A Global Optimization Algorithm for Nonconvex Generalized Digunctive

Programming and Applicationsto Process Systems

Sangbum Lee and Ignacio E. Grossmann’
Department of Chemical Engineering
Carnegie Méllon Univer sity
Pittsburgh, PA 15213

Abstract

A global optimization algorithm for nonconvex Generalized Digunctive Programming
(GDP) problems is proposed in this paper. By making use of convex underestimating functions
for bilinear, linear fractional and concave separable functions in the continuous variables, the
convex hull of each nonlinear digunction is constructed. The relaxed convex GDP problem is
then solved in the first level of a two-level branch and bound algorithm, in which a discrete
branch and bound search is performed on the digunctions to predict lower bounds. In the second
level, a spatial branch and bound method is used to solve nonconvex NLP problems for updating
the upper bound. The proposed algorithm exploits the convex hull relaxation for the discrete
search, and the fact that the spatial branch and bound is restricted to fixed discrete variables in
order to predict tight lower bounds. Application of the proposed algorithm to several example
problems is shown, as well as comparisons with other algorithms.
Keywords. Nonconvex GDP, nonconvex MINLP, convex hull relaxation, branch and bound,

global optimization.
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I ntroduction

Nonlinear discrete/continuous optimization problems can be formulated as Generalized
Digunctive Programming (GDP) models as proposed by Raman and Grossmann (1994). The
GDP model involves digunctions for representing discrete decisions in the continuous space, and
logic propositions for the decisions in the discrete space. Lee and Grossmann (2000) have
proposed a convex hull relaxation for the GDP model, and solution algorithms based on branch
and bound or reformulation. Convex GDP problems can often be reformulated into tight Mixed-
Integer Non-Linear Programming (MINLP) problems, which can be solved with a number of
MINLP algorithms (Grossmann and Kravanja, 1997). The methods by Lee and Grossmann
(2000) for convex GDP problems can be applied to problems involving multiple terms in each
digunction.

The solution of MINLP models involving nonconvex functions has been receiving increased
attention due to its practical importance in engineering and many other areas. Due to the
nonconvexites, conventional MINLP algorithms are often trapped in suboptimal solutions. There
has recently been significant progress in the global optimization of nonconvex NLP problems
(for a review, see Floudas, 2000; Horst and Tuy, 1996). Most of the methods proposed for
solving these problems rely on the spatial branch and bound method, which is a deterministic
algorithm that divides the feasible region of continuous variables and compares the lower bound
and upper bound for fathoming each subregion. The subregion that contains the optimal solution
is found by eliminating subregions that are proved not to contain the optimal solution. An
example of such a method for nonconvex NLP problems is the one by Quesada and Grossmann
(1995) who proposed a spatial branch and bound algorithm for concave separable, linear
fractional and bilinear programs, and making use of linear and nonlinear underestimating
functions.

As for methods for nonconvex MINLP, Ryoo and Sahinidis (1995), and later Tawarmalani
and Sahinidis (2000a) have developed a branch and bound method that branches on both the
continuous and discrete variables. This method, which relies on bounds reduction and the use of
underestimators, has been implemented in BARON. Adjiman et al. (1997; 2000) proposed the
SMIN-aBB and GMIN-aBB algorithms for twice-differentiable nonconvex MINLPs. By using a
valid convex underestimation of general functions, as well as for specia functions, Adjiman and
Floudas (1996) developed the aBB method which is a branch and bound procedure that branches



on both the continuous and discrete variables according to specific options. The branch-and-
contract method (Zamora and Grossmann, 1998b; 1999) for globa optimization of process
models, which have bilinear, linear fractional, and concave separable functions in the continuous
variables and linear 0-1 variables, uses bound contraction and applies the outer-approximation
(OA) algorithm at each node of the tree for the spatial search. Kesavan and Barton (2000)
developed a generalized branch-and-cut (GBC) agorithm, and showed that their earlier
decomposition algorithm (Kesavan and Barton, 1999) is a specific instance of the GBC
algorithm with a set of heuristics.

In this paper, we propose a global optimization algorithm for nonconvex GDP problems in
which we consider bilinear, linear fractional, and concave separable functions for the continuous
variables, and linear functions for the discrete variables. Using valid underestimators from
McCormick (1976) and Quesada and Grossmann (1995), the relaxed GDP is reformulated as a
convex NLP by the convex hull relaxation as proposed by Lee and Grossmann (2000). To exploit
the tight relaxation of this problem, a two-level branch and bound algorithm is proposed. In the
first level, a discrete branch and bound is performed on the digunctions to update the lower
bound. In the second level, a spatial branch and bound search is performed for fixed discrete
variables to update the upper bound. The proposed method is applied to nonconvex GDP
problems that arise in process networks, heat exchanger networks, and the design of batch

processes. Numerical results and comparisons with other solution methods are presented.

Nonconvex GDP M odel

Consider the following Generalized Digunctive Programming problem (Raman and Grossmann,
1994), which includes Boolean variables, digunctions and logic propositions as shown in
problem (P),
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f: R'® R is the term for continuous variables x in the objective function and r: R' ® R are

common constraints that hold regardless of the discrete decisions. f(x), r(x), and g(x) are assumed

to be nonconvex functions of the general form, h(x)+é é a; X X, +é é b, %+é (),
P P P

where h(x) is a convex function and 1;(x) is a concave separable function, and the second and the

third terms involve bilinear and linear fractional functions, respectively (see Quesada and

Grossmann, 1995; Zamora and Grossmann, 1998b).

The disunctionsk T K are composed of a number of termsj T Ji that are connected by the
OR operator (U). In each term, there is a Boolean variable Yy, a set of nonconvex inequalities
gk(x) £ 0, gijk: R'® R, and a cost variable c. If Yjk is true, then gi(x) £ 0 and ¢, = gk are
enforced. Otherwise, these constraints are ignored. We assume here that each term in the
digunctions gives rise to a non-empty feasible region which is generally nonconvex. Also, W)
= True are logic propositions for the Boolean variables. Continuous variables x are assumed to
have lower and upper bounds.

The overall procedure of the proposed two-level branch and bound algorithm is as follows
(see Figure 2). We first introduce convex underestimators in the nonconvex GDP problem (P),
and construct the underestimating problem (R). This convex GDP problem is then reformulated
as the convex NLP problem (CRP) by using the convex hull relaxation of each digunction. Since
al the digunctions are relaxed, the convex NLP problem yields a valid lower bound. An initial
upper bound is obtained by solving a nonconvex MINLP reformulation of the nonconvex GDP
by a standard MINLP method such as DICOPT++ (Viswanathan and Grossmann, 1990). The



upper bound is used for bound contraction to reduce the feasible region (Zamora and Grossmann,
1997). The discrete branch and bound method by Lee and Grossmann (2000) is applied at the
first level of the branch and bound to solve the convex GDP problem. When all the Boolean
variables are fixed, a spatial branch and bound method is used at the second level for solving the
corresponding nonconvex NLP problem to yield an upper bound. The application of the
proposed algorithm isillustrated with several example problems.

