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Background

• One approach for doing global optimization is the use of interval analysis.

• Interval analysis can:

– Provide a deterministic methodology for global optimization problems.

– Deal automatically with rounding error, thus providing both mathematical

and computational guarantees.

• Interval methods can be used in various ways in global optimization, e.g.:

– Interval branch-and-bound

⇒ Interval-Newton approach

– As a tool within other methods
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Background (Cont’d)

• Interval Newton/Generalized Bisection (IN/GB)

– Given a system of equations to solve, an initial interval (bounds on all

variables), and a solution tolerance:

– IN/GB can find (enclose) with mathematical and computational certainty

either all solutions or determine that no solutions exist.

– IN/GB can also be extended and employed as a deterministic approach for

global optimization problems.

• A general-purpose approach; in general requires no simplifying assumptions

or problem reformulations.

• No strong assumptions about functions need to be made.

⇒ Solution of a linear interval equation system is a key subproblem.
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Interval Methodology (Cont’d)

Problem: Solve f(x) = 0 for all roots in interval X(0).

Basic iteration scheme (IN/GB): For a particular subinterval (box), X(k), perform

root inclusion test:

• (Range Test) Compute an interval extension (bounds on range) for each

function in the system.

– If 0 is not an element of any interval extension, delete the box. Otherwise,

• (Interval-Newton Test) Compute the image, N(k), of the box by solving the

linear interval equation system

F′(X(k))(N(k) − x̃(k)) = −f(x̃(k))

– x̃(k) is some point in X(k).

– F′ (X(k)
)

is an interval extension of the Jacobian of f(x) over the box

X(k).
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Interval Methodology (Cont’d)

• There is no solution in X(k).
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Interval Methodology (Cont’d)

• There is a unique solution in X(k).

• This solution is in N(k).

• Additional interval-Newton steps will tightly enclose the solution with quadratic

convergence. (Point Newton method will also converge to solution from any

point in N(k).)
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Interval Methodology (Cont’d)

• Any solutions in X(k) are in intersection of X(k) and N(k).

• If intersection is sufficiently small, repeat root inclusion test.

• Otherwise, bisect the intersection and apply root inclusion test to each

resulting subinterval.
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Interval Methodology (Cont’d)

• Easily extended to global optimization problems.

• For unconstrained problems, solve for stationary points.

• For constrained problems, solve for KKT or Fritz-John points.

• Add an additional pruning condition (objective range test):

– Compute interval extension of objective function.

– If its lower bound is greater than a known upper bound on the global

minimum, prune this subinterval.

• This combines IN/GB with a branch-and-bound scheme.

• Key step, for either optimization or equation solving, is solution of linear

interval system

F′(X)(N − x̃) = −f(x̃)

Seek tightest possible bounds on solution (N − x̃), and thus on N.
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Solution Set of Linear Interval System

• Consider linear interval system Az = B.

• Solution set is defined: S = {z | Ãz = b, Ã ∈ A,b ∈ B}.

• Interval solution: An interval Z containing S.
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Solution Set of Linear Interval System (Cont’d)

• Computing the interval hull (tightest interval containing S) is NP-hard (Rohn

and Kreinovich, 1995).

• Several methods are available to compute an interval solution Z that contains

S, but that may not give tight bounds.

• Methods used in the context of interval-Newton:

– Preconditioned (inverse-midpoint) interval Gauss-Seidel

– Hybrid (pivoting/inverse-midpoint) preconditioner and real point selection

(HP/RP) (Gau and Stadtherr, 2002)

⇒ LP strategy
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LP Strategy for Linear Interval System

• Oettli & Prager(1964) theorem : Solution set S is defined by the constraints∣∣∣Âz − B̂
∣∣∣ ≤ ∆A |z| + ∆B

Â – component-wise midpoint matrix of A

∆A– component-wise half width matrix of A

B̂ – component-wise midpoint vector of B

∆B – component-wise half width vector of B

• To eliminate absolute value operation on z, the components of z must keep a

constant sign −→ consider each orthant separately.
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LP Strategy for Linear Interval System (Cont’d)

• In each orthant, define Dα, a diagonal matrix whose entries are:

(Dα)jj =

{
1 zj ≥ 0

−1 zj < 0
j = 1, 2, . . . , n

• To determine bounds on S in each orthant, solve 2n linear programming

problems:

maximize (and minimize) zj , j = 1, 2, . . . , n

s.t.


 Â − ∆ADα

−Â − ∆ADα


 z ≤


 B

−B




• To get optimal solution overall (interval hull), calculate extrema in all orthants

(2n in worst scenario — exponential complexity).
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LP Strategy for Linear Interval System (Cont’d)

Application to IN/GB methods:

• Solve linear interval system

F′(X)(N − x̃) = −f(x̃)

• Only the part of N that intersects X needs to be found.

