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Abstract

A generd decomposition method developed by the authors is gpplied to globa-locd
sructurd optimization problems. First, alarge number of component optimizations for
maximization of margins are performed. Response surface gpproximations (RSA) for
maximum margins of component optimization are condructed. At the system level
optimization, the RSA of maximum margins are used as surrogete for the components.
One advantage of the decomposition gpproach isthat it dlows much of the search for a
globa optimum to be conducted in low-dimensions for each component separately.
Minimization of a portd frame weight with eight locd optima is used to demondrate the
approach.

Key Words  decomposition, congtraint margins, loca/globa structura optimization,
response surfaces

1. Introduction

For the design of redligtic Structures carrying alarge number of loading cases and
having many components that need design variables to describe detailed geometry, direct
angle-leve optimization often requires of exorbitant computer resources. The
computational resources required for the solution of an optimization problem typically
increase with dimensiondity of the problem a arate that is more than linear. Thisis
particularly true when globa optima are sought, as the rate of increase in cost with the
number of variablesis usudly exponentid. One obvious solution isto bresk up alarge
optimization problem into smdler sub- problems and a coordination problem to preserve
the couplings among these sub- problems.

Decompostion usudly adlows easy Utilization of paralel computation
capabilities. Moreover, to bresk abig problem into several smal problemsis naturd in
engineering optimization, because engineers tend to work in teams, each concentrating on
parts of aproject. This dlows a broad work front and shortens development time.

Numerous hierarchical and nonhierarchical decomposition strategies for the
optimization of large scae systems, comprised of interacting subsystems, have been
proposed ¥ Schmit et d.’s (1978, 1982) multilevel structurad decomposition, Sobieski’s
concurrent subspace optimization (CSSO), (1988 ) nonhierarchica decomposition,
Kroo' s collaborative optimization (CO) (1996), etc. However, most of these strategies
may not dways converge to the optimum of the origind problem (e.g,, Alexandrov and
Lewis, 2000)



Thereisa class of quas-separable optimization problems narrow enough to alow
rigorous decomposition theory, yet general enough to encompass many large scde
engineering problems. The subsystems for these problemsinvolve loca design variables
and globa system variables, but no variables from other subsystems. The objective
function isasum of aglobd system criterion and the subsystem’ s criteria

Each subsystem is given abudget and globd system variable vaues, and then
asked to independently maximize its congtraint margins. For each subsystem, aresponse
surface gpproximation of maximum congtraint margins is congructed as a function of the
globa design variables, and it is used as a surrogate for the overdl optimization. A
gpecid verson of this approach was developed for coordinating panel design with overal
wing design by Liu et d. (2000). Haftka et d. (2002) developed genera theory for globa
optimization with continuous variables. The objective of the present paper isto
demondtrate the applicability of the method to decomposition of structura optimization
based on structural components.

The methodology is demongtrated for design of asmple porta frame structure
that has three rail- cross-section beams.

2. Decomposition of Single-level Optimization and Response Surfaces of Maximum
Subsystem Margins
Congder a systlem with avector of system design variables S( s={s, &,..., SN} )-
The system is compaosed of M subsystems, each with its own vector of subsystem loca
vaiadlesl;, j=1..., M, (I; ={l;1,Y ... ljk}). The sngle-level optimization of the system has
the following form:
minimize W(s)
subjecttog,(s)£0, q=1,-,Q (1)

Go(S 1,)£0, k=1, -, M, p=1...P

where W is the system objective function, gq are system-level condtraints which only
depend on the system design varidbles , gkp are constraints which depend on the system
design variablesand design variables of the ki, subsystem.

The authors have proposed a two-level decompodtion of the optimization
problem ( Haftka et d., 2002), where each subsystem maximizes the congtraint margin
for its condraints. That is the upper-leve problemis defined as

minimize W(s)
subjecttog, (s)£0, g=1,--,Q
_m(s)ﬁo’ j:l’ M

)
where mis the minimum margin of the condraintsin the jth subsystem, whichis
maximized a the lower levd.



