
A Matrix-Based Approach to the Global Locality Optimization Problem

M. Kandemir� A. Choudharyy J. Ramanujamz P. Banerjeey

Abstract

Global locality analysis is a technique for improving the cache per-
formance of a sequence of loop nests through a combination of
loop and data layout optimizations. Pure loop transformations are
restricted by data dependences and may not be very successful in
optimizing imperfectly nested loops; the impact of a data trans-
formation on an array might be program-wide. Therefore, in this
paper we argue for a combined approach which employs both loop
and data transformations. The method enjoys the advantages of the
most of the previous techniques for enhancing locality and is effi-
cient. In our approach, the loop nests are processed one by one and
the data layout constraints obtained from one nest are propagated
for optimization of the remaining loop nests. We show that this pro-
cess can be put in a simple matrix framework which can be manipu-
lated by an optimizing compiler. The search space that we consider
for possible loop transformations comprises general non-singular
linear transformation matrices and the data layouts that we consider
are those which can be expressed using hyperplanes. Experiments
using several programs on an SGI Origin 2000 distributed-shared-
memory machine demonstrate the efficacy of our approach.

1 Introduction

A key component of the success of high performance computing
is the support for software development without undue concern on
the users’ part regarding the details of the underlying hardware. It
is difficult for users to exploit the performance potential of current
machines since a careful orchestration of the program appears nec-
essary. Due to technological advances, processor speeds have im-
proved at a much higher rate than memory speeds. In fact, during
the last decade the processor speeds have been improving at a rate
of at least50% each year while memory access time has improved
only at the rate of7% per year, resulting in a significant widening of
the performance gap between processors and memory subsystems
[5]. Modern multiprocessors include several levels of memory hi-
erarchy in which the lower levels are slow and inexpensive (e.g.,
disks, memory) while the higher levels (e.g., caches, registers) are
fast but expensive.

Fortunately, compiler technology has played a key role by en-
abling the restructuring of programs in order to exploit the archi-
tectural features of modern machines, thus relieving some of the
burden on the users. The role of the compiler has become increas-
ingly significant due to the rapid evolution of parallel machine ar-
chitectures. A recent study shows that a group of highly paral-
lelized scientific benchmark programs spend as much as a quarter
to a half of their execution times waiting for data from memory

�Department of Electrical Engineering and Computer Science, Syracuse Univer-
sity, Syracuse, NY 13244. e-mail:mtk@ece.nwu.edu

yDepartment of Electrical and Computer Engineering, Northwestern University,
Evanston, IL 60208. e-mail:fchoudhar,banerjeeg@ece.nwu.edu

zDepartment of Electrical and Computer Engineering, Louisiana State University,
Baton Rouge, LA 70803. e-mail:jxr@ee.lsu.edu

[17]. In order to eliminate the memory bottleneck, cache locality
should be exploited as much as possible. One way of achieving
this is to transform loop nests to improve locality. There has been
a great deal of research in the area of loop transformations. Sev-
eral loop transformations such as interchange, skewing, etc. have
been incorporated into a single framework using a matrix represen-
tation of transformations [20]. Among these techniques used are
unimodular and non-unimodular iteration space transformations
and tiling [19, 18]. There are two common characteristics of these
techniques: (1) they focus on improving data locality indirectly as
a result of modifying the iteration space traversal order; and (2) a
transformation is applied to one loop nest at a time. An important
drawback of loop transformations is that they are constrained by
data dependences.

Proper layout of data in memory may also have a significant
impact on the performance of scientific computations on multi-
processor machines. In this paper, we demonstrate techniques that
decide good data layouts (e.g., row-major or column-major storage
of matrices) and appropriate loop transformations that together im-
prove the performance of dense matrix codes significantly. We refer
to the optimization of data layouts asdata transformations.Unlike
loop transformations, data layout optimizations are not constrained
by dependences. We assume that every array accessed in a program
has a single fixed memory layout for the whole program. As a re-
sult, data layout decisions affect the performance characteristics of
the whole program unlike loop transformations; in addition, data
layouts impact the choice of loop transformations applied to each
loop nest. We model data transformations using matrices in the
same way loop transformations have been modeled. Such an ap-
proach allows us to exploit the benefits of a unified linear algebraic
framework.

Only a few papers have considered data transformations to opti-
mize locality. O’Boyle and Knijnenburg [15] focus on restructuring
the code given a data transformation matrix; they show that their
method can be used for optimizing spatial locality. In compari-
son, we concentrate on the problem of determining suitable lay-
outstogetherwith loop transformations, so that the whole program
can be optimized. Anderson, Amarasinghe and Lam [1] propose a
data transformation technique for distributed shared memory ma-
chines. While they restrict themselves to strip-mining and permu-
tation alone, we consider the full range of layout transformations
that are expressible using hyperplanes. Finally, Cierniak and Li
[3] consider only dimension re-indexing (permutation-based lay-
out transformations) and use a pseudo-exhaustive search to detect
array layouts. In contrast to [3] which restricts possible loop as
well as data transformations, the approach explained in this paper
considers a much larger search space for memory layouts and loop
transformations.

This paper is organized as follows. Section 2 presents an out-
line of the global locality optimization problem. Sections 3 and
4 present the details of our approach. Section 5 presents prelimi-
nary experimental results on SGI Origin2000 distributed-shared-
memory machine. Section 6 reviews related work on locality op-

timization and Section 7 summarizes the paper with an outline of
ongoing and future work.

