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ABSTRACT: The ability to analyze large molecular structures by NMR
techniques requires efficient methods for structure calculation. Currently, there
are several widely available methods for tackling these problems, which, in
general, rely on the optimization of penalty-type target functions to satisfy the
conformational restraints. Typically, these methods combine simulated annealing
protocols with molecular dynamics and local minimization, either in distance or
torsional angle space. In this work, both a novel formulation and algorithmic
procedure for the solution of the NMR structure prediction problem is outlined.
First, the unconstrained, penalty-type structure prediction problem is
reformulated using nonlinear constraints, which can be individually enumerated
for all, or subsets, of the distance restraints. In this way, the violation can be
controlled as a constraint, in contrast to the usual penalty-type restraints. In
addition, the customary simplified objective function is replaced by a full atom
force field in the torsional angle space. This guarantees a better description of
atomic interactions, which dictate the native structure of the molecule along
with the distance restraints. The second novel portion of this work involves the
solution method. Rather than pursue the typical simulated annealing procedure,
this work relies on a deterministic method, which theoretically guarantees that
the global solution can be located. This branch and bound technique, based on
the aBB algorithm, has already been successfully applied to the identification of
global minimum energy structures of peptides modeled by full atom force
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fields. Finally, the approach is applied to the Compstatin structure prediction,
and it is found to possess some important merits when compared to existing
techniques. Q 1999 John Wiley & Sons, Inc. J Comput Chem 20: 1354]1370,
1999
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Introduction

Ž .he use of nuclear magnetic resonance NMRT data has become a widely developed tech-
nique for determining protein structures. The data
obtained from NMR studies consist of distance
and angle restraints. Once resonances have been

Ž .assigned, nuclear Overhauser effect NOE con-
tacts are selected, and their intensities are used to
calculate interproton distances. Information on tor-
sional angles are based on the measurement of
coupling constants and analysis of proton chemical
shifts. Together, this information can be used
to formulate a nonlinear optimization problem,
whose solution should provide the correct protein
structure.

However, the structure prediction problem is
extremely complex for several reasons. The major
difficulty is the imprecision of distance informa-
tion due to the influence of spin diffusion and
internal dynamics on the relationship between the
NOE intensity and the interproton distance. Even
if this distance information is consistent, the num-
ber of distance limits is generally much smaller
than needed to determine a unique structure.
Therefore, a simple distance geometry approach is
not sufficient.

To address these problems, the structure predic-
tion problem is transformed to an optimization
problem based on a hybrid energy function of the
following form:

Ž .E s E q W E . 1forcefield nmr nmr

The energy, E, specified by this target function
now includes a chemical description of the protein
conformation through the use of an empirical force
field, E . However, these force field poten-forcefield
tials are generally much simpler representations of
typical all-atom force fields. The distance and di-

Žhedral angle restraints are included as in pure
.distance geometry problems in the objective func-

Žtion, although they now appear as weighted with

.weight W penalty terms that should be drivennmr
to zero. Both terms are complicated functions of
the atomic coordinates, and this problem has gen-
erally been referred to as the multiple-minima
problem. That is, the prediction of the global mini-
mum energy structure, which should correspond
to the correct structure, is hindered by the pres-
ence of many local energy minima with relatively
high energy barriers.

Calculating three-dimensional structures using
NMR data is, therefore, dependent on the develop-
ment of efficient optimization methods. Typically,
one of two optimization methods have been em-
ployed. The first is based on the minimization of a
variable target function of distance restraints and
nonbonded contacts in torsional angle space.1 ] 3

The second relies on optimization of a hybrid
energy function by coupling simulated annealing
with molecular dynamics in Cartesian coordinate
space.2, 4 For large proteins, these methods require
relatively long computation times, and generally
provide a low yield of acceptable conformations.
This is mainly a result of the multiple-minima of
the objective function, and the difficulty of escap-
ing local minima using molecular dynamics in
Cartesian space. More recent methods have imple-

Ž .mented torsion angle dynamics TAD , and have
been shown to be more effective than Cartesian
coordinate dynamics.5, 6 In this case, the degrees of
freedom are rotations around single bonds, which
reduces the number of variables by approximately
10-fold because bond lengths, bond angles, chiral-
ity, and planarities are kept fixed at optimal values
during the calculation. An overview of available
methods for predicting three-dimensional protein
structures can be found elsewhere.7 ] 9

In this work, a novel formulation and global
optimization approach are proposed for the three-
dimensional structure prediction problem using
NMR data. The proposed method is based on a
constrained formulation, which differs from the
traditional formulations that employ penalty func-
tion methods. In addition, the nonlinear objective
function is represented by a detailed full-atom
force field, rather than simplified nonbonded po-
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tential terms. The solution of this novel NMR-based
formulation is accomplished by developing an al-
gorithm based on the ideas of the aBB determinis-
tic global optimization approach.10 ] 14 In the next
two sections the development of this novel method
is presented, which is then followed by a detailed
case study for the prediction of the three-dimen-
sional structure of the 13-residue synthetic pep-
tide, Compstatin.15

Theory

ENERGY MODELING

Ž .The target function shown in eq. 1 can be
rewritten in the following form:

E s E q E q Ebonds angles chiral, planar

Ž .q E q E q E . 2distance dihedral forcefield

In this equation, the E term is expanded, andnmr
Ž .the weighting factor W is incorporated sepa-nmr

rately into each individual term. The first three
Ž .terms E , E , and E are typicallybonds angles chiral, planar

treated as quadratic harmonic potentials for bond
lengths, bond angles, and chirality and planarity.
For example:

2Ž . Ž .E s k r y r , 3Ýbonds r o
bonds

2Ž . Ž .E s k u y u , 4Ýangles u o
angles

2Ž . Ž .E s k f y f . 5Ýchiral, planar f o
chiral, planar

Here r , u , and f represent reference valueso o o
for the bond lengths, angles, and dihedral angles,
respectively. The k , k , and k are the corre-r u f

sponding force constants.
Ž .The fourth term of eq. 2 accounts for the objec-

tive function contribution corresponding to experi-
mental distance restraints. This function can take

several forms, although the most general form
corresponds to a simple square well potential,
which includes a summation over both upper and

Ž upperlower distance violations i.e., E s E qdistance distance
lower .E . When considering upper distance re-distance

straints this becomes:

2upper upperŽ .A d y d if d ) d ,upper j j j j jE s Ýdistance ½ 0 otherwise.upper

Ž .6

The squared violation energy is considered only
when the calculated distance d exceeds the upperj
reference distance dupper. This squared violation isj
then multiplied by a weighting factor A . A simi-j
lar contribution is calculated for those distances
that violate a lower reference distance, d lower.j

2lower lowerA d y d if d - d ,lower Ž .j j j j jE s Ýdistance ½
lower 0 otherwise.

Ž .7

It should be noted that, in general, penalty
terms enforcing both upper and lower distance
bounds are used. In this case, the condition d lower

j
F d F dupper must be enforced.j j

When considering dihedral angle restraints, rep-
Ž .resented by term 5 in eq. 2 , a form similar to eq.

Ž . Ž .6 and 7 is often used. The total violation,
E , is a sum over upper and lower violationsdihedral
Ž upper lower .i.e., E s E q E . A dihedral an-dihedral dihedral dihedral
gle v can be restrained by employing a quadraticj

Ž upper.square well potential using upper v andj
Ž lower.lower v bounds on the variable values.j

However, due to the periodic nature of these vari-
ables, a scaling parameter must be incorporated to
capture the symmetry of the system. Furthermore,
by centering the full periodic region on the region
defined by the allowable bounds, all transformed

w lowervalues will lie in the domain defined by v yj
upper xD HW , v q D HW , where D HW is equalv j v vj j j

to half the excluded range of dihedral angle values
Ž Ž upper lower. .i.e., D HW s p y v y v r2 . This re-v j jj

sults in the following equations:

2upper¡ v y vj j 2upper upperŽ .A 1 y 2 v y v if v ) v ,upper j j j j j~ upper lower Ž .E s 8Ý ž /2p y v y vdihedral Ž .j j
upper¢

0 otherwise,
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2¡ lowerv y v 2j j lower lowerA 1 y 2 v y v if v - v ,Ž .lower j j j j j~ lower Ž .E s 9Ý ž /2p y v y vdihedral Ž .j j
lower¢

0 otherwise.