Convex Relaxation of GDP
Problem (P) is first reformulated into a convex GDP problem by introducing valid convex

underestimating functions as shown below,
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The functions f,F,and g are valid convex underestimators such that f(x) £ f (x) and the
inequalities r(x) £ 0and g(x) £0 are satisfied if r(x) £ 0 and g(x) £ 0 (see Figure 1). Hence, the
optimal solution Z~ of problem (R) provides a valid lower bound to the global optimal solution
of problem (P). The specific underestimators for the bilinear, linear fractional, and concave
separable terms are given in Appendix A. A recent review of these functions and some of its
properties can be found in Tawarmalani and Sahinidis (2000a).

Since problem (R) is a convex GDP as described in Lee and Grossmann (2000), the feasible
region of problem (R) can be relaxed by replacing each digunction by its convex hull. This

relaxation yields the following convex NLP model:
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where n’® is the disaggregated continuous variable for the j-th term in the k-th disjunction, and | ik
is the corresponding multiplier for each term j T J in a given disunction k T K. Note that

problem (CRP) does not involve the Boolean variables Yjc since they are replaced by the

continuous variables | j,, 0 £ | jx £ 1. The constraints | jkﬁjk(v“‘ /1) are convex if gi(X) is

convex (Hiriart-Urruty and Lemaréchal, 1993). Note that the logic propositions WY) = True are
replaced by the linear constraints Al £ a. Give that problem (R) yields a lower bound, and
problem (CRP) is a relaxation of problem (R), the following proposition can be trivially
established for problem (CRP):

Proposition 1 The optimal solution Z- of problem (CRP) vields a lower bound to the optimal

solution Z™* of problem (P).

For implementation, the inequalities in the digunctions are replaced by

(e e)ﬁjk (v /(1 , +€)) £0 where eisasmall tolerance (e.g. e = 0.0001). These reformulated

constraints are convex if §jk(x) £0 is convex. One can reformulate problem (CRP) as an

MINLP by restricting the variables | jx to binary values. For detailed properties of problem
(CRP), see Lee and Grossmann (2001). In this paper, we use problem (CRP) within a two-level
branch and bound method that will be explained in later sections.

As stated by the above proposition, a rigorous lower bound to problem (P) is obtained by
solving problem (CRP) which has a unique local optimal solution (Bazaraa et al., 1993). This
objective value is used as the initial value of the Global Lower Bound (GLB) when solving the



nonconvex GDP problem (P). This lower bound is updated when fixing the Boolean variable Yj
in problem (R) (or corresponding | jx in (CRP)) in the discrete branch and bound search. When all
| j« are either O or 1 (feasible to problem (R)), and there is no gap between the convex
underestimators and the nonconvex functions at the solution point of problem (CRP), then the
optimal objective value is a valid upper bound to problem (P) since this solution is aso feasible

to problem (P).

Global Upper Bound Subproblem

A valid upper bound for problem (P) can be obtained by applying an agorithm, such as the
Augmented Penalty/Outer Approximation/Equality Relaxation implemented in DICOPT++
(Viswanathan and Grossmann, 1990), to the MINLP reformulation of (P). This yields the
following nonconvex MINLP:
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where Mji, the “big-M” parameter, is avalid upper bound to the violation of the inequality gjx(X)
£ 0 and parameter U is an upper bound to x.

In our experience, we have usually found a very good upper bound by using DICOPT++ to
solve problem (P-MIP). Since this problem is nonconvex, the lower bound predicted by the
MILP master problem is not valid, and therefore the heuristic termination criterion is used in
DICOPT++ which stops when no further improvement is found in the NLP subproblem. The
solution of (P-MIP) yields a Global Upper Bound (GUB) which is useful in pruning non-optimal
nodes in the discrete branch and bound search.

Bound Contraction Procedure



Usually considerable computational work is required in both the discrete and the spatial branch
and bound search for finding the subregion which contains the global optimal solution. The
difference between the lower and the upper bounds largely depends on the variable bounds.
Since elimination of non-optimal subregions is crucia in accelerating the search, we consider a
bound contraction scheme to tighten the lower and upper bound of a given continuous variable x;.

i =1,2,3,...,n by solving the following NLP problem:
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If the solution point x; of problem (CRP) does not lie at its bound, then we solve the NLP
problem (BCP) and update the upper and lower bounds (see Figure 3). Another way of updating
the bounds is through range reduction, where cuts are generated based on the active constraints
in the relaxed solution (Ryoo and Sahinidis, 1995; Tawarmalani and Sahinidis, 2000a). In this
paper, we follow the bound contraction operation which was proposed by Zamora and
Grossmann (1999). In the relaxed solution of problem (CRP), one continuous variable x;, which
isnot at its bound, is selected. Then the direction of bound contraction (min or max) is decided
based on the relative distance from the solution to each bound. Bound contraction is applied to
only the continuous variables. The discrete variables are not fixed and they are relaxed as
continuous variables in solving problem (BCP). The iteration of bound contraction continues
until the solution of subproblem does not yield areduction greater than a specified tolerance.

Branch and Bound on Boolean Variables



In this step, a branch and bound method is applied in the space of the terms of the digunctions by
solving the relaxed convex NLP problem (CRP) at each node (for detailed description, see Lee
and Grossmann, 2000). The branching rule is to select the variable 1, that has the largest
fractional value in the solution. Two child nodes are created by fixing 1 x = 1 and | x = 0, which
means that we fix Y, as true and as false in problem (R), respectively. For the case when we fix
Y« = true, we simply fix at that node the corresponding j-th term of disunction k. When we fix Y
= false, we consider at that node the convex hull relaxation of all termsj’ * j. Since the number
of Boolean variables in problem (R) is finite, the search in the discrete space requires a finite
number of nodes in the branch and bound tree. The globa lower bound, GLB, increases
monotonically as the variables | , are fixed in the branch and bound tree. When all the | are
either O or 1, the solution for Boolean variables is feasible for the GDP problem (R). If thereisa
gap between the solution of this problem and the original nonconvex GDP problem (P), we need
to update the upper bound of the objective value so that the convex approximation is small
enough within a given tolerance.

At a node where a feasible solution to problem (R) is obtained, and the gap between every
nonconvex term in problem (P) and its convex underestimator in problem (R) is nonzero, we fix
all Boolean variables and switch to a spatial branch and bound method. At this node we solve a
nonconvex NLP problem to global optimality, and obtain a feasible solution to problem (P) (if
one exists). If the solution is lower than the globa upper bound, GUB, it is updated. After the
gpatial branch and bound is completed, we return to the current node of the discrete branch and
bound tree and add a cut for the Boolean variables to the discrete branch and bound to exclude
the previous choice of the fixed Boolean variables. By solving problem (R) at the current node
with this cut, a new solution of Y; is generated. If the solution is infeasible, then we close the
current node and backtrack. If the solution is feasible and there is a gap between GUB and GLB,
which is the lowest objective value among the open nodes, then we keep branching. The search
stops when there are no open nodes with an objective value less than GUB in the discrete branch

and bound tree.

