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Abstract

One of the challenges of computer vision is that the information we seek to ex-

tract from images is not even defined for most images. Because of this, we cannot

hope to find a simple process that produces the information directly from a given

image. Instead, we need a search, or an optimization, in the space of parameters

that we are trying to estimate.

In this thesis, I introduce two new optimization methods that use graph al-

gorithms. They are characterized by their ability to find a global optimum ef-

ficiently. Each method defines a graph that can be seen as embedded in a Eu-

clidean space. Graph-theoretic entities such as cuts and cycles represent geomet-

ric objects that embody the information we seek.

The first method finds a hypersurface in a Euclidean space that minimizes a

certain kind of energy functional. The hypersurface is approximated by a cut of

an embedded graph so that the total cost of the cut corresponds to the energy.

A globally optimal solution is found by using a minimum cut algorithm. In

particular, it can globally solve first order Markov Random Field problems in

more generality than was previously possible. I prove that the convexity of the

smoothing function in the energy is essential for the applicability of the method

and provide an exact criterion in terms of the MRF energy.
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The second method proposed here efficiently finds an optimal cycle in a Eu-

clidean space. It uses a minimum ratio cycle algorithm to find a cycle with min-

imum energy in an embedded graph. In the case of two dimensions, the energy

can depend not only on the cycle itself but also on the region defined by the cy-

cle. Because of this, the method unifies the two competing views of boundary

and region segmentation.

I demonstrate the utility of the methods in applications, with the results of

experiments in the areas of binocular stereo, image restoration, and image seg-

mentation. The image segmentation, or contour extraction, experiments are car-

ried out in various situations using different types of information, for example

motion, stereo, and intensity.
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o n e

Introduction

T he ultimate objective of computer vision is to make a machine see. The

human vision system can extract varied and intricate information from a

single picture, or even a line drawing. This has turned out to be an enormously

difficult feat to simulate in a machine; for decades researchers in artificial intelli-

gence and computer vision have been struggling to this end. Why is it so hard?

One reason is this: the kinds of information we try to extract are not even defined for

almost all images. The parameters that we wish to estimate are not defined in

terms of images. To see what this means, we need to realize what an image is as

raw data, and exactly what the desired information is.

What is an image? It is easy for us to forget about an image. When we look

at an image, we usually do not see it; instead, we see what is shown in it. When

we look at a portrait of a person, we do not contemplate an unimaginable num-

ber of tiny colored dots. It is like a hole through which we can see the other

side, where the person looks back at us. It is remarkable that such a sense of

1



2 CHAPTER 1. INTRODUCTION

reality is conveyed through a simple array of colors, which is what an image is.

Photography films, CCDs, and retinas are all arranged in the same way for the

same purpose—they record a collection of colors and their positions. As a data

structure, a rectangular array of pixels is standard.

When considered this way, almost no images, as possible combinations of

pixel values, are what we would think of as images—they are white noise. Imag-

ine a television turned to a dead channel. What you see is amplified thermal

noise, and you never see anything that looks like anything other than noise. In

other words, if you choose an image randomly from this space of all possible

combinations of color values for all pixels, the result does not make sense to a

human observer. This is because the information we extract from an image is

not about the image itself, but rather about the scene, or what has caused the

image. The flow of information is not from the image to the scene to whatever

parameter of the scene we are trying to find out. It is exactly the opposite. To

find the origin of the image, we have to search. We naturally are looking for

something in the image; something our knowledge (innate or acquired) tells us

we should find. When the search fails, we sometimes see an illusion, but when

we are looking at a completely random image, we are more likely to see nothing

at all.

Thus the information we are trying to extract in computer vision, even low-

level features such as presence of an object boundary or stereo correspondences,

let alone high-level characteristics like facial expressions, are properties of the

scene that gives rise to the image, rather than those of the image as an array of

pixels. In trying to design an artificial vision system, this means that whatever

we want to measure is not a priori a function of images; it is erroneous to assume

that a scene property is defined on the space of images. Rather, the process of
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obtaining information from an image is a search, in the space of parameters of

a model of the scene, for the values most likely to give rise to the image. Of the

space of images, the part that consists of comprehensible images is vanishingly

small; yet the process must be general enough to handle any image, because

there is no simple way to define the comprehensible part.

This might seem somewhat at odds with the widely held view that low-level

vision tasks such as contour extraction are “bottom-up” processes; features are

extracted from an image and separate higher-level processes interpolate to find a

suitable representation. Of course, bottom-up techniques can be applied before

the search, perhaps replacing the space of images with the space of the results of

this process; but a search must be done eventually. It might even be claimed that

the necessity of such a search is what differentiates computer vision from image

processing (though an image processing system might use models of images.)

Let us take a look at how the problem is usually put in terms of probability

theory. A space of parameters—parameters we want to estimate—is defined; a

model of the causal relationship between the parameters and the resulting im-

ages is given as a conditional probability distribution; then, for a given image,

the parameters are estimated by maximizing the probability that they occur and

give rise to the image. This technique is called Maximum A Posteriori (MAP)

estimation, and is standard in computer vision and image processing. In this

way, the whole system is represented by the probability that different values of

the parameters occur a priori and the probability that the image occurs under the

assumption that the parameters have some given value.

But where has the asymmetry gone? I claimed above that the flow of infor-

mation is one way and not the other. Once everything is put in terms of prob-

ability distributions, however, there seems to be no reason to worry about what
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was originally defined where. After all, everything has a probability and the

joint probability distribution is defined on the product of image and parameter

spaces, which does not discriminate between the two factors.

The crucial point, however, is that these various probability distributions are

always given as a function that is defined as an algorithm. Because the param-

eter space is usually vast, e.g., exponential in terms of the number of pixels,

the information must be compressed to the limit; no distribution can ever be

given as a simple table of data, even when it is empirically determined. Thus

the model, defined by the distributions, is always given in a computable form as

an algorithm. For instance, a Gaussian distribution is an algorithm that returns

the exponential of the squared ratio of the standard deviation and the distance

from the mean. Because these parameters of the models are not a function of the

images, one direction is much harder than the other. The conditional probabil-

ity that the parameters have particular values when the resulting image is given

would be quite hard to express in algorithmic terms. It is akin to trying to decode

an encrypted text by a brute-force attack, rather than encoding a plain text. Com-

puter vision is inherently more difficult than computer graphics exactly because

of this.

Thus every vision problem is conceptually a search process, as opposed to

a deterministic encoding. The solution to a vision problem needs three compo-

nents: a prior model for the parameter space, a model of image formation, and

an efficient search method to carry out the MAP estimation. The first two vary

greatly from problem to problem; they depend on what we are trying to estimate

in a unique way. In this thesis, I mainly address the third component. I introduce

two new optimization methods that use graph algorithms. They are character-

ized by their ability to find a global optimum efficiently. Each method defines
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a graph that can be seen as embedded in a Euclidean space. Graph-theoretic

entities such as cuts and cycles represent geometric objects that embody the in-

formation we seek.

In the next chapter, I give an overview of optimization methods used in com-

puter vision. In particular, I first review the notion of a Markov Random Field,

and then two classes of general techniques: gradient descent and stochastic op-

timization. After that, I examine graph-based schemes, including those that are

particularly close to the methods I propose.

In chapter 3, I discuss the low-level vision problems that I address in this

thesis: specifically, stereo and segmentation/contour extraction.

In chapters 4 and 5, I introduce the methods in a general setting.

The first method finds a hypersurface in a Euclidean space that minimizes a

certain kind of energy functional. The hypersurface is approximated by a cut of

an embedded graph so that the total cost of the cut corresponds to the energy. A

globally optimal solution is found by using a minimum cut algorithm. In partic-

ular, this method can globally solve first order Markov Random Field problems

in more generality than was previously possible. I prove that the convexity of the

smoothing function in the energy is essential for the applicability of the method

and provide an exact criterion in terms of the MRF energy.

The second method, described in chapter 5, can efficiently find an optimal

cycle in a Euclidean space. It uses a minimum ratio cycle algorithm to find a cycle

with minimum energy in an embedded graph. In the case of two dimensions,

the energy can depend not only on the cycle itself but also on the region defined

by the cycle. Because of this, the method unifies the two competing views of

boundary and region segmentation.

In chapter 6, I demonstrate the utility of the methods in applications with the
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results of experiments in stereo, image restoration, and image segmentation. The

image segmentation, or contour extraction, experiments are carried out in vari-

ous situations using different types of information, for example motion, stereo,

and intensity.

Finally, in chapter 7, I conclude with a discussion of future directions.



t w o

Optimization in Computer Vision

H ere I give an overview of the optimization framework and the meth-

ods used in computer vision. In particular, I first review the notion of

Markov Random Field, and then two classes of general optimization techniques:

gradient descent and stochastic optimization. After that, I examine graph-based

schemes, including those that are particularly close to the methods that I propose

in this thesis.

2.1 Optimization Framework

In this thesis, by an image I mean a simple array of real non-negative values:

Ixy∈ R≥0; x = 1, . . . ,N; y = 1, . . . ,M,

7



8 CHAPTER 2. OPTIMIZATION IN COMPUTER VISION

or a function on some rectangular region Ǐ in R2:

I(x,y) ∈ R≥0; (x,y) ∈ Ǐ .

We denote the domain of the image function I by Ǐ . The space of images is

denoted by I.

In computer vision, images are usually given—i.e. they are the input. The

output, what is not given and which we wish to obtain, is the parameters—that is,

the quantities that we want to estimate. Because we do not know what particular

values the parameters have, we talk about the whole space of parameters, or the

space of possible values the parameters can take. The optimization with which

we are concerned in this thesis is a process of finding the most likely value in

this space given one or more images. We do this by estimating the probability

that the given image is observed, given each parameter value.

Let us denote the space of parameters by X. A probability distribution P on

X gives a number between 0 and 1 for an event, i.e., a subset of X. For a finite X

and a parameter value X ∈ X, P(X) denotes P({X}), the probability for X.

The probability P(X) is called the prior probability, because its distribution

does not depend on the data, which is usually the image. For a given vision

problem, a prior distribution is either implicitly or explicitly defined. Though in

principle this is a very important part of the model, exerting great influence on

the behavior of the system, estimation of the prior is not very easy. I discuss the

prior function in each section dealing with specific problems.

The second part of the probabilistic model is the image formation model. For

a given image I ∈ I and a parameter value X ∈ X, P(I |X) gives the conditional

probability that the image I is observed under the assumption that the parame-
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ter in fact has the value X. This should give a high probability to the image that

is consistent with the value. For instance, if the parameter describes a configu-

ration of objects in front of the camera, an algorithm can simulate the physical

situation of the world and the camera, thus evaluating how consistent the given

image is with the parameter value, by checking, for instance, if the intensity

boundaries in the image coincide with the projection of the object boundaries

that are expected from the physical model and the parameter value.

Supposing these two probability distributions are given, the MAP estimation

seeks, for a given image I , the parameter X that maximizes the posterior proba-

bility P(X|I), which is the conditional probability that the parameter has value X

under the assumption that the image I is observed. By Bayes’ rule,

P(X|I) =
P(I |X)P(X)

P(I)
,

where P(I) is the prior probability for the image I . Since I is fixed, this value can

be optimized by maximizing the P(I |X)P(X) using the prior model P(X) and the

image formation model P(I |X).

In general, for a probability distribution P(X), it is customary to minimize

E(X) =− logP(X) rather than to maximize P(X); and the negative log probability

E(X) is called the energy. This is a tradition from statistical thermodynamics,

where the Gibbs probability distribution:

P(E)∼ e−
E
kT ,

gives the probability of a microscopic state with energy E at temperature T.
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2.1.1 Markov Random Field

Note that usually both the image space I and the parameter space X are huge.

The large size of the parameter space, in which we perform the search, is es-

pecially problematic; there seems to be no hope of solving the problem without

exploiting some regularity in the space. As the large size is often due to the space

being the product of many state spaces belonging to smaller parts, one common

way to reduce the complexity is to assume a conditional statistical independence

between the parts: a Markov Random Field (Dobrushin [23]), or an MRF, is a set

of small state spaces (random variables) such that each variable is statistically in-

dependent of all but a few “neighbor” variables. It is a popular and often useful

way to model vision parameter spaces.

