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Abstract: The discretized maps of gradient models with Euler’s method generate chaos, which can be used for
global optimization by applying the chaotic annealing. In this paper, we apply this approach to solve the traveling
salesman problem. We formulate it as continuous optimization problems with particular constraints, and newly derive
gradient projection dynamics whose discretized maps generate chaos on a simplex.
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1. Introduction

Studies on the application of chaos to global opti-
mization methods are gaining more interests.1),2) The
essences of the chaotic optimization methods are, 1)
maps derived by discretizing gradient models with Eu-
ler’s method generate chaos if the dynamical systems
are unstabilized by setting their sampling time large,
2) chaotic trajectories of the maps are useful to probe
in wide ranges of the searching domain without being
trapped into local optima, and 3) the chaotic anneal-
ing method is available which conversely stabilize their
dynamics by gradually decreasing the sampling time
of them.3) The efficiency of the above-mentioned ap-
proach called the chaotic global optimization method
is reported for problems with upper and lower bounds,
and ones with constraints of the normalized equality and
nonnegativity.

On the other hand, the traveling salesman problem
(TSP) is known as a NP hard problem, and often used
to examine the efficiency of global optimization meth-
ods because it has so many local minima that the global
optimum is quite difficult to find out. While various
methods based on neural networks (N.N.) or genetic al-
gorithm (GA), etc., are proposed, most of them are re-
garding the TSP as a specially formulated combinatorial
problem.

In this paper, to the contrary, we regard the TSP as a
continuous global optimization problem constrained by
normalized equalities and nonnegativies, and formulate
a new dynamics based on the variable metric gradient
projection (VMGP) method for it.4) We also propose a
discretized map of the gradient model, which includes

the simple dicretization with Euler’s method and the
normalization of variables in order not to deviate nor-
malized equalities.5) Trajectories of the map are shown
to generate chaos if the dynamical systems are unsta-
bilized by setting their sampling time large. Finally,
we show that the chaotic optimization method which
applies the chaotic annealing to the trajectories of the
map in order to stabilize the dynamical system and con-
verge them into the global optimum is also available in
order to to solve the TSP. We demonstrate its efficiency
with numerical simulations.

2. The Formulation of The
TSP and The

Derivation of Gradient
Dynamics

The traveling salesman problem (TSP) is generally
formulated as a combinatorial problem as follows.

min
x

E(x) =
1
2

N∑

i=1

N∑

j=1

N∑

k=1

dijxik(xjk−1 + xjk+1),

(1a)

subj.to
N∑

i=1

xik = 1, k = 1, · · · , N, (1b)

N∑

k=1

xik = 1, i = 1, · · · , N, (1c)

where xik = {0, 1}, i, k = 1, · · · , N. (1d)
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x is the decision variable whose components are xijs,
and xik is either 1 if the ith city is visited in the kth
order or 0 otherwize. dij is the distance between city
i and j. Constraints (1b) and (1c) mean that every
city must be visited only once. Under these constraints,
the objective function E(x) equals the total distance of
the traveling route. While the TSP is regarded as a
combinatorial optimization problem in this formulation
because variables xijs are binarily coded, we attempt
to deal with it as a continuous optimization problem in
order to use the gradient model. At first, we combine the
constraints (1c) and (1d) with the objective function,
and newly impose nonnegativies on each component of
the decision variable. The revised problem is formulated
as below.

min
x

E0(x) =
1
2

N∑

i=1

N∑

j=1

N∑

k=1

dijxik(xjk−1 + xjk+1)

+
A

2

N∑

i=1

(
N∑

k=1

xik − 1

)2

+
A

2

N∑

i=1

N∑

j=1

xik(1− xik), (2a)

subj.to
N∑

i=1

xik = 1, k = 1, · · · , N, (2b)

xik ≥ 0, i, k = 1, · · · , N. (2c)

The second term of (2a) corresponds to (1c), and the
third term is added in order to eliminate quadratic terms
genarated in the second term by using the following re-
lationship.