Spatial Branch and Bound (SBB) Method
When all the Boolean variables are fixed, problem (CRP) reduces to a discrete feasible GDP

problem (R) since each digunction is satisfied. If there is a gap between the convex



underestimators and the nonconvex functions, we need to branch on the continuous variables x to
reduce the feasible region by contracting the upper and lower bounds of x.

The spatial branch and bound described is essentialy the one by Quesada and Grossmann
(1995), and has three main steps. the branching variable selection, the branching point selection
and the node selection. After solving problem (CRP), the nonconvex term with the maximum
gap between its convex underestimator and the nonconvex term is chosen. If that function has
more than one variable as its arguments, then the variable with the largest difference in the
variable bounds, [x” - X', is selected since we expect that the variable with largest variable bound
would have the most effect on the reduction of the gap. The branching point used in thiswork is
the middle point of the variable bound, (X" + x")/2 (bisection rule). Alternatively, one can use the
solution point x of problem (CRP) at the current node (omega rule). Among the open nodes, we
select the node with lowest objective value. If the objective value of the current node is greater
than GUB, then the current node is fathomed. Since branching is applied to continuous variables,
the spatial branch and bound search is theoretically an infinite process although it has finite
termination for e-convergence. The performance, however, heavily depends on the actual value
selected for e.

An optional step in the spatial branch and bound is to use the bound contraction operation
whenever a new GUB is found. It can help to reduce the variable bounds, but additional effort is
spent in solving the contraction subproblem. This option was not used in this paper.

Solution Algorithm for Nonconvex GDP Problems
In this section, we describe the global optimization algorithm for nonconvex GDP problems (see
Figure 2). In this agorithm, we define the gap as the difference between a given nonconvex

function and its convex underestimator at the solution point x* of problem (CRP) (i.e. gap =

f(x)- f(x*)).

Step 0. Heuristic Search (Nonconvex MINLP)
Solve the nonconvex problem (P-MIP) with an MINLP solver such as DICOPT ++
(Viswanathan and Grossmann, 1990).
Set GUB as the best upper bound obtained by DICOPT++; let (Y*, x*) be the solution.
Step 1. Bound Contraction (Convex NLP)

10



1.1 Set the maximum number of major iterations, NC. Set BC = 0 and the tolerance d.
Set the minimum value SP,, for a successful contraction step. (e.g., 0.2)
Initialize the Relative Distance (RD) from x* to each bound:

- -k
ROL, =2 "% Rppu, =5 "% j=123.n

1.2 Increase the iteration count, BC = BC + 1.
Fori=1,23,...,n
Solve problem (BCP).
- Minimize x; if RDL; > RDU; and RDL; > d.
- Maximize x; if RDL; £ RDU; and RDU; > d.
If contraction is greater than SP,,, update the bound and continue with x;.
Otherwise, select next variable x;.
1.3 Return to step 1.2 and repeat while the iteration count BC £ NC.
Step 2. Branch and Bound on Discrete Variables (Convex NLP)
2.1 Set tolerance a for difference in Z- and GUB. Set e for maximum gap.
2.2 Solve problem (CRP) to obtain lower bound Z-. Update lowest lower bound as GLB.
a) If the solution is feasible and Z- 3 GUB - a, then fathom the node.
b) If the solution isinfeasible, then fathom the node.
c) If the solutionisfeasible and all |  are either O or 1, then
If for all functions gap £ e and Z- < GUB, then GUB = Z". Backtrack.
Elseif any gap > e, then go to Step 3 with fixed | j.
After GUB is updated from Step 3, add a cut for the current Boolean variables,

Qég A (v, )E where T, and F, are the set of Boolean variables that are

true and false at the current node.
d) If the solution isfeasible and Z- < GUB - a, then
Branch on |, which is closest to one.
Create two child nodes (1 x =1 and | 4 = 0).
2.3 Return to step 2.2 according to a specified search strategy (e.g. depth first or breadth
first) while GLB < GUB - a.
Step 3. Spatial Branch and Bound (Convex NLP)

11



3.1 Fix al 1, aseither 0 or 1 according to the solution from Step 2.
3.2 Solve problem (CRP).
a) If the solution is feasible and Z- 3 GUB - a, then fathom the node.
b) If the solution isinfeasible, then fathom the node.
c) If the solution is feasible and for al functions gap £ e, update GUB when Z- <
GUB.
d) If the solution is feasible and any gap > e, then
Select the nonconvex function f, with maximum gap.
Select the continuous variable xs among the arguments of f, with maximum
variable bound difference, [x” - x-|.
Set the branching point x according to the branching rule.
Omega Rule: x2 = x_ *
Bisection Rule: x2 = (x{ +xJ)/2
Create two child nodes (x.£ x2and X2 £ x,).
3.3 Select anode and return to step 3.2 and continue until there is no open node with Z- <
GUB - a.
3.4 Go to Step 2.

It should be pointed out that the above algorithm finds the optimal solution in a finite

number of steps. This follows from the finiteness of the discrete branch and bound tree (step 2),

and the finite termination for e-convergence in the global optimization subproblem (step 3). It

should be noticed that step 3 isincluded in the branch and bound tree of step 2, giving rise to an

embedded tree structure. The proposed algorithm isin that sense similar to the work by Adjiman

et a. (2000) who used as an option a two-level sequential branching strategy for nonconvex

MINLP problems in which binary variables are selected for branching in the first level and then

continuous variables are selected in the second level of the SMIN-aBB agorithm. Finaly, it is

worth noting that fixing al the discrete variables in step 3 may in specia cases simplify the

problem to a convex NLP problem which can then smply be solved with alocal optimizer (see

examples 5 and 6).

[llustrative Example

12



We describe the solution procedure with a small nonconvex GDP example, which was originally
proposed as a nonconvex MINLP by Kocis and Grossmann (1989) for optimizing a small
superstructure consisting of two reactors. This problem can be reformulated as the following
nonconvex GDP problem:
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The optimal solution is 99.2 with Y* = (true, false), x* = 13.4 and v* = 3.5. Note that
problem (EO) has only one digunction which has nonlinear equality constraints which are
nonconvex. In step O of the proposed algorithm, a nonconvex MINLP reformulation (P-MIP) is
solved with the OA method. An initial upper bound of 99.2 is obtained after three major
iterations. The GUB s initialized as 99.2 and is used in the remaining steps. To derive the
convex relaxation we first substitute [1-exp(-0.5v)] in the first term with the continuous variable
a, resulting in bilinear terms. The nonlinear equality a = [1-exp(-0.5v)] is replaced by two
nonlinear inequalities. The second term in the digunction follows the same substitution, which
leads to:
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The bilinear term ax is replaced by linear under and overestimators (see Appendix A). In the

first term of the digunction, the inequality a £ [1-exp(-0.5v)] is convex while the inequality a 3

1R



[1-exp(-0.5v)] is concave. We underestimate the concave term by a secant line which matches
the concave term at the lower and upper bound of v. The convex underestimating problem of
(EO) isthen asfollows:
mnZ =c+5x+p
st.
Y2 8