An MRF consists of an undirected graph G = (V,E), a finite set L of labels,

and a probability distribution P on the space X(G) = LV of parameters. That is,

X(G) is a set of assignments X : V 3 v 7→Xv∈ L. Let Nv denote the set of neighbors

{u ∈ V|(u,v) ∈ E} of v. Also, for X ∈ X(G) and S⊂ V, let XS denote the event

{Y ∈X(G)|Yv = Xv,∀v∈S}, that is, the subset of X(G) defined by values at vertices

in S. The probability distribution must satisfy the condition:

P(X) > 0 for all X ∈ X(G)

P(X{v}|XV \{v}) = P(X{v}|XNv).

This condition states that the assignment at a vertex is conditionally dependent

on other assignments only through its neighbors.

Note that the MRF is a conditional probability model. An important theorem

(Besag[9], Kinderman and Snell[51]) connects it to a joint probability model: a
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probability distribution P on X(G) is an MRF exactly when it is a Gibbs distribu-

tion relative to G:

P(X)∼ e−E(X),

E(X) = ∑
C∈C

EC(X),

where C denotes the set of cliques in G and EC a function on X with the property

that EC(X) depends only on values Xv for v∈C.

The simplest case is when only the edges and vertices influence the potential:

E(X) = ∑
(u,v)∈E

g(u,v,Xu,Xv)+ ∑
v∈V

h(v,Xv). (2.1)

This is called a first order MRF.

Note that in the above definition no data or observation, such as the image,

appears. Any data or observation that affects the statistics is implicit. For in-

stance, in (2.1), h(v,Xv) might depend on the image through v, as in h(v,Xv) =

|I(v)−Xv|.

2.2 Optimization Methods

In this section, I review gradient descent and stochastic optimization as examples

of traditional optimization methods.

2.2.1 Gradient Descent

Gradient descent, or hill climbing, is a basic optimization technique with a very

broad range of applications. It is essentially a local approximation of the ob-
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jective function by a linear function, and can be used whenever the objective

function has an easily computable gradient. If higher derivatives are computa-

tionally cheap, higher order approximations (quadratic, etc.) can also be used.

Gradient descent has two major problems: initialization and local optima.

Since it is an iterative algorithm it must begin somewhere, and the result and

performance of the algorithm depend greatly on the initialization; it is often dif-

ficult to find a way to initialize reliably, especially in a high-dimensional prob-

lem such as computer vision. Secondly, because the algorithm can determine

only whether a local optimum has been achieved, it often converges to a local

optimum and fails to find a better solution.

Despite these shortcomings, it is conceptually simple and applicable in a very

broad class of problems (and thus the last resort when there is no other way), and

it has been used extensively in computer vision. Besides the general use of the

method, the following important techniques in vision use gradient descent:

Snakes The “snake” method, also known as the active contour method, is a

popular technique that uses gradient descent to optimize locally a functional on

the space of curves in an image and hence extract a contour from the image (Kass,

Witkin, and Terzopoulos[50]; Blake and Zisserman[11].) The energy functional

usually has both an image formation model, which looks for places that are more

suitable for the contour to reside (by looking for a higher intensity gradient for

example,) and a prior model, which biases the search towards the desired kind

of curves (smoother curves, for example.) The main advantages of snakes are

those of all optimization techniques: the image data, desired contour properties,

and knowledge-based constraints are integrated into a single extraction process.

On the other hand, in addition to the disadvantages that plague all gradient
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descent techniques—the final extracted contour is highly dependent on the posi-

tion and shape of the initial contour as a consequence of the many local minima

in the energy function; the initial contour must be placed near the required fea-

ture otherwise the contour can become obstructed by unwanted features—it has

more domain-specific problems stemming from the energy functional: the en-

ergy has many parameters that must be chosen carefully to obtain meaningful

results, due to scale variance and parameter inter-dependence.

Level Set Method The level set method (Osher and Sethian[68], Sethian[75])

tracks the motion of an interface by embedding the interface as the zero level set

of the signed distance function. The motion of the interface is matched with the

zero level set of the level set function, and the resulting initial value partial differ-

ential equation for the evolution of the level set function resembles a Hamilton-

Jacobi equation. In this setting, curvatures and normals may be evaluated eas-

ily, topological changes occur in a natural manner, and the technique extends

trivially to three dimensions. The equation is solved using entropy-satisfying

schemes borrowed from the numerical solution of hyperbolic conservation laws.

These schemes produce the correct viscosity solution.

Faugeras and Keriven[27] use this method to evolve surfaces in a 3D space

in order to reconstruct surfaces from stereo data. It is based on a variational

principle, which provides a set of PDE’s that are used to deform an initial set of

surfaces, which then move towards the objects to be detected.

2.2.2 Stochastic Optimization

The gradient descent method goes straight for the nearest minimum as fast as

possible, always going downhill and never going uphill. Stochastic optimiza-
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tion algorithms randomly allow occasional uphill jumps, enabling escape from

local minima and the possibility of finding the global minimum (Metropolis et

al[61]). Among them, the simulated annealing algorithm initially allows such

jumps with a high probability. Then, according to some “annealing schedule”,

it gradually lets the probability go down to zero. This method is based on an

analogy with the thermodynamics of annealing real metals. Thus, the annealing

schedule is usually given in terms of the Gibbs distribution

P(x,x′) = e−
E(x)−E(x′)

kT ,

by a schedule to lower the temperature T, where P(x,x′) denotes the probability

of a jump from x∈ X to x′ (P(x,x′) > 1 signifies certainty.) The annealing sched-

ule and a method for selecting a new point to which to jump are required for

each specific problem. Usually experimentation is necessary to obtain these for

a particular problem.

Simulated annealing proved to be particularly suitable for MRF problems,

although it is also notorious for its slowness. Geman and Geman[32] popular-

ized the MRF in the vision/image processing community. They use simulated

annealing for image restoration by MAP estimation, and even prove the “an-

nealing theorem,” which roughly says that if the temperature T(k) at time k goes

down at the rate (log(1+ k))−1, the algorithm is guaranteed to reach the MAP

solution, although it takes “forever” to guarantee correct solution.

There is a similar but different class of techniques known as “Relaxation La-

beling” (Rosenfeld, Hummel, and Zucker[72]; Hummel and Zucker[39]), which

is very popular in low-level vision tasks in computer vision and image process-

ing.
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2.3 Methods Using Graphs

2.3.1 Approximation Using Graphs

Multi-way Cut Boykov, Veksler, and Zabih[12] introduced a new technique

that approximately solves MRF problems efficiently, although for a rather spe-

cific prior. It poses the problem as an instance of the minimum N-way cut prob-

lem for an undirected graph as follows: consider an MRF problem on G = (V,E)

with a label set L and an energy that is a special case of (2.1):

E(X) = ∑
(u,v)∈E

g(u,v)(1−δXu,Xv)+ ∑
v∈V

h(v,Xv),

where g(u,v) is a nonnegative real number. The technique defines a new graph

G̃ = (V ∪ L̃,E∪EL), where L̃ = {ul |l ∈ L} is a set of additional vertices, each of

which corresponds to a unique label, and edges in EL = {(v,ul )|v ∈ V,ul ∈ L̃}

connect these new vertices and each of the original vertices. Every edge has

a weight—a real number—as follows: Each original edge (u,v) ∈ E has a weight

g(u,v). Each new edge (v,ul ) ∈ EL has a weight −h(v, l). Now, an N-way cut is a

partition of the graph into N = |L| parts, each of which includes exactly one ver-

tex from L̃. For a given N-way cut, we sum up the weights of all edges that have

their ends in different partitions (they are said to be cut); this is called the cost of

the cut. It can be shown that minimizing this sum is equivalent to minimizing

the MRF energy. A large enough number is added to the weight of each edge

in EL so that every edge has a nonnegative weight. The number that is added

to the cost of any N-way cut is the same regardless of the cut, because there are

always exactly |V|(|L| −1) cut edges in EL for any N-way cut. This can be seen
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by counting the number of edges in EL that originate from a vertex v in V. An

edge (v,ul ) ∈ EL is cut unless v belongs to the same partition as ul . Thus, of |L|

edges in EL that originate from v, |L|−1 are cut. Hence there are |V|(|L|−1) cut

edges in EL. In this way, we can make all weights nonnegative without changing

the minimum cut or any relative cost difference between cuts. For a graph with

nonnegative edge weights, there exists an efficient approximation algorithm to

solve the problem. For this technique to work, the prior between two sites must

be of the above very specific form, i.e., zero if the labels are the same and some

constant value otherwise. In other words the space of labels cannot have much

structure, such as an order that influences the prior. This technique was used in

[12] for binocular stereo, and was improved by Birchfield and Tomasi[10].

Normalized Cut Shi and Malik[77] use a generalized eigenvalue method to ap-

proximately solve a graph-partition problem, which they derive from an image-

partition problem.

2.3.2 Global Optimization

There has been limited success in finding global optima of MRF models.

In a situation where the state is described as a string of linearly ordered local

states, dynamic programming can be used (Amini et al[3], Geiger, Gupta, Costa,

and Vlontzos[29].) Montanari[62] uses it to find the minimum energy path be-

tween given endpoints. Baker and Binford[6] use this approach for the stereo

correspondence problem (see 3.2.4).
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Binary MRF Consider an MRF problem on G= (V,E) with a label set L = {0,1},

and a form of first order energy (2.1):

E(X) = ∑
(u,v)∈E

g(Xu−Xv)+ ∑
v∈V

h(v,Xv),

where g(Xu−Xv) ≥ 0. Greig, Porteous, and Seheult[35, 36] give an efficient way

to find a globally optimal solution for this problem using a minimum-cut algo-

rithm. The solution is exactly the same as for the multi-way cut case, except that

there are efficient algorithms that solve the problem exactly. Also, the condi-

tion that the function g(Xu−Xv) must be of the form g(u,v)(1− δXu,Xv) is almost

irrelevant, since there are only three possible values of Xu−Xv.

The multi-way cut[12] is the result of an attempt to generalize this result. This

is a rare situation where the exact solution to an MRF can be obtained. One of

the methods I propose is a generalization of this algorithm, which provides an

efficient exact solution, and which differs from the generalization used in the

multi-way cut method.

Greig, Porteous, and Seheult also give a good reason for using a guaranteed

method. They compared their method experimentally with simulated annealing

in image restoration. Although simulated annealing is also theoretically guaran-

teed to reach the optimal solution eventually, they found that in practice simu-

lated annealing tended to over-smooth the noisy image.
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t h r e e

Problems Defined

T he low-level vision problems that are addressed in this thesis are both

prototypical problems in the area. Specifically, they are stereo and seg-

mentation/contour extraction.

3.1 Segmentation and Contour Extraction

The transparency of the medium in which we live, and the relative cohesive-

ness and opaqueness of the objects in it, make image segmentation an important

step in visual information extraction. That is, object identity tends to stay con-

stant in this world; hence it makes sense to detect boundaries and segregate the

scene into objects, which can subsequently (for instance) be tracked or identified,

rather than trying to track and detect all events in the view independently (and

making sense of it all.) Also, and consequently, the shapes of the regions and

boundaries are important information in themselves.

19
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In a single image, objects and their boundaries manifest themselves as re-

gions and their 1D boundaries. The main low-level cues are local intensity edges.

Local edges are detected in areas of the image where the intensity level fluctu-

ates sharply; the more rapid the intensity change, the stronger the edge. If a

number of images of the same scene are available, as is the case for stereoscopy

and video sequences, there are other clues we can utilize for segmentation by

correlating between images. With a correspondence of points in images, we can

deduce characteristics such as the depth and the motion velocity of each pixel,

using this information to classify them into groups.

The problem generally divides into dual approaches: a) determining bound-

aries between regions by detecting local discontinuities and grouping them to

form object boundaries; or b) mapping individual pixels into sets of pixels with

similar properties (intensity, color, texture etc.) which define regions within the

image. Both methods have their advantages and drawbacks.

3.1.1 Region Segmentation

Region segmentation is probably less common than edge detection as a low level

processing operation in computer vision systems, but it is applicable in environ-

ments that are highly textured or colored, for example outdoor scenery viewed

by a mobile vehicle. Its ontology—the space of pixel classifications—is sim-

ple, and well suited to the convenient machinery of MRFs. Thus, region-based

methods tend to be global, optimizing a functional of the image segmentation.

On the other hand, they often ignore important boundary properties such as

smoothness. Region approaches have shown promise in motion segmentation

(Weiss[78]), and they yield segmentation directly (Darrell and Pentland[22]). Shi
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and Malik[77], in an approach related to the work by Sarkar and Boyer[74], use

a generalized eigenvalue method to find normalized cuts. Leung and Malik[54]

extend their work by incorporating weak contour continuity information into

the region-based model. There are also approaches using MRFs (Blake and Zis-

serman [11], Geman and Geman[32].) Mumford and Shah[64] give a variational

formulation, representing an image by a piecewise-smooth function. There is

also a large clustering community, which has produced various approaches to

this problem, for example merge and split techniques, the K-means approach,

and others (Jain and Dubes[44].)

