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Glossary 
 
Meta-heuristic — A master strategy that guides and modifies other heuristics to produce solutions 
beyond those that are normally generated in a quest for local optimality. 
 
Linear programming — An optimization methodology that consists of formulating a problem as a 
linear function to be maximized or minimized and a set of linear inequalities that represent the 
constraints. 
 
Integer programming — A methodology related to linear programming with the additional 
restriction that the decision variables can only take on integer values. 
 
Neighborhood — The set of solutions that can be reached from a given solution by way of 
applying a move mechanism. 
 
Move — A change that transforms the current solution into a neighbor solution. 
 
Crossover — A move mechanism used in genetic algorithms. 
 
Summary 
 
This article describes the origin and significant developments associated with the field of meta-
heuristics as they relate to global optimization. Meta-heuristics provide a means for approximately 
solving complex optimization problems. These methods are designed to search for global optima, 
however, they cannot guarantee that the best solution found after termination criteria are satisfied is 
indeed and global optimal solution to the problem. Experimental testing of meta-heuristic 
implementations show that the search strategies embedded in such procedures are capable of 
finding solutions of high quality to hard problems in industry, business and science. 
 
1. Introduction 
 
The theory of optimization refers to the quantitative study of optima and the methods for finding 
them. The technical verb optimize means to achieve the optimum and optimization is the act of 
optimizing. To achieve the optimum entails in some cases to obtain the most of some measure of 
success (e.g., revenue) or in some other cases to obtain the least of another measure (e.g., cost). 
Choosing a quantitative measure of effectiveness and then optimizing it has become the typical way 



2 

in which many important decisions are made. Decisions involving how to design, build or operate a 
physical or economics system are reached in three steps: 
 
1. Identify the decision variables in the system and determine, accurately and qualitatively, how 

they interact. 
2. Identify a measure of system effectiveness that can be expressed in terms of the system 

variables.  This measure is often referred to as the objective function. 
3. Choose those values of the system variables that yield optimum effectiveness. 
 
In classical optimization methods, such as linear programming, these three steps result in a model 
formulation of the type: 
 
Maximize or minimize f(x) 
Subject to g(x) ≤ b 
 
In this formulation, f(x) is the quantitative measure of effectiveness (or objective function) and x are 
the decision variables. The set of constraints is also formulated in terms of the decision variables 
and represented as bounds on the function g(x). In the case of linear programming both f(x) and g(x) 
are linear functions. Linear programming is considered a general-purpose tool because the only 
requirement is to represent the optimization model as a linear objective function subject to a set of 
linear constraints. The state-of-the-art linear programming solvers are quite powerful and can 
successfully solve models with thousands and even millions of variables employing reasonable 
amounts of computer effort. Evidently, however, not all business, industrial and scientific problems 
can be expressed by means of a linear objective and linear equalities or inequalities. Many complex 
systems may not even have a convenient mathematical representation, linear or nonlinear.  
Techniques such as linear programming and its cousins (nonlinear programming and integer 
programming) generally require a number of simplifying assumptions about the real system to be 
able to properly frame the problem. 
 
Linear programming solvers are design to exploit the structure of a well-defined and carefully 
studied problem. The disadvantage to the user is that in order to formulate the problem as linear 
program, simplifying assumptions and abstractions may be necessary. This leads to the well-known 
dilemma of choosing between finding the optimal solution to a model that does not represent the 
real system accurately and developing a model that is a good abstraction of the real system but for 
which only inferior sub-optimal solutions can be obtained. When dealing with the optimization of 
complex systems, a course of action taking for many years has been to develop specialized heuristic 
procedures that, in general, do not require a mathematical formulation of the problem. These 
procedures were appealing from the standpoint of simplicity, but generally lacked the power to 
provide high quality solutions to complex problems. 
 
For example, consider the well-known traveling salesman problem. This is the problem of finding 
the shortest route that visits each of a given collection of locations precisely once and eventually 
returns to the starting point. One simple heuristic for this problem may be to arbitrarily select a 
starting location and then always choose from a candidate list the next location that is closest to the 
current location. Once a location is chosen, it is deleted from the candidate list of unvisited 
locations. While this heuristic may occasionally give acceptable results in problems that consist of 
only a hand-full of locations, in general, its performance is predicted to be extremely poor. This 
procedure falls within the class of heuristics called myopic, because they make decisions based on 
limited (also called “local”) information without considering the consequences of implementing 
those decisions. In the case of the traveling salesman problem, choosing the nearest city at every 
point of the way may build a route that systematically moves the salesman farther from the starting 
point, making the return trip unnecessarily long. 
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In addition to heuristics designed to construct solutions, there are also procedures for improving 
solutions. The most common way of improving a solution is via the application of a local search. 
To continue with our traveling salesman illustration, suppose that a delivery truck driver is asked to 
visit five locations in the following order: 
 