x2
ij = xij , xij ∈ {0, 1}, i, j = 1, · · · , N. (3)

In addition, we consider to add a potential barrier
function which has the effect to block the decision vari-
able x in the closed domain [0, 1]N×N .

min
x

Ê0(x) = E0(x)

+ B {xij log xij + (1− xij) log(1− xij)} ,

(4a)

subj.to
N∑

i=1

xik = 1, k = 1, · · · , N, (4b)

xik ≥ 0, i, k = 1, · · · , N. (4c)

In the problem (4), only equalities (1c) are combined
with the objective function, while equalities (1b) and
nonnegativities (2c) are left.

Continuous gradient models can be derived by ap-
plying the variable metric gradient projection (VMGP)
method.4),5) We transform equalities (4b) into a general
linear equations

Axk = b, k = 1, · · · , N, (5a)

A =
[
1 · · · 1

]
, b = 1. (5b)

where xk = [x1k, · · · , xNk]T , k = 1, · · · , N . For nonneg-
ativities (4c), on the other hand, we introduce a variable

metric which increase the norm of the space infinitely as
xik approaches 0.

M(xk) = diag[x−1
1k , · · · , x−1

Nk], k = 1, · · · , N. (6)

The projection matrix onto the null space of A under
the variable metric M(xk) can be given as below.

P
M(xk)
A = I −M(xk)−1AT (AM(xk)−1A)−1A

= I − diag[xk]




1
...
1




·




[
1 · · · 1

]
diag[xk]




1
...
1







−1

[
1 · · · 1

]

= I − diag[xk]




1
...
1




(
n∑

i=1

xik

)−1 [
1 · · · 1

]

= I −




x1k · · · x1k

...
. . .

...
xNk · · · xNk


 , k = 1, · · · , N.

(7)

The VMGP model is derived which displaces
xk in the direction of the inverse gradient

−
[

∂Ê0(x)
∂x1k

, · · · , ∂Ê0(x)
∂xNk

]T

with the inverse of the
variable metric matrix M(xk) multiplied to satisfy
nonnegativities (4c) and the VMGP matrix P

M(xk)
A

applied to satisfy equalities (4b).

dxk(t)
dt

= −P
M(xk)
A M(xk)−1

[
∂Ê0(x)
∂x1k

, · · · ,
∂Ê0(x)
∂xNk

]T

=−


I−




x1k · · · x1k

...
. . .

...
xNk · · · xNk










x1k · · · O
. . .

O · · · xNk




·
[

∂Ê0(x)
∂x1k

, · · · ,
∂Ê0(x)
∂xNk

]T

, k = 1, · · · , N.

(8)

The following is the equal expression of (8) by using the
components of xk.

dxik(t)
dt

=−xik(t)





∂Ê0(x(t))
∂xik

−
N∑

j=1

xjk(t)
∂Ê0(x(t))

∂xjk





i, k = 1, · · · , N. (9)

The dynamics of (9) has the same structure of the repli-
cator equation, which is a representative model of the
population genetics.

Now, we introduce a new variable u called the inner
state variable in order to establish the output relation-
ship. By dividing the differencial equation (9) into two
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differencial equations

dxik(t)
duik

= xik(t), (10a)

duik(t)
dt

= −




∂Ê0(x(t))
∂xik

−
N∑

j=1

xjk(t)
∂Ê0(x(t))

∂xjk



 ,

(10b)

i, k = 1, · · · , N,

and solving (10a) analytically, the exponential type of
nonlinear output relationship appears

xik(t) = exp uik(t), i, k = 1, · · · , N, (11)

where x can be regarded as the output variable. Conclu-
sively, the inner state variable expression of the VMGP
model is formulated as follows.

xik(t) = exp uik(t), (12a)

duik(t)
dt

= −




∂Ê0(x(t))
∂xik

−
N∑

j=1

xjk(t)
∂Ê0(x(t))

∂xjk



 ,

(12b)

i, k = 1, · · · , N.

