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Abstract

We show how to transform an infinite horizon optimization problem
into a one-dimensional global optimization problem over a closed and
bounded feasible region whose objective function is Hölder continuous
with known parameters. The deep connection elicited between the two
areas of study introduces several opportunities for cross-fertilization
which we exploit within this paper.
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1 Introduction

Our objective is to show the equivalence of a class of infinite horizon op-
timization problems and a solvable global optimization problem, namely,
the problem of finding an optimum of a Hölder function on a subset of real
numbers.

Throughout, ℵ denotes the set of natural numbers, and < denotes the
set of real numbers.

2 Mathematical Model

In this section, we define the class of infinite horizon problems and the global
optimization problem, the pair of which we intend to show the equivalency.

Define the space of all strategies, Z, as an infinite product space of {0,1},
i.e.,

Z =
∞∏

n=1

{0, 1}.

Therefore, for each strategy s ∈ Z, s is an infinite sequence of 0’s and 1’s,
i.e.,

s ≡ (sn) where sn ∈ {0, 1}, ∀n ∈ ℵ.

For future reference, n ∈ ℵ is referred to as period n, and sn is referred to
as the decision for period n.

Equip Z with matric d, making a matric space (Z, d), where

d(s, t) =
∞∑

n=1

|sn − tn|
2n

, ∀s, t ∈ Z.

This metric induces the topology of componentwise convergence on Z, and
Z is compact under this topology [1].

Let S be a nonempty closed subset of the metric space (Z, d), called the
set of feasible strategies. Since Z is compact, S is also compact.

Denote the undiscounted cost function for period n associated with a
strategy s by c(s, n), i.e., c : S × ℵ → <. Denote the total discounted cost
function associated with a strategy s by c̃(s). Then c̃ : S → <, defined by

c̃(s) =
∞∑

n=1

c(s, n)
(1 + r)n

, (1)

where r > 0. Note that r can be interpreted as a discount rate.
We make two assumptions.
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1. For each s ∈ S and n ∈ ℵ, c(s, n) depends only on s1 to sn and does not
depend upon sk where k > n. Moreover, for any s, t ∈ S, if sk = tk,
for all k = 1 to n, then

c(s, n) = c(t, n).

2. The undiscounted cost function c is deterministic, and

|c(s, n)| ≤ B(1 + γ)n, ∀s ∈ S,∀n ∈ ℵ, (2)

where B > 0, and 0 < γ < r. Note that γ can be interpreted as a
growth rate of the cost over time.

The class of infinite horizon optimization problems under consideration
is the problem to find an optimal strategy s∗ that

Program 1

min c̃(s)

s.t. s ∈ S.

Denote the set of all optimal solutions to Program 1 by S∗.
We intend to show that Program 1 is equivalent to a global optimization

problem, which is the following Program 2.

Program 2

min f(y)

s.t. y ∈ [0, 1] ⊆ <.

where the objective function f is a Hölder function, i.e.,

|f(y)− f(z)| ≤ M |y − z|α, ∀y, z ∈ [0, 1], (3)

for some positive real number M and real number 0 < α ≤ 1. Many so-
lution methods to Program 2 have been proposed in global optimization
literature(see e.g. Horst and Tuy [4], Gourdin et. al. [3], and Shubert [7]).
Therefore, Program 2 can be considered a solvable global optimization prob-
lem.

By equivalence of Program 1 and Program 2, we mean that one can find a
transformation that transforms each problem of Program 1 to another prob-
lem of Program 2 in such a way that the set of all optimal solutions of the
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transformed problem can be mapped into the set of all optimal solutions of
the original problem. Conversely, one can find another transformation that
transforms each problem of Program 2 to that of Program 1 in the same
manner. The condition that the set of all optimal solutions of the trans-
formed problem can be mapped to that of the original problem is proposed
so that, instead of solving the original problem, one can solve the trans-
formed problem and transform the solution to that of the original problem.
In this article, we show the equivalency of those two problems by showing
that there exist such transformations.

3 Transformation from Global Optimization Prob-
lems to Infinite Horizon Optimization Problems

Starting with a global optimization problem, Program 2, transforming a
global optimization problem into an infinite horizon optimization problem
is relatively easy. Let the set of feasible strategies S be the entire strategy
space Z. Observe that each strategy s in S is a sequence of one and zero,
and hence it can be used to represent a real number in the interval [0,1] by
the binary expansion. For example, the sequence (0, 1, 1, 1, . . .) can be used
to represent 0.01112 which is one half. Formally, we can define a function
σ̃ : S → [0, 1] by

σ̃(s) =
∞∑

n=1

sn

2n
, ∀s = (sn) ∈ S. (4)

Note that σ̃ is an onto function, but it is not one-to-one, since (0, 1, 1, 1, . . .)
and (1, 0, 0, 0, . . .) map to the same point.

