A Matrix-Based Approach to the Global Locality Optimization Problem

M. Kandemit A.Choudhary J. Ramanujain P. Banerjeé

Abstract [17]. In order to eliminate the memory bottleneck, cache locality
should be exploited as much as possible. One way of achieving
Global locality analysis is a technique for improving the cache per- this is to transform loop nests to improve locality. There has been
formance of a sequence of loop nests through a combination of a great deal of research in the area of loop transformations. Sev-
loop and data layout optimizations. Pure loop transformations are eral loop transformations such as interchange, skewing, etc. have
restricted by data dependences and may not be very successful irbeen incorporated into a single framework using a matrix represen-
optimizing imperfectly nested loops; the impact of a data trans- tation of transformations [20]. Among these techniques used are
formation on an array might be program-wide. Therefore, in this unimodular and non-unimodular iteration space transformations
paper we argue for a combined approach which employs both loop and tiling [19, 18]. There are two common characteristics of these
and data transformations. The method enjoys the advantages of theechniques: (1) they focus on improving data locality indirectly as
most of the previous techniques for enhancing locality and is effi- a result of modifying the iteration space traversal order; and (2) a
cient. In our approach, the loop nests are processed one by one antransformation is applied to one loop nest at a time. An important
the data layout constraints obtained from one nest are propagateddrawback of loop transformations is that they are constrained by
for optimization of the remaining loop nests. We show that this pro- data dependences.
cess can be put in a simple matrix framework which can be manipu- ~ Proper layout of data in memory may also have a significant
lated by an optimizing compiler. The search space that we considerimpact on the performance of scientific computations on multi-
for possible loop transformations comprises general non-singular processor machines. In this paper, we demonstrate techniques that
linear transformation matrices and the data layouts that we considerdecide good data layouts (e.g., row-major or column-major storage
are those which can be expressed using hyperplanes. Experimentsf matrices) and appropriate loop transformations that together im-
using several programs on an SGI Origin 2000 distributed-shared- prove the performance of dense matrix codes significantly. We refer
memory machine demonstrate the efficacy of our approach. to the optimization of data layouts data transformationsUnlike
loop transformations, data layout optimizations are not constrained
by dependences. We assume that every array accessed in a program
has a single fixed memory layout for the whole program. As a re-
A key component of the success of high performance computing Sult, data layout decisions affect the performance characteristics of
is the support for software development without undue concern on the whole program unlike loop transformations; in addition, data
the users’ part regarding the details of the underlying hardware. It layouts impact the choice of loop transformations applied to each
is difficult for users to exploit the performance potential of current 100p nest. We model data transformations using matrices in the
machines since a careful orchestration of the program appears necS@me way loop transformations have been modeled. Such an ap-
essary. Due to technological advances, processor speeds have imRroach allows us to exploit the benefits of a unified linear algebraic
proved at a much higher rate than memory speeds. In fact, duringframework. _ _ _
the last decade the processor speeds have been improving at a rateOnly @ few papers have considered data transformations to opti-
of at leasts0% each year while memory access time has improved Mize locality. O'Boyle and Knijnenburg [15] focus on restructuring
only at the rate of% per year, resulting in a significant widening of ~ the code given a data transformation matrix; they show that their
the performance gap between processors and memory subsystem@ethod can be used for optimizing spatial locality. In compari-
[5]. Modern multiprocessors include several levels of memory hi- SOn, we concentrate on the problem of determining suitable lay-
erarchy in which the lower levels are slow and inexpensive (e.g., outstogethemwith loop transformations, so that the whole program
disks, memory) while the higher levels (e.g., caches, registers) arecan be optimized. Anderson, Amarasinghe and Lam [1] propose a
fast but expensive. da_ta transfqrmatlon technlque for dlstrlbutec_i she_m_ed memory ma-
Fortunately, compiler technology has played a key role by en- ch[nes. While they restrict themselves to strip-mining and permu-
abling the restructuring of programs in order to exploit the archi- tation alone, we consider the full range of layout transformations
tectural features of modern machines, thus relieving some of the that are expressible using hyperplanes. Finally, Cierniak and Li
burden on the users. The role of the compiler has become increas3] consider only dimension re-indexing (permutation-based lay-
ingly significant due to the rapid evolution of parallel machine ar- ©0ut transformations) and use a pseudo-exhaustive search to detect
chitectures. A recent study shows that a group of highly paral- @ray layouts. In contrast to [3] which restricts possible loop as
lelized scientific benchmark programs spend as much as a quartefVell @s data transformations, the approach explained in this paper
to a half of their execution times waiting for data from memory ~Considers a much larger search space for memory layouts and loop

1 Introduction

transformations.
*Department of Electrical Engineering and Computer Science, Syracuse Univer- This paper is organized as follows. Section 2 presents an out-
sity, Syracuse, NY 13244. e-mailtkece .nwu. edu line of the global locality optimization problem. Sections 3 and

T Department of Electrical and Computer Engineering, Northwestern University, . . .y
Evanston, IL 60208. e-maik choudhar , baner jee }ece .nwu. edu 4 present the details of our approach. Section 5 presents prelimi

Department of Electrical and Computer Engineering, Louisiana State University, Na&ry experimental resu'FS on SG.l Orig?a00 d|Str|bUted'Shar?d'
Baton Rouge, LA 70803. e-maijxr@ee.1su.edu memory machine. Section 6 reviews related work on locality op-

timization and Section 7 summarizes the paper with an outline of restrictions are in general related to parallelism; typically, these re-
ongoing and future work. strictions can arise due to the need to reduce (or perhaps eliminate)
false sharing [16] or the need to exploit the largest granularity of
parallelism [18]. Of course, Cadecan be seen as a special form

of Case= or 3 and a combination of Cas@sand3 as well as sev-

eral other special cases may also occur. In the next section we give
details of our approach.

