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ABSTRACT

In deterministic global optimization algorithms, a
systematic search is made of the entire domain. The
domain is adaptively subdivided into smaller
sub-domains. The subdomains are rejected, subdivided
further, or accepted as containing solutions, based on
bounds on the range of the objective function,
constraints, and partial derivatives thereof.

For a global optimization algorithm to be practical, it is
sometimes crucial that the bounds on the range be as
sharp as possible. For some problems, straightforward
interval evaluations or even mean-value extensions lead
to bounds that are too pessimistic to be of use. In
contrast, higher-order multivariate Taylor models can
lead to much tighter bounds.
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Talk Outline

Time permitting, we will

e briefly review deterministic global
optimization,

e give examples where overestimation in
straightforward interval evaluations causes
problems,

e explain the basic idea underlying Taylor
models,

e give historical background, theoretical
results and previous use of Taylor models,

e show the performance of Taylor models on
an example, and

e point out technical considerations in use of
Taylor models.
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The Global Optimization
Problem

A basic problem is

minimize ¢(x)
c(x) = 0 and (1)
glx) <0,
where ¢ : 2 CR" - R, ¢c: 2 — R™, and
gz — R™ where x is an interval vector

subject to

IA

z=([z,71],...,[T0, T’
A related problem is
Find all solutions to flz)=0 2)
where f 12 CR" — R"
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How Does It Work?

An Example Technique
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The midpoint test: Rejecting & because of a high
objective value
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Example Computations

A Very Simple Illustration

e Suppose we want to find all solutions to
f(z) = 2° — x — 1 within ¢ = [-2, 2].

e Suppose a subdivision process has
produced the interval [1.5,2] to examine.

e Using interval arithmetic,
f([1.75,2]) = [0.0625, 1.25], and
0 & [0.0625,1.25]. Thus, [1.5,2] can be
discarded.

e Note that the actual range of f over
11.75,2] is [0.3125, 1] C [0.0625, 1.25].
However, the overestimation in the interval
computation does not affect the result in
this case.
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An Example Where
Overestimation Matters

Gritton’s Second Problem

e An eighteenth degree polynomial arising
from a chemical engineering problem.

e The problem has eighteen roots in the
initial interval [—12, §].

e The root at x =~ 1.381 is difficult to isolate
because of interval dependencies.
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Gritton’s Second Problem

p(z) = —0.371936250000000 * 107

+2 % (—0.791246565600000 * 10193
+ % (0.404494414300000 % 10794
+2 * (0.978137516700000 * 10793
+2 % (—0.165478928000000 * 107
+2 * (0.221407282700000 * 107
+ * (—0.932654935900000 % 10+%*
+2 * (—0.351853687200000 % 107
+2 * (0.478253229600000 * 10194
+2 % (—0.128147944000000 * 107"

+2 % (—0.283443587500000 * 1019

+2 * (0.202627091500000 * 107"

+2 % (—0.161791345900000 * 107

+2 * (—0.888303902000000 * 10!

+2 * (0.157558017300000 * 109

+2 % (0.124599084800000 * 10

+2 * (—0.358914862200000 * 10~

+2 % (—0.195109557600000 * 10~%

+2  (0.227468222900000 * 10" NNNINNIIN)))
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Gritton’s Second Problem
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Gritton’s Second Problem

e One possibly occurring computation is to
reject the interval & = [1.35, 1.37], near the
root near x ~ 1.38.

e A straightforward interval evaluation of
p(x) gives
p(x) € [—1381.74,1383.98],
not useful to determine p(z) # 0.
e A mean value extension gives
p(z) € [—6.29,6.35],
also not an adequate approximation.

e Because of monotonicity, the actual range
(to 3 digits) is

p(x) € [0.0111,0.0431],

but an interval evaluation of p'(x) gives
p(x) € [—6184.71,6229.86], not indicative
of monotonicity:.
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A Taylor Model for Gritton

e The Taylor polynomial of degree 5 about
x = 1.36 can be computed as
approximately
T5(x) ~ 0.0251 — 1.582(—1.36 + =) +
20.2(—1.36 + x)%* — 82.8(—1.36 + z)> +
42.8(—1.36 + x)* + 384.(—1.36 + z)°.

e The error term is of the form

6)(11.35.1.37

{Intervals enclosing roundoff}
in the coefhicients of 75

E(x) =

e I; and E give the inclusion

p(z) € Ty([1.35,1.37)) + E([1.35,1.37))
C [0.00923,0.0431]

This is sharp enough to conclude p(zx) # 0,
and is close to the actual range

0.0111, 0.0431].
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Prospects for Taylor Models

e Kffectiveness of the model
f(z) € Ty(x) + Ep(x)

in global optimization depends upon
getting good bounds on the range of 1.

e Negative aspects:

— Naive interval computation for Tj(x)
can in principle lead to overestimation
similarly to interval evaluation of f.