Ž .Finally, the last term in eq. 2 refers to the force
field energy expressions used to model the non-
bonded interactions of the protein. These often
correspond to simple Van der Waals repulsion
terms. More detailed force fields employ 6]12
Lennard]Jones and modified 10]12 Lennard]Jones
terms to model nonbonded and hydrogen bonded
interactions, respectively. An additional Coulom-
bic electrostatic term may also be included.

In practice, when considering NMR restraints,
force-field terms are often simplified to include
only simple geometric energy terms, such as quar-
tic Van der Waals repulsions. Such objective func-
tions neglect rigorous modeling of energetic terms
to ensure that experimental distance violations are
minimized. In fact, a simple representation for the
objective function using torsional angle dynamics
would be:

Ž .E s E q E . 10simple distance dihedral

In this case, the target function does not include
bond, angle, or chiralityrplanarity violation ener-
gies. Notice that when all restraints are satisfied,
the objective function is driven to zero.

In this work, a more detailed modeling ap-
proach is proposed by using the ECEPPr3 force
field.16 For this force field, it is assumed that the
covalent bond lengths and bond angles are fixed at
their equilibrium values. Then, the conformation is
only a function of the independent torsional angles
of the system. That is, E , E , andbonds angles
E are inherently equal to zero. The totalchiral, planar
force field energy, E , is calculated as theforcefield
sum of the electrostatic, nonbonded, hydrogen
bonded, and torsion contributions. The main en-

Žergy contributions electrostatic, nonbonded, hy-
.drogen bonded are computed as the sum of terms

Ž .for each atom pair i, j , whose interatomic dis-
tance is a function of at least one dihedral angle.
The general potential energy terms of ECEPPr3
are shown in Figure 1, while the development of
the appropriate parameters is discussed and re-
ported elsewhere.16

When considering a simple unconstrained mini-
mization, this approach corresponds to an objec-

FIGURE 1. Potential energy terms in ECEPP / 3 force
field. r refers to the interatomic distance of the atomici j

( )pair ij . Q and Q are dipole parameters for thei j
respective atoms, in which the dielectric constant of 2
has been incorporated. F is set equal to 0.5 for one toi j
four interactions and 1.0 for one to five and higher
interactions. A , C , AX and B are nonbonded andi j i j i j i j
hydrogen bonded parameters specific to the atomic pair.
E are parameters corresponding to torsional barriero, k
energies for a given dihedral angle. u represents anyk
dihedral angle. c takes the values y1, 1, and n refersk k
to the symmetry type for the particular dihedral angle.

tive function defined by:

Ž .E s E q E q E . 11detailed distance dihedral ECEPPr3

Ž .This formulation is similar to eq. 10 in that the
E , E , and E can be neglected.bonds angles chiral, planar
However, the detailed energy modeling greatly
increases the computational complexity of the ob-
jective function. It should also be noted that al-
though distances correspond to quadratic terms in
Cartesian coordinate space, their transformation to
internal coordinate space results in complex, highly
nonlinear functions. That is, there is not a one-to-
one correspondence between distances and inter-
nal coordinates. The advantage for working in
dihedral angle space is that the variable set de-
creases, with the disadvantage being the increased
nonconvexity of the energy hypersurface.

GLOBAL OPTIMIZATION

The determination of a three-dimensional pro-
tein structure defines an optimization problem for
which the objective function is defined by the
target functions outlined in the previous section.
Methods for addressing this optimization problem
are outlined in the following sections. The first
section presents the standard penalty function
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approach used in structure determination prob-
lems. This is followed by a section describing a
deterministic global optimization method for

Ž .solving these unconstrained problems. This ap-
proach, based on the aBB branch and bound algo-
rithm,10 ] 14 can deterministically locate global min-
imum energy structures without the bias of initial
structure selection usually associated with stochas-
tic searches. The third section introduces a novel
constrained formulation that is easily incorporated
within the aBB global optimization procedure,
while the final section provides some details re-
garding this constrained formulation.

Penalty Function Formulation

A standard procedure for addressing the global
optimization problem involving NMR and dihe-
dral angle restraints consists of a combination of

Ž .discrete geometry metric method optimization
using a simulated annealing protocol coupled with
molecular or torsional angle dynamics. Generally,
multiple initial conformers are generated and opti-
mized to provide a set of acceptable structures.
Typically, a set containing on the order of 100
acceptable conformers may be identified, from

Žwhich a subset of similar structures approxi-
.mately 20 are used to characterize the system. The

simulated annealing protocol is incorporated to
avoid trapping in local minimum energy wells.

However, the minimization of complex target
functions necessitates the use of rigorous global
optimization approaches. In this work, a detailed
force-field potential is employed in the context of a
conformational energy search using NMR re-

Žstraints. This typical penalty type formulation for
.distance restraints can be written as:

min E f , c , v , x k , u N , u CŽ .detailed i i i i j j

s E q E q E ,distance dihedral ECEPPr3

subject to

f L F f F fU , i s 1, . . . , N ,i i i RES

c L F c F c U , i s 1, . . . , N ,i i i RES

v L F v F vU , i s 1, . . . , N ,i i i RES

x k , L F x k F x k , U , i s 1, . . . , N ,i i i RES

k s 1, . . . , K i ,
u N , L F u N F u N , U , j s 1, . . . , J N ,j j j

C , L C C , U C Ž .u F u F u , j s 1, . . . , J . 12j j j

Here i s 1, . . . , N is an indexed set describingRES
the sequence of amino acid residues in the peptide
chain. There are f , c , v , i s 1, . . . , N dihedrali i i RES
angles along the backbone of this peptide. In addi-
tion, K i denotes the number of dihedral angles for
the side chain of the ith residue; and J N and J C

denote the number of dihedral angles for the amino
and carboxyl end groups, respectively. Also, f L,i
c L, v L, x k , L, u N , L, u C, L, and fU, c U, vU,i i i j j i i i
x k , U, u N , U, u C, U represent lower and upper boundsi j j
on the dihedral angles f , c , v , x k, u N, u C. In thei i i i j j
simplest case, the energy function corresponds to a

Ž .target function of the form given in eq. 10 . How-
ever, in this work, E includes both a com-detailed
plex force field modeled by ECEPPr3, and NMR
distance and dihedral angle restraints, as shown in

Ž . Ž .eq. 11 . The solution of 12 using either objective
function constitutes an unconstrained global mini-
mization problem. A deterministic method for
solving such problems is given in the next section.
As will be shown, a novel reformulation can also
be used to effectively treat this problem as a con-
strained global conformational energy search.

aBB Deterministic Global Optimization

When NMR restraints are not considered, the
Ž .formulation given by eq. 12 corresponds to the

traditional protein folding problem.17 That is,
the problem involves the global minimization of
conformational energy with respect to the inde-
pendent dihedral angles. Typically, the lower and
upper bounds for these variables are set to yp
and p , respectively. In this case, a detailed atom-
istic-level energy produces a multidimensional
surface with an astronomically large number of
local minima. Because the objective function has
many local minima, using local optimization tech-
niques necessarily depends on the initial points
selected. Therefore, rigorous global optimization
algorithms are needed to effectively locate the
global minimum corresponding to the native state
of the protein. A large number of techniques have
been developed to search this nonconvex confor-
mational space. In general, the major limitation is
that these methods also strongly depend on the
supplied initial conformations. As a result, there is
no guarantee for global convergence because large
sections of the domain space may be bypassed. To
overcome these difficulties, the aBB global opti-
mization approach10 ] 14 has been extended to iden-
tifying global minimum energy conformations of
peptides. The development of this branch and
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bound method was motivated by the need for an
algorithm that could guarantee convergence to the
global minimum of nonlinear optimization prob-
lems with twice-differentiable functions.18 The ap-
plication of this algorithm to the minimization of
potential energy functions was first introduced for
microclusters19, 20 and small acyclic molecules.21, 22