The maximization of the minimum margin m isatypica min-max problem, with
the known difficulty in thet the maximum of a function does not have continuous
derivatives. Following Taylor and Bendsge (1984), we solve this problem by introducing
themargin m as an additiona design variable. The subsystem optimization is then stated
with given sysem variables s asfollows

max imizem

l

subjectto gy, (s, 1,)+m £0, p=1,-,P 3

We have shown ( Haftka et d., 2002) that under mild conditions, every loca
optimum of the decomposed system is dso alocd optimum of the origind system, 0
that the decomposition does not introduce spurious solutions. In addition, the
decomposition permits us to perform some global optimization a the subsystem levd.
Because the cost of globa optimization can grow exponentialy with problem size, we
gan by performing much of the globa search at the subsystem levd.

Because subsystemn optima are not smooth functions of system level design
variables, gradient-based optimization may experience difficulties with the two-leve
formulation. In addition, the implementation of atwo-leve scheme may require difficult
integration of component optimization software. Response surface gpproximations (RSA)
offer an attractive way of overcoming both implementation and smoothness difficulties.

Frg, alarge number of subsystem level optimizations for different vaues of the
global design variables are performed. Then, the results of the subsystem optima are
fitted with a smple response surface, typicaly alower order polynomid. Findly, the
system levd optimization is performed with the RSA as a surrogete for the maximum
margin of each subsystem.

3. Frame Example

A porta frame, shown in Fig.1, has been used often to demonstrate decomposition
drategies (e.g., Sobieski et d., 1985). The structure consists of three beams. Each beam
has arail-section defined by six size design varidbles defined in Fig. 2. The portd frame
is subjected to a point load and a concentrated moment. Materia properties are given in
Tablel.

Table1 Material Properties

E 7.06 E6 N/cn?
n 0.33

Sy +20000 N/cn?
t 11600 N/cn?
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Figure.l Portal Frame \ 4 Figure. 2 Rail Section

In order to demonstrate the advantage of searching for optima at the local levd,
the problem has been modified to creste multiple distinct loca optima. This was
accomplished by requiring that the top and bottom flange of each beam be different in
areaby a least 10%. Thistype of congtraints may be redistic when it isimportant to
assis the assembly process of a system by reducing possible confusion asto questions
like “which sdeisup?’. These condraints divide the design space into eight digoint
feasible regions or idands. In each one of these idands, a particular choice of the larger
flange for each beam holds. Wewill use T to denote that the top flange is bigger and B to
denote that the bottom flange is larger. So TTB corresponds to a design with the top
flange being larger for the first two beams and the bottom flange being bigger for the
third beam.

3.1 Problem formulation

Each rail-section beam has Sx variables by, t1, by, to, hy, ty asshown in Fig. 2, for
atotal of 18 design variables. Three types of condraints are considered in the
optimization. Stress congraints include flange normal stress and web shear stress
congraints. Geometric congraints limit the aspect ratios and area distributions to
eliminate extremely dender plates that are likely to buckle, Findly, the flange area
condraint, requiring that top flange areais 10% more than bottom flange area, or bottom
flange areais 10% more than top flange areais used to create multiple locd optima.
Objective function is portd frame volume.

The optimization problem is formulated as
Minimze W = § Al (4)
where A;, |, i=1,%3, are section areas and length of the beams.
Subject to