— Computation of the range of a
quadratic in n variables to within a
specified accuracy is NP-complete in n.
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Prospects for Taylor Models

Positive aspects

e In practice, estimation by a low-degree
polynomial appears to be very effective,
especially for functions defined by
complicated expressions but with mild
nonlinearities.

e Many hard global optimization problems
have a small number of variables, within a
range that has been handled well by Taylor
method software.

e Polynomial models of degree 20 or more
with orders of 10 or more have been
successfully used in practice.
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A Short History

Cornelius-Lohner (1984): Develop higher-order
range estimation in one variable and suggest
generalization

Berz (1987): Proposes Taylor arithmetic to integrate
the differential equations involved in beam physics

Berz (1991): Publishes data structures and a
software environment for efficient operations with
multivariate Taylor models

Berz and Hoffstatter (1994): Publish
incorporation of interval bounding process in beam
theory computations

Berz and Makino (1996): Publish general method
for Taylor arithmetic with remainder bounds.

Kreinovich et al (1998): Negative results for
computational complexity in high dimensions

Makino and Berz (1999): Propose use in global
optimization, and give an example showing promise
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The Present State of the Art

e Software is available from the beam theory
oroup at Michigan State. The Taylor
arithmetic is part of the package COSY
INFINITY (See
http://bt.nscl.msu.edu/cosy/)

e COSY is oriented towards beam physics,
but can be used for preliminary
experiments in other areas.
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Technical Aspects

e An automatic differentiation process is
used to compute T,,(x) + E(x).

e Special data structures are used to make
the multidimensional computations
efficient.

e Various techniques can be used to bound
T, (x) more precisely than with naive
interval arithmetic.

— Little is done at present.

— In one variable, the range of 7}, can be
computed exactly if n < 5.

— Heuristics have been proposed in the
multivariate case.
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Why is the Taylor model
successful in beam
computations?

1. The function modelled is only weakly
nonlinear, so higher-order coefficients are
small. The high-order Taylor model can
thus give the required high accuracy.

2. Enclosures for the function value at points,
in contrast to range enclosures over
intervals, are sought. This leads to less
overestimation.
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How might the Taylor model
work for global optimization?

1. The properties of interval arithmetic
(sub-distributivity) cause different amounts
of overestimation for different arrangements
of the same algebraic expression.

2. Due to a basic theorem of interval
arithmetic, the linear part of the Taylor
polynomial has an exact range.

3. Basing the Taylor polynomial in the center
of the interval of interest causes
higher-order terms to be small corrections
and minimizes overestimation.

4. The n-th degree model of an n-th degree
expression seems to often give better
results than the original expression.
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Considerations for Global
Optimization

1. There is a tradeoff between amount of
computation to evaluate the function and
amount of overestimation.

2. Is second or third order accurate enough in
olobal optimization, where geometry, in
addition to overestimation, drives
subdivision?

3. The COSY software cannot be seamlessly
incorporated into global optimization.

(a) Much work is required to implement a
general Taylor model.

(b) Discovery of a simpler subset of the
general model class would aid
implementation.

4. Just how much is gained from considering
Taylor models?
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How to Proceed?

Proposed Discovery Path

. Identify important problems not solvable
without Taylor models.

. Study ranges over intervals of interest,
comparing naive interval evaluations to
Taylor models of various orders.

. Judge if it is useful to consider just
low-order implementations.

. Formulate the conditions (order of
function, gradient, and Hessian
approximations) necessary in for Global
Optimization
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Proposed Discovery Path

(continued)

. Implement the simplified Taylor model in
GlobSol.

. Experiment with the previously identified
problems.

. Draw conclusions concerning the Taylor
model’s usefulness.

. Summarize clearly the class of problems
over which Taylor models work in Global
optimization.
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