• If x̃ is selected to be a corner of X, then the part of N − x̃ for which N
lies in X is entirely in one orthant.

• Solution of interval-Newton equation can be sought using LP in only one

orthant. Tightest possible solution obtained, while avoiding exponential

time complexity.
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Numerical Experiments

• LISS LP(Linear Interval System Solver by Linear Programming) has been

developed.

• Option to use sparse linear algebra in solution of LP problem.

• We compare performance results of LISS LP to HP/RP (Gau and Stadtherr,

2002) on a SUN Blade 1000 model 1600 workstation.

• Performance results include:

– Number of interval Newton tests performed (I-N tests)

– CPU time in seconds
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Example 1

• Estimation of Van Laar parameters from vapor-liquid equilibrium data using

error-in-variables approach (Kim et al., 1990; Esposito and Floudas, 1998):

P = γ1x1p
0
1(T ) + γ2(1 − x1)p

0
2(T )

y1 =
γ1x1p

0
1(T )

γ1x1p0
1(T ) + γ2(1 − x1)p0

2(T )

where

p0
1(T ) = exp

[
18.5875 − 3626.55

T − 34.29

]
, p0

2(T ) = exp

[
16.1764 − 2927.17

T − 50.22

]

and

γ1 = exp

[
A

RT

(
1 +

A

B

x1

1 − x1

)−2
]

, γ2 = exp

[
B

RT

(
1 +

B

A

1 − x1

x1

)−2
]

• There are five data points and four measured variables with two parameters

to be determined.
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Example 1 (Cont’d)

• Formulated as unconstrained global optimization with 2 parameter variables

and 10 state variables.

• With standard inverse-midpoint preconditioner in solution of linear interval

system, solution time is > 2 CPU days.

• Performance results with hybrid preconditioner (HP/RP) and LISS LP:

HP/RP LISS LP

I-N tests 303,589 156,182

CPU time (s) 664.4 496.7

• LP solver uses dense linear algebra.
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Example 2

• Estimation of parameters in heat exchanger network using error-in-variables

approach (Biegler and Tjoa, 1993).

• Network of four exchangers. Estimate the four rating parameters (UA)i.

• Five unconstrained global optimization problems with 4 parameter variables

and 13m state variables (number of data points m = 4, 8, 12, 16, 20).
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Example 2 (Cont’d)

• Performance results:

Data Points Variables HP/RP LISS LP

m n I-N Tests CPU Time I-N Tests CPU Time

4 56 1 0.12 2 0.27

8 108 375 211.8 44 38.1

12 160 363 498.6 299 346.0

16 212 188 645.8 83 316.8

20 264 220 1357.3 81 504.9

• LP solver uses sparse linear algebra.
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Example 3

• Trefethen (2002) Challenge Problem #4 — Find the Global Minimum
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f(x, y) = exp(sin(50x)) + sin(60 exp(y)) + sin(70 sin(x)) + sin(sin(80y)) −
sin(10(x + y)) + (x2 + y2)/4; x ∈ [−1, 1]; y ∈ [−1, 1]
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Example 3 (Cont’d)

• Solution

x ∈ [−0.02440307969437517,−0.02440307969437516]

y ∈ [0.2106124271553557, 0.2106124271553558]

f ∈ [−3.306868647475245,−3.306868647475232]

• Global minimum is easily found using interval approach

HP LISS LP

I-N tests 1814 1179

CPU time (s) 0.15 0.16

• On relatively easy problems, LP-based strategy is not needed, but still can be

used without significant loss of efficiency due to LP overhead.
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Example 4

• Find the global minimum of the function (Siirola et al., 2002):

f(x) = 100
N∏

i=1

5∑
j=1

(
j5

4425
cos(j + jxi)

)
+

1
N

N∑
i=1

(xi − x0,i)2

where x0,i = 3, xi ∈ [x0,i − 20, x0,i + 20], i = 1, ..., N .

• Solve for N = 5. There are ≈ 108 local optima.

• Performance results:

Global Minima I-N tests CPU time(s)

LISS LP 5 155,666 389.17

HP 5 171,918 636.76
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Example 5

• Find all stationary points (minima, maxima, saddles) on potential energy

surface of triatomic molecule ABC.

– Useful for study of transition states and reaction pathways.

– We studied the molecules HCN, HSiN, CS2 and HBO (Westerberg and

Floudas, 1999).

• The triatomic molecule geometry is described using the three interatomic

distances R1 = RAB , R2 = RAC and R3 = RBC .

• Murrel-Sorbie analytic potential energy surface V (R1, R2, R3) is used.