0/0.8% ayx+ax’ -ayx’ 4

u
Yi u

0/0.93 alx+ax’ - af “3

(‘D.)iD) [0XXON
(‘D.)iD) [0XXON

€10/0.93% a,x+ax" - a €10/0.8% a;x+ax" -ayx" U
é u é L u
6l0/09£a’x+ax" -a;/x"y @l0/0.8£aj;x+ax" -aj;x" a
21 /09£a x+ax" -a, x’ ﬂugl /0.8£a;x+ax’ -azxuﬂ (RO)
€ af[l-exp(-05v)] U € af[l-exp(-04v)] U
¢ quoqr 48 qu gt !
e a]_ u e - > U
zada, +(v-v - zaday+(v-v 2
g ( )v -V 3 g ( )v - vt 3
& p=70v u é p =6.0v v
& c=75 H & c=55 H

OEVEILIQ,OEXE20;,0£c,p,a

wherea, =1- exp(- 0.5v"),a, =1- exp(-0.5v"),a; =1- exp(- 0.4v-),ay =1- exp(-0.4v").

This relaxation problem (RO) is a convex nonlinear digunctive problem for which we apply the
convex hull relaxation to the digunction, resulting in problem (CRP). In step 1, we solve
problem (BCP) of (R0) for bound contraction of the continuous variable x and v. The discrete
variables are relaxed in solving the bound contraction problem. Initially, the bounds are O £ x £
20and O £ v £ 10. After solving four NLPs, the new boundsare 11.1 £ X £ 18.7and 1.6 £V £
5.1. The interval size of the bounds of x is reduced to 38 % of its original size, and for v it is
reduced to 35 %. The percentage bound reduction of each variable is calculated from the ratio of
the new bounds gap to the old bounds gap, | x>, - X-. |/ | X5 - X5q |- With the new bounds, the
discrete branch and bound is performed in step 2. Figure 4 shows the branch and bound tree and
Table 1 shows the numerical results of each step of the proposed method. The first lower bound
at the root node (GLB) is 97.5 and the gap between GUB and GLB is 1.7 %. At the root node,
we relax | in problem (CRP) as continuous variables between 0 and 1. Here | jx corresponds to
the Boolean variable Y j in problem (R) and | jx = 1 in the solution means Y j = true. Solving

problem (CRP) yields a discrete feasible solution of | = (1,0). For convenience, we denote this

14



value of | as Y-. Thisinteger value is fixed as Y = (1,0) and the bound GUB (99.2) is given to
the spatial branch and bound step (node S1 in Figure 4). In step 3, the branching variables are x
and v. The variable with the largest difference in the variable bounds is selected first. The
branching variable and its branching point are shown on each node. At node S1, x is selected first
and the branching point is the middle point of the variable bounds. At node S3, the objective
value 99.3 is higher than GUB, so it is fathomed. Node $4 is infeasible and node S5 yields the
optimal solution. Five NLPs are solved with a relative tolerance of 0.1 % and the optimality of
the upper bound 99.2 is again verified for fixed Y~ = (1,0). A cut is added to node 1 of step 2 and
problem (CRP) is resolved since the gap between GUB and GLB is not closed yet at the node 1.
Node 2 yields a solution Y- = (0.5,0.5) and Z" = 101.6, and hence it is fathomed by GUB and the
search is stopped. Therefore, a total of seven NLPs are solved in the branch and bound

procedure. The problem size istoo small for the computing time to be of any significance.

Numerical Examples

In this section, we apply the proposed agorithm to seven nonconvex GDP example problems.
All of them were solved with GAMS (Brooke et al., 1997) on a 300 MHz Pentium Il PC with
128MB of memory. The GAMS/DICOPT++ MINLP solver (AP/OA/ER) and GAMS/CONOPT
NLP solver are used. The tolerances selected were d = 0.01, a = 0.01 % (of GUB), SPy, = 0.2,

and e = 0.0001. Table 2 shows the size and numerical results of the nonconvex GDP problems.

Example 1
This example is adapted from Lee and Grossmann (2001). The model involves a digunction of

convex feasible sets and a concave objective function.
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The optimal solution is —11.0 with x* = (0,0) and Y* = (true, false, false). Underestimators
for the concave terms -x,® and -x,° are secant lines that match the concave terms exactly at the
lower and upper bounds of x. Problem (E1) is then replaced by the convex GDP:

minZ =a, +a, +6x, +4x, - 13+c
o\ ( L)z
- +{x
st.a,®-(x ) +(x - Xt (Xl) L
1 (1) (1 l) (X]L_J'XIL)

a,?- (%) +0g - x)° be o+ b

(5 - x;)
é Y, u é Y, u é Y, u
€. 2 2 a-é 2 2 a-é 2 2 u
Ax)2 +(%,)? - LEOGU X, - 42 +(x, - D? - LEO0 U X - 2% + (X, - 9% - 1E£0; (RD)
g c=2 H g c=1 H g c=3 H

~

O£x,x,£80£c, Y, {true, falsg}, j =1,2,3.

where x- and x. are lower and upper bounds of x,. In step O of the proposed method,

DICOPT++ finds the global optimal solution in four major iterations by solving the nonconvex
MINLP reformulation of (E1). GUB = -11.0 is used in the bound contraction problem (BCP) in
step 1. When we solve problem (BCP), no | ; is fixed and the bound contraction is applied to x;
and x; only. In step 1, nine iterations of bound contraction yield 69.5 % of reduction in the
feasible region. Due to the reduced feasible region of x, the first lower bound by solving problem
(CRP) in step 2 is —11.25, which has 2.3% optimality gap from GUB. For comparison, if we use
the original bound O £ x £ 8 in step 2, then the first lower bound from problem (CRP) is-34.4.
Therefore, there is a significant improvement of the lower bound by contracting the feasible
region. The discrete branch and bound step searched 3 nodes and one feasible choice of Y =
(true, false, false) was found during the search. At that discrete choice, the spatial branch and
bound step required three nodes, again verifying the best upper bound of —11.0. A total six NLP
subproblems were solved in the branch and bound steps. For detailed results in the solution

procedure, see Table 2.
Example 2

The second example has a nonconvex objective function with the same disjunctive feasible set as

in example 1.
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MinZ = x;' - 14x? +24x, - X5 +C

st.
e Y, u¢ Y2 u é Ys y
2x)2 + (%)% - 1£0UEX, - 4)° +(x, - 1)° - 1503 % - 27 +(x, - 4)7-1£0y (E2)
& c=2 0 & c=1 g & c=3 H

0£x,% £80£c, Y, 1 {true, false, j =1,2,3.
The optimal solution is —14.0 with x* = (2,5) and Y* = (false, false, true). Secant lines for

the concave functions -x;* and -x,* are again used as convex underestimators. We replace the
nonconvex terms in the objective function by the continuous variables, a; and a,. The relaxed

convex GDP problem is then as follows:

minZ = x; +14a, +24x, +a, +cC

st oay i) eog -y L)