3. Discretized Maps of
The VMGP Model for

The TSP

The essences of the chaotic optimization method are
the use of discretized maps of the gradient model by
Euler’s method, and the unstablization of their trajec-
tories by letting the sampling time relatively a large
value. In this section, we derive the discretized map
of the VMGP model formulated in the previous section.
For the dynamics (12), the discretization of (12b) with
Euler’s method yields the following map.

uik(t + 1) = uik(t)−∆T

·




∂Ê0(x(t))
∂xik

−
N∑

j=1

xjk(t)
∂Ê0(x(t))

∂xjk



 ,

(13a)

xik(t + 1) = exp uik(t + 1), (13b)

i = 1, k = 1, · · · , N.

However, because we apply the discretization in terms of
the inner state variable u, we have to note that x(t+1)
generally deviates normalized equalities (12b) even if
x(t) satisfies them. It is because nonlinearities in (13a)
don’t reflect the characteristic of the gradient projection
matrix. Therefore, we regard xij(t + 1) or uij(t + 1) as
temporary values, rewriting them as x′ij(t+1) or u′ij(t+
1). We redefine xij(t+1) as normalized value of x′ik(t+1)

so as to satisfy (12b), and uik(t+1) as transformed value
of xik(t + 1) using the inverse function of the output
function. The established map is formulated as follows.

u′ik(t + 1) = uik(t)−∆T

·




∂Ê0(x(t))
∂xik

−
N∑

j=1

xjk(t)
∂Ê0(x(t))

∂xjk



 ,

(14a)

x′ik(t + 1) = expu′ik(t + 1), (14b)

xik(t + 1) =
x′ik(t + 1)∑N

j=1 x′jk(t + 1)
, (14c)

uik(t + 1) = log xik(t + 1), (14d)

i, k = 1, · · · , N.

(14) assures that x′i ≥ 0, which leads to xi ≥ 0 in (14c).
Therefore, (14c) satisfies the normalized equalities (4b).
(14d) calculates the corresponding inner state variable
of the normalized output (14c).

It is generally assured that the discretization of a dif-
ferencial equation by using Euler’s method generates
chaos under some conditions.6),7) Increasing ∆T in
(14a) unstabilizes its equilibrium points and the trajec-
tories of u′ik get chaotic. In proportion to it, trajectories
of the output variable xik or the inner state variable uik

also get chaotic.
By the way, to give the equilibrium points of (14),

by substituing (14a) into (14b) and using xik(t) =
exp uik(t),

x′ik(t + 1) = xik(t) exp

{
−∆T

∂Ê0(x(t))
∂xik

}

· exp



∆T

N∑

j=1

xjk(t)
∂Ê0(x(t))

∂xjk



 , (15)

i, k = 1, · · · , N,

is derived. xik(t + 1) is given by substituting (15) into
(14c).

xik(t + 1) =
xik(t) exp

{
−∆T ∂Ê0(x(t))

∂xik

}

∑N
j=1 xjk(t) exp

{
−∆T ∂Ê0(x(t))

∂xjk

} , (16)

i, k = 1, · · · , N.

On the other hand, the necessary and sufficient condi-
tion for x to be an equilibrium point is x(t + 1) = x(t).
By setting xik(t + 1) = xik(t) in (16),

exp

{
−∆T

∂Ê0(x(t))
∂xik

}

=
N∑

j=1

xjk(t) exp

{
−∆T

∂Ê0(x(t))
∂xjk

}
= const., (17)

i, k = 1, · · · , N,

is derived, which implies the following.

∂Ê0(x)
∂x1k

= · · · = ∂Ê0(x)
∂xNk

, k = 1, · · · , N (18)
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∂Ê0(x)

∂xik
= 0 for all i, k = 1, · · · , n is a special case of

the condition (18), and it shows that a local optimum
of Ê0(x) is a equilibrium point of the discretized map
(14).

