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ABSTRACT

Motivation: Epistatic interactions are important for
quantitative traits. To maximize the power to detect
epistatic quantitative trait loci (QTLs), a simultaneous
search is necessary. The computational complexity de-
mands that the traditional exhaustive search be replaced
by a more efficient global optimization algorithm.
Results: We have adapted DIRECT, an algorithm pre-
sented in (Jones et al., 1993), to the problem of simulta-
neous mapping of two and three QTL. We have compared
DIRECT, in terms of accuracy and speed analyzing real
data sets, with standard exhaustive search and a genetic
algorithm previously used for QTL mapping in two di-
mensions. In all two- and three-QTL test cases, DIRECT
accurately finds the global optimum two to four orders of
magnitude faster than when using an exhaustive search,
and one order of magnitude faster than when using the
genetic algorithm. A search using a model with three
fully interacting QTL is finished in six CPU minutes
when using DIRECT, while an exhaustive search takes
142 CPU days. Thus three-QTL randomization testing
for determining empirical significance thresholds is made
feasible by the use of DIRECT. This opens the possibil-
ity to thoroughly investigate the power of simultaneous
search to detect at least three interacting QTL.
Availability: The source code of the prototype imple-
mentation is available at
http://www.tdb.uu.se/"kl/qtl_software.html.
Contact: kl@tdb.uu.se

INTRODUCTION

Rapid development in molecular genetics has led to the
development of dense genetic maps, which are powerful
tools for studying the molecular basis for quantitative
genetic variation. One way to dissect the genetic ar-
chitecture behind quantitative traits, i.e. traits affected
by multiple genes and the environment, is to identify
quantitative trait loci, QTL, in the genome. A QTL is
a chromosomal region, locus, harboring one or several
genes that affect the trait under study. The first meth-
ods used to locate, or map, QTL focused on detection
of QTL by their marginal, i.e. additive and dominance,
effects. These methods are presented in (Lander and
Botstein, 1989; Haley and Knott, 1992). They are based
on the concept of interval mapping, where the analyzed
trait is modeled to depend on the genetic effects of a sin-
gle QTL in the genome. A one-dimensional scan is per-
formed using a dense grid covering the genome, and the

single QTL model is fitted at each grid-point. The most
likely position of the QTL is taken to be the grid-point
with the best model fit. In composite interval mapping
(Zeng, 1993) and multiple QTL mapping (Jansen, 1992),
a window of analysis is introduced in the one-dimensional
scan. These schemes still search for the position of a sin-
gle QTL, but markers outside the window of analysis are
included as cofactors in the model. In this way the prob-
lem with variation caused by other QTL is reduced. A
randomization test (Churchill and Doerge, 1994) is nor-
mally used to derive an empirical significance threshold
for a statistical test of the putative QTL. During ran-
domization testing normally 1000-10000 genome scans
are performed on permuted datasets to obtain a stable
distribution of the model fit under the null hypothesis
of no QTL. A recent overview of current QTL mapping
techniques is given in (Doerge, 2002).

Since a quantitative trait by definition is affected by mul-
tiple genes, it is desirable to simultaneously model the ef-
fects of these genes. Furthermore, simultaneous mapping
is necessary for finding groups of interacting QTL where
all loci involved lack significant marginal effects. Several
methods have recently been proposed to simultaneously
model the effects of multiple QTL and their interactions
e.g. (Kao et al, 1999; Wang et al., 1999; Jannink and
Jansen, 2001; Sen and Churchill, 2001; Carlborg and An-
dersson, 2002). A fundamental problem when using a
multiple QTL model is that of computational complex-
ity. For a model including n interacting QTL, the one-
dimensional scan in a single QTL model is replaced by
a n-dimensional search for the most likely positions of
the interacting loci. When using randomization testing
to derive significance thresholds for multiple QTL, the
computations become very demanding even for models
involving only two QTL.