2 Overview of our approach to global locality optimization

As noted earlier, there is a vast amount of work in optimizing lo-

cality for a single loop nest using iteration space (loop) transfor-
mations [18, 12, 13]. Recently some authors [1, 15, 11] have pro-
posed techniques to optimize spatial locality in a loop nest using 3 Data and loop transformations
data space transformations. Such a transformation typically mod-

ifies the memory layout of a multi-dimensional array. The main 3.1 Canonical form

problem with this approach is that modifying the memory layout of We assume that the only control flow that we have is loop struc-

an array has global effect meaning that it affects the locality of ¢ | ical f ists of onl

all references to that array in all the loop nests. We show that such tUrés: ' our canonical form, a program consists or only a sequence
a global impact can in fact be exploited using a proper mix of data pft(F;LQfefrably pgrfecily-rﬁe.sted) !oqlp) ntesttﬁ. t We b”n% g p'\;IOglgfim
space and iteration space transformations. :n 0 tlsl Ol"sn uer)gha ec rl“q“efs'm' ar Odla prdqptOjsbe i y MCKin-

Our approach to the global locality optimization problem can ey(e) al. E]"t\;]v '(]i. 1:ses OOIP usion an otop ;]Stﬂ ?tlr(]m. ¢ .

be defined informally as follows. First, we transform the program urr]a;gonb m Tirst norma Ilﬁﬁ eacf: nest such tha . etls ep S;Z?j
into a canonical form using loop fusion, loop distribution, and code ot €ach loop becomes one.. en locuses on impertectly neste
sinking [20]; in this canonical form, the program contains two types loops and transforms them into perfectly nest loops using a com-

of references, the ones that occur inside loop nests, and those tha?mat'on of Ioop fusion, loop d|str|but|on. and cgde smk!ng. After
occur between loop nests. In our approach, only the references? Seduence of independent loop nests is obtained, a final pass ap-

within loop nests can affect memory layout decisions; in determin- Egeirsnlor?)?/;istlgr?]ogfael {Eg;itcothﬂgbqugsjs?ﬁe?}rj382 ?: sitsst(lefrdorglsg
ing layouts, we simply ignore the references between loop nests.s re pThe o eral?a roach YS similar to thatg ronosed gn [1319 the-
Then we construct an interference graph similar to that used by ure. v pp IS simi prop : '

Anderson and Lam [2]. This is a bipartite graph which contains det?:ils arlz be%ond the SCO?e of thi? wr?rk. the left part of Fi
two sets of vertices; one set corresponding to the loop nests and the onsider the program fragment shown on the Ieft part of ig-

other corresponding to the arrays. There is an undirected edge pelre 1. This fragment consists of two imperfectly nested loop nests.

tween an array vertex and a loop nest vertex if and only if that loop Within the loop nests are the names .Of the arrays accessed. Our ap-
nest accesses that array. Our technique works on a single connecte roach trangforms these loop nests into a Series of perfectly n.ested
component of this graph at a time, since there are no common ar- 0ops. In thls_example, We assume that this can be accomplished
rays between different connected components using loop fusion for the first imperfectly nested loop nest and loop

For a single connected component, we first order the loop nestsdls'tr'tJUtlon for the second.
according to a cost criterion, from the most costly nest to the least
costly. Practically, thecostof a loop nest can be defined as its 3.2 Interference graph
uniprocessor execution time. We currently use profile information
to compute the cost of each nest in a given connected component
Profiling the sequential code also allows us to obtain array sizes
loop bounds and probabilities of conditional statements. Notice
that this ordering of loop nests is not a modification or transforma-
tion to the structure of the program; but rather a step to determine
in which order the loop nests will be considered by our algorithm.
Then the algorithm starts with the most costly nest and optimizes it
for locality. After this process, suitable memory layouts for (possi-
bly some of) the arrays referenced in this loop nest are determined.
Afterwards, we move to the next most costly nest. In optimizing
this nest, we take into account the memory layouts determined dur- .
ing the optimization of the most costly nest. After each nest is 3-3 Hyperplane-based layout representation
optimized, (possibly) new memory layouts are determined and all our approach to memory layout representation is based on hyper-
the memory layouts obtained so far are propagated as layout con-pjane theory from linear algebra and is briefly explained beiow.
straints for optimizing the next nest in the connected component. The details are beyond the scope of this paper and can be found
During the processing of a single connected component, when ag|sewhere [7]. In this framework, hyperplanes are used to rep-
loop nest is to be optimized, the compiler can encounter three dif- rasent memory layouts of multi-dimensional arrays. Foman
ferent possibilities: (1) No constraint exists; that is, none of the gimensional array, a hyperplane defines a set of array elements

Next the compiler builds an interference graph similar to that used
by Anderson and Lam [2] in automatic data decomposition. This
'is a bipartite grapti{V,,, V., E) whereV,, is the set of loop nests,

V. is the set of arrays, anfl is the set of edges between loop
vertices and array vertices. There is an edge E is between

v, € V, andv,, €V, if and only if v, references,. Then we

run a connected-component algorithm on this graph. For the exam-
ple given in Figure 1, we have two connected components. Each
connected component is fed into our global locality optimization
algorithm explained in the rest of this paper.

