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Abstract

In this paper, we report a Fortran 90/95 software package, ParaGlobSol, that reli-
ably finds numerical solutions for continuous nonlinear global optimization problems in
parallel.

With this package, we have successfully solved some computational intensive real
application problems. Superlinear speedup for some application have been observed
because of that our parallel implementations can perform much less computations than
the sequential implementation for some applications.

Algorithm development, parallel implementations are discussed in this paper. we
provide the URL, which has links to the source code, installation and user guide, as
well as performance data at the end of this paper.

1 Introduction

ParaGlobSol [3] is a parallel global optimization package we developed recently. It is written
in Fortran 90/95 with MPI to perform inter process communication. The package is actually
a parallel implementation of the global optimization software GlobSol [2] which based on
interval branch-and-bound algorithm. In this introduction, we review interval arithmetic,
nonlinear global optimization, interval branch-and-bound algorithm and GlobSol.

1.1 Interval Arithmetic and Notation

Both GlobSol and ParaGlobSol use interval arithmetic [11, 10] that was first introduced
by R. E. Moore in the 1960s. To automatically obtain reliable numerical solution bounds,
both mathematically and computationally, interval arithmetic uses machine representable
intervals as operands in numerical computation.
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Throughout the rest of this paper, we use boldface letters and capital letters to denote
interval quantities and vectors, respectively. We use x and x to denote the greatest lower
bound and the least upper bound for an interval variable x, respectively.

With the notation above, interval binary operations can be defined as below:
Definition: Let a, and b be intervals and op be an elementary operation. Then,

a op b is the smallest interval which contains a op b for all a ∈ a and b ∈ b.
For example, [1, 2] + [−1, 0] = [0, 2], [0, 2] − [1, 2] = [−2, 1].
For more on interval computation and applications, interested readers may refer [9, 11]

and others.

1.2 Nonlinear Global Optimization

A nonlinear global optimization problem over a given domain X ⊂ <n can be described as:

To find an X∗ ∈ X such that φ(X∗) ≤ φ(X) ∀X ∈ X,

where φ(X) is a nonlinear mapping from <n to <. If other conditions such as C(X) = 0
and/or G(X) ≤ 0 should also be satisfied, then we call it constrained optimization.

Numerically solving global optimization problems has fundamental importance in com-
putational sciences and application. Although various results and computer implementa-
tions have been published, there are still many challenges in solving general global nonlinear
optimization problems. For example, many existing computational algorithms may only find
approximations of local optimum rather than global optimum; numerical results provided
by floating point arithmetic may not be reliable; and computationally expensive algorithms
make it impractical to solve large-scale optimization problems.

1.3 Interval Branch-and-Bound Algorithm

In recent years, algorithms that automatically verify global optimum have been developed
[4, 12]. Among them are interval branch-and-bound algorithms. In [7], Kearfott reviewed
these algorithms which form the foundation of this paper. With minimal notation and
without details of interval arithmetic, we review the basic ideas of interval branch-and-
bound algorithms.

Let a interval box X = (x0,x1, ...,xN−1) represent a search region. Then, the principle
of branch-and-bound algorithms is to maintain one or more of these lists: L, a list of boxes
X to be processed; a list U of boxes which have been reduced to small diameter by the
algorithm; and a list C of boxes that have been verified to contain critical points by the
algorithm. Boxes in L can be considered one-by-one for processing. When L is exhausted,
we evaluate φ on every box of list U and on the critical points in list C, and then find the
possible global minimizer.



Algorithm 1: (Sequential branch-and-bound)

1. Initialize L by placing the searching domain X0 in it

2. Initialize the current optimum φ by picking a point X ∈ X0, then evaluate φ(X) with
interval arithmetic

3. While L 6= ∅ do

(a) Remove a box from L for processing

(b) Compute a lower bound on the range of φ over X. If φ(X) > φ then discard X
and back to the step 3

(c) Use interval arithmetic to compute an upper bound on the range of φ over X,
then update φ by φ← {φ, φ(X)}

(d) Use interval arithmetic to compute 5φ(X). If 0 6∈ 5φ(X) then discard X and
back to the step 3

(e) For any X ∈ X, if 52φ(X) cannot be positive definite, then discard X and back
to the step 3

(f) Apply interval Newton method to possibly do one or more of the following

• rejecting X

• reducing the size of X

• verify existence of a unique critical point in X

(g) Subdivide X if step (f) the above did not result in a sufficient change in X, then
return all resulting boxes to L for subsequent processing.

