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Abstract 

A global optimization algorithm for nonconvex Generalized Disjunctive Programming 

(GDP) problems is proposed in this paper. By making use of convex underestimating functions 

for bilinear, linear fractional and concave separable functions in the continuous variables, the 

convex hull of each nonlinear disjunction is constructed. The relaxed convex GDP problem is 

then solved in the first level of a two-level branch and bound algorithm, in which a discrete 

branch and bound search is performed on the disjunctions to predict lower bounds. In the second 

level, a spatial branch and bound method is used to solve nonconvex NLP problems for updating 

the upper bound. The proposed algorithm exploits the convex hull relaxation for the discrete 

search, and the fact that the spatial branch and bound is restricted to fixed discrete variables in 

order to predict tight lower bounds. Application of the proposed algorithm to several example 

problems is shown, as well as comparisons with other algorithms. 

Keywords: Nonconvex GDP, nonconvex MINLP, convex hull relaxation, branch and bound, 

global optimization. 
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Introduction 

Nonlinear discrete/continuous optimization problems can be formulated as Generalized 

Disjunctive Programming (GDP) models as proposed by Raman and Grossmann (1994). The 

GDP model involves disjunctions for representing discrete decisions in the continuous space, and 

logic propositions for the decisions in the discrete space. Lee and Grossmann (2000) have 

proposed a convex hull relaxation for the GDP model, and solution algorithms based on branch 

and bound or reformulation. Convex GDP problems can often be reformulated into tight Mixed-

Integer Non-Linear Programming (MINLP) problems, which can be solved with a number of 

MINLP algorithms (Grossmann and Kravanja, 1997). The methods by Lee and Grossmann 

(2000) for convex GDP problems can be applied to problems involving multiple terms in each 

disjunction.  

The solution of MINLP models involving nonconvex functions has been receiving increased 

attention due to its practical importance in engineering and many other areas. Due to the 

nonconvexites, conventional MINLP algorithms are often trapped in suboptimal solutions. There 

has recently been significant progress in the global optimization of nonconvex NLP problems 

(for a review, see Floudas, 2000; Horst and Tuy, 1996). Most of the methods proposed for 

solving these problems rely on the spatial branch and bound method, which is a deterministic 

algorithm that divides the feasible region of continuous variables and compares the lower bound 

and upper bound for fathoming each subregion. The subregion that contains the optimal solution 

is found by eliminating subregions that are proved not to contain the optimal solution. An 

example of such a method for nonconvex NLP problems is the one by Quesada and Grossmann 

(1995) who proposed a spatial branch and bound algorithm for concave separable, linear 

fractional and bilinear programs, and making use of linear and nonlinear underestimating 

functions.  

As for methods for nonconvex MINLP, Ryoo and Sahinidis (1995), and later Tawarmalani 

and Sahinidis (2000a) have developed a branch and bound method that branches on both the 

continuous and discrete variables. This method, which relies on bounds reduction and the use of 

underestimators, has been implemented in BARON. Adjiman et al. (1997; 2000) proposed the 

SMIN-αBB and GMIN-αBB algorithms for twice-differentiable nonconvex MINLPs. By using a 

valid convex underestimation of general functions, as well as for special functions, Adjiman and 

Floudas (1996) developed the αBB method which is a branch and bound procedure that branches 
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on both the continuous and discrete variables according to specific options. The branch-and-

contract method (Zamora and Grossmann, 1998b; 1999) for global optimization of process 

models, which have bilinear, linear fractional, and concave separable functions in the continuous 

variables and linear 0-1 variables, uses bound contraction and applies the outer-approximation 

(OA) algorithm at each node of the tree for the spatial search. Kesavan and Barton (2000) 

developed a generalized branch-and-cut (GBC) algorithm, and showed that their earlier 

decomposition algorithm (Kesavan and Barton, 1999) is a specific instance of the GBC 

algorithm with a set of heuristics. 

In this paper, we propose a global optimization algorithm for nonconvex GDP problems in 

which we consider bilinear, linear fractional, and concave separable functions for the continuous 

variables, and linear functions for the discrete variables. Using valid underestimators from 

McCormick (1976) and Quesada and Grossmann (1995), the relaxed GDP is reformulated as a 

convex NLP by the convex hull relaxation as proposed by Lee and Grossmann (2000). To exploit 

the tight relaxation of this problem, a two-level branch and bound algorithm is proposed. In the 

first level, a discrete branch and bound is performed on the disjunctions to update the lower 

bound. In the second level, a spatial branch and bound search is performed for fixed discrete 

variables to update the upper bound. The proposed method is applied to nonconvex GDP 

problems that arise in process networks, heat exchanger networks, and the design of batch 

processes. Numerical results and comparisons with other solution methods are presented. 

 

Nonconvex GDP Model 

Consider the following Generalized Disjunctive Programming problem (Raman and Grossmann, 

1994), which includes Boolean variables, disjunctions and logic propositions as shown in 

problem (P),  
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 f: Rn →  R1 is the term for continuous variables x in the objective function and r: Rn →  Rq are 

common constraints that hold regardless of the discrete decisions. f(x), r(x), and g(x) are assumed 

to be nonconvex functions of the general form, ∑∑ ∑∑ ∑ +++
i

i
i j j

i
ij

i j
jiij xl

x
x

bxxaxh )()( , 

where h(x) is a convex function and li(x) is a concave separable function, and the second and the 

third terms involve bilinear and linear fractional functions, respectively (see Quesada and 

Grossmann, 1995; Zamora and Grossmann, 1998b).  

The disjunctions k ∈  K are composed of a number of terms j ∈  Jk that are connected by the 

OR operator (∨). In each term, there is a Boolean variable Yjk, a set of nonconvex inequalities 

gjk(x) ≤ 0, gi
jk: Rn →  R1, and a cost variable ck. If Yjk is true, then gjk(x) ≤ 0 and ck = γjk are 

enforced. Otherwise, these constraints are ignored. We assume here that each term in the 

disjunctions gives rise to a non-empty feasible region which is generally nonconvex. Also, Ω (Y) 

= True are logic propositions for the Boolean variables. Continuous variables x are assumed to 

have lower and upper bounds. 