Cr )
u \2 (,_)2
- +|x
a,®-(xt)f +(x,- x5 (XZ) 2
S A e
é Y, o é Y, 0 e Y, u
232+ (%) - 1£oﬂU§( S A7+ (%, - D7 - 1EO0GUEX - 27 +(x, - 4)°- 1£03 (R2)
& c=2 4 & c=1 g & c=3 4

0£x,% £80£c, Y, 1 {true, false, j =123,

In step 0, DICOPT++ finds a feasible solution —14.0 in four major iterations. With this
objective value as an initial GUB, the bound contraction operation is applied. In step 1, eight
iterations of solving problem (BCP) result in an average reduction of 52.6 % in the bounds. By
solving the convex hull relaxation problem (CRP) of (R2), the first lower bound is —37.36 (see
Figure 5). At the root node, the relaxed value | 3 is closest to one and it is selected as branching
variable. By fixing Ys as true, we find a discrete feasible solution of Y- = (0,0,1). By fixing these
Boolean variables according to Y~ = (0,0,1), the spatial branch and bound method finds after 27
nodes an upper bound of —14.0, which is the optimal solution to problem (E2). When returning to
the discrete branch and bound, the GUB is updated and the cut which excludes the choice Y =
(false, fase, true) is added. The second node is resolved with this cut and the solution is

infeasible. Therefore, we go to the third node by fixing Y3 as fase. The last two nodes are
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fathomed since their objective values are greater than GUB. A total of six hodes are searched in

the discrete search of step 2.

Example 3

The next example is taken from Kocis and Grossmann (1989). It involves a nonconvex MINLP
problem which consists in selecting the optimal structure for separating a multicomponent
process streams into a set of product streams with given purity specifications (see Figure 6). We
formulate this problem with the following nonconvex GDP model:

minZ = - 35P1A- 30P2B+10F1+8F2+ F4A+ F4B
+4F5A + 4F 5B + 2CF +50CD
st.  F3A=0.55F1+0.50F2
F3B = 0.45F1+ 0.50F 2
P1A= F8A+ F10A+F6A
P1B = F8B + F10B + F6B
P2A=F9A+F11A+F7A
P2B=F9B+F11B+F7B
F6A= E6F3A F6B = E6F3B
F7A=E7F3A F7B=E7F3B
E4+E5+E6+E7=1
P1A3 4.0P1B, P2B3 3.0P2A
P1A+ PIB £15, P2A+ P2B £18
YF ue oY u
FAA=EAF3A F4B=E4F3B | gF4A=F4B=0
25£FAA+F4BE£25  U.8F8A=F8B =00
F8A=0.85F 4A, F8B = 0.20F 4B gF9A= F9B =0}
9A =0.15F 4A, F9B = 0.80F 4BU E4=0 U
CF=2 i CF=0 §
YD @YD 0
F5A = E5F3A,F5B = E5F3B FSA=F5B=0
25£ F5A+F5B£ 25 . 10A=FIOB=08
F10A = 0.975F5A, F10B = 0.050F5B); gF11A=F11B =0y
F11A = 0.025F5A, F11B = 0.950F5BU E5=0 U
CD=25 i CcD=0 g
£CF,CD;FLF2£ 25 0£ E4,E5E6 E7£1LYT {true, false}
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The optimal solution is -510.08 with F1* = 8, F2* = 25, P1* = P2* = 15, E* =
(0.108,0.758,0,0,134), and Y* = (true, true). In this example, the bilinear terms are replaced by
continuous variables and we add the linear underestimators and overestimators by McCormick
(1976) as discussed by Quesada and Grossmann (1995) to construct the relaxed convex GDP
problem (R). Using the heuristic search in step 0, DICOPT++ finds the trivial solution of 0.0 at
the first NLP. The bound contraction step for continuous variables yields 10.8 % of reduction
after solving fourteen LP subproblems in step 1. Performing the discrete branch and bound on
problem (CRP) in step 2, afeasible solution to the relaxed GDP is found at the third node with Y-
= (1,1) and objective value of —661.56. At this node, we switch to spatial branch and bound (step
3) with fixed Y™ = (1,1). This means that we fix Y as (true, true) and selecting the corresponding
terms in the digunctions in (E3). Branching on the continuous variables, it takes 27 nodes to
reduce the gap (27 LPs). An upper bound solution (-510.08) is found and this solution is used to
update in step 2 the value of GUB. A cut to exclude Y = (true, true) is added to the previous node
in step 2 and we resolve problem (CRP). Finding that the solution is infeasible, we close current
node and backtrack. In step 2, two more nodes are searched and they are fathomed by the GUB.

The optimal structure is shown in Figure 7.

Example 4
The fourth example is the nonconvex MINLP example 4.6 by Zamora (1997). The reformulated

nonconvex GDP model is asfollows:

MinZ = ég C, - 71X, - 60X, + 65X, +57X, - 30X, - 65X X, - 56X X5 - 85X, X, - 87X, X,
k=1

st. 2.5x, - 1.8x, +5x, - 5.6%; £ 296

X, +4.6X, - 5X; +1.5%,X, + 2%, X, £ 250
- 3.9%; +2.3X, +4X, - 10X, - 6X,X, +2.2X;X; £192.5

1.9%, - 5X; - 14X, + 2.9X,X; - 19X X, £134.5
7.5%, +5.8X; - 3%, +1.5%x,X, - 3X,X; =55
- 3.5X, - 10x, +10.5%; - 3.5x,X, £ 32
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Y, ué v, 0

é
??xl- x2+x1x3£8030§x1- x2+x1x3£03 (E4)
e «=% Hge =0 ¢
é Y. u
& ? é v, N
3.7, - Tx, +3.8%, - 5x a
e E‘37x - 7%, +3.5%X, £ 0
€ +3.5x.X, - 6X,X, £75 uUe
é a é X, =% =0 u
& X +15x;£90 u é -0 a
& c, =58 4 © © u
¢ Ys u e oY, u
é u é a
& X, +2%5 - 2X, +4X, EZOUU(:e X, + 2%, - 2x4+4x5£O@
e X, +X;- X £61.5 u e X +X-X£0 u
é u é U
é C; =30 a é C; =0 a
O£ x £ (5385,40,64,68), 0£ ¢, Y, 1 {true, falset, k =123

The optimal solution is —116,575 with x* = (2.952,52.77,0,1.736,24.46) and Y* = (false,
true, true). Convex underestimators and overestimators for the bilinear terms are introduced and

the bilinear terms are replaced by continuous variables, aj;. The convexification relaxes problem
(E4) asthe linear GDP problem (R4):

3
minZ =g ¢, - 71x, - 60X, + 65x, +57x, - 30X, - 658, - 562, - 858 ,, - 874 ,

k=1
st. 2.5%, - 1.8x, +5X, - 5.6x; £ 296
X, +4.6X, - 5x; +1.5a,, +2a,, £ 250
- 3.5% +2.3X, +4X, - 10X, - 6a,, +2.2a ., £192.5
1.9x, - 5%, +1.4X%, +2.9a ,, - 1.5, £134.5
7.5, +5.8%; - 3x; +1.5a,, - 34,5 =55
- 3.5%, - 10x, +10.5%; - 3.5, £32