S ..
g, =%- 1£0  (flangenormd dtress), i=1,2,3, j=1,2,3,4 (4 point normal
y

stress) (5)



t. )
g = t_' -1£0 ( web shear stress) 1=1,2,3

y

t
g =1- Myt £0, i=1,23
02((2b1| + tW,i )W,i + hw,itw,i + (2b2,i +tw,i )t2,i )
(web area congtraints)
2b; +t,, ; ;
g :T -1£0,1=1,2,i=1,2,3  (top and bottom flange length is not
1
more than 20 times of its thickness)
h
g = 3 Y _.1£0,i=1,23 ( web depth is not more than 35 times of its
thickness)
_, (2o 41, )by,
gi - 11(2bl| +tw,i )tl,i
or i=1,2,3 (10)
2b, +t_ . )b .
gi :1_ ( b1,| Wi )b1|
11(2b2| +tw,i )t2,i
Sde condraints

bl,minEbl,i£ bl,max

t1,min{-':t1,i £t1,max

b2,min£b2,i£b2,max

t2,min£t2,i £t2 max (11)
hN,minEhN,i£hN,max

tw,minf:tw,iﬁtw,max

Congtraint (7) requires that the web areais at least 20% of the total area of the
beam, congtraints (8) and (9) are aspect ratio limits, and (10) is the separation congtraint.

For a given bending moment M and axia force N at one end, maximum normd
sresses s ; ; a the top and the bottom flanges are calculated. Average web shear stress

t . iscaculated for given shear force Q. For agiven moment Ma and shear force Qa, at
the end A, bending moment of the other end B is cdculated as follows:

Mg =M, +IQ, 12)
wherel islength of the bar.

3.2 Two-level Optimization

For the two-leve gpproach, the areas and moments of inertia of the beams are the
system-level design variables. Furthermore, an gpproximete rel ationship between the area
and moment of inertia was used to diminate the moments of inertia Using finite dement
andysis, the upper-level variables can be used to cdculate the bending moments, axia
loads and shear forces for each beam.

At the lower-leve optimization, the minimum margin of dl condrantsis
maximized for a given area, moment of inertia, bending moment, axia force and shear



force, which are obtained from the areas and moments of inertia. Design variables are
ral-section 9ze variables, by, t1, by, tz, hy, tw, Shown in Fig. 2. Condraints are added to
force the area and moment of inertia associated with the lower leve variablesto agree
with the system level variables. Thusthe lower level problem becomes:

Maximizem

Subject to (5)-(11), with the congtraint relaxed by amargin m so that for example (9) is
replaced by

h,

=——-1+m£0 13

G0 = 35 - (13)

and in addition the a prescribed area and moment of inertia must be matched

Aoca

On=— - 1=0 (14)
A
I ocal

O, = 2 -1=0 (15)

g
IL | = (Z)l +tw)3t1 + (202 +tw)3t2 + hwtvav
ocal 12
where Ag and |  are area and moment of inertia from the upper-leve optimization, Ajocal
l1ocal @€ SUbsystem area.and moment of inertiawhich are updated in the local-leve
optimization because of change of Sx rail-section Sze varidbles.
3. 2.1 Response Surface of Maximum Margins

(16)

Cubic polynomia response surface approximations are used to obtain an
approximate relationship between the maximum margin and the given area, moment of
inertia, and loads. For creating the response surface, the IMP software (SAS 1995) was
used to sdect a D-optima set of points and fit the response surface. For better
conditioning, the variables are normalized to the range [-1,1]. For example, the
normalized areaiis given as

Z: 2A- Anax B Anin
Avac = Anin (17)

with Smilar expresson for the other varigbles.
wherein the above expressions, “max” and “ min” denote the ranges of variables.

The maximum margin n¥ is then expressed as

m =m (AT,M,F.Q) (18)
Ranges of three beams are asfollows:
Beam No. 1

56 c? < A< 71 cnf
9542 cnt* < 1< 13207 cm’
(-) 12500000 N.cm < M < (-) 14000000 Ncm (19)



30000 N< F< 35000 N
(-) 5000 N < Q < (-) 5500 N

Beam No. 2

68 cn? < A < 95 cn?

14033 cm* < | < 22494 et

(-) 11500000 N.cm < M < (-) 11800000 Ncm (20)
50000 N< F< 55000 N

30000 N < Q < 35000 N

Beam No. 3

29 cn? < A < 43 en?