To reduce the number of combinations of locations to
evaluate, several approaches have been suggested. One
suggestion (Kao and Zeng, 1997; Kao et al., 1999; Zeng
et al., 1999, 2000) is that the computational complexity
of the search is decreased by pre-selection of genomic re-
gions with marginal effects. This potentially leads to a
reduction in power since regions with primarily epistatic
effects are disregarded. (Sen and Churchill, 2001) pro-
pose that a two-dimensional exhaustive search is per-
formed on a sparse grid. This procedure reduces the reso-
lution and would still be computationally burdensome in
higher dimensions. To retain the true global search with-
out introducing a prohibitive computational demand, the
exhaustive search technique must be replaced by a more
sophisticated algorithm for multi-dimensional global op-
timization. (Carlborg et al, 2000) suggest that a ge-
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netic optimization algorithm is used, and this type of
algorithm was shown to be an efficient tool for map-
ping interacting QTL pairs in simulated data. Subse-
quently, a procedure for mapping and significance test-
ing for epistatic QTL pairs was derived (Carlborg and
Andersson, 2002). This method has recently been used
to map QTL in experimental data, where multiple QTL
pairs were detected in which neither of the QTL had sig-
nificant marginal effects (Carlborg et al., 2003). Similar
results have been obtained using the method of (Sen and
Churchill, 2001), e.g. in (Sugiyama et al., 2001; Shimo-
mura et al., 2001).

To further investigate the evidence for higher order epis-
tasis in experimental crosses, efficient numerical meth-
ods are needed for simultaneous mapping of QTL in two
and higher dimensions. In this study we will explore
the properties of a global optimization algorithm named
DIRECT to perform QTL searches in two and three di-
mensions faster and more reliably than when using the
genetic algorithm proposed in (Carlborg et al., 2000).
We will show that it is possible to perform simultaneous
mapping, including randomization testing, of three fully
interacting QTL, using a standard single-processor com-
puter.

SYSTEMS AND METHODS

Computations in QTL mapping

There are two main elements in the computations when
searching for QTL; the kernel problem and the global
optimization problem. In general, any algorithm for the
global optimization problem can be used together with
any type of kernel algorithm.

The kernel problem consists of evaluating the objective
function, i.e. calculating the model fit for one specific
combination of putative QTL. Many different genetic
models with or without interaction parameters can be
used. The model parameters can be determined using
e.g. ordinary linear regression (Haley and Knott, 1992;
Haley et al., 1994), or maximum likelihood estimation
(Zeng, 1994). Both linear regression and maximum like-
lihood estimation, via the ECM algorithm (Meng and
Rubin, 1993), involve solving a least squares problem,
which is normally done using standard software library
routines. The kernel problem was investigated in (Ljung-
berg et al., 2002), where we presented efficient objective
function evaluation algorithms based on updated QR fac-

torizations for both linear regression and maximum like-
lihood kernels.

The global problem consists of optimizing the objective
function, i.e. out of all possible QTL combinations find-
ing the one giving the best model fit. It appears in two
flavors. When searching the original data, the goal is to
find both the most likely positions of the QTL in the
set and the corresponding value of the parameters and
model fit. However, during randomization testing, only
the optimal value of the model fit is needed. As long as
the value found by the algorithm is sufficiently accurate,
the significance thresholds will also be accurate. This
is an important observation, since the problem of deter-
mining the position of the true global optimum is more
difficult for the permuted data where the connection be-
tween genotype and phenotype is broken. In this case the
optimization landscape will often have many smaller lo-
cal optima, scattered over the search space, with almost
the same value of the objective function.