2 Overview of our approach to global locality optimization

As noted earlier, there is a vast amount of work in optimizing lo-
cality for a single loop nest using iteration space (loop) transfor-
mations [18, 12, 13]. Recently some authors [1, 15, 11] have pro-
posed techniques to optimize spatial locality in a loop nest using
data space transformations. Such a transformation typically mod-
ifies the memory layout of a multi-dimensional array. The main
problem with this approach is that modifying the memory layout of
an array has aglobal effect meaning that it affects the locality of
all references to that array in all the loop nests. We show that such
a global impact can in fact be exploited using a proper mix of data
space and iteration space transformations.

Our approach to the global locality optimization problem can
be defined informally as follows. First, we transform the program
into a canonical form using loop fusion, loop distribution, and code
sinking [20]; in this canonical form, the program contains two types
of references, the ones that occur inside loop nests, and those that
occur between loop nests. In our approach, only the references
within loop nests can affect memory layout decisions; in determin-
ing layouts, we simply ignore the references between loop nests.
Then we construct an interference graph similar to that used by
Anderson and Lam [2]. This is a bipartite graph which contains
two sets of vertices; one set corresponding to the loop nests and the
other corresponding to the arrays. There is an undirected edge be-
tween an array vertex and a loop nest vertex if and only if that loop
nest accesses that array. Our technique works on a single connected
component of this graph at a time, since there are no common ar-
rays between different connected components.

For a single connected component, we first order the loop nests
according to a cost criterion, from the most costly nest to the least
costly. Practically, thecost of a loop nest can be defined as its
uniprocessor execution time. We currently use profile information
to compute the cost of each nest in a given connected component.
Profiling the sequential code also allows us to obtain array sizes,
loop bounds and probabilities of conditional statements. Notice
that this ordering of loop nests is not a modification or transforma-
tion to the structure of the program; but rather a step to determine
in which order the loop nests will be considered by our algorithm.
Then the algorithm starts with the most costly nest and optimizes it
for locality. After this process, suitable memory layouts for (possi-
bly some of) the arrays referenced in this loop nest are determined.
Afterwards, we move to the next most costly nest. In optimizing
this nest, we take into account the memory layouts determined dur-
ing the optimization of the most costly nest. After each nest is
optimized, (possibly) new memory layouts are determined and all
the memory layouts obtained so far are propagated as layout con-
straints for optimizing the next nest in the connected component.
During the processing of a single connected component, when a
loop nest is to be optimized, the compiler can encounter three dif-
ferent possibilities: (1) No constraint exists; that is, none of the
arrays have a determined memory layout so far, and we have com-
plete freedom on the choice of loop transformations. In this case,
the compiler’s task is to determine the memory layouts of the arrays
referenced in the loop nest as well as to find an accompanying iter-
ation space transformation; (2) The memory layouts of some of the
arrays referenced in the loop nest have already been fixed during
the processing of a previous loop nest. Here, the task is to deter-
mine the memory layouts of the remaining arrays and to transform
the iteration space accordingly; and (3) We have restrictions in the
iteration space other than those due to data dependences. These

restrictions are in general related to parallelism; typically, these re-
strictions can arise due to the need to reduce (or perhaps eliminate)
false sharing [16] or the need to exploit the largest granularity of
parallelism [18]. Of course, Case1 can be seen as a special form
of Cases2 or 3 and a combination of Cases2 and3 as well as sev-
eral other special cases may also occur. In the next section we give
details of our approach.

3 Data and loop transformations

3.1 Canonical form

We assume that the only control flow that we have is loop struc-
tures. In our canonical form, a program consists of only a sequence
of (preferably perfectly-nested) loop nests. We bring a program
into this form using a technique similar to that proposed by McKin-
ley et al. [13], which uses loop fusion and loop distribution.

Our algorithm first normalizes each nest such that the step size
of each loop becomes one. It then focuses on imperfectly nested
loops and transforms them into perfectly nest loops using a com-
bination of loop fusion, loop distribution and code sinking. After
a sequence of independent loop nests is obtained, a final pass ap-
plies loop fusion once more combining adjacent loop nests if doing
so improves temporal locality without causing undue register pres-
sure. The overall approach is similar to that proposed in [13]; the
details are beyond the scope of this work.

Consider the program fragment shown on the left part of Fig-
ure 1. This fragment consists of two imperfectly nested loop nests.
Within the loop nests are the names of the arrays accessed. Our ap-
proach transforms these loop nests into a series of perfectly nested
loops. In this example, we assume that this can be accomplished
using loop fusion for the first imperfectly nested loop nest and loop
distribution for the second.

3.2 Interference graph

Next the compiler builds an interference graph similar to that used
by Anderson and Lam [2] in automatic data decomposition. This
is a bipartite graph(Vn; Va; E) whereVn is the set of loop nests,
Va is the set of arrays, andE is the set of edges between loop
vertices and array vertices. There is an edgee 2 E is between
va 2 Va andvn 2 Vn if and only if vn referencesva. Then we
run a connected-component algorithm on this graph. For the exam-
ple given in Figure 1, we have two connected components. Each
connected component is fed into our global locality optimization
algorithm explained in the rest of this paper.