1435 cmf* < | < 2427 e’

900000 N.cm < M< 1300000 Ncm (21)

(-)3100 N< F< (-)30000 N

1100 N < Q< 1600 N

“-*1n (19) 20 (21) represents direction of bending moment. Ranges of axial forces,
bending moment and shear forcesin the above equations are estimated from finite
element andyssof the porta structure. Maximum of dl minimum marginsisavery
complicated function of the above five parameters. In order to obtain highly accurate
margin RS, small ranges of five parameters are used here. In case that there are big
ranges, it is suggested to break a big range into severa smal segmentsand in each
segment, one RS will be fitted.

More than 16,000 design points were randomly generated for each of three beam
ranges defined in (21)-(23), and then 150 D-optima points were selected from each
domain. The lower-leve optimization was performed twice to for the two option of the
separation congtraint, and the best design of the two was sdlected, thus performing part of
the globa optimization at the locd leve. The resulting margin wasfitted as a cubic
polynomia. Table 3 shows the atistics of the response surfaces, including the
coeffident of multiple determination, R, and its adjusted vaue R,. The table indicates
good accuracy of thefit.

Table 2: Statistics Resultsof Three Margin Response Surfaces

Statistics Beam 1 Beam 2 Beam 3
R2 0.9981 0.9989 0.9884
R, 0.9970 0.9982 0.9816
Root Mean Square Error 0.0036 0.0054 0.0115
Mean of Margin -0.0048 -0.0514 0.1502
RMS Error/ Mean (%) 75.00 -10.51 7.66

3.2.2 Upper-level optimization

In the upper-leve optimization, the volume is minimized subject to the
approximate margin congraint. GENESIS ( Vanderplaats Research and Devel opment,
2000) is used to perform the upper-level optimization subject to three margin constraints



for the three beams The SQP (sequence quadratic programming) optimization method is
used, so that the system+levd optimization islocd. The moment of inertial of each beam
is gpproximated in terms of its cross-sectiona area A asfollows

| = bA® (22)
where b isobtained by least square fit for arange of vaues of a. The datafor the fit

included 69 rail cross-sections, which are created in terms of combinations of six Sze
variables shown in Fig 2 within reasonable limits. As shown in Table 3, the average error

in the approximation was smdl.
Table 3: Average Error in Approximation for Moment of Inertia
Beam # b a Average Error (%)
Beam 1 22.30 1.5 2.58%
Beam 2 24.76 15 2.28%
Beam 3 8.78 1.5 5.31%

The upper-leve problem isthen formulated as
Dedgnvaridbles A;, i=1, 2, 3
MinimizzW = § Al
Subject to m (A, 11, M1 ,N:,Q,)? 0, i=1,2,3
A minEAEA,max, 1=1, 2, 3
(23)

wherel;, m isthe goproximated maximum margin, and A, min, Ai,max ae the lower and
upper bounds, respectively, for the area.

After the upper levd optimum isfound, the lower-leve optimization needsto be
repeated with the optimum values of the areas and moments of inertia. For thisfina
component optimization, we firs maximize the margin without the equality condraint for
the moment of inertiain order to find a moment of inertia more matched for the final area.
Next, afinite dement andyss of the portd frame is performed to update loads for each
beam. Then the margin is maximized with equdity of condraints for area.and moment of
inertia. This process may dill leave smdl violation of the condraints. It is possbleto
congtruct amore accurate response surface near the optimum, but we found that smal
increases in the areas and a repetition of the process described in this paragraph were
sufficient to diminate the violations.

3.3 Results

The optimum design had alarger top flange for dl three beams. The third beam
was mostly designed by minimum size congraints, and so the separation congraints were
not important. The results are summarized in Table 4. They show differences of up to 4%
in the objective function between the eight designs. For the two-leve optimization, the
component optimization of first two beams led to the top flange being selected, so that
the globa search was completed at the loca level. For the two-leve approach, the
response surface gpproximations resulted in a design with some congraint violations, so
that the design was adjusted by a small increase in the areas of the three beams. The



volume shown in Table 5 is dill below the globa optimum, reflecting some very small
congtraint violations.