The aBB approach has also been applied to gen-
eral constrained optimization problems.10 ] 14 In
more recent work, the algorithm has been shown
to be successful for isolated peptide systems using
the realistic ECEPPr3 potential energy model,23, 24

and including several solvation effects.25, 26

The aBB global optimization algorithm effec-
tively brackets the global minimum solution by
developing converging sequences of lower and
upper bounds. These bounds are refined by itera-
tively partitioning the initial domain. Upper
bounds on the global minimum are obtained by
local minimizations of the original energy func-
tion, E. Lower bounds belong to the set of solu-
tions of the convex lower bounding functions,
which are constructed by augmenting E with the
addition of separable quadratic terms. The lower
bounding functions, L, of the energy hypersurface
can be expressed in the following manner:

NRES
L UŽ .Ž .L s E q a f y f f y fÝ f i i i ii

is1

NRES
L UŽ .Ž .q a c y c c y cÝ c i i i ii

is1

NRES
L UŽ .Ž .q a v y v v y vÝ v i i i ii

is1

N iKRES
k , L k k , U kŽ .Ž .kq a x y x x y xÝ Ý x i i i ii

is1 ks1

J N

N , L N N , U N
Nq a u y u u y uŽ . Ž .Ý u j j j jj

js1

J C

C , L C C , U C Ž .Cq a u y u u y u . 13Ž . Ž .Ý u j j j jj
js1

A gain, f L , c L , v L , x k , L , u N , L , u C , L andi i i i j j
fU, c U, vU, x k , U, u N , U, u C, U represent lower andi i i i j j
upper bounds on the dihedral angles f , c , v ,i i i
x k, u N, u C. The a parameters represent nonnega-i j j
tive parameters that must be greater or equal to
the negative one-half of the minimum eigenvalue
of the Hessian of E over the defined domain.
Rigorous bounds on the a parameters can be ob-

tained through a variety of approaches.12, 13, 21, 27

The overall effect of these terms is to overpower
the nonconvexities of the original nonconvex terms
by adding the value of 2 a to the eigenvalues of
the Hessian of E.

Once solutions for the upper and lower bound-
ing problems have been established, the next step
is to modify these problems for the next iteration.
This is accomplished by successively partitioning
the initial domain into smaller subdomains. For
the protein conformation problems, it has been
found that an effective partitioning strategy in-
volves bisecting the same variable dimension
across all nodes at a given level. To ensure nonde-
creasing lower bounds, the hyperrectangle to be
bisected is chosen by selecting the region that
contains the infimum of the minima of lower
bounds. A nonincreasing sequence for the upper
bound is found by solving the nonconvex problem,
E, locally and selecting it to be the minimum over
all the previously recorded upper bounds. Obvi-
ously, if the single minimum of L for any hyper-
rectangle is greater than the current upper bound,
this hyperrectangle can be discarded because the
global minimum cannot be within this subdomain
Ž .fathoming step . The computational requirement
of the aBB algorithm depends on the number of

Ž .variables global on which branching occurs.
Therefore, these global variables need to be chosen
carefully.

An important implication of the aBB branch
and bound approach is the implicit treatment of
dihedral angle restraints. Specifically, because par-
titioning of the dihedral angle space represents an
inherent part of the aBB problem formulation,
these bounds can be easily satisfied by defining
appropriate upper and lower bounds on these
variables. Therefore, the dihedral angle restraint
energy, E , of the target function given indihedral

Ž .eq. 11 is always driven to zero.

Novel Constrained Formulation

Because the aBB approach implicitly handles
dihedral angle restraints, the objective function

Ž .given in 12 only effectively includes the force-
field, E , and distance restraint, E , en-ECEPPr3 distance

ergies. The objective function can also be reformu-
lated by treating distance restraints as a set of

Ž .general nonlinear constraint s ; that is, the distance
restraint energy, E , is not a required part ofdistance

the objective function. This constrained formula-
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tion becomes:

min E f , c , v , x k , u N , u C ,Ž .forcefield i i i i j j

subject to

Edistance f , c , v , x k , u N , u C F E refŽ .l i i i i j j l

l s 1, . . . , N ,CON

f L F f F fU , i s 1, . . . , N ,i i i RES

c L F c F c U , i s 1, . . . , N ,i i i RES

v L F v F vU , i s 1, . . . , N ,i i i RES

x k , L F x k F x k , U , i s 1, . . . , N ,i i i RES

k s 1, . . . , K i ,

u N , L F u N F u N , U , j s 1, . . . , J N ,j j j

C , L C C , U C Ž .u F u F u , j s 1, . . . , J . 14j j j

Ž LThe lower and upper variable bounds f ,i
c L , v L , x k , L , u N , L , u C , L and f U , c U , v U ,i i i j j i i i

k , U N , U C, U .x , u , u are first modified to correspondi j J
to upper and lower dihedral angle restraints, rather
than the entire domain of yp to p . Distance
restraints, Edistance, are now constrained to be be-l
low a total reference energy, E ref. These distancel
constraints are typically identical in form to the
summation of the square well violation energies,

Ž . Ž .as given in eqs. 6 and 7 , although other func-
tional forms may be used. In addition, note that

Ž .formulation 14 may include a full enumeration of
all distance restraints or a selected subset of these
restraints. In general, the constrained formulation
is more rigorous than a penalty function approach
because the choice of E ref strictly determines thel
extent to which each set of restraints must be
satisfied. In addition, in the limit that E ref ap-l
proaches zero, all restraints are implicitly enforced.
Because this violation energy is imposed as a set of
constraints, all local solutions are also required to
meet this specification. As a result, the proposed
constrained formulation has the advantage of not
requiring the specification of penalty coefficients,
which are typically updated through variable tar-
get function methods when using the uncon-
strained penalty-type approaches.

Lower Bounding via the aBB

To treat the NMR structure prediction problem
via the constrained formulation, a number of mod-

ifications must be made to the aBB methodology
previously outlined. In particular, the identifica-
tion of valid lower bounds on the global solution
of the nonconvex problem relies on the fact that
the underestimating problem generated in each
subdomain must be convex. The development of
the appropriate convex lower bounding function
for the objective function has already been dis-
cussed. In addition, all inequality constraints in the
lower bounding problem must be convex, which
implies that all inequality constraints appearing in

Ž .eq. 14 must be replaced by their convex relax-
ation. For each constraint the following expression
is used:

Ldistance
l

s Edistance
l

NRES
distance L UŽ .Ž .q a f y f f y fÝ f , l i i i ii

is1

NRES
distance L UŽ .Ž .q a c y c c y cÝ c , l i i i ii

is1

NRES
distance L UŽ .Ž .q a v y v v y vÝ v , l i i i ii

is1

N iKRES
distance k , L k k , U kŽ .Ž .kq a x y x x y xÝ Ý x , l i i i ii

is1 ks1

jN

distance N , L N N , U N
Nq a u y u u y uŽ . Ž .Ý u , l j j j jj

js1

J C

distance C , L C C , U C
Cq a u y u u y u .Ž . Ž .Ý u , l j j j jj

js1

Ž .15

The adistance represent nonnegative parameters thatl
must be greater or equal to the negative one-half
of the minimum eigenvalue of the Hessian of
Edistance over the defined domain. These functionsl
must be developed for each constraint belonging
to the set l s 1, . . . , N . Rigorous bounds onCON
these a parameters can be obtained via several
methods.12, 13, 21, 27

Therefore, the full lower bounding formulation
for the constrained NMR problem can be ex-
pressed as:

k N C Ž .min L f , c , v , x , u , u , 16Ž .forcefield i i i i j j
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subject to

Ldistance f , c , v , x k , u N , u C F E refŽ .l i i i i j j l

l s 1, . . . , N ,CON

f L F f F fU , i s 1, . . . , N ,i i i RES

c L F c F c U , i s 1, . . . , N ,i i i RES

v L F v F vU , i s 1, . . . , N ,i i i RES

x k , L F x k F x k , U , i s 1, . . . , N ,i i i RES

k s 1, . . . , K i ,
u N , L F u N F u N , U , j s 1, . . . , J N ,j j j

u C , L F u C F u C , U , j s 1, . . . , J C ,j j j

In this formulation, variable bounds are specific
to the subdomain for which the lower bounding
functions are constructed. L refers to theforcefield

wconvex representation of the objective function eq.
Ž .x distance13 , while L denotes the convex relaxationl

Ž .of the inequality constraints as given in eq. 15 . As
before, a converging sequence of upper and lower
bounding values are developed, although these
values now depend on the solution of the prob-

Ž . Ž .lems given by eqs. 14 and 16 , respectively.