The global optimization problem

When performing simultaneous mapping of a set of n
QTL, we search a point Z°P* = (2P* z9P* ... z9) in
the n-dimensional hypercube defined by 0 < x; < L.
Here, L is the size of the genome in ¢M and x; is the po-
sition of the i:th QTL in the set. The optimal value of the
test statistics is independent of the ordering of the QTL
in the set. Therefore, the optimization problem exhibits
an n!-fold symmetry, equivalent to the n! possible order-
ings of the QTL. This represents a significant reduction
of the search space. In QTL mapping, the search space
can be divided into boxes where each edge corresponds
to one chromosome. Such a chromosome combination
box (e1,c¢a,...,¢,) encloses all points where QTL 1 is
assumed to be on chromosome c¢;, QTL 2 is assumed
to be on chromosome cs and so on. The search space
symmetry is employed by restricting the search to chro-
mosome combination boxes where ¢; < cg < ... < ¢,.
Boxes where two or more QTL are located on the same
chromosome are also affected by the symmetry, and only
part of them need to be considered.

The most likely QTL position combination Z°P' mini-
mizes an objective function which may be written as
(Ljungberg et al., 2002)

f(7) = min(y — Ab)"G(y — Ab), (1)

where y is the vector of trait values, b is a vector of re-
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gression parameters and A is the matrix of regression
indicator variables. The matrices G and A depend on
the QTL mapping method being used. When using the
linear regression method G = I, and the entries of A are
either constants or continuous functions of  within chro-
mosomes. Hence, the objective function f(Z) depends
continuously on Z within every chromosome combination
box. However, at the boundaries between chromosomes,
f(Z) is normally not continuous.

Models
Name Description
2:m A two-QTL model including fixed

effects and additive and dominance
marginal effects.
3:m The three-QTL version of 2:m.

2:m+p The 2:m model with pairwise interac-
tion effects added.
3:m+p The three-QTL version of 2:m+p.
3:m+p+t 3:m+p adding the full three-way inter-
action.
Table 1. Abbreviations for the two- and three-

QTL genetic models used in the study. m denotes
marginal effects, p pairwise interaction effects and
t three-way interaction effects.

Throughout this work we have used the Haley-Knott re-
gression method for experimental crosses between out-
bred lines (Haley et al., 1994). Table 1 describes the
five genetic models that are used. For example, model
3:m+p+t is defined as

Nfix

Y= Z b]f "a; “ (fixed effects including the mean)
j=1
3

Jr

J

(bla; + bld;)
1
(marginal additive and dominance effects)

2 3
+ Z Z (b?,‘jaajk + b?lcciadjk + b}igdajk + b?,‘fddjk)
j=1k=j+1
(pairwise interaction effects)
+ b%%aaay 93 4 b**aad 03 + b*adaios + b daay s
+ 0" ddayys + b dadyas + b add2s + b dddyas

(three-way interaction effects) ,

where y is the phenotype, af “ are the indicator regres-
sion variables for the fixed effects including the mean, a;
and d; denote the regression indicator variables for the
marginal additive and dominance effect of QTL j in an
outbred line cross as described in (Haley et al., 1994).
aajk, ad;i, daj, and ddj;, are regression indicator vari-
ables for the interaction effects of QTL pair jk, obtained
by multiplying the respective additive and dominance
regression variables for QTL j and k (Haley and Knott,
1992). aaaqa3, daaias and so on are regression indicator
variables for the interaction effects of QTL triplet 123,
obtained analogously to the QTL pair variables. The b
values are the partial regression coeflicients for the ge-
netic parameters corresponding to the indicator regres-
sion variables.

In this paper we have not evaluated the power to detect
epistatic QTL using the different models, nor have we
investigated the best choice of model for the data sets
used. This question will be addressed separately. The
purpose of the current study is to compare the compu-
tational methods in terms of speed and their ability to
find the global optimum of the objective function using
real data, and the models were chosen with the intention
to give a varied set of optimization landscapes.

