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Abstract 
A general decomposition method developed by the authors is applied to global-local 
structural optimization problems. First, a large number of component optimizations for 
maximization of margins are performed. Response surface approximations (RSA) for 
maximum margins of component optimization are constructed. At the system level 
optimization, the RSA of maximum margins are used as surrogate for the components. 
One advantage of the decomposition approach is that it allows much of the search for a 
global optimum to be conducted in low-dimensions for each component separately. 
Minimization of a portal frame weight with eight local optima is used to demonstrate the 
approach. 
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1. Introduction 

For the design of realistic structures carrying a large number of loading cases and 
having many components that need design variables to describe detailed geometry, direct 
single-level optimization often requires of exorbitant computer resources. The 
computational resources required for the solution of an optimization problem typically 
increase with dimensionality of the problem at a rate that is more than linear. This is 
particularly true when global optima are sought, as the rate of increase in cost with the 
number of variables is usually exponential. One obvious solution is to break up a large 
optimization problem into smaller sub-problems and a coordination problem to preserve 
the couplings among these sub-problems. 

Decomposition usually allows easy utilization of parallel computation 
capabilities. Moreover, to break a big problem into several small problems is natural in 
engineering optimization, because engineers tend to work in teams, each concentrating on 
parts of a project. This allows a broad work front and shortens development time. 

Numerous hierarchical and nonhierarchical decomposition strategies for the 
optimization of large scale systems, comprised of interacting subsystems, have been 
proposed  Schmit et al.’s (1978, 1982) multilevel structural decomposition, Sobieski’s 
concurrent subspace optimization (CSSO), (1988 ) nonhierarchical decomposition, 
Kroo’s collaborative optimization (CO) (1996), etc. However, most of these strategies 
may not always converge to the optimum of the original problem (e.g,, Alexandrov and 
Lewis, 2000) 
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There is a class of quasi-separable optimization problems narrow enough to allow 
rigorous decomposition theory, yet general enough to encompass many large scale 
engineering problems. The subsystems for these problems involve local design variables 
and global system variables, but no variables from other subsystems. The objective 
function is a sum of a global system criterion and the subsystem’s criteria.  

Each subsystem is given a budget and global system variable values, and then 
asked to independently maximize its constraint margins. For each subsystem, a response 
surface approximation of maximum constraint margins is constructed as a function of the 
global design variables, and it is used as a surrogate for the overall optimization. A 
special version of this approach was developed for coordinating panel design with overall 
wing design by Liu et al. (2000). Haftka et al. (2002) developed general theory for global 
optimization with continuous variables. The objective of the present paper is to 
demonstrate the applicability of the method to decomposition of structural optimization 
based on structural components. 

The methodology is demonstrated for design of a simple portal frame structure 
that has three rail-cross-section beams. 

2. Decomposition of Single-level Optimization and Response Surfaces of Maximum 
Subsystem Margins  
 Consider a system with a vector of system design variables s( s={si, s2,…, sN} ). 
The system is composed of M subsystems, each with its own vector of subsystem local 
variables li, j=1…, M, ( li ={lj1,……,ljk}). The single-level optimization of the system has 
the following form: 
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where W is the system objective function, gq are system-level constraints which only 
depend on the system design variables , gkp are constraints which depend on the system 
design variables and  design variables of  the kth subsystem.  
 
 The authors have proposed a two-level decomposition of the optimization 
problem ( Haftka et al., 2002), where each subsystem maximizes the constraint margin 
for its constraints. That is the upper-level problem is defined as 
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where µj is the minimum margin of the constraints in the jth subsystem, which is 
maximized at the  lower level. 
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The maximization of the minimum margin µj is a typical min-max problem, with 
the known difficulty in that the maximum of a function does not have continuous 
derivatives. Following Taylor and Bendsøe (1984), we solve this problem by introducing 
the margin µj as an additional design variable. The subsystem optimization is then stated 
with given system variables s as follows 
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 We have shown ( Haftka et al., 2002) that under mild conditions, every local 
optimum of the decomposed system is also a local optimum of the original system, so 
that the decomposition does not introduce spurious solutions. In addition, the 
decomposition permits us to perform some global optimization at the subsystem level. 
Because the cost of global optimization can grow exponentially with problem size, we 
gain by performing much of the global search at the subsystem level. 

Because subsystem optima are not smooth functions of system level design 
variables, gradient-based optimization may experience difficulties with the two-level 
formulation. In addition, the implementation of a two-level scheme may require difficult 
integration of component optimization software. Response surface approximations (RSA) 
offer an attractive way of overcoming both implementation and smoothness difficulties. 

