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Abstract: In this paper, the optimization method based on “the chaotic annealing” applied to the trajectories
generated in the discrete model of the inertial gradient dynamics is proposed. The new inertial gradient
model is superior in (i) the easiness in the initial state configuration, and (ii) the assurance of the convergence
to local optima. The efficiency is demonstrated through numerical simulations.
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1. Introduction

In global optimization, there is a method using the high
searching ability of the chaotic trajectories generated by the
discrete gradient model1, 2, 3, 4). The global optimum is cal-
culated with the aid of “the chaotic annealing” algorithm. It
converges the trajectories to the global optimum by gradu-
ally stabilizing the dynamics from chaotic phase to descent
phase.

On the other hand, the inertial gradient model is also used
in global optimization because of the ability to overcome the
unwilling local optima during the search5).

In this paper, we consider to avail the both advantages in
chaos and the inertial gradient model. We propose a new dis-
crete inertial gradient models by simply modifying the exist-
ing non-inertial ones. At the same time, we also propose a
little modefication of the chaotic annealing in order to avail
it with the inertial models. They can solve two problems
known in using the inertial gradient model at the same time,
(i) the difficulty in the initial state configuration, and (ii) the
assurance of the convergence to local optima.

2. Inertial Gradient Models for Con-
strained Optimization Problems

2.1 Model for Optimization Problem with
Bounds Pair

We consider the constrained minimization problem with
bounds pair

min
x

E(x), (1a)

subj.to. xi ∈ (pi, qi), i = 1, · · · , n, (1b)

wherex = [x1, · · · , xn] is the decision variable,E is the
continuous differenciable minimization function, andpi, qi

are given real values correspondingly. This class of the opti-
mization problems appear in various fields of engineering.
In order to solve eq.(1), the steepest descent model with

brake1, 3)

dxi(t)
dt

= −(xi(t)− pi)(qi − xi(t))
∂E(x(t))

∂xi
. (2)

Eq.(2) is equivalently expressed by introducing the inner
state variableu = [u1, · · · , un],

xi(t) = fi(ui(t)) ≡ qi + pi exp(−ui(t))
1 + exp(−ui(t))

, (3a)

dui(t)
dt

= −∂E(x(t))
∂xi

. (3b)

At the initial statet = 0, if x(0) is given,u(0) is calculated
by the inverse transforms of eq.(3a).x stops at the equilib-
rium points in the constraints eq.(1b) where corresponding
u satisfiesdu/dt=0.

In this paper, we replace the gradient∂E(x(t))
∂xi

with the

convoluted gradient
∫ t

0
e−a(t−τ) ∂E(x(τ))

∂xi
dτ in (2)

dxi(t)
dt

=−(xi(t)−pi)(qi−xi(t))
∫ t

0

e−a(t−τ) ∂E(x(τ))
∂xi

dτ,

(4)

wherea is a real number. Because of the storage of past in-
formation, the convoluted gradient doesn’t always get zero at
the points which correspond to the local minima ofE, where
the simple gradient is zero. Eq.(4) also searches minima of
eq.(1a), but can escape the unwilling minima thanks to the
characteristic of the convoluted gradient. The inner state ex-
pression of eq.(4) is given in the way as

xi(t) = fi(ui(t)) ≡ qi + pi exp(−ui(t))
1 + exp(−ui(t))

, (5a)

dui(t)
dt

= −
∫ t

0

e−a(t−τ) ∂E(x(τ))
∂xi

dτ. (5b)

Then, the differencial equation (5) of the first order is trans-
formed into the one of the second order

d2ui(t)
dt2

+ a
dui(t)

dt
= −∂E(x(t))

∂xi
, (6)



which is named the inertial gradient model. Now, we in-
troduce another variablev = [v1, · · · , vn] so as to partition
eq.(6) to two differencial equations of the first order

dui(t)
dt

+ aui(t) = vi(t), (7a)

dvi(t)
dt

= −∂E(x(t))
∂xi

. (7b)

The initial state of eq.(7) can be set in the following way.
u(0) is the inverse of eq.(5a) ifx(0) is given. Let the change
du(0)/dt be0. Accordingly, due to eq.(7a),v(0)=au(0) is
required.