3.3 Hyperplane-based layout representation

Our approach to memory layout representation is based on hyper-
plane theory from linear algebra and is briefly explained below.
The details are beyond the scope of this paper and can be found
elsewhere [7]. In this framework, hyperplanes are used to rep-
resent memory layouts of multi-dimensional arrays. For anm-
dimensional array, a hyperplane defines a set of array elements
(|1; |2; � � � ; |m) which satisfy the following equation

g1|1 + g2|2 + � � �+ gm|m = c (1)

wherec is a constant. In this equation,g1; g2; � � � ; gm are rational
numbers called hyperplane coefficients andc is a rational number
called hyperplane constant [6]. We refer to�g = (g1; g2; � � � ; gm)

T

as a hyperplane vector associated with equation (1). When there is
no ambiguity, all transposition symbols from vectors will be omit-
ted. A hyperplane familyis a set of hyperplanes with the same
coefficients but with a different constant (c value).

do i = 1, N
do j = 1, N

enddo
do j = 1, N

enddo
enddo

do i = 1, N
do j = 1, N

U,V
enddo
do j = 1, N

U,V
enddo

enddo

V,W

X,Y

do i = 1, N
do j = 1, N

U,V
enddo

enddo

do i = 1, N
do j = 1, N

V,W
enddo

enddo

do i = 1, N
do j = 1, N

X,Y
enddo

enddo

do i = 1, N
do j = 1, N

U,V
enddo

enddo

do i = 1, N
do j = 1, N

V,W
enddo

enddo

do i = 1, N
do j = 1, N

X,Y
enddo

enddo

U

V

W

X

Y

imperfectly-nested
loop nest

loop
fusion

loop
distrb.

connected-component

connected-component

input to the
global locality algorithm

input to the
global locality algorithmimperfectly-nested

loop nest

Figure 1: Example application of locality optimization algorithm.

An important observation is that a hyperplane family can be
used to partially define the memory layout of a multi-dimensional
array. Let us concentrate now on a two dimensionalN � N ar-
ray stored in column-major form in memory as is the case in For-
tran. We can think of each column of this array as a hyperplane
(a line); and all columns collectively define a hyperplane family.
Here, the hyperplane vector is(0; 1) and hyperplane equation is
|2 = c where1 � c � N . For example,|2 = 5 represents the
fifth column of the array. Two array elements�J and �J 0 belong to
the same hyperplane�g if

�g �J = �g �J 0: (2)

Returning to our two-dimensional column-major array, since the
array elements(1; 5) and(4; 5) satisfy equation (2) for�g = (0; 1)
they belong to the same hyperplane which can be identified with
c = 5.1 On the other hand, for instance,(1; 5) and(1; 6) do not
satisfy equation (2), therefore, they belong to different hyperplanes.
It is important to stress that the memory layouts defined by hyper-
planes are not limited to the conventional layouts such as column-
major and row-major. For example, a hyperplane family defined by
(1;�1) also represents a memory layout where, say, the array ele-
ments(2; 3) and(4; 5) map on the same hyperplane. It is easy to
see that such a memory layout corresponds to diagonal-layout (or
skewed-layout) where the elements in each diagonal are stored con-
secutively in memory. Similarly, the hyperplane vectors given by
(1; 0) and(1; 1) correspond to row-major and anti-diagonal mem-
ory layouts respectively. Figure 2 shows a few possible memory
layouts for an8 � 8 array and the associated hyperplane vectors.
Each circle in this figure represents an array element. With such a
representation, we say that two array elements havespatial locality
(or physical proximity) if they belong to the same hyperplane. For
example,(1; 5) and (4; 5) have spatial locality in column-major
layout whereas(2; 3) and(4; 5) have spatial locality in diagonal-
layout expressed using(1;�1). Notice that for example in column-
major memory layout, our spatial locality definition does not en-
compass two elements that are mapped onto different columns but
in consecutive memory locations.

For two-dimensional arrays, a single hyperplane family is suf-
ficient to define the memory layout. In higher dimensions, how-
ever, we may need to use more hyperplane families. Let us con-
centrate on a three-dimensional arrayU whose layout is column-

1Notice that the multiplies in equation (2) are dot products.

column-major row-major diagonal diagonal

diagonal anti-diagonal anti-diagonal anti-diagonal

(0,1) (1,0) (1,-1) (1,-2)

(2,-1) (1,1) (1,2) (2,1)

Figure 2: Example memory layouts for two-dimensional arrays and
their hyperplane vectors.

major. Such a layout can be represented using two hyperplanes:
�g = (0; 0; 1) and�h = (0; 1; 0). We can write these two hyper-
planes collectively as a layout constraint matrix or simply a layout
matrix

LU =

�
�g
�h

�
=

�
0 0 1
0 1 0

�
:

In that case, two data elements�J and �J 0 have spatial locality (i.e.,
map onto the same hyperplane) if both of the following are true:

�g �J = �g �J 0 (3)
�h �J = �h �J 0 (4)

The elements that exhibit spatial locality should be stored in con-
secutive memory locations. This idea can easily be generalized to
higher dimensions as well [7].

3.4 Single nest-level optimizations

Nest-level optimizations (or local optimizations) transform a loop
nest to increase cache locality. Essentially, the objective is to obtain
either temporal locality or stride-one access of the arrays which
is important for architectures with some form of cache hierarchy.
To understand the effect of a loop transformation let us represent
a loop nest of depthn which consists of loopsi1; i2; � � � ; in as a
polyhedron defined by the loop limits. We use ann-dimensional
vector �I = ({1; {2; � � � ; {n) called the iteration vector to denote
the execution of the body of this loop nest withi1 = {1; i2 =
{2; � � � ; in = {n.