 First, a large number of subsystem level optimizations for different values of the 
global design variables are performed. Then, the results of the subsystem optima are 
fitted with a simple response surface, typically a lower order polynomial. Finally, the 
system level optimization is performed with the RSA as a surrogate for the maximum 
margin of each subsystem. 

3. Frame Example 

A portal frame, shown in Fig.1, has been used often to demonstrate decomposition 
strategies (e.g., Sobieski et al., 1985). The structure consists of three beams. Each beam 
has a rail-section defined by six size design variables defined in Fig. 2. The portal frame 
is subjected to a point load and a concentrated moment. Material properties are given in 
Table 1. 

Table 1 Material Properties 

E 7.06 E6 N/cm2 

ν  0.33 

σy ±20000 N/cm2 

τ 11600 N/cm2 
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In order to demonstrate the advantage of searching for optima at the local level, 

the problem has been modified to create multiple distinct local optima. This was 
accomplished by requiring that the top and bottom flange of each beam be different in 
area by at least 10%. This type of constraints may be realistic when it is important to 
assist the assembly process of a system by reducing possible confusion as to questions 
like “which side is up?”. These constraints divide the design space into eight disjoint 
feasible regions or islands. In each one of these islands, a particular choice of the larger 
flange for each beam holds. We will use T to denote that the top flange is bigger and B to 
denote that the bottom flange is larger. So TTB corresponds to a design with the top 
flange being larger for the first two beams and the bottom flange being bigger for the 
third beam. 
3.1 Problem formulation  

Each rail-section beam has six variables b1, t1, b2, t2, hw, tw as shown in Fig. 2, for 
a total of 18 design variables. Three types of constraints are considered in the 
optimization. Stress constraints include flange normal stress and web shear stress 
constraints. Geometric constraints limit the aspect ratios and area distributions to 
eliminate extremely slender plates that are likely to buckle, Finally, the flange area 
constraint, requiring that top flange area is 10% more than bottom flange area, or bottom 
flange area is 10% more than top flange area is used to create multiple local optima. 
Objective function is portal frame volume.  

The optimization problem is formulated as 

Minimize ∑= ii lAW       (4) 
where Ai, li, i=1,…3, are section areas and length of the beams. 

Subject to  
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Figure.1 Portal Frame 
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side constraints 
b1,min≤b1,i≤ b1,max 
t1,min≤t1,i≤t1,max 
b2,min≤b2,i≤b2,max 
t2,min≤t2,i≤t2,max        (11) 
hw,min≤hw,i≤hw,max 
tw,min≤tw,i≤tw,max 
 
Constraint (7) requires that the web area is at least 20% of the total area of the 

beam, constraints (8) and (9) are aspect ratio limits, and (10) is the separation constraint. 
For a given bending moment M and axial force N at one end, maximum normal 

stresses ,i jσ  at the top and the bottom flanges are calculated. Average web shear stress 

iτ is calculated for given shear force Q. For a given moment MA and shear force QA, at 
the end A, bending moment of the other end B is calculated as follows: 

B A AM M lQ= +         (12) 
where l is length of the bar.  

3.2 Two-level Optimization 

For the two-level approach, the areas and moments of inertia of the beams are the 
system-level design variables. Furthermore, an approximate relationship between the area 
and moment of inertia was used to eliminate the moments of inertia. Using finite element 
analysis, the upper-level variables can be used to calculate the bending moments, axial 
loads and shear forces for each beam. 

At the lower-level optimization, the minimum margin of all constraints is 
maximized for a given area, moment of inertia, bending moment, axial force and shear 
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force, which are obtained from the areas and moments of inertia. Design variables are 
rail-section size variables, b1, t1, b2, t2, hw, tw, shown in Fig. 2. Constraints are added to 
force the area and moment of inertia associated with the lower level variables to agree 
with the system level variables. Thus the lower level problem becomes: 

Maximize µ  

Subject to (5)-(11), with the constraint relaxed by a margin µ, so that for example (9) is 
replaced by  

01
3510 ≤+−= µ

w

w

t
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and in addition the a prescribed area and moment of inertia must be matched 
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where Ag and Ig are area and moment of inertia from the upper-level optimization, Alocal 

Ilocal are subsystem area and moment of inertia which are updated in the local-level 
optimization because of change of six rail-section size variables. 
3. 2.1 Response Surface of Maximum Margins  

Cubic polynomial response surface approximations are used to obtain an 
approximate relationship between the maximum margin and the given area, moment of 
inertia, and loads. For creating the response surface, the JMP software (SAS 1995) was 
used to select a D-optimal set of points and fit the response surface. For better 
conditioning, the variables are normalized to the range [-1,1]. For example, the 
normalized area is given as 

max min

max min

2A A A
A

A A
− −

=
−         (17) 

with similar expression for the other variables. 

where in the above expressions, “max” and “ min” denote the ranges of variables. 

