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Introduction

A graphical parallel programming tool for image

processing.

� Visual programming interface through Khoros.

� Optimization of data mapping and task execution.

� Automated generation of parallel code.
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Problem de�nition

� Given a chain of tasks with nested loops.

� Map tasks to processors, decide the computation

and data distribution for each task.

� Performance goal: To minimize the overall

parallel time.

Considerations:

� Exploiting both data and loop parallelism.

� Image size and #processor may vary at run-time.

� Computation weights may be data-dependent.
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Assumptions

� Computation and data mapping for each

task.

Use one of HPF data distribution methods:

row, column, row-cyclic, column-cyclic, block, and

block-cyclic partitions

� Computation follows chain-dependence.
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Related Work

� Parallel algorithms for image processing (e.g.

Sahni).

� Dynamic scheduling and task mapping for image

processing. (e.g. Jamieson, Siegel, Prasanna).

� Library-based parallel systems for image

processing. (e.g. Jamieson, Reeves).

� Exploring task and data parallelism. (Banerjee,

Subhlok)
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Scheduling Task Chains with Loops

Optimization for di�erent cases:

� Handling simple chains.

� Merging tasks for reducing complexity.

� Handing chains with loops.

� Considering the run-time variation of problem size

and #processor.
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The Algorithm

� Step 1: Graph partitioning.

Traverse the tree control structure to identify a set

of maximal subgraph chains which contain only

data-independent tasks.

For each of those chains, we apply the optimization

technique described from Step 2 to Step 5.

� Step 2: Graph reduction.

Merge pixel operations to reduce the number of

task nodes.
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� Step 3: Loop linearization.

Traverse the tree control structure of each chain in

a bottom-up manner to linearize loops.

� Step 4: Constrained shortest path searching.

Construct a scheduling graph for each parameter

setting and derive the optimal assignment.

� Step 5: Scheduling for optimal average

performance.

Construct an augmented scheduling graph for each

chain and derive the mapping which has optimal

average performance.
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Theoretical Properties

Theorem: Assume loop iteration numbers are large.

For each maximal data-independent subgraph chain

with loops, the above algorithm �nds a mapping which

is asymptotically optimal in terms of the average

performance (MPR).
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Figure 1: An image processing operation constructed

using Khoros. The image shown at bottom left is the

input image, and The image shown at bottom right is

the output image from the operation.
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Figure 2: (a) The task graph for the noisy-reduction �l-

ter, (b) the reduced task graph, and (c) the cost graph.
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Figure 3: (a) The speedup of the optimized parallel pro-

gram over the sequential program on MEIKO CS-2. (b)

The performance improvement of the optimized codes

over unoptimized codes on MEIKO CS-2.
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Figure 4: Implementation of the eigenface recognition

algorithm using Khoros.
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Figure 5: Graph representations of the eigen image com-

putation.
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Figure 6: (a) The speedup of the parallel eigenface com-

putation on MEIKO CS-2 using 64 128�128 face images.

(b) The performance improvement of the parallel eigen-

face computation using 32 64 � 64 face images and 64

128�128 face images on MEIKO CS-2. p = 4; 16; 24 and

32.
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