4. The Chaotic Annealing

The chaotic annealing is proposed to converge the
chaotic trajectories into the global optimum. Regard-
ing the sampling time in the discretized map of the gra-
dient model as the temperature, whose concept is the
same as that of the simulated annealing, a high temper-
ature enough for the dynamical system to have chaotic
characteristic is given during the earlier searching stage
in order to generate various states as candidates for op-
tima. Though, during the following searching stage, the
temperature is gradually decreased so as to stablize it
and converge trajectories to the global optimum.

However, we must note that general chaotic annealing
algorithms, which simply decrease the temperature ac-
cording to certain cooling scheludes, don’t always give
the global optimum.2) It can be because trajectories
may be attracted more easily to certain local optima
than the global optimum due to the inheritance of the
chaotic characteristic of the dynamical system which
generates states.

To clear the matter, we apply the modefied chaotic
annealing method proposed by us which uses the thresh-
old acception method together, called the hybrid type of
the chaotic annealing method.8) The newly generated
state is accepted as a candidate for the optimum if the
the increase of the value of the objective function at the
new state from that of the currently held candidate is
smaller than a given threshold value. Otherwize, the
state is rejected for a candidate and another one is gen-
erated. In addition, we use the adaptive cooling sched-
ule which decreases the temperature if such rejections
continue to happen more than a given number of times
C1, or the generation of states at a temperature contin-
ues to happen more than a given number of times C2.
They are expected to effective for the improvement of
the convergence rate and speed to the global optimum.

We show the detail algorithm as follows, noting that
we describe the generated states by the discretized map
(14) as x̃ and candidates for the optimum as x.

[The algorithm of the hybrid type of the chaotic
annealing]

Step 1 Set t := 0. Give the initial value of can-
didates x(0) and set the initial tempera-
ture ∆T := ∆T0. The inital state is given
by x̃(0) := x(0). Set the decrease of the
temperature in one cooling d, the thresh-
old value for the difference of the objective
function T , the maximum number of the
continuous rejections C1，and the maxi-
mum number of the state generations per
one temperature C2.

Step 2 Calculate a new state x̃(t + 1) by substi-
tuting x̃(t) to the map (14) and the value
of the objective function E(x̃′(t + 1)).

Step 3 Define the difference between the values of
the objective function as

∆E(t) = E(x̃(t + 1))− E(x(t)) (19)

and accept the revision of candidate x(t +
1) := x̃(t + 1) if ∆E(t) < T . Otherwize,
set x(t + 1) := x(t).

Step 4 Cool the temperature ∆T := ∆T − d if
the number of the continuous rejections or
the state generations per one temperature
exceeds the bound.

Step 5 Finish searching when ∆T ≤ 0. Other-
wize, set t := t + 1 and return to Step 2.

5. Numerical Simulations

In this section, we demonstrate through numerical
simulations that the discretized map (14) generates
chaos, and that the global optimum can be found by ap-
plying the hybrid type of the chaotic annealing method
to its trajectories.

In this paper, we deal with the 5-cities TSP as an
example. Cities are configured randomly in a 10 × 10
square, and their positions are shown in Table 1 and
Fig.1. The globally optimal route which minimizes the
total distance is 1 → 2 → 5 → 3 → 4, and the value
of it is 26.63. Some locally optimal routes whose total
distance are comparatively small are shown in Table 2.

Table 1 Position of cities for the example.
City No. x y

1 9.139 9.396
2 9.383 2.360
3 7.538 2.620
4 1.998 2.706
5 9.212 0.672

In this simulation, we use the values of the parame-
ter in the objective function as A = 50.0 and B = 5.0.
Regarding the sampling time ∆T in the discretized map
(14) as a bifurcation parameter, we show the bifurcation
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Fig. 1 Position of cities for the example.

Table 2 Globally and locally optimal routes and their
total distance.

