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Rational function minimization
Let p, q, p1, . . . , pk ∈ IR[x1, . . . , xn] (polynomials with
real coefficients defined on IRn) with p and q relatively
prime.

We will consider the optimization problem:

p∗ := inf
x∈S

p(x)

q(x)

where S is the semi-algebraic set given by

S := {x ∈ IRn : pi(x) ≥ 0, i = 1, . . . , k} .

p∗ is not necessarily attained or finite!
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Applications
• Least squares approximation of data using

rational functions (least squares Padé
approximation);

• H2 model reduction (D. Jibetean. PhD Thesis, CWI,

Amsterdam, 2003.);
• stability analysis of certain dynamical systems,

including biochemical reactor models.
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Possible approaches
• If the infimum is attained one can solve the first

order optimality condition equations. Modern

review: B. Sturmfels, Solving Systems of Polynomial Equations,

AMS, 2002. If the inf is not attained ...

• Global optimization codes — can converge to
local minima.

• Today’s talk: approaches involving semidefinite
programming (SDP).
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What is SDP?
SDP is a generalization of LP and interior point
algorithms for LP can be extended to SDP.

inf
[xij ]

n
∑

i,j=1

cijxij

subject to
n
∑

i,j=1

a
(k)
ij xij = bk ∀ k = 1, . . . ,m,

X := [xij] º 0 (p.s.d.)

If the data matrices diagonal⇒ LP
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Different cases
We investigate SDP-based approaches for the
following cases of infx∈S p(x)/q(x):

• S = IRn and n = 1 (Unconstrained minimization:
univariate case);

• S = IRn and general n (Unconstrained
minimization: general case);

• S is compact, connected and general n
(Constrained case);
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Unconstrained case
Consider the unconstrained problem.

p∗ := inf
x∈IRn

p(x)

q(x)

= sup

{

ρ :
p(x)

q(x)
− ρ ≥ 0 ∀x ∈ IRn

}

We can replace the nonnegativity condition by a sim-

pler one ...
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Unconstrained case (ctd)
Theorem (Jibetean) Assume p∗ > −∞. Then q does
not change sign on IRn.

Assuming q(x) ≥ 0 on S one
has:

p(x)

q(x)
− ρ ≥ 0 ∀x ∈ IRn

iff
p(x)− ρq(x) ≥ 0 ∀x ∈ IRn.

D. Jibetean. Global optimization of rational multivariate functions.

Technical Report PNA-R0120, CWI, Amsterdam, 2001.

This leads us to the theory of nonnegative polynomials.
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Nonnegativity vs SOS
Let p ∈ IR[x1, . . . , xn].

p is called a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

Nonnegativity and sum of squares are the same if:
• n = 1 (univariate polynomials) (result by

Markov?);
• d = 2 (quadratic polynomials on n variables);
• n = 2 and d ≤ 4 (bivariate polynomials of degree

at most 4) (result by Hilbert);

In all other cases counterexamples exist.

Global minimization of rational functions using semidefinite programming – p.9/24



Nonnegativity vs SOS
Let p ∈ IR[x1, . . . , xn].

p is called a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

Nonnegativity and sum of squares are the same if:
• n = 1 (univariate polynomials) (result by

Markov?);
• d = 2 (quadratic polynomials on n variables);
• n = 2 and d ≤ 4 (bivariate polynomials of degree

at most 4) (result by Hilbert);

In all other cases counterexamples exist.

Global minimization of rational functions using semidefinite programming – p.9/24



Nonnegativity vs SOS
Let p ∈ IR[x1, . . . , xn].

p is called a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

Nonnegativity and sum of squares are the same if:

• n = 1 (univariate polynomials) (result by
Markov?);

• d = 2 (quadratic polynomials on n variables);
• n = 2 and d ≤ 4 (bivariate polynomials of degree

at most 4) (result by Hilbert);

In all other cases counterexamples exist.

Global minimization of rational functions using semidefinite programming – p.9/24



Nonnegativity vs SOS
Let p ∈ IR[x1, . . . , xn].

p is called a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

Nonnegativity and sum of squares are the same if:
• n = 1 (univariate polynomials) (result by

Markov?);

• d = 2 (quadratic polynomials on n variables);
• n = 2 and d ≤ 4 (bivariate polynomials of degree

at most 4) (result by Hilbert);

In all other cases counterexamples exist.