 The maximum margin µ* is then expressed as 

 ( )QFMIA ,,,,•• = µµ         (18) 

Ranges of three beams are as follows:  

Beam No. 1 

56 cm2 < A< 71 cm2 
9542 cm4 < I< 13207 cm4 
(-) 12500000 N.cm < M < (-) 14000000 Ncm    (19) 
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30000 N< F< 35000 N 
(-) 5000 N < Q < (-) 5500 N 

Beam No. 2 

68 cm2 < A < 95 cm2 
14033 cm4 < I < 22494 cm4 
(-) 11500000 N.cm < M < (-) 11800000 Ncm    (20) 
50000 N< F< 55000 N 
30000 N < Q < 35000 N 

Beam No. 3 

29 cm2 < A < 43 cm2 
1435 cm4 < I < 2427 cm4 
900000 N.cm < M< 1300000 Ncm      (21) 
(-)3100 N< F< (-)30000 N 
1100 N < Q < 1600 N 
“-“ in (19) 20 (21) represents direction of bending moment. Ranges of axial forces, 

bending moment and shear forces in the above equations are estimated from finite 
element analysis of the portal structure. Maximum of all minimum margins is a very 
complicated function of the above five parameters. In order to obtain highly accurate 
margin RS, small ranges of five parameters are used here. In case that there are big 
ranges, it is suggested to break a big range into several small segments and in each 
segment, one RS will be fitted.  

More than 16,000 design points were randomly generated for each of three beam 
ranges defined in (21)-(23), and then 150 D-optimal points were selected from each 
domain. The lower-level optimization was performed twice to for the two option of the 
separation constraint, and the best design of the two was selected, thus performing part of 
the global optimization at the local level. The resulting margin was fitted as a cubic 
polynomial. Table 3 shows the statistics of the response surfaces, including the 
coefficient of multiple determination, R, and its adjusted value Ra. The table indicates 
good accuracy of the fit. 

Table 2: Statistics Results of Three Margin Response Surfaces 

Statistics Beam 1 Beam 2 Beam 3 
2R  0.9981 0.9989 0.9884 

aR  0.9970 0.9982 0.9816 

Root Mean Square Error  0.0036 0.0054 0.0115 

Mean of Margin  -0.0048 -0.0514 0.1502 

RMS Error/ Mean (%) 75.00 -10.51 7.66 

 
3.2.2 Upper-level optimization 

 In the upper-level optimization, the volume is minimized subject to the 
approximate margin constraint. GENESIS ( Vanderplaats Research and Development, 
2000) is used to perform the upper-level optimization subject to three margin constraints 



 8

for the three beams The SQP (sequence quadratic programming) optimization method is 
used, so that the system-level optimization is local. The moment of inertia I of each beam 
is approximated in terms of its cross-sectional area A as follows: 

αβAI =          (22) 
where β  is obtained by least square fit for a range of values of α. The data for the fit 
included 69 rail cross-sections, which are created in terms of combinations of six size 
variables shown in Fig 2 within reasonable limits. As shown in Table 3, the average error 
in the approximation was small. 

Table 3: Average Error in Approximation for Moment of Inertia  
Beam # β  α Average Error (%) 
Beam 1 22.30 1.5 2.58% 
Beam 2 24.76 1.5 2.28% 
Beam 3 8.78 1.5 5.31% 

 
The upper-level problem is then formulated as: 

Design variables Ai, i=1, 2, 3 

Minimize ∑= ii lAW  

Subject to ( ) 3 ,2 1,i   0 =≥• ,,,,, iiiiii QNMIAµ  
  Ai,min≤Ai≤Ai,max, i=1, 2, 3 
          (23) 

where li, •
iµ  is the approximated maximum margin, and Ai,min, Ai,max are the lower and 

upper bounds, respectively, for the area. 

After the upper level optimum is found, the lower-level optimization needs to be 
repeated with the optimum values of the areas and moments of inertia. For this final 
component optimization, we first maximize the margin without the equality constraint for 
the moment of inertia in order to find a moment of inertia more matched for the final area. 
Next, a finite element analysis of the portal frame is performed to update loads for each 
beam.  Then the margin is maximized with equality of constraints for area and moment of 
inertia. This process may still leave small violation of the constraints. It is possible to 
construct a more accurate response surface near the optimum, but we found that small 
increases in the areas and a repetition of the process described in this paragraph were 
sufficient to eliminate the violations. 