We assume that the array subscript expressions and loop bounds
are affine functions of enclosing loop indices and symbolic vari-
ables. We can model each array reference using an access matrix
L and a constant vector�o [18, 12]. As an example, a reference
U(i + 1; j) to a two-dimensional arrayU in a loop nest of depth
two with i as the outer loop index is represented byL�I + �o, where

L =

�
1 0
0 1

�
and�o =

�
1
0

�
:

In general, if the loop nest is of depthn and the array in question is
m-dimensional, the access matrix is of sizem�n and the constant
vector ism-dimensional.

The class of iteration space transformations we are interested in
can be represented using linear non-singular transformation matri-
ces. For a loop nest of depthn, the iteration space transformation

matrix T is of sizen � n. Such a transformation maps each iter-
ation vector�I of the original loop nest to an iteration�I 0 = T �I of
the transformed loop nest. Therefore, after the transformation, the
new subscript function isLT�1 �I 0 + �o. The problem investigated
in works such as [18] and [12] is to select a suitableT such that the
locality of the reference is improved and all the data dependences
in the original nest are preserved.

Consider the three-point stencil computation nest shown in Fig-
ure 3(a). Assuming column-major memory layouts forU andV ,
the accesses to both the arrays are poor from the locality point of
view. The problem is that successive iterations of the inner loop
j touches different columns. The chances are very low that a line
brought into cache in one of these iterations will stay in the cache
when any of its elements is reused. An iteration space transfor-
mation technique such as the one proposed by Li [12] optimizes
this nest by interchanging [20] the loop order which is legal in this
case. This loop transformation can be represented by aunimodular
transformation matrix

T =

�
0 1
1 0

�
:

We note that the same nest can also be improved using data
transformations instead. Our approach uses the hyperplane-based
layout representation explained earlier.

Let �I = (i; j) and �Inext = (i; j + 1); that is, �I and �Inext are
two consecutive iterations. We focus on arrayU , a similar analysis
also applies to arrayV . Two data elements accessed by�I and�Inext
areL�I+�o andL�Inext+�o respectively. Using equation (2), in order
to have a spatial locality�g(L�I + �o) = �g(L�Inext + �o) should be
satisfied, where�g represents an optimal layout. Taking into account
�I and �Inext, solving this last equality gives us�g �̀ = 0 where �̀ is
the last column ofL. That is, if we choose a hyperplane vector�g
such that�g 2 Kerf�̀g, we will have spatial locality. Since, in our
example,

L =

�
1 0
0 1

�
;

we have�̀ = (0; 1)T . Choosing�g from null space of�̀, gives us
�g = (1; 0), which, as mentioned earlier (see Figure 2), corresponds
to row-major memory layout. The details of how to select a suitable
vector fromKer set (null set) are not important for the purposes
of this paper. In summary, in order to have a good spatial locality
in the innermost loop, we have to change the memory layout ofU
(and that ofV) from column-major to row-major.

4 Combined data and loop transformations for improving
locality

We have shown in the previous section that in order to optimize
spatial locality of a loop nest both loop and data transformations
may be used. In the following, we show how to combine these
two optimization techniques. Let us focus on a two-dimensional
arrayU referenced in a loop nest of depth two using an access
matrix L. The results to be presented easily extend to higher di-
mensional arrays and loop nests as well. We define�I 0 = (i; j)
and �I 0next = (i; j + 1) as two consecutive iteration vectorsafter
the transformation. Also assume that we will use a2� 2 transfor-
mation matrixT andQ = T�1. After the transformation, in order
to have spatial locality (see equation (2)),

�g(LQ�I 0 + �o) = �g(LQ�I 0next + �o)

should be satisfied. Solving this equation, we obtain

�gL�q = 0; (5)

where�q is the last column ofQ. Therefore the problem is to find a
�g and a�q for a givenL such that the equation given by (5) will be
satisfied.

Notice that this equation is non-linear and is with regard to a
single loop nest and a single reference. In order to optimize local-
ity globally (program-wide) we should set up and solve simultane-
ously the equations similar to (5) for each reference in each loop
nest. Of course, given a large number of loop nests and references,
this system of equations may not have a solution, in which case
we should ignore some equations. Exactly which equations will be
ignored depends largely on the profile information.

We illustrate the process using an example first. Consider the
program fragment given in Figure 3(b). The access matrices for
this program are as follows:

� For the first nest:LU =

�
1 1
0 1

�
;LV =

�
1 0
0 1

�
:

� For the second nest:LU1 =

�
0 1
1 0

�
;LU2 =

�
1 0
0 1

�
:

We would like to find suitable loop transformation matrices for both
the loop nests, and to determine accompanying memory layouts for
arraysU andV . Let T andS denote the transformation matrices
for the first and second nest respectively, andQ = T�1 andR =
S�1. Also let �q = (q12; q22)

T and �q = (r12; r22)
T be the last

columns ofQ andR respectively. Let�g = (�g; �g) and �h =
(�h; �h) represent the optimal layouts ofU andV respectively.
Using (5), we obtain the following for the first loop nest:

� For arrayU : (�g; �g)

�
1 1
0 1

��
q12
q22

�
= 0:

� For arrayV : (�h; �h)

�
1 0
0 1

��
q12
q22

�
= 0:

For the references to arrayU in the second nest,

(�g; �g)

�
0 1
1 0

��
r12
r22

�
= 0 and

(�g; �g)