3 oL Ly _ yLyb 3 WU Uy _ WU
a; % XX FXIX - XX, Ay 3 XX HX X - XX

a; EX7X XX - XPX L ay EX0X XX - X X]
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2%, - X, +a5 £80qUEX, - X, +a5 £0) (R4)
E &=5 HE& ¢c¢=0 g
€ Y2 u e 2Y, u
B7%, - Txs +38X, - 5X, [ & 3.7%,- T, +35a, £0
‘:9 +33,- 6, £75 @U§ Xy =Xg =8y T8y l-:‘
e e
& X tL5X £90 (| &ma, =8, =ay =a, =04
& Cc, =58 H & c,=0 i
€ Y5 u e 2Y, u
& TX, + 2%, - 2%, +4AX £ 20302- TX, + 2%, - 2X, + 4% £0;
€ x+X-x£615 U & X, +X;- X £0 u
é B u é B U
e c; =30 a é c; =0 a

0£ x £ (5385,40,64,68), 0£ C, Y, 1 {true, false}, k =1,2,3
0f£a,,i,j=12..5.

Using DICOPT++ to solve the MINLP problem (P-MIP) in step O yields the optimal
solution of —116,575 (GUB) after one major iteration. In the bound contraction step, 45 LPs are
solved and the reduction is 22.2 %. Figure 8 shows the branch and bound tree for step 2 and step
3. In step 2, we solve the convex hull relaxation of problem (R4) and the first lower bound
(GLB) is —242,474 at the root node with Y- = (0,1,0). Now the algorithm switches to the spatial
branch and bound with Y© = (0,1,0) (Node S1 in Figure 8) and it takes 33 nodes to verify that the
optimal solution with Y~ = (0,1,0) is 116,575 which then becomes the current upper bound
GUB. When returning to step 2, we add the cut for Y = (false, true, false) to make this choice
infeasible. Note that we need to branch further since the gap between the globa upper bound
(GUB) and global lower bound (GLB) is not closed. While branching on 1, three more integer
solutions are found. Switching to a spatial branch and bound search, we found that the nodes are
fathomed by GUB. The optimal solutions of the spatial branch and bound steps S2, S3 and $4
(see Figure 8) are inferior to the GUB. The total number of search nodes in each spatial branch
and bound step is also shown in Figure 8. Step 2 requires 11 nodes to prove optimality. In total,
137 LPs are solved in branch and bound step. For comparison, Zamora (1996) required the
solution of 126 LPsand 2 NLPs in his branch and bound method.
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Example5.
This example is a nonconvex MINLP problem for the synthesis and design of a batch plant with

multiple paralel units with ZW policy scheduling using single product campaigns (Birewar and
Grossmann, 1990). Figure 9 shows one of the major decisions in this problem which is the
assignments of tasks to units which impacts the schedule and equipment sizes. We introduce
digunctions for assignments of tasks to units, existence of units and the number of parallel
eguipments. Logic propositions are introduced for the flowshop network structure (see Appendix
B). The nonconvex GDP model is asfollows:

M
minCOST = § NC,

j=1
st. 3BS, i=1.,Nt=1..T
ptij = a ptyitj i=1.., Np; ] =1...M
T,
nB 3 Q [ =1..,N;

Np

[o]
anT, £H
i=1
5 Y u e Y u é Yia u
& . u e - .
¢ V'V uge V2PVioage V'V a0 g
& PYw TP o 8 PY TP 5 g P TPt g
épty., = pty.,, =08 8pty.,; = pty,, =0§ @pty.; = ptyi,, =04
é Yy U ? Yo l]
& . . e . v
é V,3V, gUe V,3V, U
gptyizz = ptiTzi Pty = OH gptym pt|21 Pty = OH
¢ Y we Y o
é . a. e . U
e V; 3V, gUe V,3V, u
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e Cj=g,+a Vy” a ng:OH
€ L u U a ¢
é Vi £V, £V, a.sv, =04
é . L L RS Uj=1.,M
~€¢ YC,, u € YC, u €& YC, Uu é& YC, u. eN= =0u
€a "u. e a8 g e oyoe 0
SeNf@ =1gUeNf© =2 gUeN® =3 gUeN© =4 gl éept; =00
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Logic Propositions
YEX, U Y, ,YEX, U Y, UY,,,YEX, U Y,
YEX, U Y, UY, UY,,,YEX. U Y,
W04L'W14QN24L'W34
w,, U @v, ugy,, Uay,,
Wi U (Y14 UQY24 U@Y%)Q(@YM L\JY24 U@Y&l )Q(gYm U@Y24 UY34)
Wou U (Y14 L\JY24 U@Y%)Q(QYM L\JY24 UY34)
W, U Y, UY,, UY,,
0£C,.V, .V .n,B. T, pt;, N, pty,; YEX,,Y,,YCy W, T {true, false}

1=1.,Ngt=1..T;j=1..,M;1 =0123
V|- =250,V =5000,V, =15000

where YEX; = true means that we use equipment j. Yy is the Boolean variable for task
assignments: for instance, if Y12 = true, then task 1 is assigned to equipment 2. This problem has
9 digunctions, 38 terms, 33 Boolean variables, and 51 continuous variables. There are 5
equipment, 4 tasks, and 3 products. For a detailed explanation of the variables, constraints and
structure of the optimal solution, see Birewar and Grossmann (1990). In the above model, the
concave objective function is relaxed by a secant line and the bilinear terms are relaxed by linear
underestimators.

In step 2, we branch on YEX; first since they are the major decision variables. When all YEX;
are fixed, then we branch on the task assignments variable Y;;. The number of parallel equipment
N;F9, which is an integer variable, is treated as a continuous variable between 0 and 4 in the
convex relaxation. Thus N5 is not used as a branching variable in step 2, but we branch on N2
in step 3. As shown in Table 2, an initial upper bound of 277,928 is found after four major
iterations. With this upper bound, the bound contraction step yields 9.1 % reduction with 44
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subproblems. The discrete branch and bound takes 32 nodes and 11 spatial branch and bound are
performed. As shown in Table 3, the optimal solution has an objective value of 264,887 and the
total CPU time required is less than one minute. For comparison, the heuristic search by
DICOPT++ for solving the nonconvex MINLP yields the optimal solution in 5 major iterations
with 3.7 CPU sec, but global optimality is not proved. The optimal design of the batch plant is
shown in Figure 10.

It is interesting to note that when YEX; and Y;; are fixed, problem (E5) can be reformulated
into a convex MINLP problem by substituting continuous variables with exponential terms
through logarithmic transformations (K ocis and Grossmann, 1988). Then instead of using spatial
branch and bound for nonconvex problem, OA algorithm can be used for solving this convex
MINLP problem in step 3 where the only integer variables are N,"°. Table 5 shows the numerical
results and comparison of SBB and OA in step 3. A substantial CPU time is saved in step 3 with
OA method, which shows that the convex reformulation can enhance the global search in this

specific case.