Warehouse → A → B → C → D → E → Warehouse 
 
Also suppose that the route was constructed using the “nearest location” rule discussed above. A 
local search procedure would attempt to modify the current route by performing a move (or change). 
One possible move is to exchange the position of two locations and measure the impact on the 
objective function. We assume that the objective is to minimize the total length of the route, so 
typically a move that decreases the length of the route is considered “better, in the local sense, than 
one that increases it. If we limit our local search to moves that exchange locations that immediately 
follow each other in the current route, then we only have to test 4 moves, i.e., (A,B), (B,C), (C,D), 
and (D,E). We would pick the “best” one of those moves. However, if we would like to test all 
possible exchanges of two locations as part of the local search effort, the number of moves to be 
examined is 10. The amount of exploration, which is directly related to the amount of 
computational effort, is an important design issue in local search procedures. The effort to explore 
the neighborhood of a solution (that is the set of solutions reachable from the current solution by 
applying a move mechanism) can vary considerably. In a traveling salesman problem with n 
locations, there are n-1 neighbors if the move is defined as exchanging the positions of two 
locations that immediately follow each other in the current solution. However, if the move is 
defined as the exchange of positions of any two locations, the size of the neighborhood (i.e., the 
cardinality of the set of solutions reachable with such a move) is (n2-n)/2. Regardless of the move 
mechanism, local search typically explores only a small fraction of the solution space. In the case of 
the traveling salesman problem, for example, the solution space consists of n! solutions. So, local 
search procedures that explore in the order of n2 or even n3 solutions are only dealing with a fairly 
small fraction of the entire solution space as the dimension of the problem increases. 
 
Heuristics designed for constructing solutions are typically combined with local search procedures 
to create what is called a hill climbing method. These methods start from a solution and apply a 
local search in an attempt to find an improved solution. If an improved solution is found, the search 
moves to it and the local search is applied again. The method stops when the local search is not 
capable of finding a solution that improves upon the current solution, i.e., when the “best” possible 
move cannot improve upon the objective function value of the current solution. The hill climbing 
terminology refers to the trajectory of the objective function values in a maximization problem. The 
steps in a hill climbing procedure can be summarized as follows: 
 

1. Generate an initial solution s 
2. Apply a local search to find the best neighbor solution s′ 
3. If s′ is better than s then make the current solution s equal to s′ and go to step 2, else 

terminate 
 
The main shortcoming of a hill-climbing method is its inability to escape local optimality. Figure 1 
shows a nonlinear function with a single variable for which a hill-climbing method would be able to 
find the local maximum only if the initial solution happens to fall within the range (b, c). However, 
since the range (a, b) is considerably wider, a hill climbing method that starts from a randomly 
generated initial point would likely be “trapped” in the inferior local optimal point x′ instead of 
finding the global maximum point x*. 
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Figure 1 Bimodal function 

 
Meta-heuristics provided a way of considerably improving the performance of simple heuristic 
procedures, such as those based on hill climbing. The search strategies proposed by meta-heuristic 
methodologies result in iterative procedures with the ability to escape local optimal points. Meta-
heuristics have been developed to solve complex optimization problems in many areas, with 
combinatorial optimization being one of the most fruitful. Generally, the best procedures achieve 
their efficiencies by relying on context information.  The solution method can be viewed as the 
result of adapting meta-heuristic strategies to specific optimization problems. 
 
The term meta-heuristic (also written metaheuristic) was coined by Fred Glover in 1986 and has 
come to be widely applied in the literature, both in the titles of comparative studies and in the titles 
of volumes of collected research papers. A meta-heuristic refers to a master strategy that guides and 
modifies other heuristics to produce solutions beyond those that are normally generated in a quest 
for local optimality. The heuristics guided by such a meta-strategy may be high level procedures or 
may embody nothing more than a description of available moves for transforming one solution into 
another, together with an associated evaluation rule. 
 
The contrast between the meta-heuristic orientation and the “local optimality” orientation is 
significant. For many years, the primary conception of a heuristic procedure (a conception still 
prevalent today) was to envision either a clever rule of thumb or an iterative rule that terminates as 
soon as no solutions immediately accessible could improve the last one found. Such iterative 
heuristics are often referred to as descent methods, ascent methods, or local search methods. (A sign 
of the times is that “local search” now sometimes refers to search that is not limited to being local in 
character.)  Consequently, the emergence of methods that departed from this classical design — and 
that did so by means of an organized master design — constituted an important advance. 
Widespread awareness of this advance only began to dawn during the last decade, though its seeds 
go back much farther. 
 
The evolution of meta-heuristics during the past ten years has taken an explosive upturn. Meta-
heuristics in their modern forms are based on a variety of interpretations of what constitutes 
“intelligent” search. These interpretations lead to design choices that in turn can be used for 
classification purposes. However, a rigorous classification of different meta-heuristics is a difficult 
and risky enterprise, because the leading advocates of alternative methods often differ among 
themselves about the essential nature of the methods they espouse. This may be illustrated by 
considering the classification of meta-heuristics in terms of their features with respect to three basic 
design choices:  (1) the use of adaptive memory, (2) the kind of neighborhood exploration used, and 
(3) the number of current solutions carried from one iteration to the next. These options can be 
embedded in a classification scheme of the form x/y/z, where the choices for x are A (if the meta-
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heuristic employs adaptive memory) and M (if the method is “memoryless”). The choices for y are 
N (for a method that employs some systematic neighborhood search either to select the next move 
or to improve a given solution) and S (for those methods relying on random sampling). Finally, z 
may be 1 (if the method moves from one current solution to the next after every iteration) or P (for a 
population-based approach with a population of size P). This simple 3-dimensional scheme gives us 
a preliminary basis of classification, which discloses that agreement on the proper way to label 
various meta-heuristics is far from uniform. We show this by providing classifications for a few 
well-known meta-heuristics in Table 1. 
 

Meta-heuristic Classification 1 Classification 2 
Genetic algorithms M/S/P M/N/P 
Scatter search M/N/P A/N/P 
Simulated annealing M/S/1 M/N/1 
Tabu search A/N/1 A/N/P 

 
Table 1. Meta-heuristic classification. 