arrays have a determined memory layout so far, and we have COM-(4, 45+,) Which satisfy the following equation
plete freedom on the choice of loop transformations. In this case, = ° '
the compiler’s task is to determine the memory layouts of the arrays gin+g2902+ -+ gmim =c¢ @

referenced in the loop nest as well as to find an accompanying iter-
ation space transformation; (2) The memory layouts of some of the
arrays referenced in the loop nest have already been fixed during
the processing of a previous loop nest. Here, the task is to deter-
mine the memory layouts of the remaining arrays and to transform
the iteration space accordingly; and (3) We have restrictions in the
iteration space other than those due to data dependences. The

wherec is a constant. In this equatiog, g2, - - -, g, are rational
numbers called hyperplane coefficients arid a rational number
called hyperplane constant [6]. We refergte= (g1, g2, - -, gm)*

as a hyperplane vector associated with equation (1). When there is
no ambiguity, all transposition symbols from vectors will be omit-
ted. A hyperplane familyis a set of hyperplanes with the same
SEoefficients but with a different constant\alue).

imperfectly-nested
loop nest

input to the
global locality algorithm

connected-component

S
=

.

column-major
0,1)

row-major
1,0

diagonal
-1

diagonal
1-2)

7
2

.

V?;/a
.

L

diagonal
2-1)

anti-diagonal
@1

anti-diagonal
@2

anti-diagonal
@1

connected»component

input to the
imperfectly-nested global locality algorithm

loop nest

Figure 1: Example application of locality optimization algorithm.

An important observation is that a hyperplane family can be
used to partially define the memory layout of a multi-dimensional
array. Let us concentrate now on a two dimensiaNak N ar-
ray stored in column-major form in memory as is the case in For-
tran. We can think of each column of this array as a hyperplane
(a line); and all columns collectively define a hyperplane family.
Here, the hyperplane vector {8, 1) and hyperplane equation is
g2 = cwherel < ¢ < N. For exampley> = 5 represents the
fifth column of the array. Two array elemenfsand.J’ belong to
the same hyperplangif

gl = gJ. &)
Returning to our two-dimensional column-major array, since the
array elements$l, 5) and(4, 5) satisfy equation (2) fog = (0, 1)
they belong to the same hyperplane which can be identified with
¢ = 5. On the other hand, for instancg,, 5) and(1,6) do not
satisfy equation (2), therefore, they belong to different hyperplanes.
It is important to stress that the memory layouts defined by hyper-
planes are not limited to the conventional layouts such as column-
major and row-major. For example, a hyperplane family defined by
(1, —1) also represents a memory layout where, say, the array ele-
ments(2, 3) and(4, 5) map on the same hyperplane. It is easy to

see that such a memory layout corresponds to diagonal-layout (or

skewed-layout) where the elements in each diagonal are stored con;
secutively in memory. Similarly, the hyperplane vectors given by
(1,0) and(1, 1) correspond to row-major and anti-diagonal mem-
ory layouts respectively. Figure 2 shows a few possible memory
layouts for am8 x 8 array and the associated hyperplane vectors.
Each circle in this figure represents an array element. With such a
representation, we say that two array elements bpatial locality

(or physical proximity) if they belong to the same hyperplane. For
example,(1,5) and (4, 5) have spatial locality in column-major
layout whereag2, 3) and (4, 5) have spatial locality in diagonal-
layout expressed usir(@, —1). Notice that for example in column-
major memory layout, our spatial locality definition does not en-

compass two elements that are mapped onto different columns but

in consecutive memory locations.

For two-dimensional arrays, a single hyperplane family is suf-
ficient to define the memory layout. In higher dimensions, how-
ever, we may need to use more hyperplane families. Let us con-
centrate on a three-dimensional arf@ywhose layout is column-

I Notice that the multiplies in equation (2) are dot products.

Figure 2: Example memory layouts for two-dimensional arrays and
their hyperplane vectors.

major Such a layout can be represented using two hyperplanes:
= (0,0,1) andh = (0,1,0). We can write these two hyper-
planes collectlvely asa Iayout constraint matrix or simply a layout

matrix
0 01
w=(h)=(010)

In that case, two data elemenisand.J’ have spatial locality (i.e.,
map onto the same hyperplane) if both of the following are true:

3
4
The elements that exhibit spatial locality should be stored in con-

secutive memory locations. This idea can easily be generalized to
higher dimensions as well [7].

palNa]

gJ'
Ry

QI
<
|

3.4 Single nest-level optimizations

Nest-level optimizations (or local optimizations) transform a loop
nest to increase cache locality. Essentially, the objective is to obtain
either temporal locality or stride-one access of the arrays which
is important for architectures with some form of cache hierarchy.
To understand the effect of a loop transformation let us represent
a loop nest of deptl which consists of loops$;, iz, --,i, as a
polyhedron defined by the loop limits. We usemuilmensmnal
vectorI = (11,12, --,1,) called the iteration vector to denote
the execution of the body of this loop nest with = 1,i> =

12, ,ln = 1ln.

We assume that the array subscript expressions and loop bounds
are affine functions of enclosing loop indices and symbolic vari-
ables. We can model each array reference using an access matrix
L and a constant vectar [18, 12]. As an example, a reference
U(i + 1,j) to a two-dimensional array/ in a loop nest of depth
two with 4 as the outer loop index is representeddly+ o, where

(i) m-(1).