Example 6
This example is again taken from Birewar and Grossmann (1990), but the number of units, tasks,
and products is larger. There are 7 equipment, 6 tasks, and 6 products. Figure 11 shows the
potential task assignments to equipment. The GDP model is as follows:
M
minCOST = § N°C,
j=1
st. V/'3BS, i=L1..,Ngt=1..T
pt, =a Pty 1=1.,Np;j=1..,M
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N
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o

nT, £H

-
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The model has 13 digunctions, 54 terms, 53 Boolean variables, and 105 continuous
variables. Detailed results from each step are shown in Table 2. For exhaustive enumeration,
there are more than a hundred feasible discrete choices for the Boolean variables, but the
proposed algorithm performed only 46 spatial branch and bound step and proved the optimality.
The global optimal solution is found in 163.7 CPU sec, while DICOPT++ failed to find the
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optimal solution after twenty major iterations (see Table 4). The optimal solution found by the
proposed method, 726,205 is significantly lower than the solution obtained by DICOPT++
(763,450). As shown in Table 4, the first lower bound predicted by the proposed method is
tighter than the lower bound from the big-M nonconvex MINLP problem. Figure 12 shows the
optimal design. The convex MINLP reformulation, which is used in example 5, can be also used
in this example. Table 5 shows the comparison of the SBB and OA algorithms in step 3. The
difference in total CPU time comes from step 3 only. Again, the convex reformulation requires
less CPU time compared with the spatial branch and bound method for solving the nonconvex
MINLP problem.

Problem (E6) can be expanded by considering the storage tank after each unit j. We
introduce the digunction for the storage tank j which can be used for holding the intermediate
products coming from unit j. The following digunction and logic propositions are added to
problem (E6):

Digunction for Storage Tank |

é YS]- u

S -1 Pl \

e - £B;- B £ U S@YSJ- 3

e ' u —

a VST, ® S By NEQ, OU(:eBij =B (06)
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e a e '

é 100£ VST, £25000 g gCs, = 0§

Ve
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O

S, =5000+80vST j°'5
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Logic Propositions
GYEX; P OYS,

Cost termin the objective

Nols

M
COST =3 CS,
j=1
YS; T {true, false} ,0£ CS, ,VST,; j =1..,M

where YS is the Boolean variable which is true if there is a storage tank after unit j. CS is the
cost variable for the storage tank j. When introducing the storage tanks, we disaggregate the
variables B; and n; for batch size and number of batches into B;j and nj; for each unit j because
now they can be different from unit to unit. If we use the storage tank j, then the batch sizes Bj;

before and after the storage tank can be different within a certain bound f. Otherwise, the batch
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sizes Bjj should be same. The cost of storage tank j is given as a function of the volume, VST;,
which should be greater than the volume of the incoming products. With this augmentation, the
problem is expected to have an optimal cost which is lower than the previous optimal solution
726,205 (without storage tank) because the storage tank decouples the process, and thus the
equipment can be utilized more effectively.

First, the proposed two-level branch and bound algorithm was applied, and the search
stopped due to the iteration limit in the spatial tree search. The best upper bound after
termination is 671,284. Since the search is incomplete, this solution is not proved to be global
optimum. Secondly, the convex MINLP reformulation for SBB/OA method was again applied to
this problem. The global optimal solution 662,590 was found. This solution has 3 storage tanks
in the process, and has a lower cost compared to 726,205 for no storage tanks. The number of
subproblems and total CPU time were reduced with a factor of about 2 by the convex

reformulation compared with the two-level branch and bound method.

Example 7

This example is a nonconvex MINLP problem for a heat exchanger network superstructure
optimization (Yee and Grossmann, 1990; Zamora, 1997) as shown in Figure 13. For the GDP
model, digunctions are used for only the heaters and coolers, leading to a hybrid MINLP/GDP
model (see Vecchietti and Grossmann, 1999). Big-M constraints are used for heat exchangers
where the linear constraints give a relaxation comparable to the one when using the convex hull
of the digunctions. The arithmetic mean temperature is used in the objective function instead of
the LMTD. For a detailed explanation of the problem data and superstructure, see example 2.4 in
Zamora (1997). The hybrid model is as follows:
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The optimal solution is Z* = 74,710 $/yr which is shown in Figure 14. All the constraints
are linear and only the objective function is nonconvex. Zamora (1997) used thermodynamic
based linear fractional underestimators for the area of heat exchangers. Here we transform the
nonconvex terms in the objective function into linear fractional terms and use nonlinear convex

underestimators by Quesada and Grossmann (1995) as follows:
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where Ajj are the areas of heat exchangers, ACU; are the areas of coolers, and AHU; are the areas
of heaters. Since the functions fq, fc, and th in (R7) are linear functions, their upper and lower
bounds can be calculated from the upper and lower bounds of the continuous variables dt;j, dtcu,
and dthu;. The convex lower bounding problem (CRP) of problem (E7) yields the solution
28,260 $/yr which isaninitial GLB.

As shown in Table 2, DICOPT++ finds a feasible solution of 75,696 $/yr after 4 major
iterations. The bound contraction step yields 49 % reduction of the feasible region of continuous
variables. In step 2, the branch and bound on the discrete variables searched 517 nodes. A total
of 60 feasible discrete choices to problem (R) are found and they are solved by the spatial branch
and bound method in step 3. In this example, the main difficulty during the search comes from
the nonconvex objective terms, not from the linear constraints. Much of effort is spent to update
the upper bound in the spatial branch and bound step. Among all steps, 71 % of the total CPU
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time is spent in step 3, which means that we might accelerate the search if we can reduce the

number of subproblemsto be solved in step 3.

Conclusion

A global optimization algorithm for nonconvex GDP problems that involve bilinear, linear
fractional and concave separable functions has been proposed in this paper. The nonconvex
terms are substituted by convex underestimators for constructing a convex GDP problem. The
convex hull relaxation of the GDP is introduced resulting in a convex NLP that yields lower
bounds. This NLP problem is solved at the nodes of the proposed two-level branch and bound
method in which the digunctive branch and bound method by Lee and Grossmann (2000) is used
combined with a spatial branch and bound method for the continuous variables. Tight lower
bounds from the convex hull relaxation and the bound contraction, along with an upper bound
have been shown to be effective in solving nonconvex discrete/continuous optimization
problems. Numerical results of 7 example problems have been shown, as well as comparisons
with the big-M MINLP model.
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Appendix A. Convex Underestimators for Bilinear/Linear Fractional/Concave Separable
functions.

Consider a bilinear function xx;. Valid convex/concave envelopes are as follows (McCormick,
1976;Al-Khayyal and Falk, 1983):

3 Y U _ U
Xin X Xj +Xin X Xj

L L LL
X X 3 X X; +X Xj = X7X;
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U L
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For a linear fractional function x/x;, Quesada and Grossmann (1995) developed nonlinear
convex underestimators.
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Alternate convex underestimator/envel ope are the following:
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(A3) and (A4) were developed by Zamora and Grossmann (1998a) and by Tawarmalani and
Sahinidis (2000b), respectively. The convex envelope (A4) is based on the convex hull of xiL/x,-
and x"/;.