Algorithmic Steps

A description of the steps involved in the solu-
tion of the NMR structure prediction problem us-
ing the constrained aBB approach can be general-
ized to any force field model and any routine for
locally solving constrained optimization problems.
In this work, the aBB approach is interfaced with
PACK28 and NPSOL.29 PACK is used to transform
to and from Cartesian and internal coordinate sys-
tems, which is needed to obtain function and gra-
dient contributions for the ECEPPr3 force field
and the distance constraint equations. NPSOL is a
local nonlinear optimization solver that is used to
locally solve the constrained upper and lower
bounding problems in each subdomain.

The implementation can be broken down into
two main phases: initialization and computation.
The basic steps of the initialization phase are as
follows:

1. Choose the set of global variables. Because
the bounds on these variables will be refined
during the course of global optimization, they
should be selected based on their overall
effect on the structure of the molecule. In this

Ž .work and in general the f and c dihedral
angles provide the largest structural variabil-
ity, and are chosen to constitute the global
variable set.

2. Set upper and lower bonds on all dihedral
Ž .angles variables . If information is not avail-

able for a given dihedral angle, the variable
w xbounds are set to yp , p . Because a con-

strained local optimization solver is used,
these bounds are strictly enforced.

3. Identify the set of NOE derived distance
restraints to be used in the constraints. In
general, this set can include all intra- and
interresidue restraints. In this work, only
backbone sequential and mediumrlong-
range information was used in developing
the constraints, because intraresidue re-
straints are less likely to affect the overall
fold. In addition, although multiple con-
straints with varying weights can be han-
dled, all distance information was formu-

Ž .lated as one constraint N s 1 withCON
constant weighting for simplicity.

4. Choose the value of E ref to be used in con-l
straints. This can be determined by simply
performing several local constrained opti-
mizations or possibly a short global opti-
mization run with simplified energy models.
In this work, information based on X-PLOR4

results was used to define the E ref parameter
Ž .see below .

5. Identify initial a values for both the objec-
tive function and constraints, as defined in
the aBB Deterministic Global Optimization,
and Lower Bounding via the aBB sections,
respectively.

6. Set initial best upper bound to an arbitrarily
large value.

The computation phase of the algorithm in-
volves an iterative approach, which depends on
the refinement of the original domain by partition-
ing along the global variables. In each subdomain,
upper and lower bounding problems based on the

Ž . Ž .formulations given in 14 and 16 , respectively,
are solved locally and used to develop the se-
quence of converging upper and lower bounds.
The basic steps are as follows:

Ž .1. The original domain defined above is parti-
tioned along one of the global variables.

2. Lower bounding functions for both the objec-
w Ž .x w Ž .xtive eq. 13 and constraints eq. 15 are
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constructed in both subdomains. A con-
Ž .strained local minimization with NPSOL is

Ž .performed using the following procedure: a
100 random points are generated and used
for evaluation of the lower bounding objec-

Ž .tive function and constraints. b The point
with the minimum objective function value
is used as a starting point for local minimiza-

w Ž .x Ž .tion of formulation 16 using NPSOL. c If
the minimum value found is greater than the
current best upper bound the subdomain can

Žbe fathomed global minimum is outside re-
.gion , otherwise the solution is stored.

Ž3. The upper bounding problems original con-
.strained formulation are then solved in both

subdomains according to the following pro-
Ž .cedure: a 100 random points are generated

and used for evaluation of the objective func-
Ž .tion and constraints. b The point with the

minimum objective function value and feasi-
ble constraints is used as a starting point for

w Ž .xlocal minimization of formulation 14 us-
ing NPSOL. If a feasible starting point is not
found, local minimization is not performed.
Ž .c All feasible solutions are stored.

4. The current best upper bound is updated to
be the minimum of those thus far stored.

5. The subdomain with the current minimum
value of L is selected and partitionedforcefield
along one of the global variables.

6. If the best upper and lower bounds are within
a defined tolerance the program will termi-
nate, otherwise it will return to Step 2.

The location of the global minimum relies on
effectively solving the upper bounding problem
locally. In addition, convergence to this global
minimum can be enhanced by consistently identi-
fying low energy solutions. Although this property
is not required to prove convergence to the global

Žminimum because subsequent partitioning revis-
.its regions containing the global solution , it can

have important practical implications for high di-
mensional problems. These observations illustrate
the need for reliably locating low energy feasible
points. For the Compstatin example, the approach
outlined above proved to be sufficient; however,
this performance may not be expected for all ex-
amples. Along these lines, we are developing
methods that combine aspects of torsion angle

Ž .dynamics TAD and constrained local minimiza-
tion within the framework of the constrained aBB
approach.30

Results and Discussion

COMPSTATIN CASE STUDY: TRADITIONAL
SOLUTION STRUCTURES

ŽCompstatin is a synthetic 13-residue ICV-
.VQDWGHHRCT cyclic peptide that binds to C3

Ž .third component of complement and inhibits
complement activation.31 The synthetic peptide is
cyclic, with a disulfide bridge between the Cys2

and Cys12 residues. The solution structure was
previously identified using two-dimensional NMR
techniques.15 A total of 30 backbone sequential
Ž b .including H ]backbone , 23 medium and long

Ž .range including disulfide and 82 intraresidue
NOE restraints were identified. In addition, 7f
angle and 2 x angle dihedral restraints were pro-1
vided. In previous work, 15 a traditional distance
geometry-simulated annealing protocol was uti-

wlized to minimize the associated target function as
Ž .xin eq. 2 in the Cartesian coordinate space using

the program X-PLOR.4 This target function con-
sisted of quadratic harmonic potential terms for
bonds, angles, planarity, and chirality. The force
field energy, E , was simplified to accountforcefield
for only quartic Van der Waals repulsion of non-
bonded contacts. That is, no hydrogen bonding,
electrostatic or Lennard]Jones-type empirical po-
tential energy terms were included. NOE distance
and dihedral angle restraints were modeled using
a quadratic square well potential, similar to those

Ž . Ž . 3of eqs. 6 and 7 . In addition J couplingNH ] H a

constant restraints were included as harmonic po-
tentials.15

Employing typical NMR refinement protocols
resulted in a family of structures with similar
geometries in the Gln5]Gly 8 region. Using an en-
semble of 21 refined structures, an average struc-
ture was obtained by averaging the coordinates of
the individually refined structures and then sub-
jecting this structure to further refinement to re-
lease geometric strain produced by the averaging
process. The formation of a type I b-turn was
identified as a common characteristic for these
structures. This information is displayed in Table I.