Define the total discounted cost c̃1 : S → <, which is the objective
function of an infinite horizon optimization, by

c̃1(s) = f(σ̃(s)), ∀s ∈ S (5)

where f is the objective function of Program 2.
We then define another infinite horizon optimization problem.

Program 3

min c̃1(s)

s.t. s ∈ S.
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We see that the set of all optimal solutions of Program 2 is the image of
the function σ̃ over the set of all optimal solutions of Program 3. We would
like to adopt Program 3 as our transformation of Program 2. However, one
may concern that Program 3 might not be well defined because it might
not be possible to construct a consistent undiscounted cost function, i.e.,
the undiscounted cost that satisfies all assumptions we made in previous
sections and results in the total discounted cost c̃1 via (1). We show that
this apprehension has no grounds.

Define the partial sum σ : S × ℵ → [0, 1] by

σ(s, n) =
n∑

k=1

sk

2k
, ∀s ∈ S,∀n ∈ ℵ.

We then define the undiscounted cost function c1 : S × ℵ → < by

c1(s, n) =
{

f(σ(s, 1))(1 + r) if n = 1
(f(σ(s, n))− f(σ(s, n− 1)))(1 + r)n if n > 1.

Defined in this way, c1(s, n) depends only on s1 to sn. c1 defines c̃1 in
accordance with (1). Furthermore, for each s, if n > 1,

|c1(s, n)| = |f(σ(s, n))− f(σ(s, n− 1))|(1 + r)n

≤ M

(
1
2n

)α

(1 + r)n

(by Hölder property of f)

= M

(
1 + r

2α

)n

.

It implies that c1(s, n) satisfies (2). Hence, Program 3 does not violate any
assumptions that we made, and hence can be adopted as a transformation
of the global optimization problem, Program 2.

4 Transformation from Infinite Horizon Optimiza-
tion Problems to Global Optimization Problems

Starting with Program 1, to transform an infinite horizon optimization prob-
lem into a global optimization problem, we first map all strategies into real
numbers by the function x. The function x maps Z into the interval [0, 1],
i.e., x : Z → [0, 1] defined by

x(s) =
∞∑

n=1

sn

3n
, ∀s = (sn) ∈ Z. (6)
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Note that x is a one-to-one mapping. Denote the subset of < that is the
image of x over Z by X. Defined in this way, X is the set of all real numbers
in [0, 1) that, when represented in the base-3 expansion, all digits are 0 or
1. (Note that when we refer to the base-3 expansion of a real number, we
always refer to the base-3 expansion of that real number that does not end
in a string of 2’s. For example, 1/3’s base-3 expansions are both 0.1000 . . .3
and 0.0222 . . .3. However, when we refer to the base-3 expansion of 1/3,
we are referring to 0.1000 . . .3. This convention assures us that x is one-to-
one. Had we adopted a binary representation, we would lose this one-to-one
property.)

Definition 1 A set C is a Cantor set if C is a subset of < that has all the
following properties:

1. C is nonempty,

2. C is closed and bounded,

3. All points in C are accumulation points of C,

4. C is nowhere dense.

From mathematical analysis, X is a Cantor set with Lebesgue measure zero.
This also implies the compactness of X. Denote the image of x over the set
of feasible strategies S by Y , called the set of feasible solutions or simply
the feasible region.

x : Z → X is a continuous mapping. To see this, observe that, for s and
t in Z,

|x(s)− x(t)| =

∣∣∣∣∣
∞∑

n=1

sn − tn
3n

∣∣∣∣∣ ≤
∞∑

n=1

|sn − tn|
3n

≤
∞∑

n=1

|sn − tn|
2n

= d(s, t),

where the first inequality follows from the triangular inequality. Therefore,
if a sequence (sn) converges to s in Z, then (x(sn)) converges to x(s) in X.
This implies the continuity of x. Hence, Y is compact, since S is compact
and the image of a compact set under a continuous map is compact. Y also
has Lebesgue measure zero, since X has Lebesgue measure zero and Y ⊂ X.