Univariate concave separable function |;(X) can be underestimated by a secant line which
matches concave function at the upper and lower bound (Falk and Soland, 1969):

L2 10+ (x- x) B LE) (A

Appendix B. Logic Propositionsfor Example 5.
B1. Equipment Units
The logic relation between the existence of unit and the assignment of task can be stated as
follows:
1) Unitj: If unit j exists, then at least one of the tasks t, which can be assigned to the unit j,
should be assigned to unit j.
2) Taskt: If task t isassigned to unit j, then unit j should exist.
In example 5, only task 1 (mixing) can be assigned to unit 1. The logic propositions for the
Boolean variables YEX; are Y;; then,
YEX, P Y,
Y, P YEX; (BY)
which can be combined into one proportional logic as YEX; U Yi1. By applying the same
procedure, we can produce the logic propositions for each unit (for the task assignment, see

Figure 9).
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YEX, U Y, (B2)

B2. Assignments of Tasks
The feasible choices in task assignment for unit 4 are considered. Unit 4 can process 3 types of
tasks: Task 1, 2, and 3. A number of combinations of 3 tasks are feasible for the assignment. In
terms of the number of tasks to be assigned, there are four choices. No task, 1 task, 2 tasks, and 3
tasks. For each case, we introduce Boolean variables Woa, Wha, Was, and Wh4. Woq 1S true when no
task is assigned to unit 4. Otherwise, it is false. Task assignment Boolean variable Y4 is true
when task 1 is assigned to unit 4. And it is same for Y24 and Y34. The logic propositions for task
assignments are as follows:

W, U @y, ugy,, Uugy,,

W, U (Y, UGY,, UaY,,)U(@aY,, UY,, UAY,,)UDY,, UDY,, UY,,) (B3)

W,, U (Y, UY,, UBY,,)U(@Y,, UY,, UY,,)

W,, U Y, UY,, UY,,

The first logic statement means that the number of tasks which can be assigned to unit 4 is
0,1,2, or 3. The second logic proposition states that if we do not assign any task to unit 4, then al
Yi4 are false. The third logic proposition enforces that if we assign one task, then only one of Y
istrue (t = 1,2,4) and others are false. The fourth logic enforces that if we assign two tasks to unit
4, only tasks (1, 2) or tasks (2, 3) can be assigned to unit 4. Tasks (1, 3) cannot be assigned to
unit 4 without task 2 assigned. The last logic statement means that if we assign three tasks, then
al Yy are true. The logic propositions (B3) can be transformed into the integer linear constraints
Al £ awhen solving problem (CRP).

We follow the same procedure in Example 6 for constructing the logic propositions for the
task assignments to units 2, 5 and 7 as shown in the model (E6).
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Table 1. Numerical resultsof illustrative example.

Step Step 0 Step 1 Step 2 Step 3
Method OA Bound Contraction Discrete BB Spatial BB
Result First UB =99.2 63.5 % reduction First LB =97.5 1SBB/UB =99.2
Iter. / Nodes 3 Iter. 4 Iter. (NLPs) 2 Nodes (NLPs) 5 Nodes (NLPs)
Table 2. Numerical results of nonconvex GDP problems.
. No. of var. Step 0 Step 1 Step 2 Step 3 Totd
Ex;rg ple ggﬂ;n:rl] (cont./disc.) First UB prob./reduc. First LB Nodes CPU
' No. of const. | Magjor iter./CPU* CPU Nodes/CPU /CPU sec
1 110 2/3 -11.0 9/69.5 % -11.25 1SBB 392
' 6 4/1.2 1.3 3/0.36 3/0.35 )
2/3 -14.0 8/52.6 % -37.36 1SBB
2 140 6 4138 14 6/1.8 o723 | 93
26/2 0.000 14/10.8 % -684.56 1SBB
3 ~510.08 49 0.1 17 6/L.3 27/1.6 49
5/3 -116,575 45/22.2 % -242,474 4 SBB
4 -116,575 24 111 5.7 11/0.88 126/14.1 217
51/33 277,928 44/9.1 % 82,354 11 SBB
5 264,887 102 4/2.5 11.8 32/7.3 159/25.5 471
105/53 763,450 36/4.3 % 341,284 46 SBB
6 726,205 271 3/9.2 16.7 169/76.5 210/61.3 163.7
52/16 75,696 34/49 % 28,260 60 SBB
/ 74,710 124 4/3.0 7.0 517/110.6 1494/300 4206
*On Pentium 11 300MHz with 128Mbyte RAM Memory.
Table 3. Comparison of solution algorithmsfor example5.
Model Solution Method CPU sec First LB Solution Note
Big-M L
DICOPT++ 3.7 161,339 Optimality
n?\;l]ﬁ(\)lrl]_vpex (local search) (5Maor Iter.) (not global) 264,887 not proved
Proposed Global 82,354 Globa
Nonconvex GDP | "4 gorithm 4rl (globally valid) | 2%*®7 | optimum
Table 4. Comparison of solution algorithmsfor example 6.
Model Solution Method CPU sec First LB Solution Note
noE::%r':\/I/ex DICOPT++ 42.7 325,453 763.450 Sub-optimal
MINLP (local search) (20 Major Iter.) (not global) ' Solution
Proposed Global 341,284 Globa
Nonconvex GDP | 4| yithm 163.7 (globally valid) | /2829 Optimum
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Table5. Convex MINLP reformulation for example 5 and 6.

Problem Example 5 Example 6
Solution Method Discrete BB/SBB Discrete BB/OA Discrete BB/SBB Discrete BB/OA
Iter./Nodes/sec Iter./Nodes/sec Iter./Nodes/sec Iter./Nodes/sec
Step 0 4iter./2.5 4iter./2.2 3iter./9.2 3iter./9.2
Step 1 44 iter./11.8 44 iter./8.0 36iter./16.7 36iter./14.2
Step 2 32 nodes/7.3 32 nodes/7.3 169 nodeg/76.5 163 nodes/80.9
Step 3 11 SBB/25.5 11 OA/8.8 46 SBB/61.3 46 OA/29.3
Total CPU sec 47.1 26.3 163.7 133.6
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Figure 2. Proposed algorithm for nonconvex GDP.
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Figure 3. Bound contraction subproblem.
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Figure 4. Branch and bound tree: Illustrative example.

a1



(0 0,1)
Spatia
BB

GUB =-14.0

Z-=

infeasible 19.48

fathomed fathomed

Figure5. Discrete branch and bound tree: Example 2.
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Figure 7. Optimal solution of example 3.
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Figure 8. Branch and bound tree of example 4.
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Figure9. Feasible task assignments of example5.
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Figure 10. Optimal batch plant design of example 5.
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Figure 11. Feasible task assignments of example 6.
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Figure 13. Super structure of heat exchanger network.
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Figure 14. Global optimal solution of example 7.
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