�
1 0
0 1

��
r12
r22

�
= 0: We can write these equations

collectively as0
B@

q12 + q22 q22 0 0
0 0 q12 q22
r22 r12 0 0
r12 r22 0 0

1
CA
0
B@

�g
�g
�h
�h

1
CA = �0: (6)

It should be noted that a solution to such a system forq12, q22, r12,
r22, �g, �g, �h, and�h will give us suitable loop transformation
matrices (actually only last columns of the inverses of them) as well
as optimized memory layouts. However, we have some additional
constraints as well; specifically, for each unknown vector such as�q,
�r, �g and�h at most one of the entries may be zero. With these addi-
tional constraints solving the non-linear system given by equation
(6) is very difficult.
What we need is a heuristic that works fast in practice and generates
acceptable near-optimal solutions. We note that (6) can easily be
divided into two sub-matrix equations each for a single nest:

Nest 1:

�
q12 + q22 q22 0 0

0 0 q12 q22

�0B@
�g
�g
�h
�h

1
CA = �0(7)

do i = 3, N
do j = 3, N

U(i,j)=(V(i-2,j)+V(i,j)+V(i,j-2))/3.0
end do

end do
(a)

do i = 1, N
do j = 1, N

U(i+j,j)=V(i,j)
end do

end do

do i = 1, N
do j = 1, N

� � �=U(j,i)+U(i,j)
end do

end do
(b)

do u = 1, N
do v = 1, N
U(u+v,v)=V(u,v)

end do
end do

do u = -N+1, N-1
do v = max(1-u,1), min(N-u,N)

� � �=U(v,u+v)+U(u+v,v)
end do

end do
(c)

Figure 3: (a) An example loop nest. (b) Original fragment. (c) Optimized version of (b).

Nest 2:

�
r22 r12 0 0
r12 r22 0 0

�0B@
�g
�g
�h
�h

1
CA = 0: (8)

There is a coupling between (7) and (8) due to layout vectors. Let
us first focus on (7), and assume that this loop nest is more costly
than the second one and no iteration space transformation will be
applied; that is,Q is the identity matrix meaning thatq12 = 0 and
q22 = 1. Later in the paper we discuss this decision in detail. We
can now think of (7) in a block form as shown below:

�
q12 + q22 q22 0 0

0 0 q12 q22

�0B@
�g
�g
�h
�h

1
CA = �0 (9)

This last equation can be written symbolically as follows:�
SI 0
0 SII

��
�g
�h

�
= �0

whereSI andSII correspond to non-zero sub-matrices in (9). Now
we need to solve two equations:SI�g = 0 andSII�h = 0. Since
we have assumedQ is the identity matrix, fromSI�g = 0 we have
�g + �g = 0, which gives(�g ; �g) = (1;�1). On the other hand,
from SII�h = 0 we obtain�h = 0 which leads to(�h; �h) =
(1; 0). Therefore, for the best locality in the first loop nest, array
U should have diagonal memory layout whereas arrayV should be
row-major.

Next wepropagatethese layout constraints to the second loop
nest, and solve equation (8) forr12 andr22. From

�
r22 r12 0 0
r12 r22 0 0

�0B@
1

�1
1
0

1
CA = 0;

we haver12 = r22 = 1. Thus, a suitable transformation matrix is

R =

�
1 1
0 1

�
; which givesS = R

�1 =

�
1 �1
0 1

�
:

Using both loop transformation matrices and optimized memory
layouts, the transformed program is shown in Figure 3(c). Notice
that both loop nests exhibit good locality provided that arrayU
is diagonally stored and arrayV is row-major. There is an addi-
tional transformation step which modifies this program for a lan-
guage with fixed (canonical) memory layout; but since that step is
almost mechanical, we omit it and refer the reader to [7] and [15].

The details of how to fill out a partially completed transformation
matrix can be found in [12].

We stress that the second loop nest in Figure 3(b) cannot be op-
timized using pure loop (e.g., [12]) or pure data (e.g., [15]) trans-
formations alone; because, there is spatial reuse in two orthogonal
directions. This simple example shows that a combined approach
might be useful for some programs.

4.1 Locality coe�cient

To evaluate the amount of locality before and after the optimiza-
tion process, we use a simple metric referred to as thelocality co-
efficient. We define the locality coefficient of a loop nest as the
number of references that exhibit locality (spatial or temporal) in
theinnermostloop. The locality coefficient of a series of loop nests
is defined to be the sum of the locality coefficients of the individ-
ual nests. The locality coefficients of two different versions of a
program can be used as a guide to decide which version is better
than the other from the locality point of view. In the case of a tie,
we favor the program with more temporal locality. Of course, this
evaluation criterion for locality is very rough and assumes that all
references have the same weight and the bounds of all innermost
loops as well as the sizes of all arrays are of the same order. This
model can be improved upon by taking into account a detailed pro-
file information as well as the bounds of the arrays and the loops
after a transformation; but, the exactness of the evaluation model is
not very relevant for the purpose of this paper and the rest of the ap-
proach is independent of the particular locality evaluation criterion
chosen. For example, the locality coefficient of the program shown
in Figure 3(b) (assuming column-major layouts) is1 whereas that
of the optimized code in Figure 3(c) is4 under optimal layouts.