LOCAL MINIMIZATION

The consistency of the ensemble of Compstatin
solution structures was determined by evaluating
distance restraints for each of the original 21 struc-

Žtures accession number 1a1p at the Brookhaven
.Protein Data Bank, http:rrwww.pdb.bnl.gov , as
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TABLE I.
Type I b-Turn for Gln5-Asp6-Trp7-Gly8Segments.

o o o o a a ˚ ˚( ) ( ) ( ) ( ) ( ) ( )f yc f c C y C A = O y N A2 2 3 3 1 4 1 4

Classic Type I b y60 " 30 y30 " 30 y90 " 30 0 " 30 F 7 2 y 5
² :Compstatin y65 " 13 y26 " 8 y108 " 12 y14 " 3 4.7 " 0.2 3.3 " 0.4
Compstatin y76 y23 y100 y14 4.8 3.4

² :The first entry provides the criteria for a class type I b turn. Compstatin refers to the ensemble of 21 refined structures and
Compstatin refers to the average structure.

well as the average Compstatin conformation. In
considering distance restraints, only backbone se-
quential and mediumrlong range NOE were con-
sidered. That is, the 82 intraresidue restraints were
neglected because they are less likely to effect the
overall fold of the Compstatin peptide. This results
in a total of 52 restraints, with an additional re-
straint on the distance between the sulfur atoms

Žforming the disulfide bridge a total of 53 distance
.restraints . To quantify these results, the sum of

Ž .distance violations D and a violation energyVIO
Ž .E are reported for each of the original PDBVIO
structures. The sum of distance violations corre-
sponds to the sum of the absolute values of the

Ž .upper and lower violations based on eqs. 6 and
Ž .7 . When all restraints are satisfied, this summa-
tion goes to zero. The violation energy is calcu-

Ž . Ž .lated by combining eqs. 6 and 7 :

upper lower Ž .E s E q E . 17VIO distance distance

In these calculations, the value of the weighting
Ž .factor A is assumed to be constant and set equalj

to 50 kcalrmolrA2. Table II summarizes this infor-
mation.

The results shown in Table II indicate that the
Ž .average structure Compstatin possesses the

largest value of D , as well as the third largestVIO
violation energy. The smallest distance violation

Ž²and energy is given by structure number 8 Com-
: .pstatin . These results provide a range of com-8

parison for total distance violations and violation
energies. In addition, the analysis is used to set the

ref w Ž .xvalue of E from eq. 14 to 200 kcalrmol. This
value is chosen so that the sum of the violation
energies will necessarily result in an improvement
over the violation energy for the average Comp-
statin structure, Compstatin.

To measure the performance of the proposed
global optimization approach, the ensemble and

Ž² :average Compstatin structures Compstatin and
.Compstatin were used as starting points for local

Ž .minimization, as defined by 14 . Because PACK

TABLE II.
( )Summation of Distance Violations D Column 2VIO

( )and Violation Energy E Column 3 for Each ofVIO
²²²²² :::::the Original 21 Compstatin Structures and the

Average Structure Compstatin for Backbone
Sequential and Medium ///// Long Range
NOE Restraints.

˚( ) ( )Structure D A E kcal / molVIO VIO

² :Compstatin 5.290 129.001
² :Compstatin 6.686 189.772
² :Compstatin 5.745 145.833
² :Compstatin 4.749 100.214
² :Compstatin 4.569 114.705
² :Compstatin 6.545 176.636
² :Compstatin 5.154 129.337
² :Compstatin 4.269 92.148
² :Compstatin 5.708 150.639
² :Compstatin 5.492 152.8910
² :Compstatin 5.565 163.7211
² :Compstatin 5.204 129.9812
² :Compstatin 6.000 169.7613
² :Compstatin 5.679 164.3914
² :Compstatin 5.036 107.9715
² :Compstatin 5.298 137.3416
² :Compstatin 6.848 211.4717
² :Compstatin 6.349 206.9018
² :Compstatin 4.278 113.8519
² :Compstatin 5.160 114.3120
² :Compstatin 6.589 173.1121

Compstatin 6.919 205.90

Ž .and, thus, ECEPPr3 builds peptide structures
Žwith fixed bond lengths and bond angles in the

internal coordinate, rather than Cartesian coordi-
.nate space , the corresponding Compstatin PDB

structures could only be used to derive dihedral
angle values. These dihedral angles were then used
as input to directly evaluate the corresponding
force field energy. Because the differences in bond
lengths and bond angles propagate through the
generation of the corresponding ECEPPr3 struc-
ture, an inherent RMSD exists between the PDB
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structure and the ECEPPr3 generated structure.
For example, when using the set of dihedral angles
calculated from the Compstatin PDB, the ECEPPr3

˚ Žstructure possesses a 0.581 A all-atom RMSD all
.heavy atoms in backbone and side chains with

respect to the original Compstatin structure. The
corresponding ECEPPr3 energy equals 519.2
kcalrmol. In addition, due to the differences in
bond lengths and angles, the distance violation for

Ž .the ECEPPr3 structure Compstatin increasesECEPP
˚from 6.9 to 8.7 A, which results in a subsequent

increase in violation energy to 315 kcalrmol. The
superposition of the original and ECEPPr3
Compstatin conformations is shown in Figure 2.

Due to the relatively large distance violations
and energies obtained after direct transformation

Ž .of PDB to PACK ECEPPr3 structures, the 22
Ž ² : .structures 21 Compstatin and Compstatin werei

then subjected to local minimization. The problem
formulation uses the same set of 53 restraints, a

˚ Ž .constant 50 kcalrmolrA weighting factor A andj
Ž ref .a constraint parameter E equal to 200 kcalrmol.

Ž .The energy values and distance violations DVIO
for these local minima are given in Table III. In all
cases, the corresponding violation energy reached
the upper bound value of 200 kcalrmol. The corre-
sponding total distance violations increased, with

˚an average value of 6.766 A. The smallest distance
˚Ž .violation 5.873 A was reported for structure

Ž² :Local.number 10 Compstatin , whereas the corre-10
Žsponding energy for this structure y41.685

.kcalrmol was only slightly above the average
energy of y47.75 kcalrmol. The lowest energy

FIGURE 2. Superposition of Compstatin structureOrig
( ) (in light gray and corresponding ECEPP / 3 structure in

)black using calculated dihedral angles
( )Compstatin .ECEPP

TABLE III.
Local Minimization Results for the ECEPP ///// 3
²²²²² :::::Compstatin and Compstatin Starting Structures.

˚( ) ( )Local Minimum D A E kcal / molVIO ECEPP/3

Local² :Compstatin 6.547 y37.2301
Local² :Compstatin 6.963 y71.6132
Local² :Compstatin 6.293 y17.1203
Local² :Compstatin 6.727 y17.9274
Local² :Compstatin 7.343 y41.5585
Local² :Compstatin 6.622 y58.0956
Local² :Compstatin 6.481 y54.0687
Local² :Compstatin 7.064 y36.8328
Local² :Compstatin 7.120 y67.6539
Local² :Compstatin 5.873 y41.68510
Local² :Compstatin 7.185 y61.84311
Local² :Compstatin 7.056 y42.54012
Local² :Compstatin 6.510 y43.08113
Local² :Compstatin 6.847 y47.39614
Local² :Compstatin 6.789 y35.09515
Local² :Compstatin 6.035 y41.59416
Local² :Compstatin 6.540 y62.53717
Local² :Compstatin 6.764 y54.81318
Local² :Compstatin 7.158 y65.82519
Local² :Compstatin 7.348 y35.49120
Local² :Compstatin 6.832 y68.70421
LocalCompstatin 6.392 y52.283

Ž ² :Localstructures y71.613 for Compstatin , y68.7042
² :Localkcalrmol for Compstatin , y67.653 kcalrmol21

² :Local.for Compstatin provided above-average val-9
Žues for total distance violation 6.963, 6.832, and

˚ .7.120 A, respectively . In addition, the conforma-
tion obtained from the average Compstatin struc-

Ž .ture Compstatin exhibited near average values for
Ž .energy y52.283 kcalrmol and total distance vio-

˚Ž .lations 6.392 A .
Structural comparisons between these struc-

tures were also quantified using RMSD calcula-
tions. These results are shown in Tables IV through
VII. The first two tables include all-atom and back-

Ž .bone RMSD values between the original PDB
Ž .average Compstatin structure Compstatin and the

ensemble of 21 original Compstatin PDB structures
Ž² : .Compstatin . When considering all heavy atoms,i

Ž .these values see column 2, Table IV are all clus-
˚tered near a value of 2 A. When considering only

Ž .backbone atoms see column 2, Table V , the range
˚of values generally fall between 1]2 A. The third

Ž .column see both Tables IV and V reports RMSD
values between the original PDB structures and
their locally minimized counterparts. In general,
these values are larger, which indicates a signifi-
cant conformational change during local minimiza-

VOL. 20, NO. 131364



PREDICTING PEPTIDE STRUCTURES

TABLE IV.
RMSD Values for Full Compstatin Structures Using
All Heavy Atoms.