In general, if the loop nest is of depthand the array in question is
m-dimensional, the access matrix is of sizex n and the constant
vector ism-dimensional.

The class of iteration space transformations we are interested in
can be represented using linear non-singular transformation matri-
ces. For a loop nest of depth the iteration space transformation

10
01

matrix T' is of sizen x n. Such a transformation maps each iter- whereq is the last column o). Therefore the problem is to find a

ation vectorl of the original loop nest to an iteratiaii = T'T of g and ag for a given£ such that the equation given by (5) will be
the transformed loop nest. Therefore, after the transformation, the satisfied.
new subscript function i€T~*I' + 6. The problem investigated Notice that this equation is non-linear and is with regard to a

in works such as [18] and [12] is to select a suitdBlguch that the single loop nest and a single reference. In order to optimize local-
locality of the reference is improved and all the data dependencesity globally (program-wide) we should set up and solve simultane-

in the original nest are preserved. ously the equations similar to (5) for each reference in each loop
Consider the three-point stencil computation nest shown in Fig- nest. Of course, given a large number of loop nests and references,
ure 3(a). Assuming column-major memory layouts torand V/, this system of equations may not have a solution, in which case

the accesses to both the arrays are poor from the locality point of we should ignore some equations. Exactly which equations will be
view. The problem is that successive iterations of the inner loop ignored depends largely on the profile information.

j touches different columns. The chances are very low that a line ~ We illustrate the process using an example first. Consider the
brought into cache in one of these iterations will stay in the cache program fragment given in Figure 3(b). The access matrices for
when any of its elements is reused. An iteration space transfor- this program are as follows:

mation technique such as the one proposed by Li [12] optimizes

this nest by interchanging [20] the loop order which is legal in this) _ (11 _ (10

case. This loop transformation can be representedusyraodular o Forthefirstnestty = < 01) Ly = < 01) ’
transformation matrix

0 1 e Forthe second nesty, = 0 1 Ly, = 10 .
T = 10 . 1 0 0 1

We note that the same nest can also be improved using dataT(\i]Vewould like to find suitable loop transformation matrices for both
r

transformations instead. Our approach uses the hyperplane-base € loop nests, and to determine accompanying memory layouts for
; » Dur approx YPerp) raysU andV. LetT andS denote the transformation matrices
layout representation explained earlier.

) ;) .
LetT = (7, §) andTpens = (i, j +1): that is,T and Tpeer are for the first and second nest respectively, §hed= T~ * andR =

-1 = T = T

two consecutive iterations. We focus on artaya similar analysis 5. Alsoletq = (gi2,g22) andgq = (112”"22) be the liSt
; = = columns of@ and R respectively. Lety = (ay,8,) andh =

alsoﬁe}pplles (tjtz;}rray. Two data .elelmeLTt.S accessgd]trg«gd{nm d (an, Br) represent the optimal layouts &f and V' respectively.
are o andLI,..:+o respectively. Using equation (2), in order - : ; : . '
o havje_g spatial |of::|ﬁg(£ +5) i g(ﬁlngqt +0) s(h())uld be Using (5), we obtain the following for the first loop nest:
satisfied, wherg represents an optimal layout. Taking into account 11 g2
I andI,c.¢, solving this last equality gives u = 0 where? is e ForarrayU: (ay, fy) < 0 1) (g2) =0
the last column ofZ. That is, if we choose a hyperplane vecgor

such thatg € Ker{f}, we will have spatial locality. Since, in our 10
example, e ForarrayV: (o, Br) < 01 > (Zzz) =
10
L= ; :
(0 1 > For the references to arrdy in the second nest,

we have? = (0,1)”. Choosingg from null space of, gives us (g, By) < 0 1) (12) =0and
g = (1,0), which, as mentioned earlier (see Figure 2), corresponds 10 22

to row-major memory layout. The details of how to select a suitable 1 0 r1ia

vector fromKer set (null set) are not important for the purposes (ag, By) 0 1

of this paper. In summary, in order to have a good spatial locality ;

. . collectively as

in the innermost loop, we have to change the memory layout of
(and that oft) from column-major to row-major.

-) = 0. We can write these equations

qi2+q22 g2 0 0 Qg
0 0 qi2 g2 By - 0 (6
4 Combined data and loop transformations for improving T22 riz2 0 0 anp)
locality T12 re2 0 0 Br

We have shown in the previous section that in order to optimize It should be noted that a solution to such a systengfergss, r12,
spatial locality of a loop nest both loop and data transformations r;., ay, 8y, s, andg, will give us suitable loop transformation
may be used. In the following, we show how to combine these matrices (actually only last columns of the inverses of them) as well
two optimization techniques. Let us focus on a two-dimensional as optimized memory layouts. However, we have some additional
array U referenced in a loop nest of depth two using an access constraints as well; specifically, for each unknown vector sugh as
matrix £. The results to be presented easily extend to higher di- 7, g andh at most one of the entries may be zero. With these addi-

mensional arrays and loop nests as well. We define- (i, j) tional constraints solving the non-linear system given by equation
andI,... = (i,j + 1) as two consecutive iteration vectaafter (6) is very difficult.
the transformation. Also assume that we will usa 2 transfor- What we need is a heuristic that works fast in practice and generates
mation matrixI’ and@Q = T~ !. After the transformation, in order ~ acceptable near-optimal solutions. We note that (6) can easily be
to have spatial locality (see equation (2)), divided into two sub-matrix equations each for a single nest:

g(ﬁQf’_,_a) :g(‘ch:Lezt—'_a) ag
should be satisfied. Solving this equation, we obtain Nest1:[#1z2Ftd2 @2 0 0 By = 007