4.2 Formulation for the general case

In the general case, when we handle a given loop nest during the
global optimization process, some of the array layouts might be
known, while the layouts of some arrays are yet to be determined.
In such cases, we end up with a system of equations of the follow-
ing type, which we call atarget system:

S �� = �0: (10)

The systems given in equations (7) and (8) are two example target
systems. HereS is a matrix which contains only last the column
entries of the inverse of the loop transformation matrix, and�� is
a vector obtained from concatenating the hyperplane vectors. Our
approach first brings this system into following form using elemen-
tary row interchange operations:�

SI ZI
ZII SII

��
��k
��u

�
= �0; (11)

whereSI andSII are non-zero sub-matrices andZI andZII are
zero sub-matrices. It is easy to see that this is always possible. The
vector��k contains entries of hyperplane vectors (which correspond
to memory layouts) thathave beendetermined so far. The other
vector,��u, consists of entries of the hyperplane vectors whichare to
bedetermined. After this point, our solution procedure comprises
three steps:

(1) FromSI ��k = �0, the entries ofSI are found;

(2) From the entries ofSI , the entries ofSII are determined; and

(3) FromSII ��u = �0, the entries of��u are solved.

We note that these three steps informally correspond to determining
a loop transformation taking into account memory layouts obtained
so far, and to determining memory layouts of (possibly a subset of)
the remaining arrays whose layouts have not been determined so
far. In the following, we explain these three steps in more detail.

Step (1) corresponds to solving a homogeneous system of equa-
tions. We first transform this system into��Tk SI

T = �0, and then
solve it forSI . Of course, given a large number of references this
system may not have a solution at all. In that case, we ignore some
equations, and attempt to solve it again. The equations to be ig-
nored should correspond to references that are least frequently ac-
cessed. The profile information might be useful in determining the
access frequency of references.

In Step (2), the elements ofSII are determined from the ele-
ments ofSI found in the previous step. Although this step looks
trivial, it is possible that an element which appears inSII may not
appear inSI . In that case, we choose a value for this element arbi-
trarily avoiding picking up a zero value if all the other entries are
zero.

Step (3) is very similar to Step (1), the only difference is that
without taking the transposition, we start to solve the homogeneous
system right away.

4.3 The most costly nest revisited

So far, we have assumed that the most costly loop nest will be opti-
mized using data transformations alone. In this subsection, we first
argue for this decision. Then we show how our approach can be
made more powerful by considering different alternatives for the
most costly nest.

Given a loop nest, determining both loop and data transforma-
tions together is not trivial as the problem requires in finding integer
solutions to nonlinear systems of equations. If the search spaces for
data and/or loop transformations are restricted, then an exhaustive
search (although still costly) might be reasonable [3]. However,
we insist on most general loop and data transformations. Having
decided that we will not optimize the most costly nest with a com-
bined (loop plus data) approach, the choice is between either pure
loop or pure data transformations. In general, we prefer data trans-
formations; because even if we choose loop transformations, we
have to assume some fixed layouts for the arrays referenced. More-
over, for a single loop nest, data space transformations can be more
successful than loop transformations since the latter is constrained
by data dependences [7].

However, for some programs it might be the case that the best
optimized program is the one in which the most costly nest is op-
timized using iteration space transformations alone. The reason is
rather subtle. As mentioned previously, pure loop transformations
can optimize temporal locality while pure data transformations can-
not. If the most costly loop nest contains a number of references
for which temporal reuse can be exploited in the innermost loop,

Table 1: Programs in our experiment set and different versions
[SIZE in doubles; foradi andtranspose, there is an outermost
timing loop].

PROGRAM COMMENT SIZE

btrix from Spec92 5� 5� 175 � 175

adi from Livermore 3� 1024 � 1024

transpose from NWChem (PNL) [14] 2048 � 2048

VERSION COMMENT

col fixed column-major memory layouts
row fixed row-major memory layouts
lopt loop-optimized version: no layout transforms
dopt layout-optimized version: no loop transforms
comb combined loop + data layout transforms

then a pure loop based approach may result in a better code than a
pure data based approach.

To solve this problem, our current approach is as follows. For
the most costly nest, we consider two alternatives: pure loop and
pure data transformations. Then we proceed for each version as
explained in the previous sections, and finally come up with two
different optimized program. Finally, we calculate and compare
the locality coefficients of these two programs, and select the one
with the larger coefficient. Notice that once the most costly nest
is optimized, our approach will have some layout constraints for
the remaining nests, and will proceed to optimize each nest using a
combined approach which employs both loop and data transforma-
tions as explained.

Given the fact that the global locality optimization problem is
NP-complete, and that in most programs the bulk of the execution
time is spent in a couple of loop nests, we believe our approach is
suitable for optimizing locality for multiple loop nests.

4.4 Impact on multiprocessor execution

Our locality algorithm strives to optimize locality in as many in-
nermost loops as possible using a mix of loop and data transforma-
tions. This approach has can generate—as a byproduct—locality-
free outer loops which are perfect candidates for parallelization.
This is very desirable as otherwise parallelizing a loop which car-
ries reuse is one of the main causes for inter-processor data sharing
[12]. Intuitively, the more aggressive the compiler is in bringing
the loops carrying reuse into innermost positions, the less false and
true sharing will occur.

5 Performance results

In this section, we present our performance results to demon-
strate the impact of our global locality optimization approach. We
show execution times for three programs on an8-node SGI Origin
distributed-shared-memory machine. This machine uses195MHz
R10000 processors,32KB L1 data cache and4MB L2 unified cache.
The C versions of the programs are compiled by the native C com-
piler using-O2 option. The timings are taken using thegettimeof-
day routine. The programs that we use and the different versions
that we experiment with are given in Table 1. The execution times
in seconds for the programs in our experimental suite are given in
Tables 2(a), 2(b) and 2(c) forbtrix, adi, andtranspose, respec-
tively. The last rows in these tables give the percentage of improve-
ment obtained using thecomb version (our combined approach)
over the next best time. It should be stated that in all versions af-
ter the transformations for locality the outermost loop which does

not carry any data dependence has been parallelized. From these
results, we conclude the following:

(1) Our combined approach is very successful in optimizing
locality; to be specific, for all three programs, thecomb version
results in the best output code and the best execution time.