Compstatin- Original- Local-
Structure Original Local Compstatin

² :Compstatin 2.372 1.988 2.8441
² :Compstatin 1.979 3.671 2.0212
² :Compstatin 2.445 3.415 2.8653
² :Compstatin 1.910 2.235 2.2494
² :Compstatin 2.185 3.162 2.3865
² :Compstatin 2.438 3.317 2.5136
² :Compstatin 1.934 5.074 4.4727
² :Compstatin 2.268 3.058 3.0478
² :Compstatin 2.030 3.756 2.4339
² :Compstatin 2.387 4.176 3.36310
² :Compstatin 2.567 3.275 2.66211
² :Compstatin 2.314 3.737 2.50912
² :Compstatin 2.000 3.092 2.08313
² :Compstatin 2.148 3.314 2.91514
² :Compstatin 1.847 2.332 2.02415
² :Compstatin 2.089 2.421 2.34916
² :Compstatin 2.438 3.849 3.07317
² :Compstatin 2.480 3.422 2.21118
² :Compstatin 2.142 4.104 2.56119
² :Compstatin 2.145 2.315 2.54720
² :Compstatin 2.305 3.596 2.25721

Compstatin — 2.773 —

(²Column 2 compares the original PDB structure Compsta-
: ) ( )tin to the average Compstatin PDB structure Compstatin .i

(²Column 3 compares the original PDB structure Compsta-
: )tin to the ECEPP / 3 local minimum using this structurei

(² :L ocal)as a starting point Compstatin . Column 4 com-i
(² :L ocal)pares this local minimum structure Compstatin toi

the local minimum for the average Compstatin structure
L ocal( )Compstatin .

Žtion. Finally, the fourth column see both Tables IV
.and V provides a comparison similar to that given

by the corresponding second columns, except the
structures correspond to local minimum rather
than original PDB structures. In general, these
RMSD values follow the same trends as the second

Ž .column see both Tables IV and V , and in some
cases the backbone RMSD are smaller than for the
original structures. This indicates that local mini-
mization is providing structural differences that
are on the same order as those provided by the

Žoriginal structures. The second set of tables Tables
.VI and VII repeats this analysis, but for the re-

Žduced sequence involving residues 5 to 8 the
.b-turn region . When considering all heavy atoms,

the RMSD values are similar, with most values
˚falling within the 0.5 to 1 A range. These results

indicate that the b-turn is a common structural

TABLE V.
RMSD Values for Full Compstatin Structures Using

a( )Only Backbone Atoms N, C , C9 .

Compstatin- Original- Local-
Structure Original Local Compstatin

² :Compstatin 1.510 1.442 2.3011
² :Compstatin 1.229 2.976 1.6812
² :Compstatin 1.740 2.820 2.4963
² :Compstatin 0.978 1.625 1.1924
² :Compstatin 1.379 2.361 1.0085
² :Compstatin 1.354 2.832 2.2976
² :Compstatin 1.144 3.938 3.3317
² :Compstatin 1.662 1.565 1.8608
² :Compstatin 1.437 2.782 1.3949
² :Compstatin 1.968 3.052 2.50010
² :Compstatin 1.427 2.366 1.74611
² :Compstatin 1.542 2.757 1.57612
² :Compstatin 1.539 2.072 0.89813
² :Compstatin 1.561 2.833 1.72814
² :Compstatin 1.151 1.569 1.24915
² :Compstatin 1.420 2.058 1.44016
² :Compstatin 1.458 3.176 1.73217
² :Compstatin 1.970 2.366 1.07118
² :Compstatin 1.662 2.898 1.55319
² :Compstatin 1.560 1.901 1.46520
² :Compstatin 1.911 2.608 1.16521

Compstatin } 1.633 }

(²Column 2 compares the original PDB structure Compsta-
: ) ( )tin to the average Compstatin PDB structure Compstatin .i

(²Column 3 compares the original PDB structure Compsta-
: )tin to the ECEPP / 3 local minimum using this structurei

(² :L ocal)as a starting point Compstatin . Column 4 com-i
(² :L ocal)pares this local minimum structure Compstatin toi

the local minimum for the average Compstatin structure
L ocal( )Compstatin .

feature, even when comparing the original PDB
structures to their locally minimized counterparts.
A similar trend is observed for the backbone atom
RMSD values. The effect of local minimization on
conserving the b-turn structure is even more ap-
parent when considering the relatively low and
consistent RMSD values of the last column, which

Ž .compares residues 5 to 8 the local minimum of
LocalŽ .the average Compstatin structure Compstatin

to the local minimum of the individual Comp-
Ž² :Local.statin structures Compstatin . Plots fori

Ž . ² :Localthe superpositioning all atom of Compstatin 13

and the average local minimum structure
LocalŽ .Compstatin are given in Figure 3. The super-

positioning of these two structures results in two
of the smallest RMSD values, as given in Tables IV
and VI.
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TABLE VI.
RMSD Values for the b-Turn Regions
( )Residues 5 through 8 Using All-Heavy Atoms.

Compstatin- Original- Local-
Structure Original Local Compstatin

² :Compstatin 0.995 0.531 0.8651
² :Compstatin 0.765 0.718 0.6172
² :Compstatin 0.876 0.556 0.9903
² :Compstatin 0.759 0.715 0.8274
² :Compstatin 0.711 0.520 0.8005
² :Compstatin 0.813 0.918 1.0396
² :Compstatin 0.437 1.693 1.7557
² :Compstatin 1.025 0.626 0.8258
² :Compstatin 0.633 0.547 0.3949
² :Compstatin 0.521 0.579 0.92210
² :Compstatin 0.835 0.625 0.59011
² :Compstatin 0.941 0.638 0.93312
² :Compstatin 0.728 0.767 0.54213
² :Compstatin 0.814 0.780 0.81314
² :Compstatin 0.713 0.630 0.56915
² :Compstatin 0.818 1.003 0.51516
² :Compstatin 0.830 0.595 0.90117
² :Compstatin 0.667 0.704 0.56418
² :Compstatin 0.786 0.492 0.65719
² :Compstatin 0.668 0.771 0.66220
² :Compstatin 1.062 1.318 0.66021

Compstatin } 0.758 }

(²Column 2 compares the original PDB structure Compsta-
: ) ( )tin to the average Compstatin PDB structure Compstatin .i

(²Column 3 compares the original PDB structure Compsta-
: )tin to the ECEPP / 3 local minimum using this structurei

(² :L ocal)as a starting point Compstatin . Column 4 com-i
(² :L ocal)pares this local minimum structure Compstatin toi

the local minimum for the average Compstatin structure
L ocal( )Compstatin .

GLOBAL MINIMIZATION

A full global minimization of the Compstatin
structure was then performed according to the
constrained implementation outlined in the Algo-
rithmic Steps section. In total, Compstatin pos-
sesses 73 independent torsion angles, of which 26
Ž .all f and c were treated globally, while the
remaining were allowed to vary locally. As with
the local minimizations, the same set of restraints
were used to formulate the nonlinear constraint,

˚with a constant 50 kcalrmolrA weighting factor
Ž . Ž ref .A and a constraint parameter E equal to 200j
kcalrmol. The lowest energy structure satisfying
the distance constraint and dihedral angle bounds
provided an ECEPPr3 energy of y85.71 kcalrmol,
which is lower in energy than any of the local
minimum structures given in Table III. The global
minimization required approximately 40 CPU

TABLE VII.
RMSD Values for the b-Turn Regions
( )Residues 5 through 8 Using Only Backbone

a( )Atoms N, C , C99999 .