Since the function x defined in (6) is a one-to-one mapping, the inverse
function x−1 exists. Define an objective function f : Y → < by

f(y) = c̃(x−1(y)), ∀y ∈ Y. (7)

where c̃ is the total discounted cost of Program 1. By so doing, Program 1
is transformed to
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Program 4

min f(y)

s.t. y ∈ Y compact ⊆ <.

Denote the set of all optimal solutions to Program 4 by Y∗ and their corre-
sponding optimal value by f∗. Hence, S∗ = x−1(Y∗).

The following Theorem 1 reveals the property of the objective function
f over Y . Lemma 1 is needed to prove Theorem 1.

Lemma 1 ∀y, z ∈ X, |y − z| ≤ 1/3k, where k ∈ ℵ and k > 1, implies that
the decisions from 1st period to k− 1st period of x−1(y) and x−1(z) are the
same.

Proof. Let k > 1 and let s = x−1(y) and t = x−1(z) where y, z ∈ X. If
there exist some decisions from 1st period to k − 1st period of s and t that
are different, there exists 1 ≤ h ≤ k − 1 such that sh 6= th, and if h > 1,
sn = tn for n = 1 to h − 1. In other words, h is the first period that the
decision starts being different. Then

|y − z| = |x(s)− x(t)| = |
∞∑

n=1

sn − tn
3n

| ≥ |
h∑

n=1

sn − tn
3n

| − |
∞∑

n=h+1

sn − tn
3n

|.

But, sn = tn for n = 1 to h−1, and sh 6= th. Furthermore, |
∑∞

n=h+1
sn−tn

3n | ≤
1

(2)(3h)
.

|y − z| ≥ 1
3h

− 1
(2)(3h)

=
1

(2)(3h)
≥ 1

(2)(3k−1)
>

1
3k

.

This is a contradiction. �

Theorem 1 The objective function f is a Hölder function on Y , i.e.,

|f(y)− f(z)| ≤ M |y − z|α, ∀y, z ∈ Y,

where 0 < α ≤ 1, and M is a positive constant. In particular, we may set
M = 6B/(1− β) and α = min{log3(1/β), 1} where β = (1 + γ)/(1 + r).

Proof. Note that we consider only when γ < r so that the objective
function can be evaluated. Hence, 0 < β = (1 + γ)/(1 + r) < 1.

Fix y, z ∈ Y . There exists k ∈ {0, 1, 2, . . .} such that

1/3k+1 < |y − z| ≤ 1/3k.
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Let s = x−1(y) and t = x−1(z). If k ≥ 2, by Lemma 1, sn = tn for n = 1 to
k − 1.

|f(y)− f(z)| = |c̃(s)− c̃(t)|
= |

∑∞
n=k c(s, n)/(1 + r)n −

∑∞
n=k c(t, n)/(1 + r)n|

(by Assumption 2)
≤ |

∑∞
n=k c(s, n)/(1 + r)n|+ |

∑∞
n=k c(t, n)/(1 + r)n|

≤
∑∞

n=k |c(s, n)/(1 + r)n|+
∑∞

n=k |c(t, n)/(1 + r)n|
(by the triangular inequality)

≤ 2
∑∞

n=k B[(1 + γ)/(1 + r)]n

(by Inequality 2)
= 2B

∑∞
n=k βn

= 2Bβk/(1− β).

7

But, |y − z| > 1/3k+1. Then |y − z|α > (1/3α)k+1 for all α > 0. Therefore,
(3α)k+1|y − z|α > 1, and thus

|f(y)− f(z)| ≤ 2B(
βk

1− β
)(3α)k+1|y − z|α =

(2)(3α)B
1− β

(3αβ)k|y − z|α.

Let α be such that

0 < α ≤ min{log3(1/β), 1} ≤ 1.

Since α ≤ log3(1/β), we have 3αβ ≤ 1. Since α ≤ 1, we have (2)(3α) ≤ 6.
Hence,

|f(y)− f(z)| ≤ 6B

1− β
|y − z|α.

On the other hand, if k = 0 or 1, sn and tn may be different for all n ∈ ℵ.
By (2),

|f(y)− f(z)| ≤ 2B(
β

1− β
) ≤ 2B(

β

1− β
)(3α)2|y − z|α ≤ 6B

1− β
|y − z|α,

for 0 < α ≤ min{log3(1/β), 1}.
Hence, f is a Hölder function with 0 < α ≤ log3(1/β) ≤ 1, i.e.,

|f(y)− f(z)| ≤ M |y − z|α where M =
6B

1− β
.