Global minimization of rational functions using semidefinite programming – p.9/24



Nonnegativity vs SOS
Let p ∈ IR[x1, . . . , xn].

p is called a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

Nonnegativity and sum of squares are the same if:
• n = 1 (univariate polynomials) (result by

Markov?);
• d = 2 (quadratic polynomials on n variables);

• n = 2 and d ≤ 4 (bivariate polynomials of degree
at most 4) (result by Hilbert);

In all other cases counterexamples exist.

Global minimization of rational functions using semidefinite programming – p.9/24



Nonnegativity vs SOS
Let p ∈ IR[x1, . . . , xn].

p is called a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

Nonnegativity and sum of squares are the same if:
• n = 1 (univariate polynomials) (result by

Markov?);
• d = 2 (quadratic polynomials on n variables);
• n = 2 and d ≤ 4 (bivariate polynomials of degree

at most 4) (result by Hilbert);

In all other cases counterexamples exist.

Global minimization of rational functions using semidefinite programming – p.9/24



Nonnegativity vs SOS
Let p ∈ IR[x1, . . . , xn].

p is called a sum of squares (SOS) if there exist
polynomials pi such that p =

∑

i p
2
i .

Nonnegativity and sum of squares are the same if:
• n = 1 (univariate polynomials) (result by

Markov?);
• d = 2 (quadratic polynomials on n variables);
• n = 2 and d ≤ 4 (bivariate polynomials of degree

at most 4) (result by Hilbert);

In all other cases counterexamples exist.

Global minimization of rational functions using semidefinite programming – p.9/24



The sum of squares cone
We fix a basis of monomials

x̃n,d := (1, x1, . . . , xn, x
2
1, . . . , x

d
n) dim:

(

n+ d

d

)

.

Notation: We denote the convex cone generated by
squares of polynomials on IRn of degree at most d by
Σ2
n,2d (sum-of-squares (SOS) cone).

(We drop the subscripts when they are clear from the

context.)
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The sum of squares cone (cdt.)
Theorem: For a given f ∈ IR[x1, . . . , xn] of
degree 2d, one has f ∈ Σ2

n,2d iff

f = x̃Tn,dMx̃n,d

for some M º 0 (size
(

n+d
d

)

×
(

n+d
d

)

).

Implication: Conic linear optimization over the
cone Σ2

n,d can be done using semidefinite
programming (SDP);

cf. Theorem 17.1 in Y. Nesterov. Squared functional systems and

optimization problems. In J.B.G. Frenk et al. eds., High

performance optimization, 405–440. KAP, 2000.
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Unconstrained univariate case
If q is nonnegative on IR, then

inf
x∈IR

p(x)

q(x)
= sup

t,x

{t : p(x)− tq(x) ≥ 0 ∀x ∈ IR}

= sup
t,x

{

t : p(x)− tq(x) ∈ Σ2
}

= sup
t,x

{

t : p(x)− tq(x) = x̃TMx̃
}

for some M º 0, where

x̃T = [1 x x2 . . . x
1

2
max{deg(p),deg(q)}].
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Unconstrained univariate case
Let p(x)− tq(x) =

∑

α aα(t)x
α. NB: aα(t) is affine

in t.

Then the optimization problem becomes:
maximize t such that

aα(t) =
∑

i+j=α

Mij, M º 0.

This is an SDP problem! (Result already obtained by
Nesterov for q(x) ≡ 1.)

Y. Nesterov. Squared functional systems and optimization problems.

In J.B.G. Frenk et al. eds., High performance optimization, 405–440.

KAP, 2000.
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Example

p(x)

q(x)
:=

x2 − 2x

(x+ 1)2
.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−50

0
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350

(x
2  −

2x
)/

(x
+

1)
2

x
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Example (ctd)

p(x)

q(x)
:=

x2 − 2x

(x+ 1)2
.

Equivalent problem: sup t such that

(1−t)x2−2(1+t)x−t =

[

1

x

]T [
M00 M01

M10 M11

] [

1

x

]

,

(1)

for some M º 0.
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Example (ctd)
From (2):

M00 = −t, M01 = M10 = −(1 + t), M11 = 1− t.