Parameter Space, Image Formation Model, and Prior Model The parame-

ter space of the region segmentation model is often very close to the image repre-

sentation. The prototype is a space of label-assignments to pixels. This is so sim-

ple that it does not seem to warrant the model-based optimization scheme. How-

ever, this is not so; we can see this by recalling that the model consists not only

of the parameter space but also of the probability distributions. For instance,

consider a simple clustering approach. It groups together pixels with similar

properties, because points on the same object should possess similar properties

according to the prior model, and these points should be projected onto the im-

age with such similarities intact according to the image formation model; these

properties are not inherent properties of the image. Also, as a method becomes

more sophisticated, the bottom-up scheme gets more and more conceptually ob-

scure. For example, if the method incorporates extra structure such as the pres-

ence of edges or junctions, it is much clearer to include it as part of the model,

rather than trying somehow to devise a way to produce such structures bottom-

up.
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3.1.2 Boundary Segmentation

Boundary-based approaches divide into two classes. One of them, local edge

detection (J. F. Canny[14]) and the grouping thereof, has been one of the cen-

tral problems of computer vision. Shashua and Ullman[76] use a “Saliency Net-

work” of locally connected elements, which gives a rating of the best connections

between each primitive (e.g. an edge) and its neighbors. Parent and Zucker[69]

use co-circularity as a constraint to assign tangent and curvature to every point

in the image, using the relaxation labeling technique. Guy and Medioni[38] use

a voting scheme to estimate at each pixel in the image a tangent and a salience.

We can see that, after these treatments, the results are still a pixel-by-pixel field

of features and a further grouping is needed to find a contour. Alter and Basri[2]

analyze some problems of the Saliency Network.

The second approach is more explicitly model-based, and is represented by

the snakes method mentioned in section 2.2.1. In this class of techniques, the

search space is explicitly the space of contours.

A prior is defined in terms of intrinsic properties of the contour, for example

curvature. Mumford[63] describes how a particular form of prior distribution

can be seen as a random walk process. Williams and Jacobs[79] use a similar

prior model expressed in terms of random walks, which they claim is feasible as

a neural model of the visual cortex.

Image formation models are generally formulated in terms of boundary in-

formation like the intensity gradient. This is a problem with boundary-based

approaches; they cannot incorporate region information easily. It is utterly im-

possible if the contour is open-ended; it simply does not have anything to do

with any region. This is another reason to try to find closed contours, in addition
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to the wealth of evidence of their importance in human vision (Kanizsa[47, 48],

Elder and Zucker[24, 25], Kovács and Julesz[52].)

Also, in this class of approaches, optimization techniques are used explic-

itly: the original snake model uses gradient descent. Montanari[62] uses dy-

namic programming to find the minimum energy path between given endpoints.

Geiger, Gupta, Costa, and Vlontzos[29] use initialization with a series of points,

and a choice of window around those points, to delineate the space of con-

tours considered. Cox, Rao, and Zhong[20] use a graph algorithm known as

the pinned ratio algorithm to find closed contours in an image, and can find a

global optimum for a suitably constrained problem class.

3.2 Stereo

The human brain can fuse two slightly different views from left and right eyes

and perceive depth. This process of stereopsis entails identifying matching lo-

cations in the two images and recovering the depth from their disparity. This

can be done only approximately: ambiguity arising from such factors as noise,

periodicity, and large regions of constant intensity makes it impossible to iden-

tify all locations in the two images with certainty. Indeed, this “correspondence

problem” is the most difficult part of the process.

There has been much work on stereo, both in psychophysics (Julesz[46]; Burt

and Julesz[13]; Gillam and Borsting[33]; Pollard, Mayhew, and Frisby[71]) and

in computer vision (Marr and Poggio[58, 59]; Grimson[37]; Champolle, Geiger,

and Mallat[16]; Okutomi and Kanade[67]; Marapane and Trivedi[57]; Ayache[5];

Roy and Cox[73]).
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Figure 3.1: A pair of frames (eyes) and an epipolar line in the left frame.

3.2.1 Parameter Space

In binocular stereo, there are left and right images IL and IR; the parameter to

be estimated is the matching between visible sites in the two images, which is

directly related to the depth surface (3D scene) S in front of the cameras. A

match between the two images can naturally be represented as a surface in a

4D space ǏL × ǏR, which is called the match space. Remember that we denote by

Ǐ the domain of image function I ; here we are assuming the two domains are

identical rectangles. A point in the match space is a pair of points in the left and

right images, which is interpreted as a match between the points. Note that the

parameter space is not the match space, but the space of surfaces therein (with

certain constraints.)

Two constraints in the geometry of stereo make the parameter space smaller.

Epipolar Constraint Each point in the scene goes through a unique plane in

the 3D space defined by the two focal points of the cameras and itself; thus the

points sharing such a plane form a line on each image. Hence each image is

stratified by such epipolar lines and there is a one-to-one correspondence between

epipolar lines on the two images (see Figure 3.1.) Because of the epipolar con-
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straint, we can assume that the surface in the match space is always included in

the subspace

{(xL,xR) ∈ ǏL × ǏR|xL and xR belong to the corresponding epipolar line}.

Thus, a match can be seen as a surface in a 3D space. In the rest of the present

thesis, the two images are always assumed to be rectified, i.e., points that belong

to corresponding epipolar lines have the same y-coordinate in both images; a

match occurs only between points with the same y-coordinate. Thus, a match is

represented as a surface in the 3D space {(l , r,y)}.

Ordering Constraint There is also another constraint known as the ordering

constraint (Marr and Poggio[58], Baker and Binford[6]). It states that if a point

moves from left to right on the epipolar line in the left image, the corresponding

point also moves from left to right in the right image. This can be characterized

as a local condition (monotonicity constraint) on the tangent plane of the surface

representing the match: ∂l
∂r and ∂r

∂l must be positive everywhere on the surface.

This is not always strictly true for the real 3D scene in the sense that there can be

a surface such that corresponding points move from left to right in the left image

and from right to left in the right image. For instance, a plane that equally and

perpendicularly divides the line segment between focal points would have this

property. However, this is a rare situation and even the human visual system

cannot handle this. The ordering constraint further reduces the size of the search

space.

Multiple Cameras The situation is essentially the same in the case where there

are more than two cameras. In the n-camera case, the natural match space is
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the 2n-dimensional space Ǐ1× ·· ·× Ǐn. On the other hand, we can pull back the

energy to the space of surfaces in the 3D scene from the match space, since there

is a unique map from the space of surfaces to the match space. Although at first

sight this seems to reduce the search space greatly, this is an illusion, as can be

seen easily as follows. Suppose we know the correspondence between Ǐ1 and

Ǐ2. Take a pair of corresponding points p1 and p2 on epipolar lines e1 and e2 in

Ǐ1 and Ǐ2, respectively. We know corresponding epipolar lines e′1 and e′2 in Ǐ3.

Thus, the corresponding point in Ǐ3 is essentially determined, since it has to be

the intersection of e′1 and e′2. In other words, the epipolar constraint keeps the

match space three-dimensional. The ordering constraint applies in an obvious

way, too.

3.2.2 Image Formation Model

The image formation model describes what images the cameras record when a

3D scene S is presented in front of them. It is basically a photometric model

and is expressed as a conditional probability distribution P(IL, IR|S) of forming

images IL and IR, given a 3D scene S. A detailed account of how to determine

the camera parameters, triangulation between the cameras, and an error analysis

can be found in Faugeras[26].

Also modeled in the image formation model are half-occlusions, or appear-

ances of scene locations in only one of the two images, which correspond to

discontinuities in the match surface or a match surface that is perpendicular to

the l or r axis, depending on how this situation is modeled (see Figure 3.2.) It

has been shown that the detection of half-occlusions is especially important in

human stereopsis (Anderson[4], Nakayama and Shimojo[65]). Half-occlusions
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Figure 3.2: (a) A polyhedron (shaded area) with self-occluding regions and with
a discontinuity in the surface-orientation at feature D and a depth discontinuity
at feature C. (b) A diagram of left and right images (1D slice) for the image of
the ramp. Notice that occlusions always correspond to discontinuities. Dark lines
indicates where the match occurs.

have also been modeled in artificial vision systems (Belhumeur and Mumford[8];

Geiger, Ladendorf, and Yuille[30]).

Any effect on the images due to the shape and configuration of the 3D surface

can be modeled in the image formation model. For instance, intensity edges and

junctions can be seen as cues for the depth discontinuities. The significance of

junctions in stereo vision has been pointed out by Anderson[4] and Malik[55].

3.2.3 Prior Model

The prior model is an a priori statistical assumption about the 3D scenes, that

reveals which surfaces the system expects to find most often in a scene. It is de-

scribed as a prior probability distribution P(S) that gives a probability to each

possible 3D scene output S of the process. In particular, the prior models how

any ambiguity is resolved. Belhumeur[7] analyzed stereo prior models in ex-

plicitly Bayesian terms. As in other low-level problems, commonly used prior
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models are local. They generally favor small disparity changes (fronto-parallel

surfaces) and small disparity curvature (smooth surfaces).

3.2.4 Search Algorithms

There have been many approaches to stereo algorithms. Search-oriented ap-

proaches include the multi-way cut approximation, level set methods, and dy-

namic programming.

Boykov, Veksler, and Zabih[12] solve the problem with the multi-way cut ap-

proximation explained in section 2.3.1. Faugeras and Keriven[27] use the level

set method to reconstruct surfaces by evolving surfaces in a 3D space (cf. sec-

tion 2.2.1.)

The dynamic programming approach takes advantage of the epipolar con-

straint (Ohta and Kanade[66], Geiger, Ladendorf, and Yuille[30].) As we have

seen, in binocular stereo the search space is essentially a space of surfaces in a 3D

space. Luckily there is a natural stratification in this space, each stratum being a

matching space between the corresponding epipolar lines. This subproblem can

be solved efficiently by dynamic programming, since a match between lines is

a 1D object with a linear order. The problem with this approach is that it must

assume statistical independence between epipolar lines, which is far from the

truth.

In this thesis, I use a minimum-cut algorithm to solve this problem (see sec-

tion 6.2.) Using this method, we can find a match between the different pairs of

corresponding epipolar lines simultaneously, and thereby incorporate the inter-

action between epipolar lines. Although Roy and Cox[73], independently from

the present method, used the minimum cut algorithm for stereo in a similar way,
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their technique lacks the support of a clear analysis of what is searched and, per-

haps because of that, is suboptimal.
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f o u r

Codimension 1 Method

I n this chapter, I propose a method that uses a minimum cut algorithm to

solve MRF problems globally. In a graph embedded in a Euclidean space, a

cut of the graph can be thought of as a hypersurface, a boundary of codimension

one that separates the space into two parts.

In the remainder of this thesis, all graphs are treated as directed graphs.

Undirected graphs can always be thought of as directed by making two copies

of each edge. A graph G= (V,E) consists of a set V of vertices and a set E⊂V×V

of edges. An edge from vertex u to vertex v is denoted by (u,v).

4.1 Maximum Flow and Minimum Cut

The maximum flow problem and its dual, the minimum cut problem, are clas-

sical combinatorial problems with a wide variety of scientific and engineering

applications. The maximum flow problem and related flow and cut problems

31
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have been studied intensively for over three decades and are standard in text-

books (e.g., [19]).

Consider a graph G = (V,E) with a cost, or capacity function c : V×V → R≥0

such that c(u,v) = 0 if (u,v) /∈ E. Choose two special vertices, a source sand a sink

t. A flow with respect to (G,s, t) is a function f : V×V → R such that:

1. For all u,v∈V, f (u,v)≤ c(u,v).

2. For all u,v∈V, f (u,v) =− f (v,u).

3. For all u∈V \{s, t}, ∑v∈V f (u,v) = 0.

The value | f | of a flow f is defined as

| f |= ∑
v∈V

f (s,v).

A maximum flow is a flow with the maximum value.

For the same setting, a cut is a partition of V into two subsets Sand T = V \S

such that s∈ Sand t ∈ T. For a given cut, the total cost of the cut is defined as

∑
u∈S,v∈T

c(u,v).

When an edge has its tail in Sand head in T, the edge is said to be cut. A mini-

mum cut is a cut with the minimum total cost.