Data

We have tested the computational methods on data from
two mapping populations. The first population is de-
noted WB/LW. It consists of 191 animals from an Fy in-
tercross between European Wild Boar and Large White
domestic pigs (Andersson et al., 1994). The genome size
is approximately 2300 ¢M and we used phenotypic data
for six growth-related traits. The second population, de-
noted JF/WL, consists of 852 animals from an Fy inter-
cross between red jungle-fowl and White Leghorn chick-
ens described in (Schiitz et al., 2002). The genome size
is approximately 2500 ¢M, and phenotypic data for nine
different growth traits were used. We leave out further
details about the phenotypes since we are not currently
looking for new QTL.

In addition to optimizing the objective function for var-
ious models in the original data sets, it is relevant to
compare empirical significance thresholds derived when
using the three methods. For this purpose four sets of
randomized data were generated, 1000 randomizations
each of two JF/WL traits and two WB/LW traits.
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ALGORITHMS

Exhaustive grid search

The standard method for solving the global optimization
problem is to use an exhaustive grid search, evaluating
the objective function for every possible QTL combina-
tion using steps of e.g. 1 cM. We have performed ex-
haustive two- and three-dimensional searches for all test
cases. The symmetry of the search space was easily ex-
ploited. To make the computations feasible, the exhaus-
tive searches were performed on a parallel computer. We
measure the accuracy of DIRECT and GA as their ability
to find the same optimum as the one found by exhaustive
search, which is the global optimum.

The DIRECT algorithm

The original DIRECT algorithm was presented in (Jones
et al., 1993). It searches for the global minimum z°P*
of multi-dimensional Lipschitz continuous functions f(Z)
with the same type of constant constraints as the QTL
mapping problem described above. The practical inter-
pretation of a function f(Z) being Lipschitz continuous
is that the slope of f(z) is limited by some constant K
everywhere.

DIRECT systematically divides the search space into
smaller and smaller boxes, see Figure 1. The Lipschitz
continuity condition is used for deterministically deter-
mining which boxes to select for further division in each
iteration. Suppose that the search space at iteration i
has been divided into L boxes, and that f(Z) has been
computed at the center of each box. Given K, a lower
bound on f(Z) in each box could be computed, and the
box with the lowest bound would be selected for further
division. In practice K is unknown, so DIRECT divides
all boxes where f(Z) has the lowest bound for any value
of K from zero to infinity. The center-point of each new
box is sampled, and the selection procedure is repeated.
The box selection step is very fast. It should be noted
that the Lipschitz continuity condition is only used for
bounding f(Z) within each box, which is important for
the application of the algorithm to QTL mapping prob-
lems.

In the original formulation of the algorithm, no box is
ever discarded from the search. A box not considered
potentially optimal in one iteration can be chosen for di-
vision in a later iteration. If the algorithm is run for suf-
ficiently long time, it is possible to prove that the global

x X X

% x ol ox x x % x x X
X

x x‘x‘x X
X

(a) Initiation. (b) Iteration 1. (c) Tteration 2.

Fig. 1. Nlustration of DIRECT search space division.

optimum will always be found (Jones et al., 1993). In
practice, the global optimum is normally found after a
rather small number of iterations. However, a general
problem for global optimization algorithms is how to de-
termine when to stop the iterations. In the original paper
(Jones et al., 1993), it is suggested that a fixed number
of function evaluations should be used.

The original algorithm has been modified to fit the QTL
search problem. As observed above, f(Z) is a continuous
function of  within every chromosome combination box.
However, at the boundaries between chromosomes, f(Z)
is normally not continuous. To guarantee that the conti-
nuity condition of the algorithm is fulfilled, the search is
initiated by sampling the center point of all chromosome
combination boxes in the search space. In the original
algorithm only the center-point of the complete search
space is to be sampled at initiation. Also, we do not
normalize the x; coordinates as in the original algorithm,
and do not divide boxes with edges smaller than 1 cM.

We present no proof that f(z) is Lipschitz continuous as
well as continuous within the chromosome combination
boxes. However, a simple argument along this line can
be applied to the computations. Obviously, f(Z) can-
not exceed y” Gy, which is finite, nor be smaller than 0.
When performing the search for the set of QTL, a res-
olution limit of typically 1 ¢M is used, and thus there
exists a practical Lipschitz constant which is bounded by
yI'Gy.

