
Lee, Wang, and Tao 1'

&

$

%

Global Optimization for Mappping

Parallel Image Processing Tasks

on Distributed Memory Machines

CHeolwhan Lee, Yuan-Fang Wang, and Tao Yang

Department of Computer Science

University of California

Santa Barbara, CA 93106

Computer Science UCSB

Lee, Wang, and Tao 2'

&

$

%

Introduction

A graphical parallel programming tool for image

processing.

� Visual programming interface through Khoros.

� Optimization of data mapping and task execution.

� Automated generation of parallel code.

Computer Science UCSB

Lee, Wang, and Tao 3'

&

$

%

Problem de�nition

� Given a chain of tasks with nested loops.

� Map tasks to processors, decide the computation

and data distribution for each task.

� Performance goal: To minimize the overall

parallel time.

Considerations:

� Exploiting both data and loop parallelism.

� Image size and #processor may vary at run-time.

� Computation weights may be data-dependent.

Computer Science UCSB

Lee, Wang, and Tao 4'

&

$

%

Assumptions

� Computation and data mapping for each

task.

Use one of HPF data distribution methods:

row, column, row-cyclic, column-cyclic, block, and

block-cyclic partitions

� Computation follows chain-dependence.

Computer Science UCSB

Lee, Wang, and Tao 5'

&

$

%

Related Work

� Parallel algorithms for image processing (e.g.

Sahni).

� Dynamic scheduling and task mapping for image

processing. (e.g. Jamieson, Siegel, Prasanna).

� Library-based parallel systems for image

processing. (e.g. Jamieson, Reeves).

� Exploring task and data parallelism. (Banerjee,

Subhlok)

Computer Science UCSB

Lee, Wang, and Tao 6'

&

$

%

Scheduling Task Chains with Loops

Optimization for di�erent cases:

� Handling simple chains.

� Merging tasks for reducing complexity.

� Handing chains with loops.

� Considering the run-time variation of problem size

and #processor.

Computer Science UCSB

Lee, Wang, and Tao 7'

&

$

%

The Algorithm

� Step 1: Graph partitioning.

Traverse the tree control structure to identify a set

of maximal subgraph chains which contain only

data-independent tasks.

For each of those chains, we apply the optimization

technique described from Step 2 to Step 5.

� Step 2: Graph reduction.

Merge pixel operations to reduce the number of

task nodes.

Computer Science UCSB

Lee, Wang, and Tao 8'

&

$

%

� Step 3: Loop linearization.

Traverse the tree control structure of each chain in

a bottom-up manner to linearize loops.

� Step 4: Constrained shortest path searching.

Construct a scheduling graph for each parameter

setting and derive the optimal assignment.

� Step 5: Scheduling for optimal average

performance.

Construct an augmented scheduling graph for each

chain and derive the mapping which has optimal

average performance.

Computer Science UCSB

Lee, Wang, and Tao 9'

&

$

%

Theoretical Properties

Theorem: Assume loop iteration numbers are large.

For each maximal data-independent subgraph chain

with loops, the above algorithm �nds a mapping which

is asymptotically optimal in terms of the average

performance (MPR).

Computer Science UCSB

Lee, Wang, and Tao 10'

&

$

%

Figure 1: An image processing operation constructed

using Khoros. The image shown at bottom left is the

input image, and The image shown at bottom right is

the output image from the operation.

Computer Science UCSB

Lee, Wang, and Tao 11'

&

$

%

F
-1

F
-1

endstart

col
-cyc

row

col

row

col

ln F C expC C L
o(x,y)f(x,y)

L
F C

exp
globalglobalmasking

C

global

(b) Reduced Task Graph

(a) Task Graph

(c)

row

col

block

row
-cyc

-cycblock

H M

H M
C

ln

block

Cost Graph

Figure 2: (a) The task graph for the noisy-reduction �l-

ter, (b) the reduced task graph, and (c) the cost graph.

Computer Science UCSB

Lee, Wang, and Tao 12'

&

$

%

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

Speed Up(optimized schedule for 512x512 image)

of proc.

S
p

e
e

d
 U

p

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

of proc.

P
e

r
fo

r
m

a
n

c
e

 I
m

p
r
o

v
e

m
e

n
t

Performance Improvement(512x512 image)

(a) (b)

Figure 3: (a) The speedup of the optimized parallel pro-

gram over the sequential program on MEIKO CS-2. (b)

The performance improvement of the optimized codes

over unoptimized codes on MEIKO CS-2.

Computer Science UCSB

Lee, Wang, and Tao 13'

&

$

%

Figure 4: Implementation of the eigenface recognition

algorithm using Khoros.

Computer Science UCSB

Lee, Wang, and Tao 14'

&

$

%

HISTO DIV SUB
RE-

CONST TRANS MUL EIGEN MUL

DIV TRANS MUL EIGEN

MUL

ADD

DIV

SUB
RE-

CONST

TRANS MUL EIGEN

MUL

ADD
HISTO

RE-
CONST

SUB

block

row

row
-cyclic

col

col
-cyclic

block

-cyclic
block

row

col

row

col

block

row

row
-cyclic

col

col
-cyclic

block

-cyclic
block

block

row

row
-cyclic

col

col
-cyclic

block

-cyclic
block

(a) Task graph with loops

HISTO

M M M

M M

ADD

M

MMM

(c) Reduced Task Graph

(b) Tree representation

(d) Cost Graph

Figure 5: Graph representations of the eigen image com-

putation.

Computer Science UCSB

Lee, Wang, and Tao 15'

&

$

%

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30
Speed Up(64 128x128 images)

of proc.

S
p

e
e

d
 U

p

0 5 10 15 20 25 30 35
1.05

1.1

1.15

1.2

1.25

1.3

1.35

Performance Improvement

of proc.

P
e

r
fo

r
m

a
n

c
e

 I
m

p
r
o

v
e

m
e

n
t

o : 32 images

* : 64 images

(a) (b)

Figure 6: (a) The speedup of the parallel eigenface com-

putation on MEIKO CS-2 using 64 128�128 face images.

(b) The performance improvement of the parallel eigen-

face computation using 32 64 � 64 face images and 64

128�128 face images on MEIKO CS-2. p = 4; 16; 24 and

32.

Computer Science UCSB