• Find all solutions of stationarity condition: ∇V = 0
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Example 5 (Cont’d)

• Physical constraints: triangle inequality

RAB ≤ RAC + RBC

RAC ≤ RAB + RBC

RBC ≤ RAB + RAC

Use to tighten interval bounds before application of interval-Newton.

• Collinear case: eliminate one variable, e.g., for RAC = RAB + RBC solve

∂

∂RAB
V (RAB, RAB + RBC , RBC) = 0,

∂

∂RBC
V (RAB, RAB + RBC , RBC) = 0

• Solve one noncollinear problem and three collinear problems.

• Search in intervals Ri ∈ [0.7, 5.0]Å.
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Example 5 (Cont’d)

• General form of potential energy surface (Aguilar et al., 1992)

V (R1, R2, R3) = VAB + VAC + VBC + VABC

• Two-body terms are extended Rydberg functions, e.g.,

VAB(R1) = −De(1 + a1ρ + a2ρ2 + a3ρ3 + · · · )e−a1ρ,

ρ = R1 − Re

• Three-body term

VABC(R1, R2, R3) = P × T,

P = V 0


1 +

3∑
i=1

Ciρi +
3∑

j≥i=1

Cijρiρj +
3∑

k≥j≥i=1

Cijkρiρjρk + · · ·



T =
3∏

i=1

(
1 − tanh

γiSi

2

)

Si =

3∑
j=1

bijρj , ρj = Rj − R
0
j
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Example 5 (Cont’d)

• Stationary states for HCN

Type Energy (eV ) RCN (Å) RCH(Å) RNH(Å)
minimum -5.548223 — 2.332871 1.038900

saddle 8.094668 — 0.857572 0.806900

minimum -12.972507 1.159150 — 0.993336

minimum -13.592215 1.153198 1.065498 —

saddle -5.249952 2.344235 2.980408 1.044278

saddle -1.937592 2.311895 1.792854 2.327696

saddle -3.102483 2.582864 1.081559 2.737335

saddle -11.444169 1.117973 1.053919 1.387750

saddle -11.345398 0.929065 1.039138 1.041348

minimum -11.379410 0.857321 0.980845 0.989052
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Example 5 (Cont’d)

• Stationary states for HSiN

Type Energy (eV ) RSiN (Å) RSiH(Å) RNH(Å)
saddle 1.109601 2.778074 2.617596 —

saddle -3.144738 1.523964 2.426268 —

saddle -5.148745 2.006322 1.361586 —

minimum -6.098598 1.529588 1.459586 —

saddle -5.666608 1.575921 — 2.969229

minimum -9.358509 1.523293 — 0.998205

maximum 1.720515 2.647092 2.415995 3.498876

saddle -2.876954 1.501907 2.309780 3.069649

saddle -4.908995 2.394221 2.137984 0.974496

saddle -0.728138 2.155741 1.473092 2.044809

saddle -3.717494 1.461352 1.634575 2.093708
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Example 5 (Cont’d)

• Stationary states for CS2

Type Energy (eV ) RCS(Å) RCS′ (Å) RSS′ (Å)
saddle -1.668827 2.761779 — 2.695109

saddle 103.740892 0.949956 — 1.813411

minimum 97.485407 0.909824 — 1.417728

minimum -12.004548 1.552422 1.552422 —

saddle -0.049002 4.171034 4.171034 3.978688
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Example 5 (Cont’d)

• Stationary states for HBO(PES1)

Type Energy (eV ) RBH(Å) RBO(Å) ROH(Å)
saddle -7.598281 3.264082 1.187662 —

minimum -16.678316 1.165505 1.185028 —

minimum -6.556670 1.162756 — 2.349430

saddle -0.216647 — 2.554092 3.688901

• Stationary states for HBO(PES2)

Type Energy (eV ) RBH(Å) RBO(Å) ROH(Å)
minimum -16.678851 1.168947 1.184167 —

minimum -6.639249 1.154136 — 2.344208

minimum -11.305022 — 1.192047 2.383483

saddle -11.134196 2.906575 1.185979 2.398381
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Example 5 (Cont’d)

• Summary of triatomic problems

Problem Stationary points found CPU time (sec)

HCN 10 6.66

HSiN 11 1.07

CS2 5 2.18

HBO(PES1) 4 0.88

HBO(PES2) 4 0.56
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Concluding Remarks

• An LP-based method can be used to solve the linear interval system arising in

the context of the interval-Newton approach for nonlinear equation solving

and global optimization.

• The method can obtain tighter bounds on the solution set than standard

methods, and thus lead to a large reduction in the number of subintervals that

must be tested during the interval-Newton procedure.

• The overhead required to solve the LP subproblems may lead to relatively

smaller improvements in overall computation time.

• The interval methodology is a powerful approach for deterministic global

optimization.
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