The max-flow min-cut theorem says that by finding a maximum flow, a mini-

mum cut can be found. There are efficient algorithms to find maximum flow. The

simple and fast algorithm I chose to use is called the push-relabel method with

global relabeling (e.g., Goldberg and Tarjan[34], Cherkassky and Goldberg[17]).
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4.2 Solving MRF by Minimum Cut

As defined in section 2.1, the most general first order MRF for a graph G= (V,E)

and a label set L has an energy

E(X) = ∑
(u,v)∈E

g(u,v,Xu,Xv)+ ∑
v∈V

h(v,Xv).

So far, the binary case (see section 2.3.2) has been the only case where the prob-

lem can be solved exactly and efficiently. Here, I extend the class of first order

MRF problems that can be solved thus:

Assumption. The label set L is a set of evenly spaced real numbers, and the

function g(u,v,Xu,Xv) is of the form g(Xu−Xv) with a convex function g(x).

In other words, we will be concerned with energies of the form:

E(X) = ∑
(u,v)∈E

g(Xu−Xv)+ ∑
v∈V

h(v,Xv) (4.1)

with a convex function g(x).

The main idea of the method is to define a graph such that

1. there is a one to one correspondence between configurations of the MRF

and cuts of the graph, and

2. the total cost of the cut is exactly the same as the total energy of the config-

uration.

With such a graph, we can find a minimum energy configuration of the MRF by

finding a minimum cut of the graph.



34 CHAPTER 4. CODIMENSION 1 METHOD

4.2.1 The Graph

Let l be the interval between the label values l1 < l2 < · · ·< lk in L, i.e., l i + l = l i+1.

Define a graph G = (V,E) as follows.

V = V×L∪{s, t}= {uw,i | w∈V; i = 1, . . . ,k}∪{s, t},

E = ED∪EC∪EP.

Below, each of the three subsets of edges is defined and their capacities are spec-

ified.

4.2.2 Data Edges

Data edges implement the data term h(v,Xv) in the energy. The set of data edges

is defined by:

ED =
⋃
v∈V

Ev
D,

Ev
D = {(s,uv,1)}∪{(uv,i ,uv,i+1)|i = 1, . . . ,k−1}∪{(uv,k, t)}.

For each vertex v of the original graph G, Ev
D is the series of edges s→ uv,1 →

uv,2 → ··· → uv,k → t, which we call the column over v.

The capacities of these edges are defined by

c(s,uv,1) = +∞,

c(uv,i ,uv,i+1) = h(v, l i); i = 1, . . . ,k−1, (4.2)

c(uv,k, t) = h(v, lk).
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Figure 4.1: Data edges are depicted as black arrows. Four of them are cut here,
representing an assignment X1 = 1, X2 = 2, X3 = 2, and X4 = 3. Penalty edges are
represented by gray arrows. By crossing consecutive penalty capacities, the cost
is added linearly, accounting for the function g(x,y) = |x− y|. Constraint edges
are depicted as dotted arrows. They ensure that the assignment Xv is uniquely
determined. These edges cannot be cut, preventing the cut from “going back”.

4.2.3 Constraint Edges

Since any cut of the triple (G,s, t) separates s and t, it cuts at least one data edge

in Ev
D for all v ∈ G. Constraint edges guarantee that each column is cut exactly

once. They are the edges opposite to data edges:

EC =
⋃
v∈V

Ev
C,

Ev
C = {(uv,i+1,uv,i)|i = 1, . . . ,k−1}.

The capacity of each constraint edge is set to infinity. This precludes more than

one data edge being cut in each column Ev
D of data edges over vertex v.

To see this, consider the changing assignments of vertices to S or T as we
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proceed from sto t on a column. The first vertex sbelongs to S, and the last vertex

t belongs to T. Thus, there must be at least one boundary in the progression

where the membership changes. Moreover, the direction of the change must

alternate (if you go from S to T, next time you have to come back from T to

S.) Suppose that there is more than one boundary. Then the change across at

least one of them must be from T to S. There is an edge going each way at this

boundary. The edge from S to T is a constraint edge, and by the definition of a

cut, it is cut. Therefore, if constraint edges have infinite capacities, there cannot

be more than one boundary on the column. In Figure 4.1, constraint edges are

depicted as dashed arrows, and none is cut.

Because of this, we can interpret a cut as a configuration of the MRF. Remem-

ber that the space X(G) = LV is a set of assignments X : V 3 v 7→ Xv ∈ L, and we

want to find the assignment X that minimizes the energy (4.1).

Convention. For any cut, we interpret the cut as an assignment X such that

Xv = l i for v∈ G, where i specifies the vertex uv,i at the tail of the uniquely

determined cut edge in the column over v.

If an MRF configuration, or an assignment X, assigns l i to vertex v, the corre-

sponding cut cuts the data edge (uv,i ,uv,i+1) (or if i = k, (uv,i , t)), whose cost is

h(v, l i) by (4.2). Thus, with the capacities of the edges defined so far, the total cost

of any cut is exactly the second sum in the energy (4.1) for the MRF configura-

tion.

The rest of the energy is realized by the cost of the cut of a third kind of edge,

the penalty edges.



4.2. SOLVING MRF BY MINIMUM CUT 37

Xw= l j

Xv= l i

uv, i

uv, i +1

uw, j

uw, j +1

v w

Figure 4.2: General penalty edges. Only the edges originating from the column
over vertex v are shown. Edges going from “below” uv,i+1 to “above” uw, j are cut,
shown here as solid arrows.

4.2.4 Penalty Edges

Penalty edges go between columns:

EP = {(uv,i ,uw, j)|(v,w) ∈ E; i, j ∈ {1, . . . ,k}}.

Figure 4.1 shows the special case where the capacity of such an edge (uv,i ,uw, j) is

zero unless i = j , that is, where only horizontal edges exist. It is easily seen that

the number of horizontal edges that are cut between columns over neighboring

vertices v and w is proportional to the change |Xv−Xw| of assignments at the ver-

tices. For instance, if the assignment does not change, none of the horizontal

edges between the two columns is cut. If they change by one, one would be cut,

as at the leftmost pair of columns in the figure. This is the simplest case. Now,

we consider the general case where each pair (uv,i ,uw, j) of vertices in neighbor-

ing columns can have an edge between them with a nonnegative capacity (see



38 CHAPTER 4. CODIMENSION 1 METHOD

Figure 4.2.)

It is important to note that specifying an assignment at a vertex v, which de-

termines the unique data edge that is cut in the column over v, also determines

the membership of all vertices in the column in either S or T. Therefore, given

assignments Xv and Xw at neighboring vertices v and w, the status (cut or uncut)

of each edge between vertices in the columns over these vertices is determined.

Thus, the sum of the capacities of cut edges between the two columns is deter-

mined by Xv and Xw.

Suppose we have label Xv = l i at vertex v and Xw = l j at vertex w. By the

convention, this is expressed as a cut that cuts (uv,i ,uv,i+1) and (uw, j ,uw, j+1). As

a side effect, various other edges are also cut. Among the edges going from the

column over v to the one over w, edges of the form (uv,a,uw,b) with a≤ i and b> j

are cut. Similarly, edges of the form (uw,b,uv,a) with a > i and b≤ j are cut. The

sum of the capacities of these edges amounts to:

f (i, j) =
i

∑
a=1

k

∑
b= j+1

c(uv,a,uw,b)+
k

∑
a=i+1

j

∑
b=1

c(uw,b,uv,a). (4.3)

Now, we assume that the sum represents the given penalty function g(x) of the

change:

f (i, j) = g̃(i− j) = g(l i − l j).

Although we do not even know if there exists a capacity map that makes the

sum (4.3) depend only on the difference between i and j (we will see below that

it does exist for any convex function g(x),) here we just assume such capacities

and derive a necessary condition.

Proposition. Assume that the function f (i, j), defined by (4.3) as the sum of edge ca-
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pacities between neighboring columns, depends only on the difference between i and j ,

and thus can be written as f (i, j) = g̃(i− j). Then the function g̃(x) is convex.

Proof. We take the second difference of g̃:

δ2g̃(x)
δx2 = {g̃(x+1)− g̃(x)}−{g̃(x)− g̃(x−1)}

= f (i, j−1)− f (i, j)− f (i−1, j−1)+ f (i−1, j),

where i− j = x. When we use the definition (4.3) and simplify the sum, we get:

δ2g̃(x)
δx2 = c(uv,i ,uw, j)+c(uw, j ,uv,i). (4.4)

Since the right hand side is nonnegative, this shows that the function g̃(x) must

have a nonnegative second difference; thus g̃(x) is convex.

Conversely, suppose we are given a convex function g(x). First, note that

since L is finite, the range of the target function is bounded, and thus the range of

possible x, which is the difference between the two values of the target function

at neighboring vertices, is bounded. In other words, the behavior of g(x) outside

of this range does not make any difference to the problem. Specifically, we can

assume without loss of generality that the second derivative of g is zero for large

enough |x|.

We define the capacities of the edges by the appropriate second difference:

c(uv,i ,uw, j) =
g((i− j +1)l)−2g((i− j)l)+g((i− j−1)l)

2
, (4.5)

where the right hand side is nonnegative because of g(x)’s convexity. Because of

the manner in which it is defined, the capacity of an edge depends only on the
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(a) (b)

Figure 4.3: (a) Each penalty edge has a capacity that depends only on the label
change. (b) Contributions from out-of-bounds edges are consolidated.

label change i− j between the head and the tail of the edge. Also, because of the

assumption that the second derivative of g(x) vanishes for sufficiently large |x|,

we can safely ignore edges with a large label difference.

Therefore, the function defined by the sum of these capacities depends only

on the label difference, except for one detail: the boundary effect. That is, for

this argument to work, we have to add the capacities of edges that have an end

that is out of bounds (see Figure 4.3 (a).) The problem is that some edges whose

capacities are necessary to make the sum depend only on the label change do

not actually exist. Note that there are only a finite number of such edges because

the capacity is zero for sufficiently large label differences. Therefore we can add

these capacities to the capacities of other edges that do exist (Figure 4.3 (b)). That

is, whenever vertices of the form uv,i with i > k appear, we replace them by t and

add the capacity to the existing edge; similarly, we replace uv,i by uv,1 if i < 1.

In this way, for a given convex function g(x), we can realize it up to a dif-
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ference of a constant and a linear term in x. The linear term does not affect the

optimization, since in the energy (4.1) g(Xu−Xv) and g(Xv−Xu) always appear

together, canceling out linear terms. A constant term in g(x) results in a constant

in the energy, since there are a fixed number of vertices in the sum, and is there-

fore immaterial to the optimization. Thus, by finding a minimum cut, we can

find a global MAP estimate of the MRF. We have proved:

Theorem. The method applies if and only if the function g(x) in the MRF energy (4.1)

is convex.
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f i v e

Dimension 1 Method

I n this chapter, I describe our second graph-based method, which is used

to seek a closed contour in one or more images. Using the minimum ratio

cycle algorithm, we try to find a one-dimensional entity, a cycle, approximating

a closed curve in the image. The basic idea is simple: we embed a graph in the

pertinent space (for example the image plane) arranging the vertices regularly,

with each vertex represent a position in the space and an edge an oriented line

segment. In this setting, a path in the graph naturally approximates a curve in

the space.

5.1 Finding Curves with a Minimum Energy

In this section, I discuss the difficulties we encounter when we try to minimize

an energy for curves and closed contours in general. Then I explain how these

problems are overcome.

43
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(a) (b) (c)

(d) (e) (f )

Figure 5.1: Finding curves with minimum energy.

5.1.1 Length Dependence

Suppose we have expressed the desirable properties of a curve as the integral of

a local energy:

∫
e(s)ds. (5.1)

A nice property of this kind of energy is that we can use a shortest path algorithm

to find a minimum energy path in a graph approximation; we assign the local

energy to each edge and minimize its sum along the path. Unfortunately, it turns

out that the problem needs to have some restriction placed on the kind of curves

to be found, or the algorithm tends to find a trivial curve. The trouble is that

often a minimum energy curve is also a “minimum curve.”

Let us for a moment suppose that the energy is positive. We can try, for
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instance, to find a curve with high gradient by minimizing

∫
1

|~∇I |2
ds,

where ~∇I is the gradient of the image (Figure 5.1 (a).) We can impose a restric-

tion by, for instance, fixing the two endpoints of the curve (Figure 5.1 (b),) which

works fairly well. If, however, we try to find a minimum energy path with

free ends, we will always find an edge with minimum local energy—maximum

gradient—as a solution (Figure 5.1 (c).) The inherent difficulty here is that if we

add up a positive local energy, part of a path always has less energy than the

whole.