The overall procedure of the proposed two-level branch and bound algorithm is as follows 

(see Figure 2). We first introduce convex underestimators in the nonconvex GDP problem (P), 

and construct the underestimating problem (R). This convex GDP problem is then reformulated 

as the convex NLP problem (CRP) by using the convex hull relaxation of each disjunction. Since 

all the disjunctions are relaxed, the convex NLP problem yields a valid lower bound. An initial 

upper bound is obtained by solving a nonconvex MINLP reformulation of the nonconvex GDP 

by a standard MINLP method such as DICOPT++ (Viswanathan and Grossmann, 1990). The 
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upper bound is used for bound contraction to reduce the feasible region (Zamora and Grossmann, 

1997). The discrete branch and bound method by Lee and Grossmann (2000) is applied at the 

first level of the branch and bound to solve the convex GDP problem. When all the Boolean 

variables are fixed, a spatial branch and bound method is used at the second level for solving the 

corresponding nonconvex NLP problem to yield an upper bound. The application of the 

proposed algorithm is illustrated with several example problems. 

 

Convex Relaxation of GDP 

Problem (P) is first reformulated into a convex GDP problem by introducing valid convex 

underestimating functions as shown below, 
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The functions ,,rf and g are valid convex underestimators such that )()( xfxf ≤ and the 

inequalities 0)( ≤xr and 0)( ≤xg  are satisfied if r(x) ≤ 0 and g(x) ≤ 0 (see Figure 1). Hence, the 

optimal solution ZR* of problem (R) provides a valid lower bound to the global optimal solution 

of problem (P). The specific underestimators for the bilinear, linear fractional, and concave 

separable terms are given in Appendix A. A recent review of these functions and some of its 

properties can be found in Tawarmalani and Sahinidis (2000a).  

Since problem (R) is a convex GDP as described in Lee and Grossmann (2000), the feasible 

region of problem (R) can be relaxed by replacing each disjunction by its convex hull. This 

relaxation yields the following convex NLP model: 
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where νjk is the disaggregated continuous variable for the j-th term in the k-th disjunction, and λjk 

is the corresponding multiplier for each term j ∈  Jk in a given disjunction k ∈  K. Note that 

problem (CRP) does not involve the Boolean variables Yjk since they are replaced by the 

continuous variables λjk, 0 ≤ λjk ≤ 1. The constraints )/( jk
jk

jkjk vg λλ  are convex if gjk(x) is 

convex (Hiriart-Urruty and Lemaréchal, 1993). Note that the logic propositions Ω (Y) = True are 

replaced by the linear constraints Aλ ≤ a. Give that problem (R) yields a lower bound, and 

problem (CRP) is a relaxation of problem (R), the following proposition can be trivially 

established for problem (CRP): 

 

Proposition 1 The optimal solution ZL* of problem (CRP) yields a lower bound to the optimal 

solution ZP* of problem (P). 

 

For implementation, the inequalities in the disjunctions are replaced by 

0))/(()( ≤++ ελελ jk
jk

jkjk vg  where ε is a small tolerance (e.g. ε = 0.0001). These reformulated 

constraints are convex if 0)( ≤xg jk  is convex. One can reformulate problem (CRP) as an 

MINLP by restricting the variables λjk to binary values. For detailed properties of problem 

(CRP), see Lee and Grossmann (2001). In this paper, we use problem (CRP) within a two-level 

branch and bound method that will be explained in later sections.  

As stated by the above proposition, a rigorous lower bound to problem (P) is obtained by 

solving problem (CRP) which has a unique local optimal solution (Bazaraa et al., 1993). This 

objective value is used as the initial value of the Global Lower Bound (GLB) when solving the 
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nonconvex GDP problem (P). This lower bound is updated when fixing the Boolean variable Yjk 

in problem (R) (or corresponding λjk in (CRP)) in the discrete branch and bound search. When all 

λjk are either 0 or 1 (feasible to problem (R)), and there is no gap between the convex 

underestimators and the nonconvex functions at the solution point of problem (CRP), then the 

optimal objective value is a valid upper bound to problem (P) since this solution is also feasible 

to problem (P).  
 
 

Global Upper Bound Subproblem  

A valid upper bound for problem (P) can be obtained by applying an algorithm, such as the 

Augmented Penalty/Outer Approximation/Equality Relaxation implemented in DICOPT++ 

(Viswanathan and Grossmann, 1990), to the MINLP reformulation of (P). This yields the 

following nonconvex MINLP:  
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where Mjk, the “big-M” parameter, is a valid upper bound to the violation of the inequality gjk(x) 

≤ 0 and parameter U is an upper bound to x. 

In our experience, we have usually found a very good upper bound by using DICOPT++ to 

solve problem (P-MIP). Since this problem is nonconvex, the lower bound predicted by the 

MILP master problem is not valid, and therefore the heuristic termination criterion is used in 

DICOPT++ which stops when no further improvement is found in the NLP subproblem. The 

solution of (P-MIP) yields a Global Upper Bound (GUB) which is useful in pruning non-optimal 

nodes in the discrete branch and bound search.  

 

Bound Contraction Procedure 
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Usually considerable computational work is required in both the discrete and the spatial branch 

and bound search for finding the subregion which contains the global optimal solution. The 

difference between the lower and the upper bounds largely depends on the variable bounds. 

Since elimination of non-optimal subregions is crucial in accelerating the search, we consider a 

bound contraction scheme to tighten the lower and upper bound of a given continuous variable xi, 

i = 1,2,3,… ,n by solving the following NLP problem: 
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If the solution point xi of problem (CRP) does not lie at its bound, then we solve the NLP 

problem (BCP) and update the upper and lower bounds (see Figure 3). Another way of updating 

the bounds is through range reduction, where cuts are generated based on the active constraints 

in the relaxed solution (Ryoo and Sahinidis, 1995; Tawarmalani and Sahinidis, 2000a). In this 

paper, we follow the bound contraction operation which was proposed by Zamora and 

Grossmann (1999). In the relaxed solution of problem (CRP), one continuous variable xi, which 

is not at its bound, is selected. Then the direction of bound contraction (min or max) is decided 

based on the relative distance from the solution to each bound. Bound contraction is applied to 

only the continuous variables. The discrete variables are not fixed and they are relaxed as 

continuous variables in solving problem (BCP). The iteration of bound contraction continues 

until the solution of subproblem does not yield a reduction greater than a specified tolerance.   

