ckαyα, k = 1, . . . , n,

for appropriate real-valued symmetric matrices Bα, Ckα, k = 1, . . . , n.
In the standard terminology, the constraint Mi(y) � 0 is called a linear

matrix inequality (LMI) andQi and its dualQ∗i are so-called positive semidefinite
programs, the LMI relaxations of P. The reader interested in more details on SDP
and LMIs is referred to [VB96] and the many references therein.

Remark: In the case of 0-1 programming (and more generally, discrete op-
timization problems) the relaxations Qi simplify. Indeed, instead of explicitly
stating the LMIs associated with the integrality constraints x2

i = 1, i = 1, ..., n,
it suffices to replace (in all the other LMIs) every occurrence of a variable yα
by yβ with βi = 1 if αi >= 1, for all i = 1, ..., n. This significantly reduces the
number of variables in the resulting relaxation Qi.

Convergence: We make the following assumption on the set K defined in (6).
Assumption A:K is compact and there exist a polynomial u ∈ R[x1, . . . , xn]

of the form

x 7→ u(x) := u0(x) +
m∑
i=1

ui(x)gi(x), (7)



6 Henrion and Lasserre

for some polynomials {ui}, all sums of squares, and such that {x ∈ Rn |u(x) ≥ 0}
is compact.

Assumption A is satisfied in many cases of interest. For instance, it holds as
soon as {x ∈ Rn | gk(x) ≥ 0} is compact for some k ∈ {1, . . . ,m}, or when all
the gi are linear and K is compact (hence a convex polytope), for 0-1 (and more
generally discrete) programs. In addition, if one knows that a global minimizer x∗

of P satisfies ‖x∗‖ ≤M for some M > 0, then adding the constraint M−‖x‖ ≥ 0
in the definition (6) of K will ensure that Assumption A holds.

Under Assumption A it was proved in [Las01] that inf Qi ↑ inf P as i→∞.
Moreover, if g0(x)− p∗ has the representation (7), that is,

x 7→ g0(x) := q0(x) +
m∑
i=1

qi(x)gi(x),

for some polynomials {qi}, all sums of squares, and of degree at most 2i0, then
for all j ≥ i0,

supQ∗j = maxQ∗j = minQj = inf Qj = minP = p∗.

In addition, any optimal solution of Qj identifies the vector of moments of a
probability measure with mass concentrated on some global minimizers of P.

3 Illustration

In this section we describe a small numerical examples to illustrate the basic use
of GloptiPoly. We consider non-convex quadratic problem [Flo99, Pb. 3.5]:

min −2x1 + x2 − x3

s.t. x1(4x1 − 4x2 + 4x3 − 20) + x2(2x2 − 2x3 + 9) + x3(2x3 − 13) + 24 ≥ 0
x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6
0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3.

To define this problem with GloptiPoly we use the following Matlab script:

>> P = defipoly({’min -2*x1+x2-x3’,...
’x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)+x3*(2*x3-13)+24>=0’,...
’x1+x2+x3<=4’, ’3*x2+x3<=6’,...
’0<=x1’, ’x1<=2’, ’0<=x2’, ’0<=x3’, ’x3<=3’}, ’x1,x2,x3’);

In the above script, we use features of the Symbolic Math Toolbox version 2.1,
the Matlab gateway to the kernel of Maple V [Map01]. It is also possible to enter
problems into GloptiPoly without symbolic computations, see [Glo02] for more
information.

To solve the first LMI relaxation of the quadratic problem, we type:

>> output = gloptipoly(P)
output =

status: 0
crit: -6.0000
sol: {}
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Field status = 0 indicates that it is not possible to detect global optimality
with this LMI relaxation, hence crit = -6.0000 is a lower bound on the global
optimum.

Next we try to solve the second, third and fourth LMI relaxations of the
quadratic problem with the instructions:

>> output = gloptipoly(P,2) >> output = gloptipoly(P,3)
output = output =

status: 0 status: 0
crit: -5.6923 crit: -4.0685
sol: {} sol: {}

>> output = gloptipoly(P,4)
output =

status: 1
crit: -4.0000
sol: {[3x1 double] [3x1 double]}

>> output.sol{:}
ans = ans =

2.0000 0.5000
0.0000 0.0000
0.0000 3.0000

Both the second and third LMI relaxations return tighter lower bounds on the
global optimum. Eventually global optimality is reached at the fourth LMI re-
laxation (certified by status = 1). GloptiPoly also returns two globally optimal
solutions x1 = 2, x2 = 0, x3 = 0 and x1 = 0.5, x2 = 0, x3 = 3 leading to crit
= -4.0000.