This happens also when we try to find a closed curve hoping to get a contour

such as the one shown in Figure 5.1 (d). What we end up finding instead is a

miniscule circle at the locus of the largest gradient (Figure 5.1 (e).)

What happens if we allow a negative energy? Let us consider a local energy

−|~∇I | instead of |~∇I |−2. This time we have the opposite problem: the longer a

path is, the less energy it tends to have. This is akin to looking for the longest

curve—you can find as long a curve as you want (Figure 5.1 (f)).

We may try to balance these two situations by adding more than one kind of

energy, say gradient and length. This sometimes works. However, such methods

always have implicit dependence on length and often depend uncontrollably on

the scale.
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5.1.2 Energy Density

A partial remedy for this problem of length dependence is to minimize the en-

ergy density: ∫
e(s)ds∫

ds
,

rather than the total energy. This eliminates the direct dependence on the length;

a longer curve is no better than a shorter one if they have the same density. More

generally, we can think of minimizing the ratio of two integrals:

∫
e(s)ds∫
f (s)ds

,

where the length can be weighted by a positive function f .

Even in the case of an energy density, it turns out that there is still a tendency

to favor a small segment, or a small circle in the case where we are looking for a

closed contour. This is because we can always find part of a curve with a smaller

density than the whole unless the local energy is constant on the curve. This

difficulty is, however, much less problematic than the previous one, and seems

to be manageable in practice, especially in the case of closed contours.

5.1.3 Oriented Contours and Regions

In the case of a closed contour, another way to avoid finding trivial contours is

to take the direction of the curve into account when assessing the local energy.

That is, we use the energy ∫
e(s,~t(s))ds,
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(a) (b)

Figure 5.2: A gradient vector field and a closed contour. The cross product is
minimum when the vector field is perpendicular to the tangent vector according
to a fixed orientation (e.g. clockwise).

which depends on the tangent vector~t(s) of the curve at the point, instead of the

energy (5.1) that depends only on the position. By using the tangent vector, we

can define an energy that cancels itself out when integrated around a small cycle.

The most natural instance of this is

e(s,~t) = ~∇I(s)×~t(s), (5.2)

where “×” is the cross product of the two vectors (see Figure 5.2.) This way,

the modulus of the integral of a small cycle will be small, because two segments

going in opposite directions at nearby points tend to cancel each other.

In addition to this benefit, this form of energy has a great advantage. A

slightly more general version of (5.2) is

e(s,~t) =~v(s)×~t(s), (5.3)

where a general vector field~v is integrated along the contour. This form of energy

allows us to use region energy that depends on properties of the region that is

surrounded by the closed contour. This follows from Stokes’ theorem. It states
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(in this case) that, for any vector field ~v, an integral over the boundary ∂R of a

region R can always be rewritten as an integral over the region:

∫
∂R

~v×~t ds=
∫

R
div~v dxdy,

where div~v=~∇ ·~v is the divergence of the vector field~v. Note that both the region

and the boundary must be considered oriented.

Now, the crucial observation is this: in a topologically simple space such as

this one, there always exists a vector field whose divergence is the given func-

tion. In other words, for any function e(x,y), we can always find a vector field

~v(x,y) such that

div~v(x,y) = e(x,y)

and, using Stokes’ theorem, convert a region integral of eover an oriented region

R into a contour integral of~v×~t over the boundary of the region:

∫
R

e(x,y) dxdy=
∫

∂R
~v×~t ds.

On R2, the vector field ~v = (~vx,~vy) can for instance be given by the following

integrals:

~vx(x,y) =
1
2

∫ x

0
e(x′,y)dx′,

~vy(x,y) =
1
2

∫ y

0
e(x,y′)dy′.

There is a choice of constant functions that can be added to the components of

this vector field, but the choice does not affect the value of the integral. Indeed,

we can add any divergence-free vector field (i.e., the gradient of some function)
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and still have the same integral.

5.2 Globally Optimal Regions and Boundaries

As I discussed in the previous section, we have many choices when we try to

find curves with an optimal energy. The curve can be either open or closed. The

local energy can be oriented or otherwise. We can optimize either the energy

integral itself or the density thereof.

As long as we are considering an additive energy, the search for an open con-

tour has the inherent difficulty of length dependence (section 5.1.1.) Even when

we consider an energy density (section 5.1.2,) the shortest segment with the min-

imum energy has the minimum energy density. Thus, we need more constraints.

One such constraint would be to fix the endpoints, which would require a way

to choose the points. Looking for a closed contour without orientation seems to

be plagued by the trivial cycle problem.

Indeed, among these possibilities, the search for an oriented closed contour

with an optimal energy density seems to be the only case that has a nontrivial

solution without an initialization such as specifying endpoints.

In addition to this benefit, the problem has an additional advantage, dis-

cussed in section 5.1.3; moreover, there is an efficient algorithm to solve the

problem—the minimum ratio cycle algorithm.

5.2.1 Minimum Ratio Cycle

The minimum ratio cycle problem is defined on a graph G= (V,E) with two cost

functions: an integral cost c : E → Z and a nonnegative integral time t : E → Z>0.

The task is to find a cycle with the smallest ratio of its cost to its time. A cycle in
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G is a series C = (e1, . . . ,ek) of edges that forms a closed path, i.e., the head of ei

and the tail of ei+1 coincide for i = 1, . . . ,k−1 and the head of ek and the tail of e1

coincide. For a given function on E, we use the same symbol for its sum on the

edges in a cycle, e.g.,

c(C) = ∑
e∈C

c(e),

t(C) = ∑
e∈C

t(e).

We define the ratio weight by

w(C) =
c(C)
t(C)

.

Then, the problem is to find a cycle C with minimum ratio weight w(C). There are

algorithms (Lawler[53]; Dantzig, Blatner, and Rao[21]; Meggido[60]) that solve

this problem in polynomial time. In section 6.4.2 I will describe in more detail

the particular version that is used in this thesis.

5.2.2 Finding Optimal Regions and Contours

We use the minimum ratio cycle algorithm to maximize an energy of the following

form:

E(I ,R) =
|
∫
R e(x,y)dxdy|∫

∂R f ds
, (5.4)

where e is any real-valued function on R2, which generally reflects the contribu-

tion of the image to the energy, and f , integrated by the arc length parameter s,

is any positive real-valued function.
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As noted in section 5.1.3, the numerator of (5.4) can always be rewritten as an

integral over the boundary ∂R of the region R:

E(I ,∂R) =

∣∣∫
∂R

~t×~vds
∣∣∫

∂R f ds
(5.5)

where~t is the tangent vector to the boundary, and ~v is defined by the equation

~∇ ·~v = e.

Thus we can convert freely between (5.4) and (5.5); therefore we can use any

function e that measures the merit of the region R, any vector field ~v to be in-

tegrated around the boundary ∂R to measure the desirability of the contour, or

any combination thereof, as the criterion for an optimal region and its boundary.

The denominator is a (possibly weighted) measure of the length of the bound-

ary, and has the effect of damping the scaling behavior of the energy, which

would otherwise have a strong preference for large regions. It also functions as

a boundary smoothing term, as follows. If eand f were unity we would be max-

imizing the area over the length, and fixing the length of the boundary would

produce a disc as the solution to the optimization problem. This is also the so-

lution to an active contour model with a fixed length and a smoothing term that

is the square of the curvature. In general, the effect of the dependence on area

divided by that on length will be to produce smoother boundaries.

We define the solution to the optimization problem as the global maximum

of E over all regions R. Note that by assigning two energies to each region,

±E(I ,R), and then minimizing over all such energies, we achieve the same so-

lution. That is, by minimizing, we actually find the largest modulus. This can

be viewed as an assignment of two orientations to each region, and then a min-

imization over all oriented regions. Removing the modulus signs and minimiz-
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ing over all oriented boundaries is then equivalent to the original maximization

problem over un-oriented regions.

Thus, by using a standard embedded graph in an image, we can translate the

minimizing problem over all oriented boundaries into a minimization over all

directed cycles in the graph, and the energy becomes exactly what is minimized

by the minimum ratio cycle algorithm.

The form of equation (5.5) allows us elegantly to include boundary as well as

region information in our model. We can add to ~v any other vector field ~w and

still compute the global optimum.

5.3 General Formulation

Here I include a general formulation of the problem using the language of Rie-

mannian geometry, which more easily generalizes to higher dimensions as a no-

tation. I refer the reader to [18] for an introduction to this language.

We define a closed contour s in an orientable Riemannian manifold M (such

as R2) by an embedding

s : S1 →M.

That is, s is a smooth map that induces a diffeomorphism between the standard

(oriented) one-dimensional sphere S1 and its image s(S1) with the induced topol-

ogy and differential structure from M. In particular, the contour does not cross

itself (otherwise the topology would be different from that of S1.)

There exists a one-form ωs on S1 such that the length of the contour in M is

defined by the integral ∫
S1

ωs.
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It is uniquely determined by s∗g = ωs⊗ωs and the orientation of S1, where g is

the metric on M. The Hodge star ∗s on S1 is defined with respect to the metric on

M pulled back by s; for a function f on S1, ∗s f = f ωs, and for a one-form A, ∗sA

is defined by (∗sA)ωs = A (thus (∗s)2 is an identity.) Suppose µ is a function or a

one-form on M that has its value in some vector space endowed with an inner

product 〈·, ·〉. We define

|µ|2s,0 = ∗s〈s∗µ,∗ss
∗µ〉,and (5.6)

|µ|2s,1 = 〈s∗µ,∗ss
∗µ〉, (5.7)

which are a function and a one-form on S1, respectively. When µ is a one-form,

|µ|2s,0 depends not only on the point that s goes through but also on its direction

at that point, while if it is a function, |µ|2s,0 depends only on the position. The

one-form |µ|2s,1 behaves in the same way.

We define the energy functional

E(s) =
∫

S1 s∗A

∑i
∫

S1 | fi |2s,1/|gi |2s,0
, (5.8)

where A is a one-form on M and fi and gi are each either is either functions or

one-forms on M.

Let us denote by D the standard two-dimensional disk and by r an embed-

ding of D into M that coincides with son S1 = ∂D⊂D. Then, for any one-form A,

Stokes’ theorem states that ∫
D

r∗dA=
∫

S1
s∗A.

When the second cohomology group H2(M;R) of M is trivial (as in the case of a

Euclidean space,) any closed two-form F on M is exact, i.e., if dF = 0, there exists
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a one-form A such that F = dA.

In particular, if M is two-dimensional, all two-forms are closed. Thus, if

H2(M;R) vanishes, we can find for any function e on M a one-form A such that

∗e= dA, where ∗ is the Hodge star operator on M. This corresponds to the special

case that was described in the previous section, where A= ∗dI , corresponding to

the vector field~v.

When, as in the case of the stereo and motion segmentation in the next chap-

ter, M is a match space of two or more image planes Ǐ1, . . . , Ǐn, there is a natural

projection from M to each image plane:

pi : M → Ǐi .

Then we can define a two-form F on M by a linear combination of pullbacks of

two-forms on the images:

F = ∑
i

ai p
∗
i Fi .

Then F is closed, and since M is a Euclidean space, exact.
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Variations and Details

H ere I describe applications of the methods explained in the previous

chapters in specific areas, and show the results of experiments. I begin

with a simple use of the MRF optimization for image restoration and proceed to a

more complex variation for binocular stereo. Then I describe a variety of image

segmentation and region extraction applications, using both the minimum cut

method and the minimum ratio cycle method.

6.1 Image Restoration

Before going into computer vision problems, first I give a simple example of MRF

optimization. In image restoration, we are given an image that is corrupted by

noise. The goal is to recover the “true” image from the noisy one. Here, we

assume a simple statistical model and use an MRF to find the image most likely

to have given the corrupted one. The image formation model here is a simple

55
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Figure 6.1: Each row shows an example of image restoration; the original image
(left column), the noisy image (middle), and the restored image (right). Note
that the restoration does not blur the intensity edges.
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Figure 6.2: Comparison of three restorations of images with three noise levels.
Each column shows the input (top row) and the restoration using µ = 6 (second
row), µ= 20 (third row), and µ= 40 (bottom), where g(x) = µ|x|.
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pixel-wise Gaussian noise model. That is, the probability P(I |It) that the image I

is obtained by corrupting the true image It is given by

P(I |It)∼∏
x,y

e−{I(x,y)−It(x,y)}2
.