Optimal route Total distance
1 → 2 → 5 → 3 → 4 26.63
1 → 4 → 3 → 2 → 5 27.61
1 → 3 → 2 → 5 → 4 27.80
1 → 3 → 5 → 2 → 4 28.40
1 → 2 → 5 → 4 → 3 28.73

diagrams for each x11 through x55 in Fig.2. The initial
point of trajectories is given as a certain value gener-
ated by random numbers normalized to satisfy (4b) and
(4c). The bifurcation parameter varies from 0.0 to 0.2,
and the states of trajectories generated from at 950th to
1000th time step are plotted for each value of ∆T . We
can see that each component of the decision variable
can change variously as ∆T gets large, which shows the
chaotic characteristic.

Fig. 2 Bifurcation diagram of x for (14).

For the purpose of reference, we show the result for
the application of the classical chaotic annealing method
to the TSP. In the following simulation, we set the ini-
tial temperature ∆T0 = 0.16, and monotonuously de-
crease it by ∆T0/100 = 1.6 × 10−3 after 20 transitions
for each temperature while ∆T > 0. Fig.3 shows the
plotting of all passing points for trajectories of x(t) in

terms of their corresponding tempereture. The number
of trajectories are 100, and their initial points are given
randomly. We can see that trajectories converge into
some points as ∆T → 0. The value of each component
xik for some convergence points take 0 or 1 with little
deviation, but there are other convergence points whose
components take 0 < xik < 1 satisfying (1b), while (1c)
is unsatisfied.

Fig. 3 Result of applying the classical chaotic anneal-
ing to the map (14).

Then, we show the result for the application of the
hybrid type of the chaotic annealing method to the TSP.
The simulation conditions are, the initial temperature
∆T0 = 0.16, decrease of the temperature in one cooling
d = ∆T0/100, the threshold value T = 1.0, parameters
for cooling schedule C1 = 10 and C2 = 20. Fig.4 is
the plotting of all passing points for 100 trajectories of
x(t). We can see that the cooling processes are definitely
different between the classical method and the hybrid
method. Moreover, in the hybrid case, the value of each
component xik for all convergence points takes only 0
or 1.

Table 3 shows the convergence rate of trajectories to
the global optimum and local optima. In the figure,
“Classical” shows the rate when applying the classical
chaotic annealing method, and “Hybrid” shows the rate
when applying the hybrid type of the chaotic annealing
method. It is clear that there is an outstanding differ-
ence of the optimization ability between the two anneal-
ing methods. In addition, the total rates of convergence
to either of the best 5 local optima sum up to 67.4%
in the hybrid method, but in the classical method only
4.7%.
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Fig. 4 Result of applying the hybrid type of the chaotic
annealing to the map (14).

Table 3 The convergence rate of trajectories to the op-
tima

Optimal route Classical Hybrid
1 → 2 → 5 → 3 → 4 2.5% 20.8%
1 → 4 → 3 → 2 → 5 0.1% 14.3%
1 → 3 → 2 → 5 → 4 0.3% 13.8%
1 → 3 → 5 → 2 → 4 0.6% 9.4%
1 → 2 → 5 → 4 → 3 1.2% 9.1%

6. Conclusion

The chaotic optimization method gets increasing at-
tention as an engineering application of the chaotic dy-
namical systems. A Map derived by discretizing the con-
tinuous dynamics of a gradient model generate chaos if
its sampling time is set comparatively large, and the ap-
plication of annealing methods to the map enables us to
search the global optimum. While this method is shown
to be efficient for optimization problems with lower and
upper bounds, but we consider the application of it to
the TSP, a special form of problems with normalized
equalities and nonnegativies. By giving a state variable
expression of the VMGP method which is applicable
for this type of the problems, discreting it with Euler’s
method, and combining the normalization of the output
variable in order not to deviate normalized equalities
due to the nonlinerity, we propose the discretized map
of the VMGP method. The chaotic characteristic of the
map is demonstrated, and the application of the chaotic
optimization method to its trajectories is shown to be
efficient for finding the global optimum by numerical
simulations.
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