As shown below, the number of LMI variables and the size of the relaxed
LMI problem, hence the overall computational time, increase quickly with the
relaxation order:

LMI order 1 2 3 4 5 6
LMI optimum -6.0000 -5.6923 -4.0685 -4.0000 -4.0000 -4.0000
LMI variables 9 34 83 164 285 454
LMI size 24 228 1200 4425 12936 32144

4 Features

As shown by the above numerical example, GloptiPoly is designed to solve an
LMI relaxation of a given order, so it can be invoked iteratively with increasing
orders until the global optimum is reached. Asymptotic convergence of the op-
timal values of the LMI relaxations to the global optimal value of the original
problem is ensured when the compact setK of feasible solutions satisfies Assump-
tion A. This condition is satisfied in many practical optimization problems, see
[Las01,Las02].

General features of GloptiPoly are listed below:
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– Certificate of global optimality
– Automatic extraction of globally optimal solutions
– 0-1 or ±1 integer constraints on some of the decision variables (combinatorial

optimization problems)
– Generation of input and output data in SeDuMi’s format
– Generation of moment matrices associated with LMI relaxations
– User-defined scaling of decision variables
– Exploits sparsity of polynomial data.

Finally note that for technical reasons there is currently a limitation on the
number of variables handled by GloptiPoly. For example, the current version of
GloptiPoly is not able to handle quadratic problems with more than 19 variables.
This limitation should be removed soon. For more details, see [Glo02].

5 Performance

All the computations in this section were carried out with Matlab 6.1 and Se-
DuMi 1.05 with relative accuracy pars.eps = 1e-9 on a PC with a Pentium
IV 1.6 Mhz processor with 512 Mb RAM.

5.1 Continuous optimization problems

We report in Table 1 the performance of GloptiPoly on a series of benchmark
non-convex continuous optimization problems. For each problem we indicated
the number of decision variables ’var’, the number of inequality or equality con-
straints ’cstr’, and the maximum degree arising in the polynomial expressions
’deg’. In almost all reported instances the global optimum was reached exactly
by an LMI relaxation of small order, reported in the column entitled ’order’.
CPU times are in seconds. ’LMI var’ is the dimension of SeDuMi dual vector y,
whereas ’LMI size’ is the dimension of SeDuMi primal vector x, see [SDM99].
As indicated by the label ’dim’ in the rightmost column, quadratic problems
2.8, 2.9 and 2.11 in [Flo99] involve more than 19 variables and could not be
handled by the current version of GloptiPoly. Except for problems 2.4 and 3.2,
the computational load is moderate.

5.2 Discrete optimization problems

We also report the performance of GloptiPoly on a series of small-size combina-
torial optimization problems. In Table 2 we first let GloptiPoly converge to the
global optimum, in general extracting several solutions. The number of extracted
solutions is reported in the column entitled ’sol’.

Then, we slightly perturbed the criterion to be optimized in order to destroy
the problem symmetry. Proceeding this way, the optimum solution is generically
unique and convergence to the global optimum is ensured more easily, cf. Table
3. See also [Glo02] for more details on this technique.
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5.3 Polynomial systems of equations

Multivariate polynomial systems of equations can be solved with GloptiPoly. We
tested its performance on a series of benchmark examples taken from [Ver99]
and [Fri00], where we removed examples featuring complex coefficients (recall
that GloptiPoly handles real-valued polynomials only). Short descriptions of the
benchmarks are given in Tables 4 and 5.

We carried out our experiments by solving feasibility problems, i.e. no crite-
rion was optimized. We did not attempt to count or enumerate all the solutions
to the polynomial systems of equations, since this is outside the scope of Glop-
tiPoly. Note that in the absence of a criterion to optimize, GloptiPoly solves
the LMI relaxations by minimizing the trace of the moment matrix. Alternative
criteria (such as e.g. minimum coordinate or minimum Euclidean-norm solution)
are of course possible, but not investigated here.

Our results are reported in Tables 6 and 7. Column ’sol’ indicates the number
of solutions successfully extracted by GloptiPoly. In the last column the label
’mem’ means that the error message ’out of memory’ was issued by SeDuMi.
GloptiPoly successfully solved about 90% of the systems.