 
Two different ways are given for classifying each of these procedures. The first classification most 
closely matches the “popular conception” and the second is favored by a significant (if minority) 
group of researchers. The differences in these classifications occur for different reasons, depending 
on the method. Some differences have been present from the time the methods were first proposed, 
while others represent recent changes that are being introduced by a subgroup of ardent proponents. 
For example, the original form of simulated annealing has come to be modified by a group that 
believes stronger elements of neighborhood search should be incorporated. A similar change came 
about in genetic algorithms, a few years before it was introduced in simulated annealing, in the mid 
1980s. Still, it should be pointed out that not all the advocates of simulated annealing and genetic 
algorithms view these changes as appropriate. 
 
On the other hand, among those examples where different classifications were present from the 
start, the foundation papers for tabu search included population-based elements in the form of 
strategies for exploiting collections of elite solutions saved during the search. Yet a notable part of 
the literature has not embraced such population-based features of tabu search until recently. 
Similarly, scatter search was accompanied by adaptive memory elements as a result of being 
associated with early tabu search ideas, but this connection is likewise only beginning to be 
pursued. 
 
A few proponents of simulated annealing and genetic algorithms have recently gone farther in 
modifying the original conceptions than indicated in Table 1, to propose the inclusion of elements 
of adaptive memory as embodied in tabu search. Such proposals are often described by their 
originators as hybrid methods, due to their marriage of aspects from different frameworks. 
 
2. Meta-Heuristic Features 

In addition to the three basic design elements used in the classification in section 1, meta-heuristics 
incorporate other strategies with the goal of guiding the search. A meta-heuristic may strategically 
modify the evaluation provided by a component heuristic (which normally consists of identifying 
the change in an objective function value produced by a move). For example, simulated annealing 
relies on a problem objective function to provide each evaluation, but then amends this evaluation 
based on the current solution. In the amended form, all improving moves are considered equally 
attractive, and any such move encountered is accepted. Moves that deteriorate the value of the 
objective function are accepted or rejected by a probabilistic criterion that initially assigns a high 
probability (when the temperature is high) to accepting any move generated, regardless of its 
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quality. However, a bias is incorporated that favors smaller deteriorating moves over larger ones, 
and over time this bias is increased, ultimately reducing the probability of accepting a non-
improving move to zero.  The set of available moves can be taken from another heuristic, but 
classical SA pre-empts all other move generation processes to generate moves randomly from the 
proposed domain. 
 
A meta-heuristic may also modify the neighborhood of moves considered to be available, by 
excluding some members and introducing others. This amended neighborhood definition may itself 
necessitate a change in the nature of evaluation. The strategic oscillation approach of tabu search 
illustrates this intimate relationship between changes in neighborhood and changes in evaluation. A 
standard neighborhood that allows moves only among feasible solutions is enlarged by this 
approach to encompass infeasible solutions. The search is then strategically driven to cross the 
feasibility boundary to proceed into the infeasible region. After a selected depth is reached, the 
search changes direction to drive back toward feasibility, and upon crossing the feasibility boundary 
similarly continues in the direction of increased feasibility. (One-sided oscillations are employed in 
some variants to remain predominantly on a particular side of the boundary.) To guide these 
trajectories, the approach modifies customary evaluations to take account of the induced direction 
of movement and the region in which the movement occurs. The result generates a controlled 
behavior that exploits the theme of non-monotonic exploration. 
 
The emphasis on guidance differentiates a meta-heuristic from a simple random restart procedure or 
a random perturbation procedure. However, sometimes these naive restarting and perturbation 
procedures are also classed as low-level meta-heuristics, since they allow an opportunity to find 
solutions that are better than a first local optimum encountered. “Noising” procedures, which 
introduce controlled randomized changes in parameters such as cost or resource availability 
coefficients, provide one of the popular mechanisms for implementing such approaches. Another 
popular mechanism is simply to randomly modify evaluations, or to choose randomly from 
evaluations that fall within a chosen window. Such randomized processes are also applied to 
selecting different types of moves (neighborhood definitions) at different junctures. 
 
In contrast to an orientation that still often appears in the literature, the original conception of a 
meta-heuristic does not exclude consideration of constructive moves for generating initial solutions, 
but likewise allows these moves to be subjected to meta-heuristic guidance. (A popular orientation 
in the literature is to suppose that meta-heuristics are only used in connection with “transition” 
moves, which operate on fully constructed solutions.) From a broader perspective, a partial solution 
created by a constructive process is simply viewed as a solution of a particular type, and procedures 
for generating such solutions are natural candidates to be submitted to higher-level guidance. This 
view has significant consequences for the range of strategies available to a meta-heuristic approach. 
 
Strategic oscillation again provides an illustration. By the logical restructuring theme of tabu search, 
constructive moves are complemented by creating associated destructive moves, allowing the 
oscillation to proceed constructively to (and beyond) a stipulated boundary, and then to reverse 
direction to proceed destructively to various depths, in alternating waves. Transition moves permit 
refinements at varying levels of construction and destruction.  
 