0 0 qi2 g2 Qp,

gL = 0, (5) Bn

doi=1, N dou=1, N
do j =1, N dov=1,N
U(i+j,j)=v(i,j) UCu+v,v)=V(u,v)
doi=3,N end do end do
do j =3, N end do end do
U(i,3)=(V(i-2,j)+V(i,j)+V(i,j-2))/3.0
end do doi=1, N do u = -N+1, N-1
end do do j=1, N do v = max(1l-u,1), min(N-u,N)
(@) -=U(j,1)+U(4,3) - .=U(v,ut+v)+U(utv,v)
end do end do
end do end do
(b) (©)

Figure 3: (a) An example loop nest. (b) Original fragment. (c) Optimized version of (b).

Qg
T2 T2 00 By _
Nest 2: <T12 S— 0) an = 0. (8
Bh

The details of how to fill out a partially completed transformation
matrix can be found in [12].

We stress that the second loop nest in Figure 3(b) cannot be op-
timized using pure loop (e.g., [12]) or pure data (e.g., [15]) trans-
formations alone; because, there is spatial reuse in two orthogonal

There is a coupling between (7) and (8) due to layout vectors. Let gjrections. This simple example shows that a combined approach
us first focus on (7), and assume that this loop nest is more costly might be useful for some programs.

than the second one and no iteration space transformation will be

applied; that is(is the identity matrix meaning that, = 0 and
q22 = 1. Later in the paper we discuss this decision in detail. We
can now think of (7) in a block form as shown below:

ap

G2tgez g2 0 0
0 0 rqi2 go
B

This last equation can be written symbolically as follows:

(3 2)(1) -

whereSr andSr; correspond to non-zero sub-matrices in (9). Now
we need to solve two equation§;g = 0 andSirh = 0. Since
we have assume is the identity matrix, fromS;g = 0 we have
ay + B, = 0, which gives(ay, 8;) = (1, —1). On the other hand,
from S;rh = 0 we obtaing, = 0 which leads to(an, 8r) =
(1,0). Therefore, for the best locality in the first loop nest, array
U should have diagonal memory layout whereas a¥fegshould be
row-major.

Next wepropagatethese layout constraints to the second loop
nest, and solve equation (8) for. andraz. From

1

-1

1

we haver;» = roo = 1. Thus, a suitable transformation matrix is

11 1 -1
R:<01 (0 1)'

Using both loop transformation matrices and optimized memory
layouts, the transformed program is shown in Figure 3(c). Notice
that both loop nests exhibit good locality provided that artay

is diagonally stored and arrdy is row-major. There is an addi-

tional transformation step which modifies this program for a lan-
guage with fixed (canonical) memory layout; but since that step is
almost mechanical, we omit it and refer the reader to [7] and [15].

Qy
By

)

g
h

0 0
0 0

T22
T12

T12
T22

> , which givesS = R™!

4.1 Locality coefficient

To evaluate the amount of locality before and after the optimiza-
tion process, we use a simple metric referred to asdbality co-
efficient We define the locality coefficient of a loop nest as the
number of references that exhibit locality (spatial or temporal) in
theinnermostioop. The locality coefficient of a series of loop nests

is defined to be the sum of the locality coefficients of the individ-
ual nests. The locality coefficients of two different versions of a
program can be used as a guide to decide which version is better
than the other from the locality point of view. In the case of a tie,
we favor the program with more temporal locality. Of course, this
evaluation criterion for locality is very rough and assumes that all
references have the same weight and the bounds of all innermost
loops as well as the sizes of all arrays are of the same order. This
model can be improved upon by taking into account a detailed pro-
file infformation as well as the bounds of the arrays and the loops
after a transformation; but, the exactness of the evaluation model is
not very relevant for the purpose of this paper and the rest of the ap-
proach is independent of the particular locality evaluation criterion
chosen. For example, the locality coefficient of the program shown
in Figure 3(b) (assuming column-major layouts)isshereas that

of the optimized code in Figure 3(c)4sunder optimal layouts.

4.2 Formulation for the general case

In the general case, when we handle a given loop nest during the
global optimization process, some of the array layouts might be
known, while the layouts of some arrays are yet to be determined.
In such cases, we end up with a system of equations of the follow-
ing type, which we call garget system

S¢E = 0. (10)

The systems given in equations (7) and (8) are two example target
systems. Heré is a matrix which contains only last the column
entries of the inverse of the loop transformation matrix, arid
a vector obtained from concatenating the hyperplane vectors. Our
approach first brings this system into following form using elemen-
tary row interchange operations:
Sr Zr =
(2 8)(&) -0

€k

£ (11)

211

where Sy and Sy; are non-zero sub-matrices adg and Z;; are Table 1: P . . d diff .
zero sub-matrices. It is easy to see that this is always possible. The'@Ple 1: Programs in our experiment set and different versions

vectoré; contains entries of hyperplane vectors (which correspond [SZE iln doubles; foradi andtranspose, there is an outermost
to memory layouts) thabave beerdetermined so far. The other tming [0op].

vector,,,, consists of entries of the hyperplane vectors whiehto [PROGRAM || COMMENT I SIZE |
be determined. After this point, our solution procedure comprises btrix from Spec92 5 x5 x 175 x 175
three steps: adi from Livermore 3 x 1024 x 1024
_ _ transpose || from NWChem (PNL) [14] 2048 x 2048
(1) FromS; &, = 0, the entries of5; are found,;
[VERSION || COMMENT |
(2) From the entries o7, the entries of5;; are determined; and col fixed column-major memory layouts
_ _ . _ row fixed row-major memory layouts
(3) FromS; €. = 0, the entries of,, are solved. lopt loop-optimized version: no layout transforms
We note that these three steps informally correspond to determining :Z:F:L; 'ayfﬁﬁqgfﬁérglffgpvf LS;?Q];&ﬁi?atr:i?cfrfr%;n)

a loop transformation taking into account memory layouts obtained
so far, and to determining memory layouts of (possibly a subset of)
the remaining arrays whose layouts have not been determined so
far. In the following, we explain these three steps in more detail.