The only parameter in DIRECT with a significant influ-
ence on performance is the number of function evalua-
tions allowed. In two-dimensional searches we performed
6000 evaluations, and in three-dimensional searches we
performed 46000 function evaluations plus 10000 in the
intermediate refinement step. Using these settings we
found the global optimum in all test cases using non-
randomized data.

We have observed, in accordance with other authors e.g.
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(Cox et al., 2001; Bartholomew-Biggs et al., 2002), that
DIRECT quickly locates the region of the global opti-
mum but that local convergence is rather slow. We there-
fore finish the search by performing a local exhaustive
search, £5c¢M in each dimension, around the best point.
This is similar to the procedure suggested in (Cox et al.,
2001). In the three-dimensional searches we also use an
intermediate refinement step. After a set number of iter-
ations the chromosome combination box containing the
best point is located, and a number of additional iter-
ations are performed in this box only, before the final
local exhaustive search.

The genetic algorithm

We have compared DIRECT with a genetic algorithm,
GA, from a library named PGAPack (Levine, 1996). The
same GA was used in (Carlborg et al., 2000), where a
position in the search space is encoded as a string of
2n real numbers representing the chromosomes and the
chromosome positions of the n QTL. One QTL posi-
tion string is called a GA-chromosome, and the fit of
a chromosome is given by the objective function value
at the corresponding position in the search space. A
GA-population is a set of GA-chromosomes, and in each
iteration new GA-chromosomes are created by mutation
and crossover among the existing ones, selecting for best
fit. The GA is thus partly related to forward selection
in the sense that mutation and/or crossover on a good
candidate GA-chromosome often results in keeping one
QTL position fixed and changing the other. The sym-
metry of the search space is exploited by not allowing
the algorithm to evaluate the reflection of a position al-
ready visited. After the GA is finished a local exhaustive
search +5cM is performed around the found optimum in
the same way as for DIRECT.

Name Number of  TIterations/ Population
populations population  size

GA(75k) 25 1500 20

GA(20k) 10 1000 20

GA(6k) 3 980 20

GA(1M) 25 2000 200

Table 2. Parameter settings for the genetic opti-

mization algorithm. Parameters not explicitly described
in the table are set as in (Carlborg et al., 2000).

A significant effort was spent tuning the parameters to
obtain the best possible accuracy for all test cases. Ta-
ble 2 shows the different parameter settings chosen for
this study. We refer to the settings chosen in (Carlborg

et al., 2000) as GA(20k), the name reflecting the approx-
imate number of function evaluations performed. The
best parameter choice found was a modified version of
GA(20k) which we call GA(75k). GA(6k) is the settings
giving only the same number of function evaluations as
DIRECT in two dimensions. The parameterization used
in the three-dimensional searches is called GA(1M).

IMPLEMENTATION

All objective function evaluations were done using the
efficient kernel algorithm presented in (Ljungberg et al.,
2002). The experiments showed that, in practice, the
only factors determining the CPU time for the three
methods are the number of function evaluations per-
formed and the time required for a single evaluation. The
CPU time for one evaluation depends on the model and
data set, but not on the optimization method since they
use the same kernel algorithm.

All code is written in Fortran90, and the computations
were done on SPARC UIII, 900MHz processors. The ex-
haustive searches were performed on a parallel computer
using MPI, and the CPU times reported are the sums
of the CPU times for each processor, not including over-
head time for the parallelization.

RESULTS

Original, non-randomized, data

The accuracy is reported as the percentage of successful
localizations of the exact global optimum out of the total
number of searches. Since the GA has a random element,
the result will depend on the random seed. Therefore,
using this method, each search was repeated 15 times to
give a reasonable statistic. DIRECT is deterministic and
gives the same result every time.