1.4 GlobSol

Kearfott published GlobSol, a Fortran 90 package, that implemented interval branch-and-
bound method. By applying powerful software tools such as automatic differentiation and
LINPACK, GlobSol provides reliable bounds of global nonlinear optimization problems
with/without constraints. Many real application problems have been successfully solved
with GlobSol. For more information, please see GlobSol [2] homepage.

2 Parallel Algorithm

2.1 Motivation

With GlobSol, many application problems have been solved successfully. However, compu-
tation time required in solving some applications are enormous. For example, GlobSol used
2342 CPU seconds on a Sun Ultra workstation to solve the four dimensional constrained



nonlinear optimization problem for a T-bill trading application of Bank One. A Sun Ultra
spent 4320 CPU seconds and processed 5,000 boxes still could not find the optimum for a
Swiss Bank currency trading problem.

To improve the overall performance of GlobSol, we have developed its parallel imple-
mentation on distributed multicomputers.

2.2 Parallel Interval Branch-and-Bound Algorithm

The main computation of interval branch-and-bound algorithm is the step 3 of Algorithm
1. We noticed that the processing of each existing box in the list L is computational
independent. Therefore, we may use multiple processors to process boxes in L concurrently.
Here is our basic parallel algorithm.

Algorithm 2: (Parallel branch-and-bound)

1. • One process initializes the list L by placing the searching domain X0 in it, and
initialize the current optimum φ by picking a point X ∈ X0, then evaluate φ(X)
with interval arithmetic.

• Other processes idle.

2. • The process which performed initialization distributes boxes in its list L, and φ

to other processes

• Other processes receive boxes and φ from process 0 and form their local L list.

3. All processors do while local L 6= ∅

(a) Remove a box X from L for processing

(b) Compute a lower bound on the range of φ over X. If φ(X) > φ then discard X
and back to the step 3

(c) Use interval arithmetic to compute an upper bound on the range of φ over X,
then update φ by φ← {φ, φ(X)}

(d) Use interval arithmetic to compute 5φ(X). If 0 6∈ 5φ(X) then discard X and
back to the step 3

(e) For any X ∈ X, if 52φ(X) cannot be positive definite, then discard X and back
to the step 3

(f) Apply interval Newton method to possibly do one or more of the following

• rejecting X
• reducing the size of X
• verify existence of a unique critical point in X

(g) Subdivide X if step (f) the above did not result in a sufficient change in X, then
return all resulting boxes to L for subsequent processing.



4. • One process receives other processes local optimum and finds the global optimum.

• All other processes send their local optimum to the process above.

Algorithm 2 is a coarse-grained, SPMD data-parallel algorithm. All processes actually
run GlobSol with their local data.

3 Implementations

We have made two implementations, ParaGlobSol 0.1 and 0.2 for the above parallel algo-
rithm. We have successfully run both implementations on networked SUN Ultra stations,
and solved all test problems that can be solved by the sequential GlobSol.

To make our implementations more efficient, we tried different schemes to balance work-
load and take the advantage of parallel computing to eliminate computations. ParaGlobSol
0.1 balances workload through equally distributing initial boxes to all processes, while Para-
GlobSol 0.2 dynamically balances workload by distributing one box at a time to the process
which requires a box to process.

3.1 Load Balancing

To achieve high efficiency in our implementation, we balance workload by distributing the
boxes in L in different schemes. The simplest scheme probably is to count the number of
boxes in the L list, and then divide it by the number of processes (say the ratio is m). In
the step 2 of Algorithm 2, we may distribute m boxes to other processes. This scheme is
applied in ParaGlobSol 0.1.

Although every process has almost equal number of boxes, it usually requires different
amount of time to complete its computation, since some boxes maybe rejected and new
boxes can be created. Therefore, we developed a dynamic scheme which better balances
the workload. We implemented the dynamic load balancing scheme below in ParaGlobSol
0.2.

Dynamic Workload Balancing:

1. The initialization process distributes only one box to other processes

2. Every process works with the box it receives.

3. Whenever a process completes its work, it requests a new box, if exists, from other
processes.

3.2 Computation Reduction

In our parallel implementation, we have tried to reduce the amount of computations through
parallelly updating local lists frequently to purge boxes that are no longer needed for further
processing. We describe this idea in detail below.



In the step 3(b) of Algorithm 1, the sequential branch-and-bound method, a box will
be discarded if the lower bound of the function value over the box is greater than current
optimum. The current optimum is updated sequentially as every box pop up from the list
L.