The prior model is a smoothing model:

P(It)∼∏
x,y

∏
x′,y′

e−µ|It(x,y)−It(x+x′,y+y′)|,

where x′ and y′ give appropriate relative neighbor coordinates.

The corresponding MRF model is defined by i) an image graph G = (V,E)

that has a vertex for each pixel and an edge for each pair of neighboring pixels,

ii) a label set L = {0, . . . ,255} that consists of gray-scale values, and an energy:

E(X) = µ ∑
(u,v)∈E

|Xu−Xv|+ ∑
v∈V

{I(v)−Xv}2,

where the configuration X of the MRF corresponds to the true image It.

Among convex functions, the linear function on the magnitude of the change

(i.e., g(x) = |x|) is most preferable as it penalizes large discontinuities least.

Some results are shown in Figure 6.1. Each row shows an example of im-

age restoration; the original image (left column), the noisy image (middle), and

the restored image (right). Note that the restoration does not blur the intensity

edges.

Figure 6.2 shows a comparison of three restorations of images with three

noise levels. The original image is the third in Figure 6.1. Each column shows

the input (top row) and the restoration using three smoothing constants; µ = 6
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(second row), µ= 20 (third row), and µ= 40 (bottom).

For the maximum-flow algorithm, we used a standard push-relabel method

with global relabeling (see Cherkassky and Goldberg[17].)

The algorithm has an asymptotic complexity of O(|V|3). Although there are

other algorithms that are faster in an asymptotic sense (e.g., the algorithm in

Goldberg and Tarjan[34] runs in O(|V||E| log(|V|2/|E|)) time), they are generally

more complex and in the range of the graph sizes that is relevant here, the sim-

pler algorithm seems to be faster. In the implementations, the global relabeling

heuristic [17], which does not improve the asymptotic complexity at all, is much

more important, since it improves the actual running time by a factor of ten or

more.

6.2 Stereo

Next, I describe how a binocular stereo algorithm can be implemented by spe-

cializing the graph used in the above MRF method so that:

1. half occlusions are allowed detected,

2. disparity discontinuity along the epipolar line in one eye always corre-

sponds to an occluded region in the other eye, and

3. in its prior, epipolar lines need not be statistically independent.

As explained in section 3.2.1, the parameter space for stereo is the space of

surfaces in the product space ǏL × ǏR restricted by the epipolar constraint (the

match space). The match space has a natural coordinate system (l , r,y), where y

parametrizes epipolar lines, and l and r are the coordinates on the epipolar lines
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Figure 6.3: An epipolar slice of the graph representing the stereo model. The full
graph is naturally represented in three dimensions, with the third axis parametriz-
ing the epipolar lines. A cut of the graph can be thought of as a surface that
separates the two parts; it restricts to a curve in an epipolar slice. The optimal
cut is the one that minimizes the sum of the capacities associated with the cut
edges. In this example, the cut shown yields the matches (l , r) = (0,0),(1,1),(3,2),
and (4,3); the cut also detects an occlusion at gray (white) pixel 2 (4) in the left
(right) image.
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in the left and right images, respectively. We represent half-occlusions, or ap-

pearances of scene locations in only one of the two images, by a match surface

that is perpendicular to the l or r axis.

We convert the (l , r,y) coordinate system into a “cyclopean” coordinate sys-

tem (d, t,y), where d = l − r and t = l + r . Because of the monotonicity con-

straint, the surface in this representation has a unique point for each (t,y) pair,

i.e., it is the graph of some function on the (t,y) plane that gives a value d—the

disparity—at each point. This enables us to consider the problem as an MRF

problem. We define the MRF by considering a graph embedded in the t-y plane

and a label set consisting of integral disparity values d. The graph has a vertex

for each pair of integral t and y in the range, and has the standard four-neighbor

structure: the vertex for (t,y) is connected to the vertices for the coordinates

(t + 1,y), (t − 1,y), (t,y+ 1), and (t,y− 1). Equation (4.1), the energy functional

reads:

E(X) = ∑
(t,y),(t ′,y′)neighbors

g(d(t,y)−d(t ′,y′))+ ∑
(t,y)

h(t,y,d(t,y)). (6.1)

For the prior, we again use the penalty function g(x) = |x|. For the image forma-

tion model, we use various functions h(t,y,d) that give a measure of difference

between the points ( t+d
2 ,y) in the left image and ( t−d

2 ,y) in the right image (see

section 6.2.2 below.)

Then, we use the method discussed in section 4.2 for this problem and con-

struct a graph. Figure 6.3 shows an epipolar slice (i.e., fixed y) of the graph.

We can see that this is a version of the graph shown in Figure 4.1, but tilted by

45 degrees. The constraint edges have slightly different connectivity in order

to enforce the ordering constraint, or rather its local version, the monotonicity
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constraint. The statistical dependence of the epipolar lines, i.e., the smoothing

across them, is implemented by penalty edges bridging epipolar slices.

6.2.1 Graph Structure

Although the basic principle is that of the MRF method discussed in chapter 4.2,

the graph used here has some modifications to accommodate the specific situa-

tion.

First, as already mentioned, the constraint edges enforce the monotonicity

constraint. In Figure 6.3, the constraint means that the cut must “go” from left to

right between angles of 0 and 90 degrees.

Assuming that the l and r coordinates are integral, half of the integral dispar-

ity values are impossible for any given integral t (e.g., if t = l + r is even, then

d = l − r must be even, too.); there are no corresponding data edges for these

values. As can be seen in the figure, this classifies the vertices into two kinds—a

vertex other than s or t is either the tail of a data edge or the head of one. More-

over, since there exists a unique data edge for each possible combination of l , r ,

and y, there exists one of each kind of vertex for each such triple. We denote the

vertex at the tail of the data edge corresponding to (l ,r ,y) by ul ,r,y and the one at

the head by vl ,r,y (the y coordinate is omitted in the figure.) This classification

also gives rise to two kinds of penalty edges—the ones going from u to v and the

ones going from v to u. This difference turns out to have a geometric significance,

which now I explain.

Occlusion vs. Tilted Surface In Figure 6.3, the pixel 2 in the left image does

not match any pixel in the right image. The disparity changes from d = 0 at left-

pixel 1 to d = 1 at left-pixel 3. Figure 6.4 (a) shows a close-up. Pixel 2 in the left
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Figure 6.4: (a) A close-up of the Figure 6.3. The left-pixel 2 (the middle) does not
have a matching right-pixel, i.e., it is occluded. (b) Another possibility, where the
left-pixel 1 and 2 match the same right pixel; this happens when the surface is
tilted. Note the different kinds of the penalty edges are cut in the two cases.
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image does not have a matching right pixel, i.e., it is occluded; the scene point

corresponding to this pixel in the left image cannot be seen from the right eye. To

realize the same disparity change, there is another possibility: pixel 2 in the left

image can match pixel 1 in the right. This represents the case where the surface

is tilted (see Figure 6.4 (b).) Comparing the graph cuts in the two cases, we notice

that in (a), a penalty edge going from v to u (shown in dark gray) is cut whereas

in (b), a penalty edge going from u to v (shown in light gray) is cut. Using this

fact, we can control the tendency of the algorithm to find one of the two cases by

changing the weights for the two kinds of penalty edges.

6.2.2 Feature Selection

In order to find corresponding points in the two images, an algorithm must have

some notion of similarity, or likelihood that points in each image correspond to

one another. To estimate this likelihood various features are used, e.g., inten-

sity difference, edges, junctions, and correlation. Since none of these features

is clearly superior to the others in all circumstances, using multiple features is

preferable to using a single feature, if one knows which feature, or which com-

bination of features, to use when. Unfortunately, features are difficult to cross-

normalize. How can we compare the output from an edge matching with one

from a correlation matching? We would like not to have to cross-normalize the

outputs of the feature matchings, and still be able to use multiple features. Here,

we use a consequence of the monotonicity constraint to select an optimal feature

or combination of features for each set of mutually exclusive matching choices.

In the energy functional (6.1), the local feature energy function h(t,y,d) gives

a measure of difference between the points ( t+d
2 ,y) in the left image and ( t−d

2 ,y) in
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Figure 6.5: An epipolar slice of the match space. The matching surface appears
as a curve here. The monotonicity constraint means that this curve crosses every
constant t line once.

the right image. We assume it gives a nonnegative value; a smaller value means

a better match. In what follows, the y coordinate will be omitted. Also, note that

these functions of course depend on the images, although the notation does not

show this explicitly.

Suppose we have a finite set H of local feature energy functions. On what

basis should we choose from the set? Different features are good in different

situations. For instance, edges and other sparse features are good for capturing

abrupt changes of depth and other salient features, but can miss gradual depth

change that can instead be captured by using dense features. What one cannot

do is to choose functions at each point in the match space; the values of different

local energy functions are in general not comparable. In general, the same local

function must be used over the set from which a selection is made. In other

words, across these sets of selections, different functions can be used. Then,

what is the set of selections? Figure 6.5 shows an epipolar slice of the match

space. The surface that represents the matching appears as a curve here. In this

figure, the monotonicity constraint means that the tangent vector of the curve

must reside in the ”light cone” at each point of the matching curve. This implies
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Figure 6.6: The functional H on function h. It measures the degree of concentra-
tion of the value of h.

that the matching curve crosses each constant t line at exactly one point. This

means that on each such line the matching problem selects one point (the match)

from all the points on the line. Thus we can choose one particular local energy

function on this line and safely choose a different one on another line. In the

following, I will call these lines the ”selection lines.”

The partition of the match space into selection lines is minimal in the sense

that, for any sub-partition, the selection of the energy function cannot be local

to each partition. There are, however, other minimal partitions with this local-

selection property. For instance, the match can be partitioned into other “space-

like” lines with an l to r tilt different from −1 : 1, as long as the ratio is negative.

Selection Rule As we have said, on each selection line, we are free to choose

any local energy function. Note that the information that we can easily utilize for

the selection is limited. For instance, we cannot use any information concerning

the matching surface that is eventually selected, as that would lead to a combi-

natorial explosion. Here, we employ a least “entropy” rule to select the energy

function. It chooses the energy function that is most “confident” of the match on

each selection line. After all, an energy function that does not discriminate be-

tween one match and another is of no use. Going to the other extreme, when we

have ground truth, an energy function that gives the true match the value zero
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and every other match the value positive infinity is obviously the best; the en-

ergy function knows which match to choose with certainty. This intuition leads

us to evaluate how “sure” each energy function is.

Let us define an “entropy” functional for a positive-valued function h on {d =

D0,D0 +1, . . . ,D1}×{t} by:

Et(h) =
D1

∑
d=D0

h(d, t),

Ht(h) =−
D1

∑
d=D0

h(d, t)
Et(h)

log
h(d, t)
Et(h)

.

This functional Ht gives a measure of the degree of concentration of the function

h: it is smaller when h is more concentrated (see Figure 6.6.) The more peaked the

function, the lower the value of the functional. We use this functional to choose

a preferred local energy function for each selection line. To use this functional

for our purposes, where we need a dipped function rather than a peaked one,

we invert the function and feed the result to the functional.

Thus, for each selection line, we choose the function h with the least value of

Ht(hmaxt −h), where hmaxt is the maximum value of h on the selection line corre-

sponding to the coordinate value t:

ht = argmin
h∈H

Ht(hmaxt −h).

This selection rule prefers a function that has a distinguished dip, which means,

in our situation, one or few disparity values that have an advantage over other

values. This method of selection allows us to avoid irrelevant measures locally

and ensures the most confident selection of the disparity on each selection line.
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Figure 6.7: (a),(b) A sample image pair “Apple.” Results (disparity maps) are
shown using different local energy functions (c), (d), (e), (f), (g), and minimum-
entropy selection from the five energies (h). The gray level in (i) shows which of
five energy functions is used in (h) at each point of the left image.
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6.2.3 Results

The following features are used for the experiments:

1. Intensity. This is a simple squared difference between the points, i.e.,

h2
I (t,y,d) = {IL(

t +d
2

,y)− IR(
t−d

2
,y)}2.

2. Wavelet edge. The derivative of Gaussian wavelet that detects an edge in

the vertical direction at various scales:

hs
E(t,y,d) =

∣∣∣∣WsIL(
t +d

2
,y)−WsIR(

t−d
2

,y)
∣∣∣∣ ,

where

WsI(x,y) = I ∗ψs(x,y),

ψs(x,y) = s−1ψ(s−1x,s−1y),

ψ(x,y) = 2π−1exp(x2−y2)x.

See Mallat [56] Chapter 6 for the details of multi-scale edge detection.