 

Branch and Bound on Boolean Variables 
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In this step, a branch and bound method is applied in the space of the terms of the disjunctions by 

solving the relaxed convex NLP problem (CRP) at each node (for detailed description, see Lee 

and Grossmann, 2000). The branching rule is to select the variable λjk that has the largest 

fractional value in the solution. Two child nodes are created by fixing λjk = 1 and λjk = 0, which 

means that we fix Yjk as true and as false in problem (R), respectively. For the case when we fix 

Yjk = true, we simply fix at that node the corresponding j-th term of disjunction k. When we fix Yjk 

= false, we consider at that node the convex hull relaxation of all terms j’ ≠ j. Since the number 

of Boolean variables in problem (R) is finite, the search in the discrete space requires a finite 

number of nodes in the branch and bound tree. The global lower bound, GLB, increases 

monotonically as the variables λjk are fixed in the branch and bound tree. When all the λjk are 

either 0 or 1, the solution for Boolean variables is feasible for the GDP problem (R). If there is a 

gap between the solution of this problem and the original nonconvex GDP problem (P), we need 

to update the upper bound of the objective value so that the convex approximation is small 

enough within a given tolerance.  

At a node where a feasible solution to problem (R) is obtained, and the gap between every 

nonconvex term in problem (P) and its convex underestimator in problem (R) is nonzero, we fix 

all Boolean variables and switch to a spatial branch and bound method. At this node we solve a 

nonconvex NLP problem to global optimality, and obtain a feasible solution to problem (P) (if 

one exists). If the solution is lower than the global upper bound, GUB, it is updated. After the 

spatial branch and bound is completed, we return to the current node of the discrete branch and 

bound tree and add a cut for the Boolean variables to the discrete branch and bound to exclude 

the previous choice of the fixed Boolean variables. By solving problem (R) at the current node 

with this cut, a new solution of Yjk is generated. If the solution is infeasible, then we close the 

current node and backtrack. If the solution is feasible and there is a gap between GUB and GLB, 

which is the lowest objective value among the open nodes, then we keep branching. The search 

stops when there are no open nodes with an objective value less than GUB in the discrete branch 

and bound tree.   

 

Spatial Branch and Bound (SBB) Method 

When all the Boolean variables are fixed, problem (CRP) reduces to a discrete feasible GDP 

problem (R) since each disjunction is satisfied. If there is a gap between the convex 
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underestimators and the nonconvex functions, we need to branch on the continuous variables x to 

reduce the feasible region by contracting the upper and lower bounds of x.  

The spatial branch and bound described is essentially the one by Quesada and Grossmann 

(1995), and has three main steps: the branching variable selection, the branching point selection 

and the node selection. After solving problem (CRP), the nonconvex term with the maximum 

gap between its convex underestimator and the nonconvex term is chosen. If that function has 

more than one variable as its arguments, then the variable with the largest difference in the 

variable bounds, |xU - xL|, is selected since we expect that the variable with largest variable bound 

would have the most effect on the reduction of the gap. The branching point used in this work is 

the middle point of the variable bound, (xU + xL)/2 (bisection rule). Alternatively, one can use the 

solution point x of problem (CRP) at the current node (omega rule). Among the open nodes, we 

select the node with lowest objective value. If the objective value of the current node is greater 

than GUB, then the current node is fathomed. Since branching is applied to continuous variables, 

the spatial branch and bound search is theoretically an infinite process although it has finite 

termination for ε-convergence. The performance, however, heavily depends on the actual value 

selected for ε.  

An optional step in the spatial branch and bound is to use the bound contraction operation 

whenever a new GUB is found. It can help to reduce the variable bounds, but additional effort is 

spent in solving the contraction subproblem. This option was not used in this paper. 

 

Solution Algorithm for Nonconvex GDP Problems 

In this section, we describe the global optimization algorithm for nonconvex GDP problems (see 

Figure 2). In this algorithm, we define the gap as the difference between a given nonconvex 

function and its convex underestimator at the solution point x* of problem (CRP) (i.e. gap = 

*)(*)( xfxf − ). 

 

Step 0. Heuristic Search (Nonconvex MINLP) 

Solve the nonconvex problem (P-MIP) with an MINLP solver such as DICOPT++ 

(Viswanathan and Grossmann, 1990). 

Set GUB as the best upper bound obtained by DICOPT++; let (Y*, x*) be the solution.  

Step 1. Bound Contraction (Convex NLP) 
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1.1 Set the maximum number of major iterations, NC. Set BC = 0 and the tolerance δ. 

 Set the minimum value SPm for a successful contraction step. (e.g., 0.2) 

 Initialize the Relative Distance (RD) from xi* to each bound: 
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1.2 Increase the iteration count, BC = BC + 1. 

For i = 1,2,3,… ,n 

Solve problem (BCP).  

- Minimize xi if RDLi > RDUi and RDLi > δ. 

- Maximize xi if RDLi ≤ RDUi and RDUi > δ. 

 If contraction is greater than SPm, update the bound and continue with xi.  

Otherwise, select next variable xi. 

1.3 Return to step 1.2 and repeat while the iteration count BC ≤ NC.  

Step 2. Branch and Bound on Discrete Variables (Convex NLP) 

 2.1 Set tolerance α for difference in ZL and GUB. Set ε for maximum gap. 

2.2 Solve problem (CRP) to obtain lower bound ZL. Update lowest lower bound as GLB. 

a) If the solution is feasible and ZL ≥ GUB - α, then fathom the node. 

b) If the solution is infeasible, then fathom the node. 

c) If the solution is feasible and all λjk are either 0 or 1, then 

 If for all functions gap ≤ ε and ZL < GUB, then GUB = ZL. Backtrack. 

 Else if any gap > ε, then go to Step 3 with fixed λjk. 

  After GUB is updated from Step 3, add a cut for the current Boolean variables, 

( )



 ¬∧∧¬

∈∈ iFiiTi
YY

nn

 where Tn and Fn are the set of Boolean variables that are 

true and false at the current node. 

d) If the solution is feasible and ZL < GUB - α, then 

Branch on λjk which is closest to one.  

Create two child nodes (λjk = 1 and λjk = 0).  

2.3 Return to step 2.2 according to a specified search strategy (e.g. depth first or breadth 

first) while GLB < GUB - α.    

Step 3. Spatial Branch and Bound (Convex NLP) 
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 3.1 Fix all λjk as either 0 or 1 according to the solution from Step 2. 