We therefore get

min
x∈IR

p(x)

q(x)
= max

t,M
t

such that

M =

[

−t −(1 + t)

−(1 + t) 1− t

]

º 0.

Note that the optimal value is p∗ = −1/3.
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Constrained case
Consider a semi-algebraic set

S = {x ∈ IRn : pi(x) ≥ 0 (i = 1, . . . , k)} .

General constrained problem: find

p∗ =: inf
x∈S

p(x)

q(x)
.

One can treat the unconstrained multivariate problem

by adding an artificial constraint ‖x‖2 ≤ R for some

‘large’ R.
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Constrained case
Theorem (Jibetean) Assume that S is open and
connected (or the (partial) closure of such a set). If
p∗ > −∞ then q does not change sign on S.
Assuming q(x) ≥ 0 on S, then

p(x)

q(x)
≥ α ∀x ∈ S ⇐⇒ p(x)− αq(x) ≥ 0 ∀x ∈ S.

D. Jibetean. PhD Thesis, CWI, Amsterdam, 2003.

Consequence

inf
x∈S

p(x)

q(x)
= sup {ρ : p(x)− ρq(x) ≥ 0 ∀x ∈ S} .
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Constrained multivariate case
Technical assumption: S is compact and there exists
a

p̄ ∈ Σ2 + p1Σ
2 + . . .+ pkΣ

2

such that {x : p̄(x) ≥ 0} is compact.

Theorem (Putinar): For a given polynomial p0 one
has p0(x) > 0 for all x ∈ S iff

p0 ∈ Σ2 + p1Σ
2 + . . .+ pkΣ

2.

M. Putinar. Positive polynomials on compact semi-algebraic sets. Ind.

Univ. Math. J. 42:969–984, 1993.
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Constrained multivariate case
Consider the minimization problem

p∗ = inf
x∈S

p(x)

q(x)
.

If p and q have no common roots in S, then by
Putinar’s and Jibetean’s theorems:

p∗ = sup {ρ : p(x)− ρq(x) > 0 ∀x ∈ S}

= sup
{

ρ : (p− ρq) ∈ Σ2 + p1Σ
2 + . . .+ pkΣ

2
}

≥ sup
{

ρ : (p− ρq) ∈ Σ2

n,t + p1Σ
2

n,t + . . .+ pkΣ
2

n,t

}

:= ρt (for any integer t ≥ 1).
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Constrained multivariate case
We have that ρi ≤ ρi+1 ≤ p∗ and – if p and q have no
common roots in S –

lim
t→∞

ρt = p∗.

Computation of ρt: SDP problem with matrices of
size

(

n+t
t

)

×
(

n+t
t

)

and at most max{deg(p), deg(q)}

constraints — "polynomial" complexity for t = O(1).

These results by already obtained by Lasserre for
q(x) ≡ 1 (polynomial objective function).

J.B. Lasserre. Global optimization with polynomials and the problem of

moments. SIOPT, 11:296–817, 2001.
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Unconstrained multivariate case
Return to the unconstrained case

inf
x∈IRn

p(x)

q(x)
.

Artificial constraint ‖x‖2 ≤ R for some ‘sufficiently
large’ R.
Now we have minx∈S

p(x)
q(x) where S is the compact

semi-algebraic set

S :=
{

x ∈ IRn : R− ‖x‖2 ≥ 0
}

.

No a priori choice for R available in general.
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Software
• Lasserre’s approach implemented in the software

GloptiPoly.

• Optimization over Σ2 implemented in SOStools
by Parrilo et al.

These are add-on routines for the SDP solver SeDuMi
by Sturm. All freely available via Helmberg’s SDP
page:

http://www-user.tu-chemnitz.de/∼helmberg/semidef.html

GloptiPoly and SOStools extremely useful to prove

global optimality in small problems.
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Discussion
• We have extended results by Nesterov, Lasserre

and Parrilo to include rational objective
functions.

• Techniques from real algebraic geometry
available to compute all KKT points, but SDP
approach computationally attractive.
See: P. Parrilo and B. Sturmfels. Minimizing polynomial

functions, 2001. (Available at arXiv.org e-Print archive)

• SDP approach competitive with state-of-the-art
global optimization software.

• Need for large-scale (parallel?) SDP solvers to
solve the large SDP relaxations.

• Paper for this talk available at Optimization
Online.
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