Step (1) corresponds to solving a homogeneous system of equa
tions. We first transform this system ingg S;” = 0, and then
solve it for S;. Of course, given a large number of references this
system may not have a solution at all. In that case, we ignore some
equations, and attempt to solve it again. The equations to be ig-
nored should correspond to references that are least frequently ac
cessed. The profile information might be useful in determining the
access frequency of references.

In Step (2), the elements df;; are determined from the ele-
ments ofS; found in the previous step. Although this step looks
trivial, it is possible that an element which appears§jn may not
appear inS;. In that case, we choose a value for this element arbi-
trarily avoiding picking up a zero value if all the other entries are
zero.

Step (3) is very similar to Step (1), the only difference is that
without taking the transposition, we start to solve the homogeneous
system right away.

then a pure loop based approach may result in a better code than a
pure data based approach.

To solve this problem, our current approach is as follows. For
the most costly nest, we consider two alternatives: pure loop and
pure data transformations. Then we proceed for each version as
explained in the previous sections, and finally come up with two
different optimized program. Finally, we calculate and compare
the locality coefficients of these two programs, and select the one
with the larger coefficient. Notice that once the most costly nest
is optimized, our approach will have some layout constraints for
the remaining nests, and will proceed to optimize each nest using a
combined approach which employs both loop and data transforma-
tions as explained.

Given the fact that the global locality optimization problem is
NP-complete, and that in most programs the bulk of the execution
time is spent in a couple of loop nests, we believe our approach is
suitable for optimizing locality for multiple loop nests.

4.3 The most costly nest revisited 4.4 Impact on multiprocessor execution

Our locality algorithm strives to optimize locality in as many in-
nermost loops as possible using a mix of loop and data transforma-
tions. This approach has can generate—as a byproduct—Ilocality-
free outer loops which are perfect candidates for parallelization.
This is very desirable as otherwise parallelizing a loop which car-
ries reuse is one of the main causes for inter-processor data sharing
[12]. Intuitively, the more aggressive the compiler is in bringing

tions together is not trivial as the problem requires in finding integer he | ; into " i the less fal d
solutions to nonlinear systems of equations. If the search spaces fothe loops carrying reuse into innermost positions, the less false an
true sharing will occur.

data and/or loop transformations are restricted, then an exhaustive
search (although still costly) might be reasonable [3]. However,
we insist on most general loop and data transformations. Having5 Performance results
decided that we will not optimize the most costly nest with a com-
bined (loop plus data) approach, the choice is between either pure In this section, we present our performance results to demon-
loop or pure data transformations. In general, we prefer data trans-strate the impact of our global locality optimization approach. We
formations; because even if we choose loop transformations, we show execution times for three programs or8amode SGI Origin
have to assume some fixed layouts for the arrays referenced. More-distributed-shared-memory machine. This machine ©98MHz
over, for a single loop nest, data space transformations can be moreR10000 processors32KB L1 data cache andMB L2 unified cache.
successful than loop transformations since the latter is constrainedThe C versions of the programs are compiled by the native C com-
by data dependences [7]. piler using-02 option. The timings are taken using thettimeof-
However, for some programs it might be the case that the best day routine. The programs that we use and the different versions
optimized program is the one in which the most costly nest is op- that we experiment with are given in Table 1. The execution times
timized using iteration space transformations alone. The reason isin seconds for the programs in our experimental suite are given in
rather subtle. As mentioned previously, pure loop transformations Tables 2(a), 2(b) and 2(c) fetrix, adi, andtranspose, respec-
can optimize temporal locality while pure data transformations can- tively. The last rows in these tables give the percentage of improve-
not. If the most costly loop nest contains a number of references ment obtained using theomb version (our combined approach)
for which temporal reuse can be exploited in the innermost loop, over the next best time. It should be stated that in all versions af-
ter the transformations for locality the outermost loop which does

So far, we have assumed that the most costly loop nest will be opti-
mized using data transformations alone. In this subsection, we first
argue for this decision. Then we show how our approach can be
made more powerful by considering different alternatives for the
most costly nest.