First we report the results for searches in two dimensions.
We have tested the methods for the 2:m and 2:m+p mod-
els in Table 1 on all data sets described in the Data
subsection, which gives a total of 30 tests.

Figure 2 shows the average CPU times and accuracy
over the 9 phenotypes of the JF/WL data set using the
2:m and 2:m+p models. The results for WB/LW data
and the same models were very similar. An exhaustive
search with the 2:m model requires about 20 minutes,
and 46 minutes with the 2:m+p model. DIRECT finds
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Fig. 2. CPU time for two-dimensional searches as a
function of the percentage of successful localizations of
the global optimum.

the global optimum in less than 3 and 7 seconds respec-
tively. GA(75k) gives the global optimum in close to
100% of the runs, with CPU time 34 and 76 seconds.
Using GA(6k), the genetic algorithm with the same num-
ber of function evaluations and thus practically the same
CPU time as DIRECT, reduces the accuracy from close
to 100% to around 60%. GA(20k), the settings of (Carl-
borg et al., 2000) give intermediate results. The GA
has more difficulties finding the global optimum when
epistasis is included in the model. It was observed al-
ready in (Carlborg et al., 2000) that the GA sometimes
failed when a QTL pair lacked significant marginal ef-
fects. This can be explained by the forward selection
property of the algorithm.

Now we turn to three-QTL results. We have used the 3:m
and 3:m+p models combined with four JF/WL traits,
one of which was also used with the 3:m+p+t model,
giving nine tests in total.

Figure 3 shows the average CPU times and accuracy
over 4 phenotypes of the JF/WL data set using the 3:m
and 3:m+p models, and 1 phenotype using the 3:m+p+t
model. The JF/WL 3:m, 3:m+p and 3:m+p—+t exhaus-
tive searches would take approximately 25, 60 and 142
days respectively, on a single processor computer. The
gain in using DIRECT over exhaustive search is more
than four orders of magnitude in speed, the searches tak-
ing 0.5, 3 and 6 minutes, while not losing accuracy. Us-
ing GA(1M) gives high accuracy for the 3:m and 3:m+p
models but lower for 3:m+p-+t and is over one order of

JF/WL 3:m JF/WL 3:m+p 8 JF/WL 3:m+p+t
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Fig. 3. CPU time for three-dimensional searches as a
function of the percentage of successful localizations of
the global optimum.

magnitude slower than DIRECT, the searches requiring
12, 73 and 136 minutes respectively.

2200 - T
ocooooooe x x x X x x x0000ox X ok X x| x 00k X oo x g T 000 x
X 3000x X X X g X 000000000 X 000000 X X X X X X x x xgu x
2100 X g% X X X X xxx x X xxxxxxx‘%(xxxxxxxxx xx x x|
X @rooocx X x XX X XK X X X XXX RXXXRKKN Xix x
000K X X XX X 0OKKK X XXX XX 00K Xxx X X
XXX X XX XX X XXX X XXXXXX X XXX X XX XORXRKKK X Xxx X X
2000 5xx x x x X X X X X XXXXXXXXX X X X X X X XXX X XXX X xx x x|
X %0 X x%vxxxxxxxxbxxxxxxx XX XX XXXXXX X x X0 x
x
S 1900 B ox E B A BB E oo X XRXRXXXXXKXXK K x x xxx X x|
x x %
(8] x X% x ;ax x@wxxxxxxxxxxxxx X XXXRRRARHHAXNKKK X X x xx x
— x x
X% B XX X XOKRK XK KKK XXXXXKHIHHXXXXKKKAXKAXK X X X x
&N 1800 x x &% K x TR x x x x x x % x WL x|
1 XXX X X 0000 X X XX K X XXX X X X KX XXX X X
B KR XX kX X X KX X X XBEK Kxx X X
- XX x D% X ox X x o x o x o xox o ox x&xx %
XXX XX %0000 X XXX XX KKK X X X X X xxx X x
1700 Xod X X X x X x X X X X ox x xxxx.ox A
XXX REEL LR R E R R ER Ik
X% X X x xoxmxxxxxxx X kX X XX XX % x xxk % x
c XXX XK XX X Koo x X fogodold
S 1600 % x DR Bodoo: x xoooonoon x xoodooooos x § x xS x|
=
5 XXX XODXO0K X XX X000 X X XXX X XXX X X X X XXX X X
o ook x| B H)E ooy x xocansaooooooscoodion x § x ko X
A 1500 XX XX X XXX X X Xgg X X X XEERXX X X X X XXX 4
X X X X X XXXXXX X X X X X X X XXX X X X X XX
X X X X X XXXXEX X X X XXX X X X XXXXXX X XXX X
400 XXX X X OXOOOKKKX X XXX XXX XK X X xxxxxgx
1 ooy D s é@%ﬁ@&x x
X X X XXX XXXXXXXX)%( x X X XXXX X XXX X XXX X
x X x % x xx x
1300 X x X oxODXEKxxxxxxx XX X X % % 83036%K i
X XXX XXX X% X 5X
X5k XX X% X X Kk«
& X X XOXOXXXXXXXK X XRXXXK X XXX X XXXXX
LT XX XXX
1200 X X K X XX XX K X XX XXX X X XXX L