The perspective that restricts attention only to transition moves is gradually eroding, as researchers 
are coming to recognize that such a restriction can inhibit the development of effective methods. 
However, there remain pockets where this recognition is slow to dawn.  (For example, methods that 
alternate between construction and transition moves — affording a simple subset of options 
provided by strategic oscillation — have recently been characterized in a segment of the literature 
as a “new development.”) 
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Our earlier meta-heuristic classification, which differentiates between population-based strategies 
and adaptive memory strategies, is often taken to be a fundamental distinction in the literature. 
Population-based strategies manipulate a collection of solutions rather than a single solution at each 
stage. Such procedures are now often referred to as composing the class of evolutionary methods. A 
prominent subclass of these methods is based on strategies for “combining” solutions, as illustrated 
by genetic algorithms, scatter search and path relinking methods.  Another prominent subclass 
consists of methods that are primarily driven by utilizing multiple heuristics to generate new 
population members. This incorporation of multiple heuristics for generating trial solutions, as 
opposed to relying on a single rule or decision criterion, is a very old strategy whose origins are 
probably not traceable.  Some of the recent evolutionary literature occasionally cites work of the 
mid 1960s as embodiments of such ideas, but such work was clearly preceded by earlier 
developments. The key to differentiating the contributions of such methods obviously rests on the 
novelty of the component heuristics and the ingenuity of the strategies for coordinating them. Such 
concerns are more generally the focus of parallel processing solution methods, and many 
“evolutionary” contributions turn out chiefly to be a subset of the strategies that are being 
developed to a higher level of sophistication under the parallel processing rubric. 
 
The adaptive memory classification provides a more precise means of differentiation, although it is 
not without pitfalls. From a naive standpoint, virtually all heuristics other than complete 
randomization induce a pattern whose present state depends on the sequence of past states, and 
therefore incorporate an implicit form of “memory.” Given that the present is inherited from the 
past, the accumulation of previous choices is in a loose sense “remembered” by current choices. 
This sense is slightly more pronounced in the case of solution combination methods such as genetic 
algorithms and scatter search, where the mode of combination more clearly lends itself to 
transmitting features of selected past solutions to current solutions. Such an implicit memory, 
however, does not take a form normally viewed to be a hallmark of an intelligent memory 
construction. In particular, it uses no conscious design for recording the past and no purposeful 
manner of comparing previous states or transactions to those currently contemplated. By contrast, at 
an opposite end of the spectrum, procedures such as branch and bound and A* search use highly 
(and rigidly) structured forms of memory — forms that are organized to generate all non-dominated 
solution alternatives with little or no duplication. 
 
Adaptive memory procedures, properly conceived, embody a use of memory that falls between 
these extremes, based on the goal of combining flexibility and ingenuity. Such methods typically 
seek to exploit history in a manner inspired by (but not limited to) human problem solving 
approaches. They are primarily represented by tabu search and its variations that sometimes receive 
the “adaptive memory programming” label. In recent years, as previously intimated, other 
approaches have undertaken to incorporate various aspects of such memory structures and 
strategies, typically in rudimentary form. Developments that produce hybrids of tabu search with 
other approaches at a more advanced level have become an important avenue for injecting adaptive 
memory into other methods, and constitute an active area of research.  
 
Another distinction based on memory is introduced by neural network (NN) approaches.  Such 
methods emphasize an associative form of memory, which has its primary application in prediction 
and pattern matching problems.  Neural network procedures also implicitly involve a form of 
optimization, and in recent years such approaches have been adapted to several optimization 
settings. Performance is somewhat mixed, but researchers in optimization often regard neural 
networks as appropriate to be included within the meta-heuristic classification. Such an inclusion is 
reinforced by the fact that NN-based optimization approaches sometimes draw on standard 
heuristics, and produce solutions by transformations that are not limited to ordinary notions of local 
optimality. A number of initiatives have successfully combined neural networks with simulated 
annealing, genetic algorithms and, most recently, tabu search. 
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Meta-heuristics are often viewed as composed of processes that are intelligent, but in some 
instances the intelligence belongs more to the underlying design than to the particular character (or 
behavior) of the method itself. The distinction between intelligent design and intelligent behavior 
can be illustrated by considering present day interior point methods of linear programming. Interior 
point methods (and more general barrier function methods) exploit a number of ingenious insights, 
and are often remarkably effective for achieving the purposes for which they were devised. Yet it 
seems doubtful whether such methods should be labeled intelligent, in the sense of being highly 
responsive to varying conditions, or of changing the basis for their decisions over time as a function 
of multiple considerations. Similar distinctions arise in many other settings. It must be conceded 
that the line that demarks intelligent methods from other methods is not entirely precise. For this 
reason it is not necessary for a master procedure to qualify as intelligent in a highly rigorous sense 
in order to be granted membership in the category of meta-heuristics. 
 
3. Brief Description of Some Meta-heuristics 
 
In this section we briefly describe three well-known meta-heuristics: tabu search, scatter search and 
genetic algorithms. The descriptions focus on the main features of these methodologies and leave 
out implementation details that can be found in specialized research articles. Note that we have also 
briefly addressed simulated in section 2 as part of our discussion on meta-heuristic features. 
 
3.1 Tabu Search 
 
We have mentioned some of the fundamentals of tabu search (TS) in connection with our general 
description of meta-heuristics in the previous sections. In particular, we mentioned that tabu search 
is based on principles of intelligent search. The TS premise is that problem solving, in order to 
qualify as intelligent, must incorporate adaptive memory and responsive exploration. The adaptive 
memory feature of TS allows the implementation of procedures that are capable of searching the 
solution space economically and effectively. Since local choices are guided by information 
collected during the search, TS contrasts with memoryless designs that heavily rely on semirandom 
processes that implement a form of sampling. Examples of memoryless methods include 
semigreedy heuristics and the prominent “genetic” and “annealing” approaches inspired by 
metaphors of physics and biology. Adaptive memory also contrasts with rigid memory designs 
typical of branch and bound strategies. It can be argued that some types of evolutionary procedures 
that operate by combining solutions, such as genetic algorithms, embody a form of implicit 
memory. 
 