�

Corollary 1 Y∗ is not empty.
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Proof. The objective function f is continuous over the compact set Y .
The corollary follows readily from Weierstrass Theorem. �

Up to this point, we have transformed the original infinite horizon op-
timization problem in an infinite-dimensional space into another global op-
timization problem of a Hölder objective function in one-dimensional real
space. However, our task has not been completed because the feasible region
Y is a compact subset of a Cantor set, not the interval [0,1] as we aim at.

To complete the task, we extend the objective function f to the whole
interval [0, 1] in such a way that the extended function preserves the same
Hölder condition of f , i.e., f1 satisfies (3) with the same α and M as those
of f . In addition, the extended function preserves all optimum of f over
the extended set. The interval [0,1] can then be regarded as the extended
feasible region. One possible extension is the standard McShane’s Lipschitz
extension [6].

Define the extended objective function f1 : [0, 1] → < by

f1(y) = inf
z∈Y

{f(z) + M |y − z|α}, ∀y ∈ [0, 1], (8)

We show that f1 is a Hölder extension of f . Basically, a sufficient condition
for f1 to be an extension of f that preserves the same Hölder condition is
that ρ(y, z) = |y − z|α, for all y, z in <, defines a metric on <, and in fact
it is.

Lemma 2 For all a, b ∈ < and 0 < α ≤ 1

|a + b|α ≤ |a|α + |b|α.

Proof. This proof can be found in Bruckner, Bruckner and Thomson [2].
If α = 1, this is simply the triangular inequality of the absolute value func-
tion. Fix 0 < α < 1. Let h : [0,∞) → < defined by

h(t) = (1 + t)α − 1− tα.

Observe that h(0) = 0, and h′(t) < 0 when t > 0 Therefore, for all t ≥ 0,

(1 + t)α − 1− tα ≤ 0.

Let a, b ∈ < such that b 6= 0. Substituting t in the above inequality by
|a|/|b|, we have (

1 +
|a|
|b|

)α

−
(
|b|
|b|

)α

−
(
|a|
|b|

)α

≤ 0.
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Hence,
|a + b|α ≤ (|a|+ |b|)α ≤ |a|α + |b|α.

If b = 0, the lemma trivially follows. �

Proposition 1 f1 is a Hölder extension of f over [0, 1] preserving the same
Hölder condition.

Proof. We follow McShane [6]. By the definition of f1, f1|Y = f . f1(y)
is finite for every y in < since, for a fixed z in Y ,

−∞ < inf
x∈Y

f1(x) ≤ f(y) ≤ f(z) + M |y − z|α < ∞,

and hence well defined. Let x, y ∈ <. For ε > 0, the definition of f1 implies
that there exists z in Y such that

f1(x) + ε ≥ f(z) + M |x− z|α,

and that
f1(y) ≤ f(z) + M |y − z|α.

By Lemma 2,

f1(x) + ε ≥ f1(y)−M |y − z|α + M |x− z|α ≥ f1(y)−M |y − x|α.

This is true for all ε > 0. Therefore,

f1(x) ≥ f1(y)−M |y − x|α,

or
f1(y)− f1(x) ≤ M |y − x|α.

By switching the roles of x and y, we obtain

f1(x)− f1(y) ≤ M |x− y|α.

Therefore,
|f1(x)− f1(y)| ≤ M |x− y|α,

and hence proved. �
Define another mathematical program.

Program 5

min f1(y)

s.t. y ∈ [0, 1].
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Program 5 is the transformed problem that we want. One thing left to
show is that Program 5 preserves the set of optimal solutions of Program 4.

Denote the set of all optimal solutions of Program 5 by Y1∗ and their
corresponding optimal value by f1∗. We claim that Y1∗ = Y∗ and f1∗ = f∗.
To see this, let y ∈ [0, 1] − Y . Since Y is closed, the distance of y from Y ,
i.e., infz∈Y |y − z| and hence infz∈Y |y − z|α is strictly positive. Therefore,

f(y) = inf
z∈Y

{f(z) + M |y − z|α}

≥ inf
z∈Y

f(z) + M inf
z∈Y

|y − z|α

> inf
z∈Y

f(z)

= f∗.

Note that the last equality is a result of compactness of Y . This proves our
claim.

We have transformed the infinite horizon optimization Program 1 to
another global optimization Program 5 of Hölder function on [0,1], where
the set of all optimal solutions of the original problem is the image of the
inverse function x−1 over the set of all optimal solutions of the transformed
problem.