Position QTL 1/cM

Fig. 4. Search pattern after 6000 function evalua-
tions with DIRECT in the region around the four largest
peaks, numbered 1-4 according to their relative ranks.

Figures 4 and 5 illustrate the difference in search pat-
tern between DIRECT and the genetic algorithm. Here
we show results from model 2:m+p with WB/LW data.
The two figures show the sampling pattern after a com-
plete run, i.e. 6000 function evaluations, using DIRECT
(Figure 4) and using GA(6k) (Figure 5). The loca-
tions where the objective function has been evaluated are
marked with ’x’ in contour plots of the objective function
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5. The GA sampling pattern after 6000 func-
tion evaluations, GA(6k), in the region around the four
largest peaks.

Fig.

around the four largest peaks. For clarity most contours
for lower levels are not shown. DIRECT uses the func-
tion evaluations very efficiently. It gives even coverage
of the search space with dense clusters of function eval-
uations around the largest peaks. This indicates that
the algorithm can locate the global optimum for origi-
nal data also in difficult cases when there are many local
optima of similar magnitude. Using the same number of
function evaluations the GA sometimes does not find the
global optimum, even if the regions around all the four
largest peaks are sampled. If many peaks are of simi-
lar height, the best position found so far when the local
search is initiated might be at the wrong peak. Or the
right peak might have been found, but local exhaustive
search +5cM is not a good enough method to localize
the very best position on the peak. The GA samples the
search space stochastically to a large extent.

Randomized data

Finding the global optimum can be expected to be more
difficult in a randomized data set, since the optimization
landscape will be smoothed out and the peaks smaller
for most of the randomizations when the connections be-
tween genotype and phenotype is broken.

We used the 2:m+p model for the four randomized data
set. We determined the 1.0, 5.0, 10 and 20% genome-
wide significance thresholds for 0 against 2 QTL using an
exhaustive search. The thresholds were also calculated
using DIRECT and GA on the same data. In Table 3 we

report the true levels (as given by the exhaustive search)
of the thresholds derived using DIRECT, GA(20k) and
GA(75k) intended to give the 1.0, 5.0, 10 and 20% sig-
nificance levels. A number 5.6% in the 5.0% row means
that in 5.0% of the randomizations a global optimum
better than z (2 not reported) was found when using
the global optimization algorithm, i.e. the 5.0% signifi-
cance threshold would be taken to be z, while in reality
5.6% of the true global optima, obtained using exhaus-
tive search, were better than the same x. A threshold
that is too low, i.e. at 5.6% instead of 5.0%, gives a slight
increase in the type I error rate. This could in part ex-
plain the increased rate of type I errors in (Carlborg and
Andersson, 2002) where the genetic algorithm is used.