The emphasis on responsive exploration in tabu search, whether in a deterministic or probabilistic 
implementation, derives from the supposition that a bad strategic choice can yield more information 
than a good random choice. In a system that uses memory, a bad choice based on strategy can 
provide useful clues about how the strategy may profitably be changed. Even in a space with 
significant randomness a purposeful design can be more adept at uncovering the imprint of 
structure. 
 
Responsive exploration integrates the basic principles of intelligent search, i.e., exploiting good 
solution features while exploring new promising regions. Tabu search is concerned with finding 
new and more effective ways of taking advantage of the mechanisms associated with both adaptive 
memory and responsive exploration. The development of new designs and strategic mixes makes 
TS a fertile area for research and empirical study. 
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3.1.1 Use of Memory 
 
The memory structures in tabu search operate by reference to four principal dimensions, consisting 
of recency, frequency, quality, and influence. Recency-based and frequency-based based memory 
complement each other.  The quality dimension refers to the ability to differentiate the merit of 
solutions visited during the search. In this context, memory can be used to identify elements that are 
common to good solutions or to paths that lead to such solutions. Operationally, quality becomes a 
foundation for incentive-based learning, where inducements are provided to reinforce actions that 
lead to good solutions and penalties are provided to discourage actions that lead to poor solutions. 
The flexibility of these memory structures allows the search to be guided in a multi-objective 
environment, where the goodness of a particular search direction may be determined by more than 
one function. The tabu search concept of quality is broader than the one implicitly used by standard 
optimization methods. 
 
The fourth dimension, influence, considers the impact of the choices made during the search, not 
only on quality but also on structure. Recording information about the influence of choices on 
particular solution elements incorporates an additional level of learning. By contrast, in branch and 
bound, for example, the separation rules are pre-specified and the branching directions remain 
fixed, once selected, at a given node of a decision tree. It is clear however that certain decisions 
have more influence than others as a function of the neighborhood of moves employed and the way 
that this neighborhood is negotiated (e.g., choices near the root of a branch and bound tree are quite 
influential when using a depth-first strategy). The assessment and exploitation of influence by a 
memory more flexible than embodied in such tree searches is an important feature of the TS 
framework. 
 
The memory used in tabu search is both explicit and attributive. Explicit memory records complete 
solutions, typically consisting of elite solutions visited during the search. An extension of this 
memory records highly attractive but unexplored neighbors of elite solutions. The memorized elite 
solutions (or their attractive neighbors) are used to expand the local search. 
 
Alternatively, TS uses attributive memory for guiding purposes. This type of memory records 
information about solution attributes that change in moving from one solution to another.  For 
example, in a graph or network setting, attributes can consist of nodes or arcs that are added, 
dropped or repositioned by the moving mechanism. In production scheduling, the index of jobs may 
be used as attributes to inhibit or encourage the method to follow certain search directions. 
 
3.1.2 Intensification and Diversification 
 
Two highly important components of tabu search are intensification and diversification strategies. 
Intensification strategies are based on modifying choice rules to encourage move combinations and 
solution features historically found good. They may also initiate a return to attractive regions to 
search them more thoroughly. Since elite solutions must be recorded in order to examine their 
immediate neighborhoods, explicit memory is closely related to the implementation of 
intensification strategies.  The main difference between intensification and diversification is that 
during an intensification stage the search focuses on examining neighbors of elite solutions. 
 
Here the term “neighbors” has a broader meaning than in the usual context of “neighborhood 
search.” That is, in addition to considering solutions that are adjacent or close to elite solutions by 
means of standard move mechanisms, intensification strategies generate “neighbors” by either 
grafting together components of good solution or by using modified evaluation strategies that favor 
the introduction of such components into a current (evolving) solution. The diversification stage on 
the other hand encourages the search process to examine unvisited regions and to generate solutions 
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that differ in various significant ways from those seen before. Again, such an approach can be based 
on generating subassemblies of solution components that are then “fleshed out” to produce full 
solutions, or can rely on modified evaluations as embodied, for example, in the use of penalty / 
incentive functions. 
 
Intensification strategies require a means for identifying a set of elite solutions as basis for 
incorporating good attributes into newly created solutions. Membership in the elite set is often 
determined by setting a threshold that is connected to the objective function value of the best 
solution found during the search. However, considerations of clustering and “anti-clustering” are 
also relevant for generating such a set, and more particularly for generating subsets of solutions that 
may be used for specific phases of intensification and diversification. The TS notions of 
intensification and diversification are beginning to find their way into other meta-heuristics. It is 
important to keep in mind that these ideas are somewhat different than the old control theory 
concepts of “exploitation” and “exploration,” especially in their implications for developing 
effective problem solving strategies. 
 
3.2 Scatter Search 
 
Scatter search, from the standpoint of meta-heuristic classification, may be viewed as an 
evolutionary (or also called population-based) algorithm that constructs solutions by combining 
others. It derives its foundations from strategies originally proposed for combining decision rules 
and constraints (in the context of integer programming). The goal of this methodology is to enable 
the implementation of solution procedures that can derive new solutions from combined elements. 
The way scatter search combines solutions and updates the set of reference solutions used for 
combination sets this methodology apart from other population-based approaches. 
 
The approach of combining existing solutions or rules to create new solutions originated in the 
1960s. In the area of scheduling, researchers introduced the notion of combining rules to obtain 
improved local decisions. Numerically weighted combinations of existing rules, suitably 
restructured so that their evaluations embodied a common metric, generated new rules. The 
conjecture that information about the relative desirability of alternative choices is captured in 
different forms by different rules motivated this approach. The combination strategy was devised 
with the belief that this information could be exploited more effectively when integrated than when 
treated in isolation (i.e., when existing selection rules are selected one at a time). In general, the 
decision rules created from such combination strategies produced better empirical outcomes than 
standard applications of local decision rules. They also proved superior to a “probabilistic learning 
approach” that used stochastic selection of rules at different junctures, but without the integration 
effect provided by generating combined rules. 
 