The discrete model of eq.(5) and eq.(7) with the sampling
time∆T are derived by

xi(t) = fi(ui(t)) ≡ qi + pi exp(−ui(t))
1 + exp(−ui(t))

, (8a)

ui(t+1) = ui(t) + ∆T{vi(t)− aui(t)}, (8b)

vi(t+1) = vi(t)−∆T
∂E(x(t))

∂xi
. (8c)

The dynamics eq.(8) gets chaotic as∆T gets large due to the
unstabilization of its equilibrium points6).

2.2 Model for Optimization Problem Con-
strained on a Simplex

Then, we consider the constrained minimization problem
constrained on the surface of a simplex

min
x

E(x), (9a)

subj.to.
n∑

i=1

xi = 1 (9b)

xi ≥ 0, i = 1, · · · , n. (9c)

Eq.(9b) and eq.(9c) define the inside of the polygon with
n apexes(1, 0, · · · , 0), · · · , (0, · · · , 0, 1), which is the sur-
face ofn-dimensional simplex. The problem eq.(9) is more
difficult to solve than eq.(9) due to the existance of the re-
lationship between each component of decision variablexi.
This class of the optimization problem may be applied for
the matters of scheduling or resource allocation. Ifxi is re-
garded as the possibility where statei appears, the possibility
estimation problems may also be written in this form.

In order to solve eq.(9), the exclusive model for this class
of the optimization problem, called “the variable metric gra-
dient projection model”, is known as below

dxi(t)
dt

= −xi(t)





∂E(x(t))
∂xi

−
n∑

j=1

xj(t)
∂E(x(t))

∂xj



 .

(10)

Its inner state expression, like eq.(3), is also given by4)

xi(t) = fi(u(t)) =
expui(t)∑n

j=1 exp uj(t)
(11a)

dui(t)
dt

= −∂E(x(τ))
∂xi

. (11b)

Here, in the same way as the previous section, we re-
place the gradient∂E(x(t))

∂xi
with the convoluted gradient∫ t

0
e−a(t−τ) ∂E(x(τ))

∂xi
dt in (10)

dxi(t)
dt

= −xi(t)
{∫ t

0

e−a(t−τ) E(x(τ))
∂xi

dτ

−
n∑

j=1

xj(t)
∫ t

0

e−a(t−τ) ∂E(x(τ))
∂xi

dτ



 .

(12)

The inner state expression for eq.(12), the counterpart of
eq.(4), is derived as below,

xi(t) = fi(u(t)) =
expui(t)∑n

j=1 exp uj(t)
(13a)

dui(t)
dt

= −
∫ t

0

e−a(t−τ) ∂E(x(τ))
∂xi

dτ. (13b)

In comparison to eq.(5), we can note that eq.(13b) has all
same form as eq.(5b), and that only difference lies in the
form of fi between eq.(13a) and eq.(5a). Thefi of eq.(13a)
assures the constraints eq.(9b) and (9c) whatever valueu
takes.

Therefore, the transformations of equations originated
from eq.(13) are done in the same way as those originated
from eq.(5). In the process, the continuous model

xi(t) = fi(u(t)) =
exp ui(t)∑n

j=1 exp uj(t)
(14a)

dui(t)
dt

+ aui(t) = vi(t), (14b)

dvi(t)
dt

= −∂E(x(t))
∂xi

, (14c)

is derived. In the long run, the discrete model for eq.(14) is
described as below.

xi(t) = fi(u(t)) =
expui(t)∑n

j=1 exp uj(t)
, (15a)

ui(t+1) = ui(t) + ∆T{vi(t)− aui(t)}, (15b)

vi(t+1) = vi(t)−∆T
∂E(x(t))

∂xi
. (15c)

The dynamics eq.(15) also gets chaotic as the enlargement
of ∆T .