6 Conclusion

GloptiPoly is as a general-purpose software with a user-friendly interface to solve
in a unified way a wide range of small- to medium-size non-convex polynomial
optimization problems. As illustrated by extensive numerical examples, the main
strength of GloptiPoly is that no expert tuning is necessary to cope with very
distinct problems coming from different branches of engineering and applied
mathematics. GloptiPoly can be used as a black-box software, so it cannot be
considered as a competitor to highly specialized codes for solving e.g. sparse
polynomial systems of equations or large combinatorial optimization problems.

It is well-known that problems involving polynomial bases with monomials
of increasing powers are naturally badly conditioned. If lower and upper bounds
on the optimization variables are available as problem data, it may be a good
idea to scale all the intervals around one. Alternative bases such as Chebyshev
polynomials may also prove useful.

Finally, it would be instructive to compare GloptiPoly with the recently
developed software SOSTOOLS [SOS02], also invoking SeDuMi to solve sums of
squares optimization programs over polynomials, based on the theory described
in [Par00].
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T. Harding, J. L. Klepeis, C. A. Meyer, C. A. Schweiger. Handbook of Test Problems
in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht, 1999.
See titan.princeton.edu/TestProblems

[Fri00] The Numerical Algorithms Group Ltd. FRISCO - A Framefork for Integrated
Symbolic/Numeric Computation. European Commission Project No. 21-024, Esprit
Reactive LTR Scheme, 2000. See www.nag.co.uk/projects/frisco.html

[GW95] M. X. Goemans, D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, Vol. 42, pp. 1115–1145, 1995.

[Glo02] D. Henrion, J. B. Lasserre. GloptiPoly: Global Optimization over Polynomials
with Matlab and SeDuMi. LAAS-CNRS Report No. 02057, Toulouse, France, 2002.
Version 2.1 available at www.laas.fr/∼henrion/software/gloptipoly

[Las01] J. B. Lasserre. Global Optimization with Polynomials and the Problem of
Moments. SIAM Journal on Optimization, Vol. 11, No. 3, pp. 796–817, 2001.

[Las02] J. B. Lasserre. An Explicit Equivalent Positive Semidefinite Program for 0-1
Nonlinear Programs. SIAM Journal on Optimization, Vol. 12, No. 3, pp. 756–769,
2002.

[Map01] Waterloo Maple Software Inc. Maple V release 5. 2001. See
www.maplesoft.com

[Mat01] The MathWorks Inc. Matlab version 6.1. 2001. See www.mathworks.com

[Nes00] Y. Nesterov. Squared functional systems and optimization problems. Chap-
ter 17, pp. 405–440 in H. Frenk, K. Roos, T. Terlaky (Editors). High performance
optimization. Kluwer Academic Publishers, Dordrecht, 2000.

[Par00] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geome-
try Methods in Robustness and Optimization. PhD Thesis, California Institute of
Technology, Pasadena, California, 2000. See www.control.ethz.ch/∼parrilo

[Put93] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Uni-
versity Mathematics Journal, Vol. 42, pp. 969–984, 1993.

[SA90] H. D. Sherali, W. P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM Journal
on Discrete Mathematics, Vol. 3, pp. 411–430, 1990.

[SA99] H. D. Sherali, W. P. Adams. A reformulation-linearization technique for solv-
ing discrete and continuous nonconvex problems, Kluwer Academic Publishers, Dor-
drecht, 1999.

[Sho87] N. Z. Shor. Quadratic optimization problems. Tekhnicheskaya Kibernetika,
Vol. 1, pp. 128–139, 1987.

[Sho98] N. Z. Shor. Nondifferentiable Optimization and Polynomial Problems. Kluwer
Academic Publishers, Dordrecht, 1998.

[SDM99] J. F. Sturm. Using SeDuMi 1.02, a Matlab Toolbox for Optimization over
Symmetric Cones. Optimization Methods and Software, Vol. 11-12, pp. 625–653, 1999.
Version 1.05 available at fewcal.kub.nl/sturm/software/sedumi.html

[SOS02] S. Prajna, A. Papachristodoulou, P. A. Parrilo. SOSTOOLS: Sum of Squares
Optimization Toolbox for Matlab. California Institute of Technology, Pasadena, USA,
2002. Version 1.00 available at www.cds.caltech.edu/sostools



GloptiPoly 11

[VB96] L. Vandenberghe, S. Boyd. Semidefinite programming. SIAM Review, Vol. 38,
pp. 49–95, 1996.