3. Multi-scale edges consistent across the scale. This is a measure of the

presence of an edge across scales.

hE(t,y,d) =
∣∣∣∣∑

s
WsIL(

t +d
2

,y)−∑
s

WsIR(
t−d

2
,y)

∣∣∣∣ .
In Figure 6.7, a comparison of the results for a sample image pair ((a),(b); 135

× 172 pixel 8-bit gray-scale images) using these energy functions is shown. The
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3D Reconstruction

Original

Disparity

Figure 6.8: Stereo pair “Pentagon” (508 × 512 pixel 8-bit grayscale images,) dis-
parity maps for both images, and a 3D reconstruction from the disparity.
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results (disparity maps) are shown using the intensity square difference h2
I (c);

the wavelet edge features hs
E(t,y,d) with scale s= 1 (d), s= 2 (e), and s= 4 (f); the

multi-scale edge hE(t,y,d) (g) (the square difference of the sum of the wavelet

coefficients for s= 1,2,4); and the minimum-entropy selection from the five en-

ergies (h). The Intensity feature h2
I (c) gives the poorest result in this example.

Wavelet edges for s= 1,2,4 (d), (e), and (f) are better, yet with a black artifact on

the upper right, also present with the multi-scale edge (g). The gray-scale image

(i) shows which of the five energy functions is used in (h) at each point of the left

image. A black point represents an occluded point, where no match was found,

resulting in no corresponding t defined for the l -coordinate. Other gray values

are in the order (c) to (g), i.e., darkest: intensity h2
I , lightest: multi-scale edge

hE(t,y,d).

Figure 6.8 shows a stereo pair “Pentagon” (508 × 512 pixel 8-bit grayscale

images,) disparity maps for the left and right images, and a 3D reconstruction

from the disparity map.

6.3 Region Segmentation Using the MRF

In an image, objects and their boundaries manifest themselves as regions and

their 1D boundaries. Segmentation is the process of identifying groups of pixels

that belong to different objects. As discussed in section 3.1, there are generally

two approaches to the segmentation problem: we find either regions or their

boundaries.

Among our methods, MRF optimization is suited to region segmentation,

where we assign to each pixel a label that identifies the group to which the pixel

belongs. An important question is how the number of labels is determined, since
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this must be fixed before the MRF optimization process can take place. In this

section, I introduce a method that uses junction information to decide the num-

ber of labels and a criterion to assign one of them to each pixel.

We segment an image by assigning to each pixel a level. Each level has an

associated gray-scale value, and we assign to each pixel the level with the gray-

scale value closest to that of the pixel, subject to a smoothness constraint.

6.3.1 Determining the Set of Levels

We first determine the number of levels and their associated gray-scale values.

We take junctions (e.g., corners, T-junctions) as strong indicators of a region

boundary. T-junctions and corners often arise from overlapping surfaces, which

we wish to obtain as distinct segments in the image. Though sometimes they

arise from a mark on a surface, even in that case it is often appropriate to sepa-

rate the mark as a distinct region. I have implemented a junction detector similar

to the one described in Parida, Geiger and Hummel[70]. Each detected junction

is a partition of a small disk in the image into M sectors (M = 2 for corners, 3 for

T- or Y-junctions, 4 for X-junctions, etc.), each with an assigned gray-scale value.

The detector has several parameters that can be used to filter junctions, including

the contrast between partitions. We set the threshold for the contrast relatively

high, so that only high-contrast junctions are detected. Figure 6.9 shows a sam-

ple image (a) and the junctions found in it (b), (d).

The idea of the method is to let these junctions survive the segmentation pro-

cess; we assume that these junctions indicate region boundaries. Therefore, the

set L of gray-scale values should satisfy the following condition:

For each pair (e,e′) of gray-scale values assigned to neighboring sectors at
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Figure 6.9: The segmentation process for the sample image “Typing” (a). After
junctions are detected (b) (d), gray-scale values of all sectors of the junctions
are used to determine those for the levels (e). The map from pixels to levels is
computed using the maximum-flow algorithm. The segmentation result and 10
selected gray values are shown in (c).
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a junction, the nearest values in L to e and e′ are always different.

We look for the minimum set of threshold values that separates any two neigh-

boring sectors in the detected junctions by gray-scale values. Suppose a junction

has four sectors a, b, c, and d with gray-scale values ea,eb,ec, and ed in that order,

and that the relations ec < ed < ea < eb hold. Thus for each pair of the neighbor-

ing sectors, the relations ea < eb, eb > ec, ec < ed, and ea > ed hold. We call (ea,eb),

(ec,eb), (ec,ed), and (ed,ea) the intervals associated with the junction. Note that

if we define thresholds so that each interval contains at least one threshold, all

four gray-scale values are divided by these thresholds. (See Figure 6.9 (e).)

Let I be the set of all intervals associated with the detected junctions. We

define T to be the smallest among the sets of gray-scale values satisfying the

following condition:

For any ι ∈ I, there exists t ∈ T such that t ∈ ι.

Remember that each interval ι = (e,e′) represents the gray-scale values of a pair

of neighboring sectors at a junction, and we want these two values mapped to

different levels in the segmentation process, lest the boundary inside the junction

would be lost. The condition states that there always is at least one threshold t

that comes between the two numbers e and e′. Thus T is the set of thresholds

that separates all pairs of gray-scale values that we wish to separate. Given such

a set T, we define the set of gray-scale values L = {l1, l2, . . . , lk} for the levels to

be the smallest set whose Voronoi diagram includes T. In other words, every

threshold t in T is actually a boundary that decides which element of L is the

nearest. Then, for each interval (e,e′) ∈ I, the nearest values in L to e and e′ are

always different.
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Figure 6.10: Given the set T of thresholds, the set L of levels is not the set of the
midpoints of successive values in T (a). Rather, it is a set such that every threshold
t in T is the midpoint of successive values in L (b).

Note that L is not simply the set of midpoints of successive values in T (

Figure 6.10.)

We assume that the gray-scale values are ordered in a natural manner:

l i < l i+1, i = 1, ...,k−1. (6.2)

6.3.2 Assignment by the MRF

After deciding the set L of levels, we use the MRF model to assign a level to

each pixel. The graph G = (V,E) is the standard four-connected neighborhood

structure; the set V of vertices consists of pixels, and each pixel is connected to

its four neighbors. The energy is defined by (4.1), i.e.,

E(X) = ∑
(u,v)∈E

g(Xu−Xv)+ ∑
v∈V

h(v,Xv)
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Figure 6.11: The results of MRF segmentation. Left: a segmentation of sample
image “Squirrel” into three levels. Right: segmentations of sample image “Gear”
(top left) into two (top right), three (bottom left), and four (bottom right) levels.

and

g(x) = |x|,

h(v,x) = (I(v)− lx)2.

The smoothing cost g(x) is the simplest one under the convexity requirement.

This corresponds to the penalty edges that have positive capacities only when

they are horizontal, i.e., just as shown in Figure 4.1. Note that the level set L

does not correspond to the set L of labels in the MRF model, as L is not evenly

spaced. What corresponds to L in this case is rather the set {1, . . . ,k} of level

indices.

In Figure 6.11, two additional instances are shown. The “Squirrel” sample

image (400 × 274 pixel 8-bit grayscale) is segmented to only three levels. The
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“Gear” sample image (256 × 256 pixel 8-bit grayscale) is shown segmented to

2, 3 and 4 levels. The number of levels can be indirectly controlled by changing

various parameters for the junction detector.

6.4 Contour and Region Detection

The minimum ratio cycle method that is explained in chapter 5 finds a closed

contour, which defines a region in the image plane. The method can also incor-

porate region information that can be expressed as an integrable function on the

image plane. In this section, I describe an application of the method for simple

closed contour extraction from a single image. In the subsequent sections, I dis-

cuss examples of segmentation processes that use not only intensity information

but also correspondence between multiple images.

6.4.1 Gradient-based Energy

Using the region and boundary extraction technique described in Chapter 5, we

can naturally separate a figure from ground in a single image. The most simple

and intuitive criterion for the boundary local energy would be using the intensity

gradient ~∇I for the vector field~v in (5.5):

E(I ,∂R) =
∫

∂R
~t×~vds∫

∂R f ds
.

This encourages the contour to go through high gradient points perpendicular

to the gradient vector field.

As discussed in section 5.2.2, we can freely convert between a boundary-

based energy and the region-based one; therefore we can use, in addition to the
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gradient energy above, any function e that measures the merit of the region R

surrounded by the closed contour as illustrated in the energy (5.4):

E(I ,R) =
∫
R e(x,y)dxdy∫

∂R f ds
,

The function e can be any integrable function. In particular, it can be the convo-

lution of the image with any filter F : e(p) = I ?F(p). In this case, equation (5.5)

also takes the form of a convolution:

E(I ,R) =
∫
R(I ?F)dxdy∫

∂R f ds

E(I ,∂R) =
∫

∂R
~t× (I ?~v)ds∫

∂R f ds

where ~∇ ·~v = F .

Note that the result of this region and boundary extraction technique can be

used in combination with the MRF method. For instance, we can modify the

smoothing behavior of the MRF—strengthen the statistical correlation among

pixels in the region and weaken it between the pixels inside and outside the

region. This amounts to incorporating non-local information (that a pixel is part

of a larger structure) in the MRF model.

6.4.2 Minimum Ratio Cycle Algorithm

The particular instance of the minimum ratio cycle algorithm used here is as

follows.

Remember (section 5.2.1), on a graph G= (V,E), we are given an integral cost

c : E → Z and a nonnegative integral length t : E → Z>0. The problem is to find a
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cycle C with a minimum ratio weight

w(C) =
c(C)
t(C)

= ∑e∈C c(e)
∑e∈C t(e)

.

We define a new weight function wα : E →Q, parametrized by α ∈Q, by

wα(e) = c(e)−α t(e).

The algorithm searches for a rational number α such that i) there is no negative

cycle with respect to the weight function wα, and ii) minC wα(C) = 0. Suppose we

have such an α and a cycle C such that wα(C) = 0. Then C is a minimum ratio

cycle and α is its ratio weight. To see why, suppose this were not the case and

that we have another cycle C′ that gives a smaller ratio weight:

w(C′) =
c(C′)
t(C′)

<
c(C)
t(C)

= α,

where the second equality follows from wα(C) = c(C)−α t(C) = 0. It follows that

c(C′)−α t(C′) = wα(C′) < 0, which means C′ is a negative cycle with respect to

wα. This contradicts the manner in which α was chosen.

The algorithm searches the pairs of rational numbers α and cycles C as fol-

lows. We start with a known upper bound α0 of α and maintain the property

αk ≥ α. If αk > α = c(C)
t(C) , then wαk(C) = c(C)−αk t(C) < 0. Hence, there exists at

least one negative cycle. We use a negative cycle detection algorithm to find a

negative cycle Ck with respect to the weight function wαk. If we do not find a neg-

ative cycle, it means αk = α; we find a zero cycle C and we are done. Otherwise,

we set αk+1 = w(Ck) = c(Ck)
t(Ck)

≥ α. It follows from wαk(Ck) = c(Ck)−αk t(Ck) < 0 that

αk > αk+1. We repeat this until we find α.
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There are other approaches to the search, including binary search [53] and a

more sophisticated approach using parametric edge weights [60]. In practice we

find that the fastest method is simply linear search explained above. Note that

the weights c and t are integral. This means that w is rational, as already stated.

This enables us to place a pseudo-polynomial on the search time [53]. In practice,

it can take anywhere between a few seconds to ten minutes to run for the size of

the problem with which we are dealing here.

6.4.3 Results

Figure 6.12 shows three results. The energy used is a combination of simple

boundary and region energies. The boundary energy is the gradient; the local

term~t×~∇I is integrated around the closed contour. This encourages the contour

to i) go through high-gradient points, and ii) go perpendicular to the gradient

direction. In addition to this, a constant function is added as the region energy

e(x,y). This is to compensate the remaining tendency to favor small cycles, which

was discussed in section 5.1.2. For the integral in the denominator, simple arc

length is used. The sizes of the images are (a) 256 × 256, (b) 200 × 134, and (c)

124 × 166 pixels. The algorithm was applied repeatedly so as to find multiple

regions. Each time a boundary was found, those vertices in the graph that lay

on the boundary were removed. The numbers indicate the order in which the

regions were found. Note that both small and large regions were found.