3. The Chaotic Annealing Method

The chaotic annealing is proposed to converge the chaotic
trajectories into the global optimum. Regarding the sam-
pling time in the discretized map of the gradient model as
the temperature, whose concept is the same as that of the
simulated annealing, a high temperature enough for the dy-
namical system to have chaotic characteristic is given dur-
ing the earlier searching stage in order to generate various
states as candidates for optima. Though, during the follow-
ing searching stage, the temperature is gradually decreased



so as to stablize it and converge trajectories to the global op-
timum.

However, we must note that general chaotic annealing al-
gorithms, which simply decrease the temperature according
to certain cooling scheludes, don’t always give the global
optimum2). It can be because trajectories may be attracted
more easily to certain local optima than the global optimum
due to the inheritance of the chaotic characteristic of the dy-
namical system which generates states.

To clear the matter, we apply the modefied chaotic anneal-
ing method proposed by us which uses the threshold accep-
tion method together, called the hybrid type of the chaotic
annealing method3). The newly generated state is accepted
as a candidate for the optimum if the the increase of the value
of the objective function at the new state from that of the cur-
rently held candidate is smaller than a given threshold value.
Otherwize, the state is rejected for a candidate and another
one is generated. In addition, we use the adaptive cooling
schedule which decreases the temperature if such rejections
continue to happen more than a given number of timesC1, or
the generation of states at a temperature continues to happen
more than a given number of timesC2. They are expected
to effective for the improvement of the convergence rate and
speed to the global optimum.

We show the detail algorithm as follows, noting that we
describe the generated states by the discrete gradient models
(eq.(8) or eq.(15)) as̃x and candidates for the optimum asx.

[The algorithm of the hybrid type of the chaotic
annealing]

Step 1 Set t := 0. Give the initial value of candi-
datesx(0) and its corresponding inner states
u(0), v(0) = au(0). Set the initial tempera-
ture∆T := ∆T0. The inital state is given by
x̃(0) := x(0), ũ(0) := u(0), ṽ(0) := v(0).
Set the decrease of the temperature in one
cooling d, the threshold value for the differ-
ence of the objective functionT , the maxi-
mum number of the continuous rejectionsC1，
and the maximum number of the state genera-
tions per one temperatureC2.

Step 2 Calculate a new statẽx(t + 1) by substitut-
ing ũ(t), ṽ(t), x̃(t) to the discrete gradient
models and the value of the objective function
E(x̃′(t+1)).

Step 3 Define the difference between the values of the
objective function as

∆E(t) = E(x̃(t+1))− E(x(t)) (16)

and accept the revision of candidatex(t+1) :=
x̃(t+1) if ∆E(t) < T . Otherwize, setx(t+
1) := x(t). The inner statesu andv must also
be renewed according to the change ofx.

Step 4 Cool the temperature∆T := ∆T − d if the
number of the continuous rejections or the
state generations per one temperature exceeds
the bound.

Step 5 Finish searching when∆T ≤ 0. Otherwize,
sett := t+1, v(t) = au(t) and return to Step
2.

Note that we specially add the operation of revisingv(t)
in Step 5, even thoughv is once renewed inStep 3, just for
the use of discrete inertial gradient dynamics. Through our
investigation, applying the chaotic annealing to the inertial
gradient dynamics, in the same way for non-inertial gradient
dynamics, lacks the converge effect ofx to local optima7),
so thet this operation is quite essential in order to converge
x to optima.

4. Numerical Simulation

4.1 Results for Problems with Bounds Pair

In this section, we show the results of numerical simulations
for some examples in order to evaluate the availability of
newly proposing method. as an example, consider minimiza-
tion function

E(x) =
1
50

(x−4.5)(x−3.8)(x−3)(x−1)(x+2)

· (x+3)(x+4)(x+5), (17)

with bounds pairx∈ (−5.7, 5.7). The structure of eq.(17) is
shown in Figure 1, and local optima arex=−4.667,−2.466,
1.925, 4.243. The global optimum isx = 1.925.

Figure 1: Structure of the minimization function eq.(17).