In integer and nonlinear programming, associated procedures for combining constraints were 
developed, which likewise employed a mechanism for creating weighted combinations. In this case, 
nonnegative weights were introduced to create new constraint inequalities, called surrogate 
constraints. The approach isolated subsets of constraints that were gauged to be most critical, 
relative to trial solutions based on the surrogate constraints. This critical subset was used to produce 
new weights that reflected the degree to which the component constraints were satisfied or violated. 
 
The main function of surrogate constraints was to provide ways to evaluate choices that could be 
used to create and modify trial solutions. A variety of heuristic processes that employed surrogate 
constraints and their evaluations evolved from this foundation. As a natural extension, these 
processes led to the related strategy of combining solutions. Combining solutions, as manifested in 
scatter search, can be interpreted as the primal counterpart to the dual strategy of combining 
constraints. 
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Scatter search operates on a set of solutions, the reference set, by combining these solutions to 
create new ones. When the main mechanism for combining solutions is such that a new solution is 
created from the linear combination of two other solutions, the reference set may evolve as 
illustrated in Figure 2. This figure assumes that the original reference set of solutions consists of the 
circles labeled A, B and C. After a non-convex combination of reference solutions A and B, 
solution 1 is created. More precisely, a number of solutions in the line segment defined by A and B 
are created; however, only solution 1 is introduced in the reference set. In a similar way, convex and 
non-convex combinations of original and newly created reference solutions create points 2, 3 and 4.  
The complete reference set shown in Figure 2 consists of 7 solutions (or elements). 
 

1

3

2

4

A

B

C

 
 

Figure 2. Two-dimensional reference set. 
 
Unlike a “population” in genetic algorithms, the reference set of solutions in scatter search tends to 
be small. In genetic algorithms, two solutions are randomly chosen from the population and a 
“crossover” or combination mechanism is applied to generate one or more offspring. A typical 
population size in a genetic algorithm consists of 100 elements, which are randomly sampled to 
create combinations. In contrast, scatter search chooses two or more elements of the reference set in 
a systematic way with the purpose of creating new solutions. Since the combination process 
considers at least all pairs of solutions in the reference set, there is a practical need for keeping the 
cardinality of the set small. Typically, the reference set in scatter search has 20 solutions or less. In 
general, if the reference set consists of b solutions, the procedure examines approximately (3b-7)b/2 
combinations of four different types.  The basic type consists of combining two solutions; the next 
type combines three solutions, and so on and so forth. Limiting the scope of the search to a selective 
group of combination types can be used as a mechanism for controlling the number of possible 
combinations in a given reference set. 
 
3.2.1 Scatter Search Template 
 
The scatter search process, building on the principles that underlie the surrogate constraint design, is 
organized to (1) capture information not contained separately in the original vectors, (2) take 
advantage of auxiliary heuristic solution methods to evaluate the combinations produced and to 
generate new vectors. Specifically, the scatter search approach may be sketched as follows: 
 
1. Generate a starting set of solution vectors to guarantee a critical level of diversity and apply 

heuristic processes designed for the problem considered as an attempt for improving these 
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solutions. Designate a subset of the best vectors to be reference solutions. (Subsequent iterations 
of this step, transferring from Step 4 below, incorporate advanced starting solutions and best 
solutions from previous history as candidates for the reference solutions.) The notion of “best” 
in this step is not limited to a measure given exclusively by the evaluation of the objective 
function. In particular, a solution may be added to the reference set if the diversity of the set 
improves even when the objective value of such solution is inferior to other solutions competing 
for admission in the reference set.  

 
2. Create new solutions consisting of structured combinations of subsets of the current reference 

solutions.  The structured combinations are:  
 

a) chosen to produce points both inside and outside the convex regions spanned by the 
reference solutions.  

b) modified to yield acceptable solutions. (For example, if a solution is obtained by a linear 
combination of two or more solutions, a generalized rounding process that yields integer 
values for integer-constrained vector components may be applied. Note that an acceptable 
solution may or may not be feasible with respect to other constraints in the problem.)  

 
3. Apply the heuristic processes used in Step 1 to improve the solutions created in Step 2. (Note 

that these heuristic processes must be able to operate on infeasible solutions and may or may not 
yield feasible solutions.)  
 

4. Extract a collection of the “best” improved solutions from Step 3 and add them to the reference 
set. The notion of “best” is once again broad; making the objective value one among several 
criteria for evaluating the merit of newly created points. Repeat Steps 2, 3 and 4 until the 
reference set does not change. Diversify the reference set, by re-starting from Step 1. Stop when 
reaching a specified iteration limit.  
 

The first notable feature in scatter search is that its structured combinations are designed with the 
goal of creating weighted centers of selected subregions. This adds non-convex combinations that 
project new centers into regions that are external to the original reference solutions (see, e.g., 
solution 3 in Figure 2). The dispersion patterns created by such centers and their external 
projections have been found useful in several application areas. 
 
Another important feature relates to the strategies for selecting particular subsets of solutions to 
combine in Step 2. These strategies are typically designed to make use of a type of clustering to 
allow new solutions to be constructed “within clusters” and “across clusters”. Finally, the method is 
organized to use ancillary improving mechanisms that are able to operate on infeasible solutions, 
removing the restriction that solutions must be feasible in order to be included in the reference set. 
 