 3.2 Solve problem (CRP).  

a) If the solution is feasible and ZL ≥ GUB - α, then fathom the node. 

b) If the solution is infeasible, then fathom the node. 

c) If the solution is feasible and for all functions gap ≤ ε, update GUB when ZL < 

GUB. 

d) If the solution is feasible and any gap > ε, then 

Select the nonconvex function fr with maximum gap. 

Select the continuous variable xs among the arguments of fr with maximum 

variable bound difference, |xU - xL|. 

Set the branching point xs
B according to the branching rule.  

2/)(:RuleBisection

*:RuleOmega
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s
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xxx

xx

+=
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Create two child nodes (xs ≤ xs
B and xs

B ≤ xs). 

3.3 Select a node and return to step 3.2 and continue until there is no open node with ZL < 

GUB - α. 

3.4 Go to Step 2. 

 

It should be pointed out that the above algorithm finds the optimal solution in a finite 

number of steps. This follows from the finiteness of the discrete branch and bound tree (step 2), 

and the finite termination for ε-convergence in the global optimization subproblem (step 3). It 

should be noticed that step 3 is included in the branch and bound tree of step 2, giving rise to an 

embedded tree structure. The proposed algorithm is in that sense similar to the work by Adjiman 

et al. (2000) who used as an option a two-level sequential branching strategy for nonconvex 

MINLP problems in which binary variables are selected for branching in the first level and then 

continuous variables are selected in the second level of the SMIN-αBB algorithm. Finally, it is 

worth noting that fixing all the discrete variables in step 3 may in special cases simplify the 

problem to a convex NLP problem which can then simply be solved with a local optimizer (see 

examples 5 and 6). 

 

Illustrative Example 
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We describe the solution procedure with a small nonconvex GDP example, which was originally 

proposed as a nonconvex MINLP by Kocis and Grossmann (1989) for optimizing a small 

superstructure consisting of two reactors. This problem can be reformulated as the following 

nonconvex GDP problem: 
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The optimal solution is 99.2 with Y* = (true, false), x* = 13.4 and v* = 3.5. Note that 

problem (E0) has only one disjunction which has nonlinear equality constraints which are 

nonconvex. In step 0 of the proposed algorithm, a nonconvex MINLP reformulation (P-MIP) is 

solved with the OA method. An initial upper bound of 99.2 is obtained after three major 

iterations. The GUB is initialized as 99.2 and is used in the remaining steps. To derive the 

convex relaxation we first substitute [1-exp(-0.5v)] in the first term with the continuous variable 

α, resulting in bilinear terms. The nonlinear equality α =  [1-exp(-0.5v)] is replaced by two 

nonlinear inequalities. The second term in the disjunction follows the same substitution, which 

leads to: 
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The bilinear term αx is replaced by linear under and overestimators (see Appendix A). In the 

first term of the disjunction, the inequality α ≤  [1-exp(-0.5v)] is convex while the inequality α ≥ 
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[1-exp(-0.5v)] is concave. We underestimate the concave term by a secant line which matches 

the concave term at the lower and upper bound of v. The convex underestimating problem of 

(E0) is then as follows: 
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where )4.0exp(1),4.0exp(1),5.0exp(1),5.0exp(1 2211
UULLUULL vvvv −−=−−=−−=−−= αααα . 

This relaxation problem (R0) is a convex nonlinear disjunctive problem for which we apply the 

convex hull relaxation to the disjunction, resulting in problem (CRP). In step 1, we solve 

problem (BCP) of (R0) for bound contraction of the continuous variable x and v. The discrete 

variables are relaxed in solving the bound contraction problem. Initially, the bounds are 0 ≤ x ≤ 

20 and 0 ≤ v ≤ 10.  After solving four NLPs, the new bounds are 11.1 ≤ x ≤ 18.7 and 1.6 ≤ v ≤ 

5.1. The interval size of the bounds of x is reduced to 38 % of its original size, and for v it is 

reduced to 35 %. The percentage bound reduction of each variable is calculated from the ratio of 

the new bounds gap to the old bounds gap, ||/|| L
old

U
old

L
new

U
new xxxx −− . With the new bounds, the 

discrete branch and bound is performed in step 2. Figure 4 shows the branch and bound tree and 

Table 1 shows the numerical results of each step of the proposed method. The first lower bound 

at the root node (GLB) is 97.5 and the gap between GUB and GLB is 1.7 %. At the root node, 

we relax λ in problem (CRP) as continuous variables between 0 and 1. Here λjk corresponds to 

the Boolean variable Y jk in problem (R) and λ jk = 1 in the solution means Y jk = true. Solving 

problem (CRP) yields a discrete feasible solution of λ = (1,0). For convenience, we denote this 
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value of λ as YL. This integer value is fixed as YF = (1,0) and the bound GUB (99.2) is given to 

the spatial branch and bound step (node S1 in Figure 4). In step 3, the branching variables are x 

and v. The variable with the largest difference in the variable bounds is selected first. The 

branching variable and its branching point are shown on each node. At node S1, x is selected first 

and the branching point is the middle point of the variable bounds. At node S3, the objective 

value 99.3 is higher than GUB, so it is fathomed. Node S4 is infeasible and node S5 yields the 

optimal solution. Five NLPs are solved with a relative tolerance of 0.1 % and the optimality of 

the upper bound 99.2 is again verified for fixed YF = (1,0). A cut is added to node 1 of step 2 and 

problem (CRP) is resolved since the gap between GUB and GLB is not closed yet at the node 1. 

Node 2 yields a solution YL = (0.5,0.5) and ZL = 101.6, and hence it is fathomed by GUB and the 

search is stopped. Therefore, a total of seven NLPs are solved in the branch and bound 

procedure. The problem size is too small for the computing time to be of any significance.  

 

Numerical Examples 

In this section, we apply the proposed algorithm to seven nonconvex GDP example problems. 

All of them were solved with GAMS (Brooke et al., 1997) on a 300 MHz Pentium II PC with 

128MB of memory. The GAMS/DICOPT++ MINLP solver (AP/OA/ER) and GAMS/CONOPT 

NLP solver are used. The tolerances selected were δ = 0.01, α = 0.01 % (of GUB), SPm = 0.2, 

and ε = 0.0001. Table 2 shows the size and numerical results of the nonconvex GDP problems.  