(2) The percentage of improvement depends on the relative per-
formances of the other versions; therefore, there is not a single
trend. It is also interesting to note that in two cases,adi and
transpose, our approach (comb) generates the same code aslopt

or dopt, respectively. This is due to our extended approach which
considers both pure data- and pure loop-optimized versions of the
most costly nest.

6 Related work

Recent years have witnessed a success in locality enhancing trans-
formations. A majority of the techniques used are based on loop
transformations. Wolf and Lam [18] describe reuse vectors and ex-
plain how they can be used for optimizing locality. Their method is
sort of exhaustive and in some cases can only work with the approx-
imate reuse vectors. Li [12] also considers reuse vectors but deter-
mines an appropriate loop transformation matrix in one go rather
than resorting to an exhaustive search. Neither Li [12] nor Wolf
and Lam [18] consider memory layout transformations; and since
a loop transformation to improve locality of a reference can some-
times adversely affect the locality of another reference, both ap-
proaches may end up with unsatisfactory solutions. The cost of the
methods mentioned is partly eliminated by a simple heuristic used
by McKinley et al. [13]. Their method employs a simple cost for-
mulation and considers loop permutation, loop reversal, loop fusion
and distribution. In addition to having the disadvantages of an ap-
proach which is based on loop transformations alone, since they do
not consider general non-singular loop transformations they may
not be able to optimize some loop nests for which loop permuta-
tion does not work.

Considering the fact that linear loop transformations may be
insufficient for some loop nests, some researchers have focussed
on loop tiling [19] which in most cases can be accomplished via
a combination of strip-mining and interchanging. The main ques-
tion however is to select an appropriate tile size which is dependent
on loop orders, array sizes, as well as cache sizes and degree of
associativity [4].

More recently some researchers have considered data layout
transformations which are simply restructuring of multi-dimensional
arrays in memory. Leung and Zahorjan [11] present a technique
which is based on non-singular data transformation matrices. They
show that data transformations may be successful where loop trans-
formations fail either because of conflicting requirements between
different references to different arrays or simply because data de-
pendences prevent the desired loop transformation. O’Boyle and
Knijnenburg [15] also argue for data transformations. Apart from
using it for optimizing spatial locality, they consider the use of data
transformations for data alignment and page replication problems
on parallel machines. There are two major problems with those
techniques based on pure data transformations. First, data transfor-
mations cannot optimize for temporal locality which in turn may
lead to poor register usage. Second, the impact of a layout trans-
formation is global meaning that it affects (sometimes adversely)
all the references to that array in all nests (assuming that no dy-
namic transformation is considered). Given large number of nests,
it might be very difficult to come up with a data layout which sat-
isfies as many nests as possible.

Yet another approach is to apply a combination of loop and
data transformations for enhancing locality as we have done in

this paper. Cierniak and Li [3] use this approach. Since they
mainly focus on a single loop nest and the general problem ex-
hibits non-linearity, they restrict search spaces for possible loop
and data transformations, and resort to exhaustive search in this re-
stricted search space. The data transformations they consider are
permutations only; therefore, they cannot optimize banded matrix
applications fully for which diagonal layouts are the most suitable.
Kandemir et al. [8, 9] also consider data layout optimization tech-
niques. Their techniques unify loop and data transformations in a
unified framework, but restrict the data Even in the restricted space,
they perform sort of exhaustive search.

In contrast to the previous work, our approach presented in this
paper uses both loop and data transformations; and consequently
can enjoy the advantages of the both. Also the search spaces that
we consider for loop and data transformations are very general:
For loop transformations we use general non-singular linear trans-
formation matrices, and for memory layouts we can choose any op-
timal layout that can be expressed by hyperplanes. Finally, rather
than limiting scope to a single loop nest we focus on a sequence of
loop nests and propagate memory layouts across loop nests.

7 Conclusions

In this paper we have described a unified global approach for opti-
mizing locality given a series of loop nests. During the optimiza-
tion process, when a new loop nest is to be optimized, our approach
first applies a loop transformation to it to satisfy the layout require-
ments for the references to arrays whose layouts have already been
determined. It then determines suitable memory layouts for the re-
maining arrays referenced in the nest. The overall process is thus
an alternating sequence of data (array layout) and loop (iteration
space) transformations. Although the general problem looks diffi-
cult, we have shown in this paper that the whole process for a single
nest can be formulated in a nice mathematical framework which is
based on explicit memory layout representations. We have also
shown that our approach looks more successful than existing local-
ity enhancing (linear transformation) techniques whether they are
pure loop based, pure data based, or a combination of both.

We are currently looking at the interaction between our frame-
work and tiling, and plan to work on several problems such as
evaluating relative performances of tiled code versus the resultant
code from our approach and comparing our approach to a relatively
new form of tiling, namely data-centric tiling [10]. In addition,
we plan to investigate the effectiveness ofblockeddata layouts—in
which the elements accessed by a tile are stored contiguously in
memory—in improving the cache performance further. Also, we
are working on extending our techniques for optimizing locality
across program modules.