The following principles summarize the foundations of the scatter search methodology: 
 
•  Useful information about the form (or location) of optimal solutions is typically contained in a 

suitably diverse collection of elite solutions.  
•  When solutions are combined as a strategy for exploiting such information, it is important to 

provide mechanisms capable of constructing combinations that extrapolate beyond the regions 
spanned by the solutions considered. Similarly, it is also important to incorporate heuristic 
processes to map combined solutions into new solutions. The purpose of these combination 
mechanisms is to incorporate both diversity and quality.  

•  Taking account of multiple solutions simultaneously, as a foundation for creating combinations, 
enhances the opportunity to exploit information contained in the union of elite solutions.  
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The fact that the mechanisms within scatter search are not restricted to a single uniform design 
allows the exploration of strategic possibilities that may prove effective in a particular 
implementation. These observations and principles lead to the following template for implementing 
scatter search. 
 
1. A Diversification Generation Method to generate a collection of diverse trial solutions, using an 

arbitrary trial solution (or seed solution) as an input.  
 
2. An Improvement Method to transform a trial solution into one or more enhanced trial solutions.  

(Neither the input nor the output solutions are required to be feasible, though the output 
solutions will more usually be expected to be so.  If no improvement of the input trial solution 
results, the “enhanced” solution is considered to be the same as the input solution.)  

 
3. A Reference Set Update Method to build and maintain a reference set consisting of the b “best” 

solutions found (where the value of b is typically small, e.g., no more than 20), organized to 
provide efficient accessing by other parts of the method. Solutions gain membership to the 
reference set according to their quality or their diversity.  

 
4. A Subset Generation Method to operate on the reference set, to produce a subset of its solutions 

as a basis for creating combined solutions.  
 
5. A Solution Combination Method to transform a given subset of solutions produced by the 

Subset Generation Method into one or more combined solution vectors.  
 
The success of scatter search and related strategies is evident in a variety of application areas such 
as vehicle routing, arc routing, quadratic assignment, financial product design, neural network 
training, job shop scheduling, flow shop scheduling, crew scheduling, graph drawing, linear 
ordering, unconstrained optimization, bit representation, multi-objective assignment, optimizing 
simulation, tree problems, mixed integer programming. 
 
3.3 Genetic Algorithms 
 
The idea of applying the biological principle of natural evolution to artificial systems, introduced 
more than three decades ago, has seen impressive growth in the past few years. Usually grouped 
under the term evolutionary algorithms or evolutionary computation, we find the domains of genetic 
algorithms, evolution strategies, evolutionary programming, and genetic programming. 
Evolutionary algorithms have been successfully applied to numerous problems from different 
domains, including optimization, automatic programming, machine learning, economics, ecology, 
population genetics, studies of evolution and learning, and social systems. 
 
A genetic algorithm (GA) is an iterative procedure that consists of a constant-size population of 
individuals, each one represented by a finite string of symbols, known as the genome, encoding a 
possible solution in a given problem space. This space, referred to as the search space, comprises all 
possible solutions to the problem at hand. Generally speaking, the genetic algorithm is applied to 
spaces that are too large to be exhaustively searched (such as those in combinatorial optimization). 
Solutions to a problem were originally encoded as binary strings due to certain computational 
advantages associated with such encoding.  Also the theory about the behavior of algorithms was 
based on binary strings.  Because in many instances it is impractical to represent solutions using 
binary strings, the solution representation has been extended in recent years to include character-
based encoding, real-valued encoding, and tree representations. 
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The standard genetic algorithm proceeds as follows: an initial population of individuals is generated 
at random or heuristically. Every evolutionary step, known as a generation, the individuals in the 
current population are decoded and evaluated according to some predefined quality criterion, 
referred to as the fitness, or fitness function. To form a new population (the next generation), 
individuals are selected according to their fitness. Many selection procedures are currently in use, 
one of the simplest being Holland's original fitness-proportionate selection, where individuals are 
selected with a probability proportional to their relative fitness. This ensures that the expected 
number of times an individual is chosen is approximately proportional to its relative performance in 
the population. Thus, high-fitness (“good”) individuals stand a better chance of “reproducing”, 
while low-fitness ones are more likely to disappear.  
 
Genetically inspired operators are used to introduce new individuals into the population, i.e., to 
generate new points in the search space. The best known of such operators are crossover and 
mutation. Crossover is performed, with a given probability pc (the “crossover probability” or 
“crossover rate”), between two selected individuals, called parents, by exchanging parts of their 
genomes (i.e., encoding) to form two new individuals, called offspring; in its simplest form, sub-
strings are exchanged after a randomly selected crossover point. This operator tends to enable the 
evolutionary process to move toward “promising” regions of the search space. The mutation 
operator is introduced to prevent premature convergence to local optima by randomly sampling new 
points in the search space. Mutation entails flipping bits at random, with some (small) probability 
pm. Genetic algorithms are stochastic iterative processes that are not guaranteed to converge; the 
termination condition may be specified as some fixed, maximal number of generations or as the 
attainment of an acceptable fitness level for the best individual.  
 