Compstatin- Original- Local-
Structure Original Local Compstatin

² :Compstatin 0.189 0.235 0.1701
² :Compstatin 0.231 0.235 0.1062
² :Compstatin 0.106 0.239 0.1833
² :Compstatin 0.266 0.313 0.0804
² :Compstatin 0.180 0.172 0.1595
² :Compstatin 0.355 1.322 0.3756
² :Compstatin 0.210 1.026 1.0597
² :Compstatin 0.194 0.142 0.0928
² :Compstatin 0.062 0.222 0.0949
² :Compstatin 0.254 1.221 0.33510
² :Compstatin 0.433 0.368 0.07411
² :Compstatin 0.215 0.376 0.38812
² :Compstatin 0.291 0.306 0.07913
² :Compstatin 0.263 0.418 0.51514
² :Compstatin 0.167 0.266 0.11615
² :Compstatin 0.115 0.414 0.38416
² :Compstatin 0.173 0.199 0.19917
² :Compstatin 0.193 0.158 0.06718
² :Compstatin 0.185 0.248 0.14319
² :Compstatin 0.202 0.361 0.31820
² :Compstatin 0.336 0.480 0.17221

Compstatin } 0.197 }

(²Column 2 compares the original PDB structure Compsta-
: ) ( )tin to the average Compstatin PDB structure Compstatin .i

(²Column 3 compares the original PDB structure Compsta-
: )tin to the ECEPP / 3 local minimum using this structurei

(² :L ocal)as a starting point Compstatin . Column 4 com-i
(² :L ocal)pares this local minimum structure Compstatin toi

the local minimum for the average Compstatin structure
L ocal( )Compstatin .

² :Local (FIGURE 3. Superposition of Compstatin in13
Local) ( )black and Compstatin in light gray structures. The

( )left panel shows the full all atom structure, while the
right panel compares only the b-turn region.
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hours on a HP C160. As with the local minimiza-
tions, the global minimum structure reached the
200 kcalrmol bound on the violation energy con-

Ž .straint. The total distance violation D equaledVIO
˚6.690 A, which is near the average distance viola-

tion from those local minimum structures given in
Table III.

A number of RMSD calculations were per-
formed to further quantify the structural differ-
ences between the global minimum energy struc-
ture and the other Compstatin structures. These
results are given in Tables VIII and IX. Table VIII

Ž .provides all-atom and backbone atom RMSD val-
ues between the full local minimum energy struc-

Local LocalŽ² : .tures Compstatin and Compstatin andi

the global minimum energy structure. When com-
² :Localparing backbone RMSDs, the Compstatin ,9

² :Local ² :Local ²Compstatin , Compstatin , and Compsta-21 19
:Localtin structures offer the best correspondence17

with the global minimum energy structure. These
structures also correspond to four of the lowest
energy local minima as given in Table III. This

TABLE VIII.
RMSD Values for Full Compstatin Structures.

Structure Heavy Atoms Backbone Atoms

² :Compstatin 4.106 3.3521
² :Compstatin 2.205 1.2202
² :Compstatin 2.742 2.2653
² :Compstatin 2.579 1.9884
² :Compstatin 2.925 1.5415
² :Compstatin 2.513 2.0806
² :Compstatin 4.866 3.3147
² :Compstatin 2.906 2.5848
² :Compstatin 1.287 0.9539
² :Compstatin 2.609 2.31710
² :Compstatin 1.365 1.15611
² :Compstatin 1.824 1.37612
² :Compstatin 2.497 1.63813
² :Compstatin 2.676 2.11014
² :Compstatin 3.475 2.35915
² :Compstatin 3.089 2.23916
² :Compstatin 1.385 1.07417
² :Compstatin 1.898 1.65118
² :Compstatin 1.304 1.04619
² :Compstatin 3.593 2.34620
² :Compstatin 1.565 1.08621

Compstatin 2.778 1.625

Column 2 reports RMSD using all heavy atoms, while 3
( a )accounts for only backbone atoms N, C , C9 . Both columns

(²compare the ECEPP / 3 local minimum structures Comp-
L ocal L ocal: )statin and Compstatin to the global minimumi

( Global)Compstatin PDB structure Compstatin .

indicates that some of the lowest energy conform-
ers exhibit similar backbone structural characteris-
tics. However, it is interesting to note that the

² :Locallowest energy local minimum, Compstatin , is2

less similar to the global minimum energy struc-
ture. Table IX provides RMSD values comparing
only the b-turn section of the Compstatin struc-
ture. In this case, the lowest energy local minima
do not necessarily provide the best correspondence
with the global minimum energy structure. This
observation, coupled with the relatively low RMSD
values between all structures, indicates that the
b-turn structure is a dominant characteristic for all
conformers, including the global minimum energy

Žstructure. Plots for superpositioning backbone
.atoms of the average local minimum energy struc-

Localture Compstatin and the global minimum en-
ergy structure are given in Figure 4. The superpo-
sitioning of these two structures results in char-
acteristic RMSD values, as given in Tables VIII
and IX.

TABLE IX.
RMSD Values for the b-Turn Regions
( )Residues 5 through 8 .

Structure Heavy Atoms Backbone Atoms

² :Compstatin 1.061 0.2881
² :Compstatin 0.510 0.2712
² :Compstatin 1.114 0.2443
² :Compstatin 1.214 0.2594
² :Compstatin 0.771 0.3175
² :Compstatin 1.160 0.3586
² :Compstatin 1.766 0.8547
² :Compstatin 1.267 1.1858
² :Compstatin 0.792 0.2719
² :Compstatin 0.952 0.26810
² :Compstatin 0.579 0.32511
² :Compstatin 1.243 0.39112
² :Compstatin 0.535 0.28413
² :Compstatin 1.147 0.52614
² :Compstatin 0.565 0.29815
² :Compstatin 0.974 0.21116
² :Compstatin 0.918 0.28417
² :Compstatin 0.607 0.29518
² :Compstatin 0.543 0.28819
² :Compstatin 0.763 0.19420
² :Compstatin 0.528 0.30621

Compstatin 0.774 0.295

Column 2 reports RMSD using all heavy atoms, while 3
( a )accounts for only backbone atoms N, C , C9 . Both columns

(²compare the ECEPP / 3 local minimum structures Comp-
L ocal L ocal: )statin and Compstatin to the global minimumi

( Global)Compstatin PDB structure Compstatin .

JOURNAL OF COMPUTATIONAL CHEMISTRY 1367



KLEPEIS ET AL.

( )FIGURE 4. Superposition of global minimum in black
Local ( )and Compstatin in light gray structures. The left

( )panel shows the full backbone atom structure, while
the right panel compares only the b-turn region.

COMPARISON WITH TAD: DYANA

A comparison to an independent method for
solving distance restraint problems was also made
to gauge the performance of the proposed aBB
constrained formulation. Specifically, a torsional

Žangle dynamics rather than a Cartesian coordinate
. 5dynamics such as X-PLOR package was used.

The coupled simulated annealingrTAD protocol
from DYANA was applied to a starting sample of
1000 randomly generated structures. The same di-
hedral angle constraints and 53 medium and
long-range distance constraints were considered;
that is, no heuristic methods for reducing the
variable space were employed. In the case of un-
specified symmetric hydrogens, a pseudoatom ap-
proach, in which the restraint is based on a pseu-
doatom central to the symmetric hydrogen atoms,
was used. A subset consisting of the 20 conformers
exhibiting the best target values were then used as
starting points for a second set of runs. Finally, a

Žset of five conformations with the smallest viola-
.tions were used for further analysis. Because each

Ž .method DYANA vs. ECEPPr3 employed differ-
ent structural definitions, based on fixed bond
lengths and bond angles, a direct comparison was
not sufficient. Instead, the DYANA generated
structures were used as starting points for local
minimizations using the local constrained formula-
tion. In all cases, the violations reached the upper
bound of 200 kcalrmol for E ref. The corresponding
violation values, including final local minimum

Ž .energy values E are given in Table X.ECEPPr3
The results given in Table X indicate that al-

though the DYANA conformers satisfy the corre-
sponding constraint, their energy values are signif-
icantly higher than that of the global minimum

Ž .energy structure more than 70 kcalrmol . This

TABLE X.
Local Minimization Results for the Best DYANA
( )TAD -Generated Conformations.