 

Example 1 

This example is adapted from Lee and Grossmann (2001). The model involves a disjunction of 

convex feasible sets and a concave objective function. 
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The optimal solution is –11.0 with x* = (0,0) and Y* = (true, false, false). Underestimators 

for the concave terms -x1
2 and -x2

2 are secant lines that match the concave terms exactly at the 

lower and upper bounds of x. Problem (E1) is then replaced by the convex GDP:  
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where L
nx  and U

nx  are lower and upper bounds of xn. In step 0 of the proposed method, 

DICOPT++ finds the global optimal solution in four major iterations by solving the nonconvex 

MINLP reformulation of (E1). GUB = -11.0 is used in the bound contraction problem (BCP) in 

step 1. When we solve problem (BCP), no λj is fixed and the bound contraction is applied to x1 

and x2 only. In step 1, nine iterations of bound contraction yield 69.5 % of reduction in the 

feasible region. Due to the reduced feasible region of x, the first lower bound by solving problem 

(CRP) in step 2 is –11.25, which has 2.3% optimality gap from GUB. For comparison, if we use 

the original bound 0 ≤ x ≤ 8 in step 2, then the first lower bound from problem (CRP) is –34.4. 

Therefore, there is a significant improvement of the lower bound by contracting the feasible 

region. The discrete branch and bound step searched 3 nodes and one feasible choice of Y = 

(true, false, false) was found during the search. At that discrete choice, the spatial branch and 

bound step required three nodes, again verifying the best upper bound of –11.0. A total six NLP 

subproblems were solved in the branch and bound steps. For detailed results in the solution 

procedure, see Table 2.   

 

Example 2 

The second example has a nonconvex objective function with the same disjunctive feasible set as 

in example 1. 
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The optimal solution is –14.0 with x* = (2,5) and Y* = (false, false, true). Secant lines for 

the concave functions -x1
2 and -x2

2 are again used as convex underestimators. We replace the 

nonconvex terms in the objective function by the continuous variables, α1 and α2. The relaxed 

convex GDP problem is then as follows: 
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In step 0, DICOPT++ finds a feasible solution –14.0 in four major iterations. With this 

objective value as an initial GUB, the bound contraction operation is applied. In step 1, eight 

iterations of solving problem (BCP) result in an average reduction of 52.6 % in the bounds. By 

solving the convex hull relaxation problem (CRP) of (R2), the first lower bound is –37.36 (see 

Figure 5). At the root node, the relaxed value λ3 is closest to one and it is selected as branching 

variable. By fixing Y3 as true, we find a discrete feasible solution of YL = (0,0,1). By fixing these 

Boolean variables according to YF = (0,0,1), the spatial branch and bound method finds after 27 

nodes an upper bound of –14.0, which is the optimal solution to problem (E2). When returning to 

the discrete branch and bound, the GUB is updated and the cut which excludes the choice Y = 

(false, false, true) is added. The second node is resolved with this cut and the solution is 

infeasible. Therefore, we go to the third node by fixing Y3 as false. The last two nodes are 
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fathomed since their objective values are greater than GUB. A total of six nodes are searched in 

the discrete search of step 2.  

 

Example 3 

The next example is taken from Kocis and Grossmann (1989). It involves a nonconvex MINLP 

problem which consists in selecting the optimal structure for separating a multicomponent 

process streams into a set of product streams with given purity specifications (see Figure 6). We 

formulate this problem with the following nonconvex GDP model: 

1822 ,1511
20.32  ,10.41

17654
377,377
366,366

71192
71192
61081
61081

250.0145.03
250.0155.03 ..

5025454
4428110230135min

≤+≤+
≥≥

=+++
==
==

++=
++=
++=
++=

+=
+=

++++
++++−−=

BPAPBPAP
APBPBPAP

EEEE
BFEBFAFEAF
BFEBFAFEAF

BFBFBFBP
AFAFAFAP
BFBFBFBP
AFAFAFAP

FFBF
FFAFts

CDCFBFAF
BFAFFFBPAPZ

 

},{;17,6,5,40;252,1;,0

0
05

01111
01010

055

25
5950.011,5025.011
5050.010,5975.010

25555.2
355,355

)E3(

0
04

099
088
044

2
480.09,415.09
420.08,485.08

25445.2
344,344

falsetrueYEEEEFFCDCF

CD
E

BFAF
BFAF

BFAF
YD

CD
BFBFAFAF
BFBFAFAF

BFAF
BFEBFAFEAF

YD

CF
E

BFAF
BFAF
BFAF

YF

CF
BFBFAFAF
BFBFAFAF

BFAF
BFEBFAFEAF

YF

∈≤≤≤≤


























=
=

==
==

==
¬

∨



























=
==
==
≤+≤

==



























=
=

==
==
==

¬

∨



























=
==
==
≤+≤

==

 



 

 19

 

The optimal solution is –510.08 with F1* = 8, F2* = 25, P1* = P2* = 15, E* = 

(0.108,0.758,0,0,134), and Y* = (true, true). In this example, the bilinear terms are replaced by 

continuous variables and we add the linear underestimators and overestimators by McCormick 

(1976) as discussed by Quesada and Grossmann (1995) to construct the relaxed convex GDP 

problem (R). Using the heuristic search in step 0, DICOPT++ finds the trivial solution of 0.0 at 

the first NLP. The bound contraction step for continuous variables yields 10.8 % of reduction 

after solving fourteen LP subproblems in step 1. Performing the discrete branch and bound on 

problem (CRP) in step 2, a feasible solution to the relaxed GDP is found at the third node with YL 

= (1,1) and objective value of –661.56. At this node, we switch to spatial branch and bound (step 

3) with fixed YF = (1,1). This means that we fix Y as (true, true) and selecting the corresponding 

terms in the disjunctions in (E3). Branching on the continuous variables, it takes 27 nodes to 

reduce the gap (27 LPs). An upper bound solution (-510.08) is found and this solution is used to 

update in step 2 the value of GUB. A cut to exclude Y = (true, true) is added to the previous node 

in step 2 and we resolve problem (CRP). Finding that the solution is infeasible, we close current 

node and backtrack. In step 2, two more nodes are searched and they are fathomed by the GUB. 

The optimal structure is shown in Figure 7. 