In parallel processing of Algorithm 2, each process has its local current optimum. By
frequent all-to-all communication, we can let every process to have current global optimum.
Every process works with current global optimum instead of its local optimum. This may
eliminate boxes in early stages and significantly reducing total amount of computation.
This also explains the superlinear speedup we observed for some applications.

4 Applications

We report two applications of ParaGlobSol that achieved superlinear speedup.

4.1 Portfolio management

For portfolio managers, the basic problem they face is to make the combination of securities
under various investment constraints (cash flow, risk elements, maturity structure, corporate
investment policies, etc.) in order to maximize the return. These parameters are usually
within ranges rather than points. Therefore, it is appropriate to use interval methods.

In [1], G. Corliss and B. Kearfott reported that P. Thalacker and et al found the best
asset allocation for two sample fixed-income portfolios of BancOne with GlobSol. All of the
constraints were satisfied.

One of the fixed income portfolios contains only 3-, 6-, and 12-month Treasury bills.
Actual spot price data for each type of T-bill from U. S. Treasury auction were used.
Historical spot price data for each bill were also used to calculate the variances of each type
of T-bill and covariances between bills. GlobSol calculated the optimal asset allocation to
be about: 10% in 3-month T-bills, 60% in 6-month T-bills, and 30% in 12-month T-bills.
The rate of return is 5.363% per year.

Another portfolio contains only 1-, 5-, 10-, and 30-year Treasury bonds with four in-
vestment constraints: average duration, cash flow, variance, and total value. Historical
data were used to calculate T-bond variances and covariances between bonds. Hypothetical
values were chosen for spot prices, coupon payments, and face values. For a typical set of
constraints, GlobSol determined the optimal asset allocation to be about: 4% in one year
bounds, 65% in 5-year bounds, 4% in 10-year bounds, and 26% in 30-year bounds. Optimal
rate of return is about 7.388%.

GlobSol solved the problem in 2352.7 CPU seconds on a Sun Ultra-1 station. With
ParaGlobSol [3], the problem was solved in 15.75 CPU seconds with 9 processes. The
extraordinary speedup was due to significant reduction of total amount of computation in
parallel execution.



4.2 Risk control in currency trading

The objective of the portfolio risk control system for Swiss Bank currency trading is to
determine the value at risk (VaR), or the maximum overnight loss the bank may face on
the portfolio of trades, assuming that the portfolio is illiquid overnight. The maximum loss
is determined for the portfolio closing position by allowing the risk factors to change and
calculating the price sensitivities of the trades to these changes in the risk factors. Total
value of the portfolio is evaluated in the light of several risk factors. Since these factors are
allowed to change within specified ranges, finding global maximum becomes quite difficult
without using interval methods.

S. Ranjit and et al applied GlobSol and found the minimum variance to determine the
VaR for portfolios containing calls and puts on 2, 4, and 7 exchange rates [1]. The portfolio
contains Swiss Franks, Mexican Pesos, S. Korea WONs, Australian Dollars, Netherlands
Guilder, and Singapore Dollars. Garman-Kohlhagen model for valuing foreign exchange
option, were used. Data used were one two week period in October, 1997. GlobSol found
the minimum variance portfolio should be 74.7% Mexican Peso, 8.9% Australian Dollar,
8.4% Netherlands Guilder, and 8.0% Singapore Dollars. The minimum variance for that
time period is 0.00055% of the portfolio value, while the variances of the currencies range
from 0.0013% to 0.049%.

GlobSol solves the problem in over 4320 CPU seconds on a Sun Ultra-1 station. With
ParaGlobSol [3], the problem was solved in 49.95 CPU seconds with 9 processes. The
superlinear speedup was due to significant reduction of total amount of computations in
parallel execution.

In the table below, we summerize the performance data for these applications.

Risk control Portfolio management
# of process CPU Time Speedup # of process CPU Time Speedup
1 4320 N/A 1 2352.7 N/A
7 54.34 79
9 49.95 86 9 15.75 149

As we explained in the previous sections, the superlinear speedup were reached since our
parallel implementation significantly reduced the total computation in these applications.

5 Conclusion

Interval branch-and-bound algorithms have their unique feature for nonlinear global op-
timization such as being able to take interval parameters and to verify global optimum
automatically. However, in practice, we need to apply parallel computing technology to
improve the overall efficiency.

ParaGlobSol is a prototype parallel implementation of interval branch-and-bound algo-
rithm with Fortran 95 and MPI. It has achieved superlinear speedup for some application



problems. Source code of ParaGlobSol, installation and user guide, as well as sample ap-
plications are freely available at the URL:

http://www.mscs.mu.edu/∼globsol/ParaGlobSol.html
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