Given a loop nest, determining both loop and data transforma-

not carry any data dependence has been parallelized. From thes¢his paper. Cierniak and Li [3] use this approach. Since they

results, we conclude the following: mainly focus on a single loop nest and the general problem ex-
(1) Our combined approach is very successful in optimizing hibits non-linearity, they restrict search spaces for possible loop

locality; to be specific, for all three programs, themb version and data transformations, and resort to exhaustive search in this re-

results in the best output code and the best execution time. stricted search space. The data transformations they consider are

(2) The percentage of improvement depends on the relative per-permutations only; therefore, they cannot optimize banded matrix
formances of the other versions; therefore, there is not a single applications fully for which diagonal layouts are the most suitable.
trend. It is also interesting to note that in two casesi and Kandemir et al. [8, 9] also consider data layout optimization tech-
transpose, Our approachdomb) generates the same codelagt nigues. Their techniques unify loop and data transformations in a
or dopt, respectively. This is due to our extended approach which unified framework, but restrict the data Even in the restricted space,
considers both pure data- and pure loop-optimized versions of thethey perform sort of exhaustive search.
most costly nest. In contrast to the previous work, our approach presented in this
paper uses both loop and data transformations; and consequently
can enjoy the advantages of the both. Also the search spaces that
we consider for loop and data transformations are very general:

Recent years have witnessed a success in locality enhancing transE 0" [00p transformations we use general non-singular linear trans-
formations. A majority of the techniques used are based on loop formation matrices, and for memory layouts we can choose any op-

transformations. Wolf and Lam [18] describe reuse vectors and ex- timal layout that can be expressed by hyperplanes. Finally, rather
plain how they can be used for optimizing locality. Their method is than limiting scope to a single loop nest we focus on a sequence of
sort of exhaustive and in some cases can only work with the approx- '00P nests and propagate memory layouts across loop nests.
imate reuse vectors. Li [12] also considers reuse vectors but deter-
mines an appropriate loop transformation matrix in one go rather 7 Conclusions
than resorting to an exhaustive search. Neither Li [12] nor Wolf
and Lam [18] consider memory layout transformations; and since In this paper we have described a unified global approach for opti-
a loop transformation to improve locality of a reference can some- mizing locality given a series of loop nests. During the optimiza-
times adversely affect the locality of another reference, both ap- tion process, when a new loop nest is to be optimized, our approach
proaches may end up with unsatisfactory solutions. The cost of the first applies a loop transformation to it to satisfy the layout require-
methods mentioned is partly eliminated by a simple heuristic used ments for the references to arrays whose layouts have already been
by McKinley et al. [13]. Their method employs a simple cost for- determined. It then determines suitable memory layouts for the re-
mulation and considers loop permutation, loop reversal, loop fusion maining arrays referenced in the nest. The overall process is thus
and distribution. In addition to having the disadvantages of an ap- an alternating sequence of data (array layout) and loop (iteration
proach which is based on loop transformations alone, since they dospace) transformations. Although the general problem looks diffi-
not consider general non-singular loop transformations they may cult, we have shown in this paper that the whole process for a single
not be able to optimize some loop nests for which loop permuta- nest can be formulated in a nice mathematical framework which is
tion does not work. based on explicit memory layout representations. We have also
Considering the fact that linear loop transformations may be shown that our approach looks more successful than existing local-
insufficient for some loop nests, some researchers have focussedty enhancing (linear transformation) techniques whether they are
on loop tiling [19] which in most cases can be accomplished via pure loop based, pure data based, or a combination of both.
a combination of strip-mining and interchanging. The main ques- We are currently looking at the interaction between our frame-
tion however is to select an appropriate tile size which is dependentwork and tiling, and plan to work on several problems such as
on loop orders, array sizes, as well as cache sizes and degree oévaluating relative performances of tiled code versus the resultant
associativity [4]. code from our approach and comparing our approach to a relatively
More recently some researchers have considered data layoutnew form of tiling, namely data-centric tiling [10]. In addition,
transformations which are simply restructuring of multi-dimensional we plan to investigate the effectivenesslifickeddata layouts—in
arrays in memory. Leung and Zahorjan [11] present a technique which the elements accessed by a tile are stored contiguously in
which is based on non-singular data transformation matrices. They memory—in improving the cache performance further. Also, we
show that data transformations may be successful where loop trans-are working on extending our techniques for optimizing locality
formations fail either because of conflicting requirements between across program modules.
different references to different arrays or simply because data de-
peqdences prevent the desired loop transformat_ion. O'Boyle and Acknowledgments
Knijnenburg [15] also argue for data transformations. Apart from
using it for optimizing spatial locality, they consider the use of data The work of M. Kandemir and A. Choudhary was supported in
transformations for data alignment and page replication problems part by NSF Young Investigator Award CCR-9357840, NSF grant
on parallel machines. There are two major problems with those CCR-9509143 and Air Force Materials Command under contract
techniques based on pure data transformations. First, data transforF30602-97-C-0026. J. Ramanujam was supported in part by sup-
mations cannot optimize for temporal locality which in turn may ported in part by NSF Young Investigator Award CCR-9457768
lead to poor register usage. Second, the impact of a layout trans-and NSF grant CCR-9210422. P. Banerjee was supported in part
formation is global meaning that it affects (sometimes adversely) by NSF under grant CCR-9526325 and in part by DARPA under
all the references to that array in all nests (assuming that no dy- contract DABT-63-97-C-0035.
namic transformation is considered). Given large number of nests,
it might be very difficult to come up with a data layout which sat- References
isfies as many nests as possible.
Yet another approach is to apply a combination of loop and [1] J. Anderson, S. Amarasinghe, and M. Lam. Data and computa-
data transformations for enhancing locality as we have done in tion transformations for multiprocessors. Froc. 5th SIGPLAN