 

 

Example 4 

The fourth example is the nonconvex MINLP example 4.6 by Zamora (1997). The reformulated 

nonconvex GDP model is as follows: 
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The optimal solution is –116,575 with x* = (2.952,52.77,0,1.736,24.46) and Y* = (false, 

true, true). Convex underestimators and overestimators for the bilinear terms are introduced and 

the bilinear terms are replaced by continuous variables, αij. The convexification relaxes problem 

(E4) as the linear GDP problem (R4): 
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Using DICOPT++ to solve the MINLP problem (P-MIP) in step 0 yields the optimal 

solution of –116,575 (GUB) after one major iteration. In the bound contraction step, 45 LPs are 

solved and the reduction is 22.2 %. Figure 8 shows the branch and bound tree for step 2 and step 

3. In step 2, we solve the convex hull relaxation of problem (R4) and the first lower bound 

(GLB) is –242,474 at the root node with YL = (0,1,0). Now the algorithm switches to the spatial 

branch and bound with YF = (0,1,0) (Node S1 in Figure 8) and it takes 33 nodes to verify that the 

optimal solution with YF = (0,1,0) is –116,575 which then becomes the current upper bound 

GUB. When returning to step 2, we add the cut for Y = (false, true, false) to make this choice 

infeasible. Note that we need to branch further since the gap between the global upper bound 

(GUB) and global lower bound (GLB) is not closed. While branching on λj, three more integer 

solutions are found. Switching to a spatial branch and bound search, we found that the nodes are 

fathomed by GUB. The optimal solutions of the spatial branch and bound steps S2, S3 and S4 

(see Figure 8) are inferior to the GUB. The total number of search nodes in each spatial branch 

and bound step is also shown in Figure 8. Step 2 requires 11 nodes to prove optimality. In total, 

137 LPs are solved in branch and bound step. For comparison, Zamora (1996) required the 

solution of 126 LPs and 2 NLPs in his branch and bound method.    
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Example 5. 

This example is a nonconvex MINLP problem for the synthesis and design of a batch plant with 

multiple parallel units with ZW policy scheduling using single product campaigns (Birewar and 

Grossmann, 1990). Figure 9 shows one of the major decisions in this problem which is the 

assignments of tasks to units which impacts the schedule and equipment sizes. We introduce 

disjunctions for assignments of tasks to units, existence of units and the number of parallel 

equipments. Logic propositions are introduced for the flowshop network structure (see Appendix 

B). The nonconvex GDP model is as follows:  
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where YEXj = true means that we use equipment j. Ytj is the Boolean variable for task 

assignments: for instance, if Y12 = true, then task 1 is assigned to equipment 2. This problem has 

9 disjunctions, 38 terms, 33 Boolean variables, and 51 continuous variables. There are 5 

equipment, 4 tasks, and 3 products. For a detailed explanation of the variables, constraints and 

structure of the optimal solution, see Birewar and Grossmann (1990). In the above model, the 

concave objective function is relaxed by a secant line and the bilinear terms are relaxed by linear 

underestimators.   

In step 2, we branch on YEXj first since they are the major decision variables. When all YEXj 

are fixed, then we branch on the task assignments variable Ytj. The number of parallel equipment 

Nj
EQ, which is an integer variable, is treated as a continuous variable between 0 and 4 in the 

convex relaxation. Thus Nj
EQ is not used as a branching variable in step 2, but we branch on Nj

EQ 

in step 3. As shown in Table 2, an initial upper bound of 277,928 is found after four major 

iterations. With this upper bound, the bound contraction step yields 9.1 % reduction with 44 



 

 24

subproblems. The discrete branch and bound takes 32 nodes and 11 spatial branch and bound are 

performed. As shown in Table 3, the optimal solution has an objective value of 264,887 and the 

total CPU time required is less than one minute. For comparison, the heuristic search by 

DICOPT++ for solving the nonconvex MINLP yields the optimal solution in 5 major iterations 

with 3.7 CPU sec, but global optimality is not proved. The optimal design of the batch plant is 

shown in Figure 10. 

It is interesting to note that when YEXj and Ytj are fixed, problem (E5) can be reformulated 

into a convex MINLP problem by substituting continuous variables with exponential terms 

through logarithmic transformations (Kocis and Grossmann, 1988). Then instead of using spatial 

branch and bound for nonconvex problem, OA algorithm can be used for solving this convex 

MINLP problem in step 3 where the only integer variables are Nj
EQ. Table 5 shows the numerical 

results and comparison of SBB and OA in step 3. A substantial CPU time is saved in step 3 with 

OA method, which shows that the convex reformulation can enhance the global search in this 

specific case.  

 

Example 6  

This example is again taken from Birewar and Grossmann (1990), but the number of units, tasks, 

and products is larger. There are 7 equipment, 6 tasks, and 6 products. Figure 11 shows the 

potential task assignments to equipment. The GDP model is as follows: 
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The model has 13 disjunctions, 54 terms, 53 Boolean variables, and 105 continuous 

variables. Detailed results from each step are shown in Table 2. For exhaustive enumeration, 

there are more than a hundred feasible discrete choices for the Boolean variables, but the 

proposed algorithm performed only 46 spatial branch and bound step and proved the optimality. 

The global optimal solution is found in 163.7 CPU sec, while DICOPT++ failed to find the 
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optimal solution after twenty major iterations (see Table 4). The optimal solution found by the 

proposed method, 726,205 is significantly lower than the solution obtained by DICOPT++ 

(763,450). As shown in Table 4, the first lower bound predicted by the proposed method is 

tighter than the lower bound from the big-M nonconvex MINLP problem. Figure 12 shows the 

optimal design. The convex MINLP reformulation, which is used in example 5, can be also used 

in this example. Table 5 shows the comparison of the SBB and OA algorithms in step 3. The 

difference in total CPU time comes from step 3 only. Again, the convex reformulation requires 

less CPU time compared with the spatial branch and bound method for solving the nonconvex 

MINLP problem.   

Problem (E6) can be expanded by considering the storage tank after each unit j. We 

introduce the disjunction for the storage tank j which can be used for holding the intermediate 

products coming from unit j. The following disjunction and logic propositions are added to 

problem (E6): 
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where YSj is the Boolean variable which is true if there is a storage tank after unit j. CSj is the 

cost variable for the storage tank j. When introducing the storage tanks, we disaggregate the 

variables Bi and ni for batch size and number of batches into Bij and nij for each unit j because 

now they can be different from unit to unit. If we use the storage tank j, then the batch sizes Bij 

before and after the storage tank can be different within a certain bound φ. Otherwise, the batch 
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sizes Bij should be same. The cost of storage tank j is given as a function of the volume, VSTj, 

which should be greater than the volume of the incoming products. With this augmentation, the 

problem is expected to have an optimal cost which is lower than the previous optimal solution 

726,205 (without storage tank) because the storage tank decouples the process, and thus the 

equipment can be utilized more effectively.  