[Ver99] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polyno-
mial systems by homotopy continuation. ACM Transactions on Mathematical Soft-
ware, Vol. 25, No. 2, pp. 251–276, 1999. Database of polynomial systems available at
www.math.uic.edu/∼jan/demo.html

problem var cstr deg LMI var LMI size CPU order

[Las01, Ex. 1] 2 0 4 14 36 0.13 2
[Las01, Ex. 2] 2 0 4 14 36 0.13 2
[Las01, Ex. 3] 2 0 6 152 2025 1.13 8
[Las01, Ex. 5] 2 3 2 14 63 0.22 2

[Flo99, Pb. 2.2] 5 11 2 461 7987 11.8 3
[Flo99, Pb. 2.3] 6 13 2 209 1421 1.86 2
[Flo99, Pb. 2.4] 13 35 2 2379 17885 1012 2
[Flo99, Pb. 2.5] 6 15 2 209 1519 1.58 2
[Flo99, Pb. 2.6] 10 31 2 1000 8107 67.7 2
[Flo99, Pb. 2.7] 10 25 2 1000 7381 75.3 2
[Flo99, Pb. 2.8] 20 10 2 - - - dim
[Flo99, Pb. 2.9] 24 10 2 - - - dim
[Flo99, Pb. 2.10] 10 11 2 1000 5632 45.3 2
[Flo99, Pb. 2.11] 20 10 2 - - - dim

[Flo99, Pb. 3.2] 8 22 2 3002 71775 3032 3
[Flo99, Pb. 3.3] 5 16 2 125 1017 1.20 2
[Flo99, Pb. 3.4] 6 16 2 209 1568 1.50 2
[Flo99, Pb. 3.5] 3 8 2 164 4425 2.42 4

[Flo99, Pb. 4.2] 1 2 6 6 34 0.17 3
[Flo99, Pb. 4.3] 1 2 50 50 1926 0.94 25
[Flo99, Pb. 4.4] 1 2 5 6 34 0.25 3
[Flo99, Pb. 4.5] 1 2 4 4 17 0.14 2
[Flo99, Pb. 4.6] 2 2 6 27 172 0.41 3
[Flo99, Pb. 4.7] 1 2 6 6 34 0.20 3
[Flo99, Pb. 4.8] 1 2 4 4 17 0.16 2
[Flo99, Pb. 4.9] 2 5 4 14 73 0.31 2
[Flo99, Pb. 4.10] 2 6 4 44 697 0.58 4

Table 1. Continuous optimization problems. CPU times and LMI relaxation orders
required to reach global optima.
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problem var cstr deg LMI var LMI size CPU order sol

QP [Flo99, Pb. 13.2.1.1] 4 4 2 10 29 0.10 1 1
QP [Flo99, Pb. 13.2.1.2] 10 0 2 385 3136 3.61 2 1

Max-Cut P1 [Flo99, Pb. 11.3] 10 0 2 847 30976 38.1 3 10
Max-Cut P2 [Flo99, Pb. 11.3] 10 0 2 847 30976 43.7 3 2
Max-Cut P3 [Flo99, Pb. 11.3] 10 0 2 847 30976 43.0 3 2
Max-Cut P4 [Flo99, Pb. 11.3] 10 0 2 847 30976 38.8 3 2
Max-Cut P5 [Flo99, Pb. 11.3] 10 0 2 - - - 4 dim
Max-Cut P6 [Flo99, Pb. 11.3] 10 0 2 847 30976 43.0 3 2
Max-Cut P7 [Flo99, Pb. 11.3] 10 0 2 847 30976 44.3 3 4
Max-Cut P8 [Flo99, Pb. 11.3] 10 0 2 847 30976 43.4 3 2
Max-Cut P9 [Flo99, Pb. 11.3] 10 0 2 847 30976 49.3 3 6

Max-Cut cycle C5 [Anj01] 5 0 2 31 676 0.19 3 10
Max-Cut complete K5 [Anj01] 5 0 2 31 961 0.19 4 20

Max-Cut 5-node [Anj01] 5 0 2 31 676 0.24 3 6
Max-Cut antiweb AW 2

9 [Anj01] 9 0 2 - - - 4 dim
Max-Cut 10-node Petersen [Anj01] 10 0 2 847 30976 39.6 3 10