As to the extension scheme, McShane’s extension f1 is not the only
possible extension of f . Linear interpolation is another possible extension
that preserves the Hölder condition of f . (See Kiatsupaibul [5].) The set
of all optimal solutions of the linear interpolation extension of f is not
always equal to the set of all optimal solutions of f , but it always contains
that of f . Another feature of the linear interpolation extension is that
the extension is differentiable almost everywhere since Y has measure zero.
Therefore, it seems that the linear interpolation extension might be more
regular than McShane’s extension with respect to a specific f . However,
with any extension, a transformed extended objective function can be as
irregular as that in Example 1.

Example 1 Consider a stationary cost equipment replacement problem with
a one-year-old equipment at the beginning of period one, assuming no max-
imum physical life. Model this problem by the binary sequences of buy-keep
decisions. Assume that the optimal solution of Program 5, denoted by y∗, is
unique. Assume further that y∗ ∈ (0, 1/6) = (0.000...3, 0.011...3). Then, by
stationarity of the cost structure, y∗(n) =

∑n
i=1(1/3)i + y∗/3n is the unique
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optimal solution of f1 over the open interval

(
n∑

i=1

(1/3)i,

n∑
i=1

1/3i +
∞∑

i=n+2

1/3i)

for n = 1, 2, .... Therefore, the function f1 of this problem has at least a
countably infinite number of strict local optimal solutions.

5 Discussion

As we have seen, the Hölder property of the transformation from the infinite
horizon optimization to the global optimization relies on the mapping from
the strategy space into the real number system. With respect to a particular
problem, different mapping yields different properties of the transformed
problems. Let us entertain ourselves further on this line of base-3 expansion
mapping.

Define f on X ⊆ <m as a Hölder function if f satisfying the condition

|f(y)− f(z)| ≤ M‖y − z‖α, ∀y, z ∈ X (9)

where ‖ · ‖ denotes the Euclidean norm, 0 < α ≤ 1, and M is a positive
constant. The underlined letter denotes an element in <m, i.e.,

y = (y1, . . . , ym) where yi ∈ <,∀i = 1, . . . ,m.

A function f is said to be a Lipschitz function if it is a Hölder function with
α being equal to 1, i.e., f satisfies the condition

|f(y)− f(z)| ≤ M‖y − z‖, ∀y, z ∈ X. (10)

A Lipschitz function enjoys a lot of nice properties in analysis. In the pre-
ceding sections, when the set of all strategies is mapped into <, the objective
function was shown to be a Hölder function in <. Whether or not the ob-
jective function is also a Lipschitz function depends on the discount factor
β. In this section, we show that, if we map the set of all strategies into
<m, for some m > 1, the Lipschitz property of the objective function can
be guaranteed. The formal treatment of the statement follows.

Let Z be the space of all strategies. Define the mapping x : Z → <m as

x(s) = (x1(s), . . . , xm(s))
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where

xi(s) =
∞∑

k=0

smk+i

3k+1
, ∀i = 1, . . . ,m,∀s = (sn) ∈ Z. (11)

As an example, consider the mapping when m = 2. Let s = (1, 0, 1, 0, ...) =
(sn) ∈ S where sn = 1 if n is odd, and sn = 0 if n is even. Then x maps s
to x(s) = (0.111 . . .3 , 0.000 . . .3) = (1/2, 0) ∈ <2. Note that the mapping in
the preceding section is a special case of the mapping x when m = 1.

Similar to the mapping x, x is also a one-to-one mapping. Let Xm denote
the image of x over Z. Then Xm is the set of all points in [0, 1)m such that all
digits in each of m coordinates, when represented by the base-3 expansion,
are 0 or 1. One can show that x is also a continuous mapping. Hence, Xm

is compact. Let Y m denote the image of x over the closed subset S of Z.
Y m is also compact. The following lemma is the counterpart of Lemma 1
for the mapping x.

Lemma 3 For a fix dimension m, ∀y, z ∈ Xm, ‖y− z‖ ≤ 1/3l, where l ∈ ℵ
and l > 1, implies that the decisions from 1st period to m(l− 1)st period of
x−1(y) and x−1(z) are the same.