Exhaustive JF/WL 2:m+p

search DIRECT GA(20k) GA(75k)
1.0% 1.0% 1.0% 1.0%
5.0% 5.2% 5.6% 5.3%
10% 10% 12% 10%
20% 21% 24% 21%

32 days 1.7 hours 5.8 hours 21 hours
Exhaustive ~WB/LW 2:m+p

search DIRECT GA(20k) GA(75k)
1.0% 1.0% 1.0% 1.0%
5.0% 5.1% 5.4% 5.0%
10% 10% 11% 10%
20% 21% 22% 20%

17 days 57 min 3.5 hours 14 hours

Table 3. Derived empirical thresholds and the

corresponding CPU times using exhaustive search,
DIRECT and two parameterizations of the genetic
algorithm.

Looking at the individual runs it can be seen that DI-
RECT finds the wrong position in about 9% of the ran-
domizations. The function values are however accurate
enough to give nearly the same threshold values as ex-
haustive search, and they are calculated between two
and three orders of magnitude faster. Using GA(20k)
the wrong position is found in 23 — 35% of the cases.
This is about the same error rate as was found with non-
randomized data. However the computed thresholds are
still sufficiently accurate for practical use. The error rate
is about 1 — 14% when using GA(75k), which gives very
accurate threshold values.

There is a tendency for the 1% and 5% computed thresh-
olds to be more accurate than the 10% and 20%. This
reflects that it is more easy for both algorithms to find
large peaks, while the randomizations giving a “smeared”
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landscape with many smaller peaks is more difficult from
an optimization point of view.

DISCUSSION

This study has shown that DIRECT is a fast and ac-
curate algorithm for global optimization in QTL map-
ping. The exact optimum is found in real data sets, and
searches in randomized data are accurate enough to give
almost the same empirical significance thresholds as ex-
haustive search. Two-dimensional searches take a few
seconds, and three-dimensional searches are finished in
a few minutes. DIRECT makes randomization testing
of two-QTL models faster, and randomization testing of
three-QTL models fully feasible. This opens the pos-
sibility to thoroughly investigate the power of simulta-
neous search to detect triplets of interacting QTL, which
will be done in future research. We will also implement
DIRECT and the GA to simultaneously search for four
and five interacting QTL, to further explore higher order
epistatic interactions.

DIRECT is developed to find the optima of Lipschitz
continuous functions, i.e. functions where the rate of
change of the objective functions is everywhere limited
limited by some constant K, where K is normally un-
known. We gave a motivation for Lipschitz continuity
of the QTL mapping objective function based on that
0 < f(z) < yTGy, and that the resolution is limited. A
more interesting observation is that genetic distance is a
measure of change, a measure of recombination events.
Recombinations are reflected by change in the indicator
variable matrix A and consequently in f(Z). The mag-
nitude of the change in f(Z) depends on the phenotype
values of the individuals who switch genotype between
the flanking markers, but this still imposes a limit on the
possible rate of change in f(Z). No such limit is assumed
in the calculations, but we believe it is the explanation
for the good performance of DIRECT.

When analyzing data from other types of experimental
crosses, the optimization landscape will probably be dif-
ferent than in this study. However we believe that an
Fy cross between outbred lines is one of the most diffi-
cult cases, since the objective function will contain more
noise and less distinct peaks. Also we have used mod-
els with many parameters, and that will also make the
peaks smaller and more difficult for the optimization al-
gorithms to find. When adapting DIRECT to other ex-
perimental designs, an advantage is that the only param-
eter necessary to adjust is the number of function evalu-

ations allowed. We have used 6000 function evaluations
in the two-dimensional searches and 56000 evaluations in
the three-dimensional search, which corresponds to 0.2%
and 0.002% of the total number of positions.
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