6.5 Stereo and Motion Segmentation

Sometimes multiple images of a scene can be used for segmentation. For in-

stance, a stereo pair gives depth information for a scene once we solve the cor-
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Figure 6.12: Results of contour and region extraction. The numbers indicate the
order in which the regions were found.
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respondence problem. The depth map can then be used to help determine the

object boundaries based on, for instance, a hypothesis that large depth changes

tend to correspond to object boundaries. In an image sequence, or a video, dif-

ferent objects may move differently, thereby revealing the grouping of the points

in the images into larger objects, if we can extract such a local motion map. The

vector field that represents the motion of each point in the image is called the

optical flow. Given an optical flow, we can use the information to determine the

object boundaries just as we can use a depth map.

However, there is another possibility—in this section, I describe a method for

multiple-image segmentation that uses the correspondence information between

the images on the fly, without first extracting such information in the form of a

depth map or an optical flow.

6.5.1 Finding Discontinuities in a Match Space

Here I use the notation of section 5.3. Let us suppose that we have n images

I1, . . . , In. As before, we denote by Ǐi the domain on which the image function Ii

is defined, i.e., Ii(x) gives the color in the image at point x on the image plane Ǐi .

We define the match space M by the direct product of all images:

M = Ǐ1×·· ·× Ǐn.

There is a natural projection from the match space M to each image:

pi : M → Ǐi .
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Each point x in M stands for a match of the points p1(x), . . . , pn(x). From the

assumption that each image is a rendition of a scene, it follows that many points

in the scene appear in all the images; such a point q in the scene defines a point x

in M by requiring pi(x) to be the position where q appears in the image Ii . In this

way, the whole scene surface defines a two dimensional surface in M.

Any function (or differential form) on the image planes can be pulled back to

the match space M by the projection; for a function f on Ǐi , the pull-back p∗i f of f

by pi is a function on M defined by (p∗i f )(x) = f (pi(x)) for x∈M.

The energy functional we use here is, as defined in (5.8),

E(s) =
∫

S1 s∗A

∑i
∫

S1 | fi |2s,1/|gi |2s,0
, (6.3)

where s : S1 →M is a closed contour in the match space M, A is a one-form on M,

and fi and gi are each either functions or one-forms on M. See section 5.3 for the

notation.

Numerator Let us consider the simplest example: we look for a closed contour

in each image exactly in the same way as in the previous section, but simulta-

neously in all the images. Thus, on each image plane Ǐi , we define a one-form

Ai that corresponds to the sum of the gradient vector field ∗dIi (i.e., ~∇Ii) and an

integration of the constant function. We pull all these one-forms back to M and

take a linear combination (usually just a sum) to obtain a one-form on M:

A =
n

∑
i=1

ai p
∗
i Ai , ai ∈ R. (6.4)
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For now, let us assume that we use, in the energy (6.3), a denominator that simply

measures the length of the contour:

∫
S1
|1|2s,1.

When we find the minimum, we find a closed contour in M that would tend to

be a good contour in each of projections to the images.

As in this example, in general we use the numerator of the energy as the

measure of the desirability of each projected contour and the region it encloses,

by combining one-forms in the images by (6.4). This alone would tend to match

similar regions, especially if the single-image energy uses a region term, such as

a filter response, that seeks a particular kind of region.

Denominator We use the denominator of the energy functional (6.3) to eval-

uate how well the points that are projected to the image planes match to each

other. For instance, a simple measure would be the following: we define a vector-

valued function on M:

fN = (p∗1I1− p∗2I2, p∗2I2− p∗3I3, . . . , p∗n−1In−1− p∗nIn),

which is suitable for the case where there is a linear order on the images, as in the

case of a video sequence; we can also compare all possible pairs of the images, if

that is preferable. Then we use the denominator

∫
S1
| fN|2s,1.
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The integrand in this case is

| fN|2s,1 = {
n−1

∑
i=1

(p∗i Ii − p∗i+1Ii+1)2}ωs,

which is always nonnegative and becomes smaller the better the points match

each other.

Beyond this simplest instance, we note that we wish to find not only a match

but also a discontinuity in the match surface at the contour.

For a point (match) x in M, consider the following affine subspace of the

match space M:

∆(x) = {y∈M|p1(y−x) = p2(y−x) = · · ·= pn(y−x)}.

This is the unique two-dimensional affine subspace of M that goes through x and

is parallel to the diagonal (i.e., the surface we find when all the images are the

same.) Intuitively, ∆(x) represents the direction at x in which the match does not

change. This corresponds to constant disparity in the case of stereo, and zero

optical flow in the case of motion. Now, let us assume that x ∈ M represents a

good match. This means that x is on the locus of local minima of the modulus

of the vector-valued function fN. Imagine the function restricted to the two-

dimensional subspace ∆(x). Near x, the function is small. Near a discontinuity

in the match surface, the function should have a large gradient; and the contour

should be perpendicular to the gradient of the function. Thus, we take a vector-

valued one-form on M:

fD = ∗2d2 fN,

where d2 and ∗2 stand for the gradient and the Hodge star on ∆(x). When the
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Figure 6.13: (a) A closed contour in the l -r-y space and (b) Neighborhood struc-
ture for an embedded graph.

contour runs near a discontinuity perpendicular to the gradient, the function

| fD|2s,0 becomes large (see (5.7) for the definition.) Hence, we use the following

integral as the denominator in (5.8):

∫
S1

| fN|2s,1
| fD|2s,0

.

This encourages s to go through a locus of good matches (numerator) and near a

discontinuity of the match surface (denominator.)

6.5.2 Stereo Segmentation

In the case of stereo, the epipolar constraint reduces the dimension of the match

space to three (see section 3.2.1.) Since this is simply a subspace of the match

space M that was discussed in the previous section, the argument there applies

without modification. Figure 6.13 (a) shows a closed contour in the l -r-y space.

According to the method described in chapter 5, we embed a graph in this
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Figure 6.14: Stereo segmentation.
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Figure 6.15: Disparity map obtained by the method explained in section 6.2 with
and without contour information.

space. Let us assume the graph has a vertex for each integral triple (l , r,y) in a

certain range. There are some factors to be considered in deciding which ver-

tices should be connected by an edge. By the monotonicity constraint, every

edge must have a nonnegative δl - δr ratio, where we are assuming a coordinate

change (δl ,δr,δy) for the edge. Also, we would like to avoid an edge that projects

to a point in one image, such as (δl ,δr,δy) = (1,0,0), which projects to (0,0) in the

right image. However, if we take the first neighbors that satisfy these require-

ments only, no edge would allow for a change in the disparity. Therefore, we

include some second neighbor edges such as (δl ,δr,δy) = (1,2,0). Figure 6.13 (b)

shows half of the edges coming out from a vertex. The edges in the other half

have the opposite directions to the ones shown.

Figure 6.14 shows three results of stereo segmentation. From the top, the

dimensions of the pairs are 128 × 144, 230 × 260, and 215 × 172. The numbers

indicate the order in which the contours were found.

Figure 6.15 shows a full disparity map obtained by the method explained

in section 6.2 with and without contour information. In the case with contour

information (rightmost image,) the smoothing term in the MRF was weakened

at points on the contours.
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Figure 6.16: Motion segmentation. The bottom row shows the regions that were
found in the frames shown in the top row.

6.5.3 Motion Segmentation

Similar considerations apply to motion segmentation as in the case of stereo. For

a sequence I1, . . . , In, the match space M is a 2n dimensional space. Of course,

since the problem size grows exponentially with the number of frames, n cannot

be too big. We can restrict the maximum amount of motion between frames to

reduce the complexity.

We ran the algorithm on each triple of consecutive frames in a video se-

quence. Figure 6.16 shows the second frame of each of three triples picked from

the beginning, the middle and the end of the sequence.
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s e v e n

Summary and Conclusion

I n this thesis, I have introduced two new methods that map search problems

in computer vision into graph problems that have efficient solutions. Both

methods find globally optimal objects that embody information sought in vision

problems.

1. Finding codimension 1 objects that minimize an energy functional by em-

bedding a graph with regularly arranged vertices in a Euclidean space and

using a minimum cut algorithm. A cut approximates a hypersurface in the

space and the total cost of the cut corresponds to the energy. Because of

the use of the minimum cut algorithm, a globally optimal solution is found

in polynomial time. In particular, the method can globally solve first order

Markov Random Field problems in more generality than was previously

possible. The convexity of smoothing function in the energy is shown to be

both necessary and sufficient for the applicability of the method.

2. Finding an optimal cycle in a Euclidean space, typically a closed contour

91
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in the image plane, by using a minimum ratio cycle algorithm. In the case

of two dimensions, the energy can depend not only on the cycle itself but

also on the region defined by the cycle. Because of this, the method unifies

the two competing views of boundary and region segmentation.

I have shown the results of experiments in the areas of binocular stereo, image

restoration, and image segmentation using these methods. Image segmentation

in various situations using different forms of information, such as motion, stereo,

and intensity, was demonstrated.

Bottom-up vs. Top-down In the introduction, I stated that a search process is

essential to the solution of any vision problem; so-called bottom-up processes,

or simple data-driven transformations, can only be part of the solution. This is

also a matter of where the information resides, in addition to being a question of

method (searching or converting.) To perform a search, you have to know what

you are looking for.

Take contour extraction. The space of contours embodies the idea of what a

contour is. Think of the following two ways of representing a closed contour in

a rectangular array of pixels.

1. A closed contour is a subset of the array, where each pixel belonging to the

subset has exactly two neighbors that also are in the subset.

2. A closed contour is a sequence of pixels such that each pixel is a neighbor

of the previous one in the sequence, and the first and the last pixels in the

sequence are neighbors.

We can consider these the implicit and explicit definitions. The implicit defi-

nition characterizes a contour using only the concepts of subset and neighbor,
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whereas in addition to these the explicit definition uses the concept of sequence,

essentially the concept of 1D object. Note that the additional concept used in the

explicit version characterizes the idea of a contour.

Corresponding to these two definitions, there are two different ways of rep-

resenting the closed contour:

1. An array of boolean variables corresponding to pixels.

2. A sequence of pointers to pixels.

This difference in representation has very important implications. First, the ex-

plicit representation is much more compact than the implicit one. In the contour

case, the implicit version needs storage proportional to the number of pixels,

while the explicit one only needs storage proportional to the length of the con-

tour. Since they are representing the same objects, the first representation is more

wasteful; in the space of possible values, almost no values represent a closed con-

tour, because of the strong condition on what makes a subset of an array a closed

contour. Thus it becomes convenient to weaken the restriction and obtain a sub-

set that consists of pixels that are likely to be on a contour—or an edge map. We

can imagine a similar, implicit representation of the stereo match surface, rep-

resented as the subset of the match space consisting of matches that are likely

to be on the match surface. And because an image is represented in a manner

similar to the implicit representation, it is easy to make such an edge map from

an image or a pair of images. The traditional distinction between bottom-up and

top-down processes largely coincides with these two ways of representing the

resulting information.

I think that the information we wish to obtain is always explicit and, to ob-

tain explicitly defined information we always need a search. That is the reason
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for the claim that a search is always necessary for vision. Search techniques in

vision, including the two I have introduced in this thesis, search in the implicit

representation space for the best object, while preserving the constraints that are

needed to extract the object in an explicit form.

Designing an Ontology—and Space of Ontologies Moreover, what we ul-

timately would like to obtain is even more complex. In segmentation, what ex-

actly is it that we are trying to find—the object boundaries? Remember that

what we really want to find is the object boundaries in the scene, not in the im-

age. To segment an image into objects as reliably as a human being can, I think

the system must at least have models of shape and illumination in a 3D space,

in addition to such basic notions as colors and textures. Illumination is simple

enough, but shape is not. What is the space of all possible shapes?

A vision system must have an ontology—what I have been calling the param-

eter space. For the system, what “exists” is that which can be represented. It can

only “see” entities in its ontology. As we see in the case of segmentation, defin-

ing an appropriate ontology is not a simple matter. Moreover, it is not enough

to have a space of entities as a mathematical definition. As explained in the

introduction, any probability distribution on the space must be drastically com-

pressed to be useful. This means that the probability of an entity should be given

by an algorithm that takes a representation of the entity as input. For this, it is

essential that the parameter space be represented in an explicit form. The choice

of an ontology is therefore very closely related to its representation and that of

the probability distributions.

The design of such an ontology, representation, and probability distribution

has been done case by case. What is needed, however, is a space of ontologies
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and their explicit representations. It would resemble the set of all computer pro-

grams and its semantics. An explicit representation corresponds to a computer

program; its meaning, or semantics, is in some space of entities, or an ontology.

I see some interesting possibilities here—but that is another story.
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