Acknowledgments

The work of M. Kandemir and A. Choudhary was supported in
part by NSF Young Investigator Award CCR-9357840, NSF grant
CCR-9509143 and Air Force Materials Command under contract
F30602-97-C-0026. J. Ramanujam was supported in part by sup-
ported in part by NSF Young Investigator Award CCR-9457768
and NSF grant CCR-9210422. P. Banerjee was supported in part
by NSF under grant CCR-9526325 and in part by DARPA under
contract DABT-63-97-C-0035.

References

[1] J. Anderson, S. Amarasinghe, and M. Lam. Data and computa-
tion transformations for multiprocessors. InProc. 5th SIGPLAN

Table 2: Execution times for benchmarks

(a): Execution times in seconds forbtrix

version number of processors

1 2 3 4 5 6 7 8
col 213.088 117.852 83.460 67.387 61.861 59.397 61.130 65.846

row 38.615 36.736 40.771 44.563 50.576 54.350 60.196 69.160

lopt 92.223 51.869 36.165 28.796 25.425 22.780 22.546 24.101

dopt 37.370 36.617 40.866 45.613 52.565 56.436 63.038 72.819

comb 33.669 21.533 19.013 17.568 18.962 18.731 18.002 19.361

% imprv. 10 41 47 39 25 18 20 20

(b): Execution times in seconds foradi

version number of processors

1 2 3 4 5 6 7 8
col 72.102 52.589 39.539 36.853 29.730 30.361 26.202 28.402

row 18.528 12.432 10.718 10.216 8.901 8.531 7.774 8.513

lopt 14.842 7.975 5.435 4.290 3.581 3.129 2.750 2.877

dopt 15.264 10.393 8.807 9.859 7.459 7.642 7.270 6.808

comb 14.842 7.975 5.435 4.290 3.581 3.129 2.750 2.877

% imprv. 0 0 0 0 0 0 0 0

(c): Execution times in seconds fortranspose

version number of processors

1 2 3 4 5 6 7 8
col 73.342 38.159 27.114 21.328 18.190 16.910 14.677 14.843

row 78.483 40.653 28.757 22.472 19.165 16.929 15.389 14.899

lopt 73.342 38.159 27.114 21.328 18.190 16.910 14.677 14.843

dopt 30.244 16.609 11.559 8.863 7.389 6.415 5.633 6.674

comb 30.244 16.609 11.559 8.863 7.389 6.415 5.633 6.674

% imprv. 0 0 0 0 0 0 0 0

Symp. Prin. & Prac. Par. Prog.,1995.

[2] J. Anderson and M. Lam. Global optimizations for parallelism
and locality on scalable parallel machines. InProc. SIGPLAN
Conf. Prog. Lang. Design & Impl.,pp. 112–125, 1993.

[3] M. Cierniak and W. Li. Unifying data and control transforma-
tions for distributed shared memory machines.Proc. SIGPLAN
Conf. Prog. Lang. Design & Impl.,1995.

[4] S. Coleman and K. McKinley. Tile size selection using cache organi-
zation and data layout. InProc. SIGPLAN Conf. Prog. Lang. Design
& Impl., 1995.

[5] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative
Approach.Morgan Kaufmann Publishers, 1995.

[6] C. Huang and P. Sadayappan. Communication-free partitioning of
nested loops.Jou. Par. & Dist. Comp.,19:90–102, 1993.

[7] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanu-
jam. A hyperplane based approach for optimizing spatial locality in
loop nests. InProc. 12th ACM International Conference on Super-
computing, 1998.

[8] M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler algo-
rithm for optimizing locality in loop nests. InProc. 11th ACM Inter-
national Conference on Supercomputing, pp. 269–276, 1997.

[9] M. Kandemir, J. Ramanujam, and A. Choudhary. Compiler algorithms
for optimizing locality and parallelism on shared and distributed mem-
ory machines. InProc. 1997 Int. Conf. Para. Arch. & Comp. Tech.
(PACT 97), pp. 236–247.

[10] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level
blocking. InProc. SIGPLAN Conf. Prog. Lang. Design & Impl.,1997.

[11] S-T. Leung, and J. Zahorjan. Optimizing data locality by array re-
structuring. Technical Report TR 95-09-01, CSE Dept., University of
Washinton, 1995.

[12] W. Li. Compiling for NUMA parallel machines. Ph.D. Thesis, Cornell
University, 1993.

[13] K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with
loop transformations.ACM Transactions on Programming Languages
and Systems,1996.

[14] NWChem: a computational chemistry package for parallel comput-
ers, version 1.1, 1995.High Performance Computational Chemistry
Group, Pacific Northwest Laboratory.

[15] M. O’Boyle, and P. Knijnenburg. Non-singular data transformations:
Definition, validity, applications. InProc. 6th Workshop on Compilers
for Parallel Computers, pp. 287–297, 1996.

[16] J. Torrellas, M. S. Lam, and J. L. Hennessey. False sharing and spatial
locality in multiprocessor caches.IEEE Trans. Computers, 43(6):651–
663, June 1994.

[17] E. Torrie, C-W. Tseng, M. Martonosi, and M. W. Hall. Evaluating the
impact of advanced memory systems on compiler-parallelized codes.
In Proc. 1995 Int. Conf. Para. Arch. & Comp. Tech. (PACT 95).

[18] M. Wolf, and M. Lam. A data locality optimizing algorithm. InProc.
ACM SIGPLAN 91 Conf. Programming Language Design and Imple-
mentation, pp. 30–44, 1991.

[19] M. Wolfe. Iteration space tiling for memory hierarchies. InProc. 3rd
SIAM Conference on Parallel Processing for Scientific Computing,
pp. 357–361, 1987.

[20] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Company, 1996.