First, the proposed two-level branch and bound algorithm was applied, and the search 

stopped due to the iteration limit in the spatial tree search. The best upper bound after 

termination is 671,284. Since the search is incomplete, this solution is not proved to be global 

optimum. Secondly, the convex MINLP reformulation for SBB/OA method was again applied to 

this problem. The global optimal solution 662,590 was found. This solution has 3 storage tanks 

in the process, and has a lower cost compared to 726,205 for no storage tanks. The number of 

subproblems and total CPU time were reduced with a factor of about 2 by the convex 

reformulation compared with the two-level branch and bound method.  

  

Example 7 

This example is a nonconvex MINLP problem for a heat exchanger network superstructure 

optimization (Yee and Grossmann, 1990; Zamora, 1997) as shown in Figure 13. For the GDP 

model, disjunctions are used for only the heaters and coolers, leading to a hybrid MINLP/GDP 

model (see Vecchietti and Grossmann, 1999). Big-M constraints are used for heat exchangers 

where the linear constraints give a relaxation comparable to the one when using the convex hull 

of the disjunctions. The arithmetic mean temperature is used in the objective function instead of 

the LMTD. For a detailed explanation of the problem data and superstructure, see example 2.4 in 

Zamora (1997). The hybrid model is as follows: 
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The optimal solution is Z* = 74,710 $/yr which is shown in Figure 14.  All the constraints 

are linear and only the objective function is nonconvex. Zamora (1997) used thermodynamic 

based linear fractional underestimators for the area of heat exchangers. Here we transform the 

nonconvex terms in the objective function into linear fractional terms and use nonlinear convex 

underestimators by Quesada and Grossmann (1995) as follows: 
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where Aijk are the areas of heat exchangers, ACUi are the areas of coolers, and AHUj are the areas 

of heaters. Since the functions fq, fc, and fh in (R7) are linear functions, their upper and lower 

bounds can be calculated from the upper and lower bounds of the continuous variables dtijk, dtcui, 

and dthuj. The convex lower bounding problem (CRP) of problem (E7) yields the solution 

28,260 $/yr which is an initial GLB. 

As shown in Table 2, DICOPT++ finds a feasible solution of 75,696 $/yr after 4 major 

iterations. The bound contraction step yields 49 % reduction of the feasible region of continuous 

variables. In step 2, the branch and bound on the discrete variables searched 517 nodes. A total 

of 60 feasible discrete choices to problem (R) are found and they are solved by the spatial branch 

and bound method in step 3. In this example, the main difficulty during the search comes from 

the nonconvex objective terms, not from the linear constraints. Much of effort is spent to update 

the upper bound in the spatial branch and bound step. Among all steps, 71 % of the total CPU 
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time is spent in step 3, which means that we might accelerate the search if we can reduce the 

number of subproblems to be solved in step 3.  

 

Conclusion 

A global optimization algorithm for nonconvex GDP problems that involve bilinear, linear 

fractional and concave separable functions has been proposed in this paper. The nonconvex 

terms are substituted by convex underestimators for constructing a convex GDP problem. The 

convex hull relaxation of the GDP is introduced resulting in a convex NLP that yields lower 

bounds. This NLP problem is solved at the nodes of the proposed two-level branch and bound 

method in which the disjunctive branch and bound method by Lee and Grossmann (2000) is used 

combined with a spatial branch and bound method for the continuous variables. Tight lower 

bounds from the convex hull relaxation and the bound contraction, along with an upper bound 

have been shown to be effective in solving nonconvex discrete/continuous optimization 

problems. Numerical results of 7 example problems have been shown, as well as comparisons 

with the big-M MINLP model.  
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Appendix A. Convex Underestimators for Bilinear/Linear Fractional/Concave Separable 

functions. 

Consider a bilinear function xixj. Valid convex/concave envelopes are as follows (McCormick, 

1976;Al-Khayyal and Falk, 1983): 
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For a linear fractional function xi/xi, Quesada and Grossmann (1995) developed nonlinear 

convex underestimators. 

)2(A
x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

L
j

U
i

j

U
i

L
j

i

j

i

U
j

L
i

j

L
i

U
j

i

j

i

−+≥

−+≥
 

Alternate convex underestimator/envelope are the following: 
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(A3) and (A4) were developed by Zamora and Grossmann (1998a) and by Tawarmalani and 

Sahinidis (2000b), respectively. The convex envelope (A4) is based on the convex hull of xi
L/xj 

and xi
U/xj.  

Univariate concave separable function li(x) can be underestimated by a secant line which 

matches concave function at the upper and lower bound (Falk and Soland, 1969): 
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Appendix B. Logic Propositions for Example 5. 

B1. Equipment Units 

The logic relation between the existence of unit and the assignment of task can be stated as 

follows: 

1) Unit j: If unit j exists, then at least one of the tasks t, which can be assigned to the unit j, 

should be assigned to unit j.  

2) Task t: If task t is assigned to unit j, then unit j should exist. 

In example 5, only task 1 (mixing) can be assigned to unit 1. The logic propositions for the 

Boolean variables YEX1 are Y11 then, 

)1(111

111

BYEXY
YYEX

⇒
⇒

 

which can be combined into one proportional logic as YEX1 ⇔  Y11. By applying the same 

procedure, we can produce the logic propositions for each unit (for the task assignment, see 

Figure 9). 



