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‘ Introduction I

A graphical parallel programming tool for image

processing.

e Visual programming interface through Khoros.
e Optimization of data mapping and task execution.

e Automated generation of parallel code.
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‘ Problem definition I

e (Given a chain of tasks with nested loops.

e Map tasks to processors, decide the computation

and data distribution for each task.

e Performance goal: To minimize the overall

parallel time.
onsiderations:

e LExploiting both data and loop parallelism.
e Image size and #processor may vary at run-time.

e Computation weights may be data-dependent.
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‘ Assumptions I

e Computation and data mapping for each
task.

Use one of HPF data distribution methods:

row, column, row-cyclic, column-cyclic, block, and

block-cyclic partitions

e Computation follows chain-dependence.
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‘Related Work'

Parallel algorithms for image processing (e.g.
Sahni).

Dynamic scheduling and task mapping for image

processing. (e.g. Jamieson, Siegel, Prasanna).

Library-based parallel systems for image

processing. (e.g. Jamieson, Reeves).

Exploring task and data parallelism. (Banerjee,
Subhlok)
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‘Scheduling Task Chains with Loops'

Optimization for different cases:

e Handling simple chains.
e Merging tasks for reducing complexity.
e Handing chains with loops.

e Considering the run-time variation of problem size

and #processor.
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‘ The Algorithm I

e Step 1: Graph partitioning.

Traverse the tree control structure to identify a set
of maximal subgraph chains which contain only

data-independent tasks.

For each of those chains, we apply the optimization
technique described from Step 2 to Step 5.

Step 2: Graph reduction.

Merge pixel operations to reduce the number of

task nodes.
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e Step 3: Loop linearization.

Traverse the tree control structure of each chain in
a bottom-up manner to linearize loops.

e Step 4: Constrained shortest path searching.
Construct a scheduling graph for each parameter
setting and derive the optimal assignment.

e Step 5: Scheduling for optimal average
performance.

Construct an augmented scheduling graph for each
chain and derive the mapping which has optimal

average performance.
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‘ Theoretical Properties I

Theorem: Assume loop iteration numbers are large.
For each maximal data-independent subgraph chain
with loops, the above algorithm finds a mapping which
is asymptotically optimal in terms of the average
performance (MPR).
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Figure 1: An image processing operation constructed
using Khoros. The image shown at bottom left is the
input image, and The image shown at bottom right is

the output image from the operation.
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Figure 2: (a) The task graph for the noisy-reduction fil-
ter, (b) the reduced task graph, and (c) the cost graph.
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Figure 3: (a) The speedup of the optimized parallel pro-
gram over the sequential program on MEIKO CS-2. (b)
The performance improvement of the optimized codes
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Figure 4: Implementation of the eigenface recognition

algorithm using Khoros.
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Figure 5: Graph representations of the eigen image com-
putation.
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Figure 6: (a) The speedup of the parallel eigenface com-
putation on MEIKO CS-2 using 64 128 x 128 face images.
(b) The performance improvement of the parallel eigen-
face computation using 32 64 x 64 face images and 64
128 x 128 face images on MEIKO CS-2. p = 4, 16,24 and
32.

B

/

Computer Science

UCSB