Table4. Comparison of Single-level and Two-level Optimal Areas (cm? ) and Volumes (cm?)

Beam 1 Beam 2 Beam 3 Volume
1 63.3 78.6 304 140630
2 63.3 78.6 305 140630
3 62.8 814 30.4 146150
Snge- 4 62.8 81.4 30.4 143240
leve 5 65.3 785 304 | 141570
6 65.3 785 304 141570
7 64.9 814 305 144180
8 64.9 81.3 30.5 144180
Two-levd 63.2 77.2 30.1 138900
Two-leve Two-levd
Adjusted 63.2 78.2 30.5 140300

The areas and volumes of the Sngle-leve and two-leve designs are shown in
Table 4 above. Table 5 shows the design variables for each beam and their margins from
RSA and the lower-level optimization. We can see that margins from the lower-leved
optimization are off by about 2% for the first two beams, but thereis a 10% violation for
beam No. 3. Thelarge approximation error for beam No. 3 is partly due to margin RSA
errors and partly due to moment of inertia RSA errors. The areaand local design
variables reached their lower bounds for Beam 3, and this led to big approximetion error.

In order to remedy the congtraint violations the areas of beams No. 2 and No. 3
were increased by about one percent (see Table 5), and the process of component
optimization was repeated. The results are shown in Table 6. It is seen that now the
condraint violaion are negligible.

The example demondirates that even though the system optimization was locd,
the global optimum was found due to the global search at the component level (since both
verson of the separation congtraint were consdered).



Table 5: Comparison of Marginsfrom Local Optimization with Marginsfrom RS

Beam | Flange : . . : . Margin | Margin
" Constrain Optimal Design of Rail Section Size (Local) RS)
b1 tl b2 t2 hN tW
T 7.32 115 | 7.01 | 1.32 | 30.24 | 0.86 |-0.0102
1 -0.0004
B 6.50 143 | 937 | 0.95 | 30.03 | 0.83 | -0.0357
T 9.89 1.02 | 10.57| 1.08 | 23.88 | 0.95 | -0.0200
2 -0.0001
B 6.50 179 | 698 | 1.61 | 3254 | 0.88 | -0.0587
T 6.50 0.75 | 650 | 0.75 | 15.00 | 0.64 | -0.1003
3 -0.0012
B 6.50 0.75 | 650 | 0.75 | 15.00 | 0.64 | -0.1003
T: Top flange areais 10% greater than bottom flange area
B: Bottom flange areais 10% greater than top flange area
Table 6: Maximum Marginsfor Adjusted Optima
Beam Flange , . . . , Margin
" Constrain Optimal Design of Rail Section Size (Local)
bl tl BZ t2 h/v tw
L T 6.50 111 6.94 1.17 32.63 093 | -0.0011
B 6.50 1.27 8.70 0.89 32.34 0.90 | -0.0231
5 T 6.67 131 6.92 1.46 36.46 1.04 | -0.0035
B 6.50 1.58 6.88 141 35.71 098 | -0.0357
3 T 6.50 0.75 6.94 0.78 15.00 0.60 0.0098
B 6.94 0.78 6.50 0.75 15.00 0.60 0.0098

4. Concluding Remarks

A decomposition Strategy for quas-separable optimization problem was specidized to

Sructurd optimization. At the Structurd component level, the minimum margin of dl
condraints was maximized for given system level variables. Response surface

gpproximation of maximum margin for the components was congtructed by performing

many component optimizations and integrated into the system optimization. The

approach alows the search for agloba optimum to proceed mosily at the component
level. A three-beam frame example was used to demondtrate the gpproach. A constraint
requiring 10% difference between the flanges of each beam created eight ditinct loca
optima The two-leve approach identified the globa optimum, even though a the system
level locad optimization was used.
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