E EVIO ECEPP/3

˚( ) ( ) ( )Local Minimum D A kcal / mol kcal / molVIO

DYANACompstatin 6.234 200.0 y11.9451
DYANACompstatin 6.538 200.0 6.7822
DYANACompstatin 6.163 200.0 y10.2083
DYANACompstatin 5.476 200.0 y14.5164
DYANACompstatin 6.927 200.0 5.0065

D refers to the total distance violation, E is the corre-VIO VIO
sponding violation, and energy and E is the forceECEPP/ 3
field energy at the local minima.

can be anticipated because the goal of the DYANA
algorithm is to minimize distance restraint viola-
tions via penalty term optimization, while neglect-
ing any detailed force field terms. In fact, an analy-
sis of the structural characteristics indicate that the
type I b-turn does not appear along the Gln5]Gly 8

backbone in these structures. This is verified by
the data in Table XI, which gives the f and c
dihedral angle values for the central b-turn
residues. The problem is evidenced by the Asp6

residue, which has f]c values in a forbidden
region of the Ramachandran plot. It appears that
this may be related to clustering of the side chains
in the DYANA predicted structures.

Including Intraresidue Restraints with DYANA

To further examine this deviation from the pre-
Ž .vious results which define a type I b-turn the

DYANA protocol was also tested on the full set of
restraints, including intraresidue distances. The
five DYANA predicted structures exhibiting the
lowest target function values were then subjected

TABLE XI.
f and c Values for Central Residues

6 7( )Asp and Trp for the Anticipated b-Turn Region.

o o o o( ) ( ) ( ) ( )Local Minimum f c f c2 2 3 3

DYANACompstatin 166.9 y66.07 y80.00 y40.401
DYANACompstatin 165.9 y65.55 y81.02 y33.992
DYANACompstatin 180.0 y60.94 y81.76 y42.433
DYANACompstatin 168.8 y50.32 y80.00 y42.224
DYANACompstatin 165.4 y72.75 y97.79 y39.865

The subscripts refer to the second and third residues in the
Gln5 ]Gly8 sequence.

VOL. 20, NO. 131368
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to local minimization using the constrained formu-
lation. As before, only the 53 medium and long-
range distance restraints were included during the
local minimizations. As the results in Table XII
show, the average energy has decreased for this
set of conformers. However, the structural analysis
of the Gln5]Gly 8 region, given in Table XIII still
indicates that a type I b-turn is not preferred.

An additional comparison between the struc-
Ž .tural characteristics of these DYANA local min-

ima and the global minimum was also performed
using RMSD calculations, as given in Tables XIV
and XV. These values are consistently larger

LocalŽ .than those between the average Compstatin
and local minimum solutions structures
Ž² :Local.Compstatin , and global minimum energyi

structure. The RMSD values not only indicate that
there is significant structural difference over the

Ž .entire structure Table XIV , but also that the
Ž .b-turn region Table XV is not a structural charac-

teristic of the DYANA local minima. This is evi-
denced by the superpositioning of the lowest en-
ergy DYANA structure and the global minimum
energy structure, given in Figure 5.

TABLE XII.
Local Minimization Results for the Best DYANA
( )TAD -Generated Conformations Using
All Restraints.

E EVIO ECEPP/3

˚( ) ( ) ( )Local Minimum D A kcal / mol kcal / molVIO

DYANACompstatin 6.222 200.0 24.7141c
DYANACompstatin 5.643 200.0 y31.2162c
DYANACompstatin 6.527 200.0 y17.5693c
DYANACompstatin 7.135 200.0 y27.11044
DYANACompstatin 5.926 200.0 y14.6565c

D refers to the total distance violation, E is the corre-VIO VIO
sponding violation, and energy and E is the forceECEPP/ 3
field energy at the local minima.

TABLE XIII.
f and c Values for Central Residues

6 7( )Asp and Trp for the Anticipated b-Turn Region.

o o o o( ) Ž . Ž . Ž .Local Minimum f c f c2 2 3 3

DYANACompstatin y180.0 y58.61 y80.00 y47.721c
DYANACompstatin 177.5 y63.77 y82.74 y33.532c
DYANACompstatin 180.0 y63.98 y82.18 y23.323c
DYANACompstatin 163.0 y58.56 y109.2 y4.534c
DYANACompstatin y180.0 y70.46 y92.40 y41.225c

The subscripts refer to the second and third residues in the
Gln5 ]Gly8 sequence.

TABLE XIV.
RMSD Values for Full Compstatin Structures.

Local Minimum Heavy Atoms Backbone Atoms

DYANACompstatin 4.117 2.8121c
DYANACompstatin 4.866 3.8932c
DYANACompstatin 5.243 3.9433c
DYANACompstatin 4.892 2.6544c
DYANACompstatin 4.506 3.1805c

Column 2 reports RMSD using all heavy atoms, while 3
( a )accounts for only backbone atoms N, C , C9 . Both columns

compare the DYANA local minimum structures
( DYANA )Compstatin to the global minimum Compstatin PDBi

( Glob a l )structure Compstatin .

TABLE XV.
RMSD Values for the b-Turn Regions
( )Residues 5 through 8 .

Local Minimum Heavy Atoms Backbone Atoms

DYANACompstatin 1.163 0.6251c
DYANACompstatin 1.473 0.7322c
DYANACompstatin 1.607 0.7213c
DYANACompstatin 1.327 0.7214c
DYANACompstatin 1.277 0.7815c

Column 2 reports RMSD using all heavy atoms, while 3
( a )accounts for only backbone atoms N, C , C9 . Both columns

compare the DYANA local minimum structures
( DYANA )Compstatin to the global minimum Compstatin PDBi

( Glob a l )structure Compstatin .

Concluding Remarks

In this work a novel and completely general
method was outlined for solving the three-dimen-
sional protein and nucleic acid structure prediction
problem using conformational restraints derived
from NMR data. In several ways, the method con-
trasts strongly with typical techniques that rely on

( )FIGURE 5. Superposition of global minimum in black
DYANA ( )and Compstatin in gray structures. The left panel1c

( )shows the full backbone atom structure, while the right
panel compares only the b-turn region.
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the optimization of penalty-type target function
using simulated annealing and molecular dynam-

Ž .ics plus local minimization protocols.
One difference involves a novel reformulation

of the structure prediction problem. A common
characteristic of most current methods is their de-
pendence on a penalty-type, unconstrained prob-
lem formulation, in which the objective is to mini-
mize the sum of violation energies. In this work,
the problem is formulated using nonlinear con-
straints, which can be individually enumerated for
all or subsets of the distance restraints. In addition,
the simplified potential function used by many
techniques is replaced by a full-atom force field,
which aids in defining the correct conformational
details.

Finally, the solution technique represents an-
other enhancement over existing methods. Rather
than rely on stochastic methods for finding low-
energy minima, this work utilizes a deterministic
method, which theoretically guarantees that the
global solution will be located. This branch and
bound technique, based on the aBB algorithm, has
already been successfully applied to the identifica-
tion of global minimum energy structures of pep-
tides modeled by full-atom force fields.

The application of this technique to the Comp-
statin structure prediction problem emphasizes the
merits of the approach. The globally predicted
structure agrees with previous results based on
X-PLOR4 when comparing structural characteris-
tics, such as the formation of a type I b-turn.
However, the overall structure exhibits an im-
proved energy, which indicates better definition of
structural details. In contrast, results obtained from
TAD fail to identify a type I b-turn. This is most
likely attributable to the simplistic form of energy
modeling and the difficulties in searching the con-
formational space.
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