3.3 Results  
The optimum design had a larger top flange for all three beams. The third beam 

was mostly designed by minimum size constraints, and so the separation constraints were 
not important. The results are summarized in Table 4. They show differences of up to 4% 
in the objective function between the eight designs. For the two-level optimization, the 
component optimization of first two beams led to the top flange being selected, so that 
the global search was completed at the local level. For the two-level approach, the 
response surface approximations resulted in a design with some constraint violations, so 
that the design was adjusted by a small increase in the areas of the three beams. The 
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volume shown in Table 5 is still below the global optimum, reflecting some very small 
constraint violations. 

 
Table 4. Comparison of  Single -level and Two-level Optimal Areas (cm2 ) and Volumes (cm3) 

  Beam 1 Beam 2 Beam 3 Volume 

1 63.3 78.6 30.4 140630 

2 63.3 78.6 30.5 140630 

3 62.8 81.4 30.4 146150 

4 62.8 81.4 30.4 143240 

5 65.3 78.5 30.4 141570 

6 65.3 78.5 30.4 141570 

7 64.9 81.4 30.5 144180 

Single-
level 

8 64.9 81.3 30.5 144180 

Two-level 63.2 77.2 30.1 138900 
Two-level 

Two-level 
Adjusted 

Area 

63.2 78.2 30.5 140300 

 

The areas and volumes of the single-level and two-level designs are shown in 
Table 4 above. Table 5 shows the design variables for each beam and their margins from 
RSA and the lower-level optimization. We can see that margins from the lower-level 
optimization are off by about 2% for the first two beams, but there is a 10% violation for 
beam No. 3. The large approximation error for beam No. 3 is partly due to margin RSA 
errors and partly due to moment of inertia RSA errors. The area and local design 
variables reached their lower bounds for Beam 3, and this led to big approximation error.  

In order to remedy the constraint violations the areas of beams No. 2 and No. 3 
were increased by about one percent (see Table 5), and the process of component 
optimization was repeated. The results are shown in Table 6.  It is seen that now the 
constraint violation are negligible. 

The example demonstrates that even though the system optimization was local, 
the global optimum was found due to the global search at the component level (since both 
version of the separation constraint were considered). 
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Table 5: Comparison of Margins from Local Optimization with Margins from RS 

Beam 
# 

Flange 
Constrain Optimal Design of Rail Section Size  Margin 

(Local) 
Margin 

(RS) 

  b1 t1 b2 t2 hw tw   

T 7.32 1.15 7.01 1.32 30.24 0.86 -0.0102 
1 

B 6.50 1.43 9.37 0.95 30.03 0.83 -0.0357 
-0.0004 

T 9.89 1.02 10.57 1.08 23.88 0.95 -0.0200 
2 

B 6.50 1.79 6.98 1.61 32.54 0.88 -0.0587 
-0.0001 

T 6.50 0.75 6.50 0.75 15.00 0.64 -0.1003 
3 

B 6.50 0.75 6.50 0.75 15.00 0.64 -0.1003 
-0.0012 

 
T: Top flange area is 10% greater than bottom flange area 
B: Bottom flange area is 10% greater than top flange area 
 

Table 6: Maximum Margins for Adjusted Optima 

Beam 
# 

Flange 
Constrain Optimal Design of Rail Section Size  Margin 

(Local) 

  b1 t1 B2 t2 hw tw  

T 6.50 1.11 6.94 1.17 32.63 0.93 -0.0011 
1 

B 6.50 1.27 8.70 0.89 32.34 0.90 -0.0231 

T 6.67 1.31 6.92 1.46 36.46 1.04 -0.0035 
2 

B 6.50 1.58 6.88 1.41 35.71 0.98 -0.0357 

T 6.50 0.75 6.94 0.78 15.00 0.60 0.0098 
3 

B 6.94 0.78 6.50 0.75 15.00 0.60 0.0098 
 

4. Concluding Remarks 
A decomposition strategy for quasi-separable optimization problem was specialized to 
structural optimization. At the structural component level, the minimum margin of all 
constraints was maximized for given system level variables. Response surface 
approximation of maximum margin for the components was constructed by performing 
many component optimizations and integrated into the system optimization. The 
approach allows the search for a global optimum to proceed mostly at the component 
level. A three-beam frame example was used to demonstrate the approach. A constraint 
requiring 10% difference between the flanges of each beam created eight distinct local 
optima. The two-level approach identified the global optimum, even though at the system 
level local optimization was used. 
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