Max-Cut 12-node [Anj01] 12 0 2 - - - 3 dim
Table 2. Discrete optimization problems. CPU times and LMI relaxation orders re-
quired to reach global optima and extract several solutions.

problem var cstr deg LMI var LMI size CPU order

QP [Flo99, Pb. 13.2.1.1] 4 4 2 10 29 0.06 1
QP [Flo99, Pb. 13.2.1.2] 10 0 2 847 30976 40.0 3

Max-Cut P1 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.10 2
Max-Cut P2 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.03 2
Max-Cut P3 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.98 2
Max-Cut P4 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.70 2
Max-Cut P5 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.41 2
Max-Cut P6 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.66 2
Max-Cut P7 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.70 2
Max-Cut P8 [Flo99, Pb. 11.3] 10 0 2 385 3136 3.33 2
Max-Cut P9 [Flo99, Pb. 11.3] 10 0 2 385 3136 4.03 2

Max-Cut cycle C5 [Anj01] 5 0 2 30 256 0.22 2
Max-Cut complete K5 [Anj01] 5 0 2 31 676 0.28 3

Max-Cut 5-node [Anj01] 5 0 2 30 256 0.22 2
Max-Cut antiweb AW 2

9 [Anj01] 9 0 2 465 16900 12.5 3
Max-Cut 10-node Petersen [Anj01] 10 0 2 385 3136 3.14 2

Max-Cut 12-node [Anj01] 12 0 2 793 6241 29.2 2
Table 3. Discrete optimization problems. CPU times and LMI relaxation orders re-
quired to reach global optima with perturbed criterion.
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problem short description

boon neurophysiology problem
bifur non-linear system bifurcation

brown Brown’s 5-dimensional almost linear system
butcher Butcher’s system from PoSSo test suite

camera1s displacement of camera between two positions
caprasse Caprasse’s system from PoSSo test suite
cassou Cassou-Nogues’s system from PoSSo test suite

chemequ chemical equilibrium of hydrocarbon combustion
cohn2 Cohn’s modular equations for special algebraic number fields
cohn3 Cohn’s modular equations for special algebraic number fields

comb3000 combustion chemistry example for a temperature of 3000 degrees
conform1 Emiris’ conformal analysis of cyclic molecules (b11 = −9)

conform2 Emiris’ conformal analysis of cyclic molecules (b11 = −
√

3/2)
conform3 Emiris’ conformal analysis of cyclic molecules (b11 = −310)
conform4 Emiris’ conformal analysis of cyclic molecules (b11 = −13)

cpdm5 5-dimensional system of Caprasse and Demaret
d1 sparse system by Hong and Stahl

des18 3 dessin d’enfant
des22 24 dessin d’enfant
discret3 from PoSSo test suite

eco5 5-dimensional economics problem
eco6 6-dimensional economics problem
eco7 7-dimensional economics problem
eco8 8-dimensional economics problem

fourbar four-bar mechanical design problem
geneig generalized eigenvalue problem
heart heart dipole problem

i1 interval arithmetic benchmark
ipp six-revolute-joint problem of mechanics

katsura5 problem of magnetism in physics
kinema robot kinematics problem

kin1 inverse kinematics of an elbow manipulator
ku10 10-dimensional system of Ku

lorentz equilibrium points of 4-dimensional Lorentz attractor
manocha intersection of high-degree polynomial curves

noon3 neural network modeled by adaptive Lotka-Volterra system
noon4 neural network modeled by adaptive Lotka-Volterra system
noon5 neural network modeled by adaptive Lotka-Volterra system

proddeco system with product-decomposition structure
puma hand position and orientation of PUMA robot

quadfor2 Gaussian quadrature formula with 2 knots and 2 weights over [-1,+1]
quadgrid interpolating quadrature formula for function defined on a grid