Let us consider the following simple example to illustrate the genetic algorithm’s workings. The 
population consists of 4 individuals, which are binary-encoded strings (genomes) of length 8. The 
fitness value equals the number of ones in the bit string, with pc = 0.7, and pm = 0.001. More typical 
values of the population size and the genome length are in the range 50-1000. Also note that fitness 
computation in this case is extremely simple since no complex decoding nor evaluation is 
necessary. The initial (randomly generated) population might look like this:  
 
Label Genome Fitness 
A 00000110 2 
B 11101110 6 
C 00100000 1 
D 00110100 3 
 
Using fitness-proportionate selection we must choose 4 individuals (two sets of parents), with 
probabilities proportional to their relative fitness values. In our example, suppose that the two 
parent pairs are {B,D} and {B,C} (note that A did not get selected as our procedure is 
probabilistic). Once a pair of parents is selected, the crossover operation is performed with 
probability pc, resulting in two offspring. If the crossover operation is not performed (with 
probability 1-pc), then the offspring are exact copies of each parent. Suppose, in our example, that 
crossover takes place between parents B and D at the (randomly chosen) first bit position, forming 
offspring E=10110100 and F=01101110, while the crossover operation is not performed between 
parents B and C, forming offspring that are exact copies of B and C. Next, each offspring is subject 
to mutation with probability pm per bit. For example, suppose offspring E is mutated at the sixth 
position to form E'=10110000, offspring B is mutated at the first bit position to form B'=01101110, 
and offspring F and C are not mutated at all. The next generation population, created by the above 
operators of selection, crossover, and mutation is therefore:  
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Label Genome Fitness 
E' 10110000 3 
F 01101110 5 
C 00100000 1 
B' 01101110 5 
 
Note that in the new population, although the best individual with fitness 6 has been lost, the 
average fitness has increased. Iterating this procedure, the genetic algorithm will eventually find a 
perfect string, i.e., with maximal fitness value of 8. More sophisticated implementations of GAs 
include the use of local search and several crossover operators that are chosen probabilistically to be 
applied to each pair of selected parents. 
 
4. Metaphors of Nature 
 
A popular thrust of many research initiatives, and especially of publications designed to catch the 
public eye, is to associate various methods with processes found in nature. The most notable case is 
the so-called ant colony optimization. The idea behind this meta-heuristic is to emulate the behavior 
of an ant colony in search for food.  In particular, the procedure simulates how pheromone trails are 
built and also how they evaporate. The simulation of this behavior is achieved with memory 
functions that are remarkably similar to those in tabu search. For example, the method uses both 
frequency-based memory and recency-based memory to control attractiveness of a route that an 
artificial ant might take. 
 
The trend of using metaphors of nature embodies a wave of “New Romanticism,” reminiscent of the 
Romanticism of the 18th and 19th centuries (distinguished by their preoccupation with Nature with a 
capital “N”). The current fascination with natural phenomena as a foundation for problem-solving 
methods undoubtedly is fueled by our sense of mystery concerning the ability of such phenomena to 
generate outcomes that are still far beyond our comprehension. However, the New Romanticism 
goes farther, to suggest that by mimicking the rules we imagine to operate in nature (especially 
“rudimentary” processes of nature) we will similarly be able to produce remarkable outcomes. 
 
Models of nature that are relied upon for such inspiration are ubiquitous, and it is easy to conjure up 
examples whose metaphorical possibilities have not yet been tapped. To take an excursion in the 
lighter side of such possibilities (though not too far from the lanes currently traveled), we may 
observe that a beehive offers a notable example of a system that possesses problem-solving 
abilities. Bees produce hives of exceptional quality and complexity, coordinate diverse tasks among 
different types of individuals, perform spatial navigation, and communicate via multiple media. (It 
is perhaps surprising in retrospect that the behavior of bees has not been selected as a basis for one 
of the “new” problem solving methods.) 
 
Nor is it necessary to look simply to sentient creatures for analogies that inspire templates for 
effective problem solving. The root system of a tree, for example, provides an intriguing model for 
parallel computation. In order to find moisture and nutrients (analogous to a quest for “solutions”), 
roots distribute themselves across different regions, sending out probes that multiply or atrophy 
according to the efficacy of their progress. The paths of such a system may cross, as different 
channels prove promising by virtue of the regions in which they lie and also according to the 
directions in which they are explored. Obstacles are effectively skirted, or over time are surmounted 
by longer-range strategies — as by extending finer probes, which ultimately expand until the 
medium is broached. There exist some root systems, as in groves of aspen, where roots of one entity 
can merge with those of another, thus enlarging the potential sources of communication and contact 
available to each.  (Such an interlinked community gives rise to the largest known organisms on the 
planet.) 
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These analogies to systems in nature invite us to ponder a key question. If we were allowed to place 
our bets on the probable success of a hive of bees or a grove of aspen, as opposed to that of a group 
of humans, when confronted with a challenging task that requires intelligence and the ability to 
learn from the past, how would we wager? Undoubtedly we would be drawn to reflect that our goals 
and problem structures might often be different than those to which “natural processes” apply. In 
addition, we ourselves   as products of a rather special and extended chain of natural 
developments   may incorporate capabilities not present in the processes that produced us. 
 
Metaphors of nature have a place. They appear chiefly to be useful for spurring ideas to launch the 
first phases of an investigation. As long as care is taken to prevent such metaphors from cutting off 
lines of inquiry beyond their scope, they provide a means for “dressing up” the descriptions of 
various meta-heuristics in a way that appeals to our instinct to draw parallels between simple 
phenomena and abstract designs. 
 
Invoking such parallels may sometimes appear to embody a primitive mysticism, akin to chanting 
about campfires in the night, but it gives us a foundation for connecting the new to the old, and for 
injecting passion into our quests. It is up to prudence to determine when the symbolism of the New 
Romanticism obscures rather than illuminates the pathway to improved understanding. Within the 
realm of meta-heuristic design, there is a great deal we have yet to learn. The issue of whether the 
analogies that underlie some of our models may limit or enhance our access to further discovery 
deserves careful reflection. 
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