6 Related work

Table 2: Execution times for benchmarks

(a): Execution times in seconds fotrix

version || number of processors |
1 2 3 4 5 6 7 8
col 213.088 | 117.852 | 83.460 | 67.387 | 61.861 | 59.397 | 61.130 | 65.846
row 38.615 36.736 40.771 | 44.563 | 50.576 | 54.350 | 60.196 | 69.160
lopt 92.223 51.869 36.165 | 28.796 | 25.425 | 22.780 | 22.546 | 24.101
dopt 37.370 36.617 40.866 | 45.613 | 52.565 | 56.436 | 63.038 | 72.819
comb 33.669 21.533 19.013 | 17.568 | 18.962 | 18.731 | 18.002 | 19.361
(% imprv. [[10 [41 | 47 | 389 | 25 | 18 [20 | 20 |
(b): Execution times in seconds fadi
version || number of processors |
1 2 3 4 5 6 7 8
col 72.102 | 52.589 | 39.539 | 36.853 | 29.730 | 30.361 | 26.202 | 28.402
row 18.528 | 12.432 | 10.718 | 10.216 8.901 8.531 7.774 8.513
lopt 14.842 7.975 5.435 4,290 3.581 3.129 2.750 2.877
dopt 15.264 | 10.393 8.807 9.859 7.459 7.642 7.270 6.808
comb 14.842 7.975 5.435 4,290 3.581 3.129 2.750 2.877
[%dmprv. | 0] o [o [o [o [o [o [o]
(c): Execution times in seconds feranspose
version || number of processors |
1 2 3 4 5 6 7 8
col 73.342 | 38.159 | 27.114 | 21.328 | 18.190 | 16.910 | 14.677 | 14.843
row 78.483 | 40.653 | 28.757 | 22.472 | 19.165 | 16.929 | 15.389 | 14.899
lopt 73.342 | 38.159 | 27.114 | 21.328 | 18.190 | 16.910 | 14.677 | 14.843
dopt 30.244 | 16.609 | 11.559 8.863 7.389 6.415 5.633 6.674
comb 30.244 | 16.609 | 11.559 8.863 7.389 6.415 5.633 6.674
[imprv. | 0 | 0o [o [o [o [o T o T o]
Symp. Prin. & Prac. Par. Prog1995. [11] S-T. Leung, and J. Zahorjan. Optimizing data locality by array re-

[2] J. Anderson and M. Lam. Global optimizations for parallelism structgrlng. Technical Report TR 95-09-01, CSE Dept., University of
and locality on scalable parallel machines. Rroc. SIGPLAN Washinton, 1995.

Conf. Prog. Lang. Design & Implgp. 112-125, 1993. [12] W. Li. Compiling for NUMA parallel machines. Ph.D. Thesis, Cornell
—_ . o University, 1993.

[3] M. Cierniak and W. Li. Unifying data and control transforma- nlversll 4 . . .
tions for distributed shared memory machindzoc. SIGPLAN [13] K. McKinley, S. Carr, and C.W. Tseng. Improving data locality with
Conf. Prog. Lang. Design & Impl1995. loop transformationsACM Transactions on Programming Languages

) o))) and Systemd,996.

[4] S. Coleman and K. McKinley. Tile size selection using cache organi- [14] NWChem: a computational chemistry package for parallel comput-
zation and data layout. IRroc. SIGPLAN Conf. Prog. Lang. Design L p . yPp g rp mp
& Impl., 1995 ers, verS|0rj_1.1, 1995%igh Performance Computational Chemistry

N ’] o Group, Pacific Northwest Laboratory.

(3] J. Hennehssy and D. Pa}tters@omé)lgtﬁr Architecture: A Quantitative [15] M. O'Boyle, and P. Knijnenburg. Non-singular data transformations:
Approach.Morgan Kaufmann Publishers, 1995. Definition, validity, applications. liProc. 6th Workshop on Compilers

[6] C. Huang and P. Sadayappan. Communication-free partitioning of for Parallel Computerspp. 287-297, 1996.
nested loopsJou. Par. & Dist. Comp.19:90-102, 1993. [16] J. Torrellas, M. S. Lam, and J. L. Hennessey. False sharing and spatial

[71 M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanu- locality in multiprocessor cachel£EE Trans. Computergl3(6):651—
jam. A hyperplane based approach for optimizing spatial locality in 663, June 1994.
loop nests. InProc. 12th ACM International Conference on Super- [17] E. Torrie, C-W. Tseng, M. Martonosi, and M. W. Hall. Evaluating the
computing 1998. impact of advanced memory systems on compiler-parallelized codes.

[8] M. Kandemir, J. Ramanujam, and A. Choudhary. A compiler algo- In Proc. 1995 Int. Conf. Para. Arch.. & CO_mP'_TECh' (PACT 95).
rithm for optimizing locality in loop nests. IRroc. 11th ACM Inter- [18] M. Wolf, and M. Lam. A data locality optimizing algorithm. Froc.
national Conference on Supercomputipg. 269-276, 1997. ACM S_IGPLAN 91 Conf. Programming Language Design and Imple-

[9] M. Kandemir, J. Ramanujam, and A. Choudhary. Compiler algorithms mentation pp. 3_0_44’ 1991_',) .
for optimizing locality and parallelism on shared and distributed mem- [19] M. Wolfe. Iteration space tiling for memory hierarchies Rroc. 3rd
ory machines. IrProc. 1997 Int. Conf. Para. Arch. & Comp. Tech. SIAM Conference on Parallel Processing for Scientific Computing
(PACT 97) pp. 236-247. pp. 357-361, 1987.

[10] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level [20] M. Wolfe. High Performance Compilers for Parallel Computing

blocking. InProc. SIGPLAN Conf. Prog. Lang. Design & Im@997.

Addison-Wesley Publishing Company, 1996.