Table 4. Short descriptions of polynomial systems of equations. Part 1.
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problem short description

rabmo optimal multi-dimensional quadrature formulas
rbpl generic positions of parallel robot

redeco5 reduced 5-dimensional economics problem
redeco6 reduced 6-dimensional economics problem
redeco7 reduced 7-dimensional economics problem
redeco8 reduced 8-dimensional economics problem
rediff3 3-dimensional reaction-diffusion problem
reimer5 5-dimensional system of Reimer

rose general economic equilibrium problem
s9 1 small system from constructive Galois theory

sendra from PoSSo test suite
solotarev from PoSSo test suite
stewart1 direct kinematic problem of parallel robot
stewart2 direct kinematic problem of parallel robot

trinks from PoSSo test suite
virasoro construction of Virasoro algebras

wood system derived from optimizing the Wood function
wright Wright’s system

Table 5. Short descriptions of polynomial systems of equations. Part 2.

problem var cstr deg LMI var LMI size CPU order sol

boon 6 6 4 3002 52864 1220 4 8
bifur 3 3 9 454 8717 8.20 5 2

brown 5 5 5 461 4061 6.27 3 1
butcher 7 7 4 6434 120156 - 4 mem

camera1s 6 6 2 209 952 1.33 2 2
caprasse 4 4 4 209 1285 0.58 3 2
cassou 4 4 8 4844 280151 - 8 mem

chemequ 5 5 3 461 3661 9.48 3 1
chemequs 5 5 3 124 486 6.73 2 1

cohn2 4 4 6 209 1229 0.48 3 1
cohn3 4 4 6 209 1229 0.55 3 1

comb3000 10 10 3 1000 4951 24.6 2 1
conform1 3 3 4 83 430 0.22 3 2
conform2 3 3 4 83 430 0.19 3 2
conform3 3 3 4 285 3766 3.89 5 4
conform4 3 3 4 454 8946 12.2 6 2

cpdm5 5 5 3 125 446 0.24 2 1
d1 12 12 3 - - - 3 dim

des18 3 8 8 3 12869 303945 - 4 mem
des22 24 10 10 2 1000 5016 77.2 1 1
discret3 8 8 2 44 89 0.31 1 1

Table 6. Polynomial systems of equations. CPU times and LMI relaxation orders
required to reach global optima. Part 1.
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problem var cstr deg LMI vas LMI size CPU order sol

eco5 5 5 3 461 3661 5.98 3 1
eco6 6 6 3 923 7980 57.4 3 1
eco7 7 7 3 1715 15921 256 3 1
eco8 8 8 3 3002 29565 1310 3 1

fourbar 4 4 4 69 229 0.16 2 1
geneig 6 6 3 923 7602 33.2 3 1
heart 8 8 4 3002 31545 1532 3 2

i1 10 10 3 1000 4366 44.1 2 1
ipp 8 8 2 494 2385 6.42 2 1

katsura5 6 6 2 209 952 0.74 2 1
kinema 9 9 2 714 3520 26.4 2 1

kin1 12 12 3 - - - 3 dim
ku10 10 10 2 1000 5016 72.5 2 1

lorentz 4 4 2 209 1705 0.64 2 2
manocha 2 2 8 90 826 1.27 6 1

noon3 3 3 3 83 430 0.22 3 1
noon4 4 4 3 209 1285 0.65 3 1
noon5 5 5 3 461 3241 4.48 3 1

proddeco 4 4 4 69 229 0.11 2 1
puma 8 8 2 3002 35505 1136 3 4

quadfor2 4 4 4 209 1495 0.75 3 2
quadgrid 5 5 5 461 3641 10.52 3 1
rabmo 9 9 5 5004 51703 - 3 mem
rbpl 6 6 3 923 7602 36.9 3 1

redeco5 5 5 2 20 41 0.16 1 1
redeco6 6 6 2 27 55 0.13 1 1
redeco7 7 7 2 35 71 0.14 1 1
redeco8 8 8 2 44 89 0.13 1 1
rediff3 3 3 2 9 19 0.09 1 1
reimer5 5 5 6 6187 264516 - 6 mem

rose 3 3 9 679 16681 79.5 7 2
s9 1 8 8 2 494 2385 5.45 2 1

sendra 2 2 7 65 453 0.34 5 1
solotarev 4 4 3 69 257 0.24 2 1
stewart1 9 9 2 714 3520 20.4 2 2
stewart2 12 10 2 1819 9191 372 2 1

trinks 6 6 3 209 925 0.78 2 1
virasoro 8 8 2 44 89 0.16 1 1

wood 4 3 2 69 527 0.20 2 1
wright 5 5 2 20 41 0.17 1 1

Table 7. Polynomial systems of equations. CPU times and LMI relaxation orders
required to reach global optima. Part 2.