Proof. Let l > 1 and let s = x−1(y) and t = x−1(z) where y, z ∈ Xm.
If there exist some decisions from 1st period to m(l − 1)st period of s and
t that are different, there exist 1 ≤ h ≤ m(l − 1) such that sh 6= th, and
if h > 1, sn = tn for n = 1 to h − 1. In other words, h is the first period
that the decision starts being different. Since 1 ≤ h ≤ m(l− 1), there exists
0 ≤ j ≤ l − 2 and 1 ≤ i ≤ m such that h = mj + i. Then

‖y − z‖ = ‖x(s)− x(t)‖
≥ |xi(s)− xi(t)|
= |

∑∞
k=0

smk+i−tmk+i

3k+1 |
≥ |

∑j
k=0

smk+i−tmk+i

3k+1 | − |
∑∞

k=j+1
smk+i−tmk+i

3k+1 |.

But, sn = tn for n = 1 to h− 1 = mj + i− 1, and smj+i = sh 6= th = tmj+i.
Furthermore, |

∑∞
k=j+1

smk+i−tmk+i

3k+1 | ≤ 1
(2)(3j+1)

‖y − z‖ ≥ 1
3j+1

− 1
(2)(3j+1)

=
1

(2)(3j+1)
≥ 1

(2)(3l−1)
>

1
3l

.

This is a contradiction. �
Define an objective function f : Y m → R by

f(y) = c̃(x−1(y)), ∀y ∈ Y m (12)
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Theorem 2 There exists m ∈ ℵ such that the objective function f is a
Lipschitz function on Y m, i.e.,

|f(y)− f(z)| ≤ M‖y − z‖, ∀y, z ∈ Y m,

where M is a positive constant.

Proof. Fix y, z ∈ Y m. There exists l ∈ {0, 1, 2, . . .} such that

1/3l+1 < ‖y − z‖ ≤ 1/3l.

Let s = x−1(y) and t = x−1(z). If l ≥ 2, by Lemma 3, sn = tn for n = 1 to
m(l − 1).

|f(y)− f(z)| = |c̃(s)− c̃(t)|
= |

∑∞
n=m(l−1)+1 c(s, n)/(1 + r)n −

∑∞
n=m(l−1)+1 c(t, n)/(1 + r)n|

(by Assumption 2)
≤ |

∑∞
n=m(l−1)+1 c(s, n)/(1 + r)n|+ |

∑∞
n=m(l−1)+1 c(t, n)/(1 + r)n|

≤
∑∞

n=m(l−1)+1 |c(s, n)/(1 + r)n|+
∑∞

n=m(l−1)+1 |c(t, n)/(1 + r)n|
(by the triangular inequality)

≤ 2
∑∞

n=m(l−1)+1 B[(1 + γ)/(1 + r)]n

(by Inequality 2)
= 2B

∑∞
n=m(l−1)+1 βn

= 2Bβm(l−1)+1/(1− β).

But, ‖y − z‖ > 1/3l+1. Therefore, 3l+1‖y − z‖ > 1, and thus

|f(y)− f(z)| ≤ 2B(
βm(l−1)+1

1− β
)3l+1‖y − z‖ =

6Bβ1−m

1− β
(3βm)l‖y − z‖.

Let m be an integer greater than or equal to logβ(1/3). Then 3βm ≤ 1, and,
hence,

|f(y)− f(z)| ≤ 6Bβ1−m

1− β
‖y − z‖.

On the other hand, if l = 0 or 1, sn and tn may be different for all n ∈ ℵ.
By Assumption 2,

|f(y)− f(z)| ≤ 2B(
β

1− β
) ≤ 2B(

β

1− β
)32‖y− z‖ ≤ 6Bβ1−m

1− β
(3βm)‖y− z‖.

Let m be an integer greater than of equal to logβ(1/3). Then 3βm ≤ 1, and

|f(y)− f(z)| ≤ 6Bβ1−m

1− β
‖y − z‖.
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Hence, if m ≥ logβ(1/3), f is a Lipschitz function with Lipschitz constant
M = (6Bβ1−m)/(1− β). �

With some fixed dimension m, the transformed objective function f
can be forced to be a Lipschitz function. The objective function f can
also be extended to a Lipschitz function f1 over the hyperrectangle [0, 1]m

by McShane’s extension. With the mapping x and the extended objective
function f1, the original Program 1 can be transformed to

Program 6

min f1(y)

s.t. y ∈ [0, 1]m ⊆ <m.

In this article, we have shown the equivalency of infinite horizon opti-
mization problems and global optimization problems and some of its prop-
erties, without mentioning about the solution methods. In fact, numerical
procedures based on branch-and-bound methods can be developed to solve
Program 4 and Program 5. (See Kiatsupaibul [5].)
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