 

 36

455

3424144

333

22122

111

)2(

YYEX
YYYYEX

BYYEX
YYYEX

YYEX

⇔
∨∨⇔

⇔
∨⇔

⇔

 

 

B2. Assignments of Tasks 

The feasible choices in task assignment for unit 4 are considered. Unit 4 can process 3 types of 

tasks: Task 1, 2, and 3. A number of combinations of 3 tasks are feasible for the assignment. In 

terms of the number of tasks to be assigned, there are four choices: No task, 1 task, 2 tasks, and 3 

tasks. For each case, we introduce Boolean variables W04, W14, W24, and W34. W04 is true when no 

task is assigned to unit 4. Otherwise, it is false. Task assignment Boolean variable Y14 is true 

when task 1 is assigned to unit 4. And it is same for Y24 and Y34. The logic propositions for task 

assignments are as follows: 

34241434

34241434241424

34241434241434241414

34241404

34241404

)()(
)3()()()(

YYYW
YYYYYYW

BYYYYYYYYYW
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∧∧⇔
∧∧¬∨¬∧∧⇔

∧¬∧¬∨¬∧∧¬∨¬∧¬∧⇔
¬∧¬∧¬⇔

∨∨∨

 

The first logic statement means that the number of tasks which can be assigned to unit 4 is 

0,1,2, or 3. The second logic proposition states that if we do not assign any task to unit 4, then all 

Yt4 are false. The third logic proposition enforces that if we assign one task, then only one of Yt4 

is true (t = 1,2,4) and others are false. The fourth logic enforces that if we assign two tasks to unit 

4, only tasks (1, 2) or tasks (2, 3) can be assigned to unit 4. Tasks (1, 3) cannot be assigned to 

unit 4 without task 2 assigned. The last logic statement means that if we assign three tasks, then 

all Yt4 are true. The logic propositions (B3) can be transformed into the integer linear constraints 

Aλ ≤ a when solving problem (CRP). 

We follow the same procedure in Example 6 for constructing the logic propositions for the 

task assignments to units 2, 5 and 7 as shown in the model (E6).  
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Table 1. Numerical results of illustrative example. 

Step 
Method 

Step 0 
OA 

Step 1 
Bound Contraction 

Step 2 
Discrete BB 

Step 3 
Spatial BB 

Result 
Iter. / Nodes 

First UB = 99.2 
3 Iter. 

63.5 % reduction 
4 Iter. (NLPs) 

First LB = 97.5 
2 Nodes (NLPs) 

1 SBB / UB = 99.2 
5 Nodes (NLPs) 

 

 

Table 2. Numerical results of nonconvex GDP problems. 

Example 
No. 

Optimal 
Solution 

No. of var. 
(cont./disc.) 
No. of const. 

Step 0 
First UB 

Major iter./CPU* 

Step 1 
prob./reduc. 

CPU 

Step 2 
First LB 

Nodes/CPU 

Step 3 
Nodes 
/CPU 

Total 
CPU 
sec 

1 -11.0 2/3 
6 

-11.0 
4/1.2 

9/69.5 % 
1.3 

-11.25 
3/0.36 

1 SBB 
3/0.35 3.2 

2 -14.0 2/3 
6 

-14.0 
4/3.8 

8/52.6 % 
1.4 

-37.36 
6/1.8 

1 SBB 
27/2.3 9.3 

3 -510.08 26/2 
49 

0.000 
1/0.1 

14/10.8 % 
1.7 

-684.56 
6/1.3 

1 SBB 
27/1.6 4.9 

4 -116,575 5/3 
24 

-116,575 
1/1.1 

45/22.2 % 
5.7 

-242,474 
11/0.88 

4 SBB 
126/14.1 21.7 

5 264,887 51/33 
102 

277,928 
4/2.5 

44/9.1 % 
11.8 

82,354 
32/7.3 

11 SBB 
159/25.5 47.1 

6 726,205 105/53 
271 

763,450 
3/9.2 

36/4.3 % 
16.7 

341,284 
169/76.5 

46 SBB 
210/61.3 163.7 

7 74,710 52/16 
124 

75,696 
4/3.0 

34/49 % 
7.0 

28,260 
517/110.6 

60 SBB 
1494/300 420.6 

*On Pentium II 300MHz with 128Mbyte RAM Memory. 

 
Table 3. Comparison of solution algorithms for example 5. 

Model Solution Method CPU sec First LB Solution Note 
Big-M 

nonconvex 
MINLP 

DICOPT++ 
(local search) 

3.7 
(5 Major Iter.) 

161,339 
(not global) 264,887 Optimality 

not proved 

Nonconvex GDP Proposed Global 
Algorithm 47.1 82,354 

(globally valid) 264,887 Global 
Optimum 

 
 

Table 4. Comparison of solution algorithms for example 6. 

Model Solution Method CPU sec First LB Solution Note 
Big-M 

nonconvex 
MINLP 

DICOPT++ 
(local search) 

42.7 
(20 Major Iter.) 

325,453 
(not global) 763,450 Sub-optimal 

Solution 

Nonconvex GDP Proposed Global 
Algorithm 163.7 341,284 

(globally valid) 726,205 Global 
Optimum 
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Table 5. Convex MINLP reformulation for example 5 and 6. 

Problem Example 5 Example 6 

Solution Method Discrete BB/SBB 
Iter./Nodes/sec 

Discrete BB/OA 
Iter./Nodes/sec 

Discrete BB/SBB 
Iter./Nodes/sec 

Discrete BB/OA 
Iter./Nodes/sec 

Step 0 4 iter./2.5 4 iter./2.2 3 iter./9.2 3 iter./9.2 
Step 1 44 iter./11.8  44 iter./8.0 36 iter./16.7 36 iter./14.2 
Step 2 32 nodes/7.3  32 nodes/7.3 169 nodes/76.5 163 nodes/80.9 
Step 3 11 SBB/25.5  11 OA/8.8 46 SBB/61.3 46 OA/29.3 

Total CPU sec 47.1 26.3 163.7 133.6 
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Figure 1. Convex underesimator function. 
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Figure 2. Proposed algorithm for nonconvex GDP. 
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Figure 3. Bound contraction subproblem. 
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Figure 4. Branch and bound tree: Illustrative example. 
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ZL =

-37.35
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infeasible

cut

ZL = 
19.48

fathomed fathomed

YF = (0,0,1)

 
Figure 5. Discrete branch and bound tree: Example 2. 
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Figure 6. Superstructure of example 3. 
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Figure 7. Optimal solution of example 3. 
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Figure 8. Branch and bound tree of example 4. 
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Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

A
B
C

Mixing CrystallizationReaction Drying

Task 1 Task 2 Task 3 Task 4

 
Figure 9. Feasible task assignments of example 5. 

j = 1 j = 4 j = 5

Mixing

A
B
C

4,589 L 2,753 L 7,891 L

DryingReaction &
Crystallization

A
B
C

 
Figure 10. Optimal batch plant design of example 5. 
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Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 7Unit 6
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B
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Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

 
Figure 11. Feasible task assignments of example 6. 
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A
B
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D
E
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15,000 L11,867 L

 
Figure 12. Optimal batch plant design of example 6. 
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Figure 13. Superstructure of heat exchanger network. 
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Figure 14. Global optimal solution of example 7. 