The global bifurcation diagram of for.(8) where eq.(17) is
substituted asE is shown in Figure 2. It is drawn by plot-
ting the passing points of the trajectories for various∆Ts
initialized from the four local minima.

Then, we apply “the chaotic annealing” method, espe-
cially modefied for the discrete inertial gradient dynamics.
The parameters of it is defined by∆T0 = 0.08, d =
∆T0/400, C1 = 10, C2 = 20 andT = 1.0. For the inertial
gradient model, in order to assure the convergence to local
optima, reset ofv, v = au, is done just after each decreases
of ∆T . The annealing diagram, we call in this paper for con-
venience, is shown in Figure 3. It plots all samplesx(t) as
the candidates for the global optimum, in relation with∆T
during the annealing. We can see that all trajectories goes to
either of the local optima through the annealing, which itself
is the great advance thanks to the idea of resetting the inner
statev after each change of∆T .



Figure 2: Bifurcation diagram of eq.(8) with eq.(17).

Figure 3: Annealing diagram of eq.(8) with eq.(17).

Besides, the convergence rate of the trajectories to either
of the local optima, under the condition that whose initial
points are given randomly can be used. The rate to the global
optimumx = 1.925 from randomly defined initial points is
79.25%. The rates to local optima are,x=−4.667: 0.59%,
x = −4.667: 19.68%, andx = 4.243: 0.06% respectively.
0.52% went tox=−5.7.

In the next, consider another minimization function
named “Girewank”,

E(x) = − cos(x1) cos(
x2√

2
) +

x2
1 + x2

2

200
, (18)

with bounds pairx1, x2 ∈ (−25, 25), is considered. The
structure of eq.(18) is shown in Figure 4, and the global
optimum is(x1, x2) = (0, 0). There also exist many local
optima. The global bifurcation diagram for this problem,
drawed by plotting the passing points of the trajectory ini-
tialized from the global minimum, is shown in Figure 5.

Figure 4: Structure of the minimization function eq.(18).

Figure 5: Bifurcation diagram of eq.(8) with eq.(18).

Under the configurations of parameters∆T0 = 1.8, d =
∆T0/600, C1 = 10, C2 = 20 andT = 0.001, the bifurca-
tion diagram is shown in Figure 6. In addition, the rate of
convergence from randomly given initial points to the global
optimum is99.17%.

Figure 6: Annealing diagram of eq.(8) with eq.(18).



4.2 Result for a Problem on a Simplex

Consider a constrained problem on a simplex, whose mini-
mization functionE is named “Levy-Montalvo”,

min
x

E(x) =
π

n

{
B sin2(πy1)

+
n−1∑

i=1

(yi −A)2(1 + B sin2(πyi+1))

+ (yn −A)2
}

, (19a)

yi = 1.0 + 10.0(xi − 0.25),

subj.to
n∑

i=1

xi = 1, (19b)

xi ≥ 0, i = 1, · · · , n, (19c)

where parameters are given byA=1.0, B=5.0.
Let n = 4 here. Though the structure of correspond-

ing eq.(19a) is impossible to draw in a figure, it has so
many local optima on a simplex. The global optimum is
(x1, x2, x3, x4) = (0.25, 0.25, 0.25, 0.25).

The global bifurcation diagram for this problem, with the
trajectory initialized from the global minimum, is shown in
Figure 8.

The annealing diagram for the problem eq.(19) is shown
in Figure 8. The configurations of parameters are,∆T0 =
0.003, d = ∆T0/500, C1 = 10, C2 = 20 andT = 1.0. But
the convergence effect seems to be insufficient, and the con-
vergence rate to the global optimum goes up to only22.63%.

5. Conclusion

In this paper, we proposed a new discrete inertial gradient
dynamics with a little modefication of non-inertial dynam-
ics. They are expected to to overcome the unwilling local
optima during the global search. We also solved the the dif-
ficulty in the initial state configuration and the assurance of
the convergence to local optima.

Then, we considered to avail the chaotic characteristic
generated from the discrete model of it for global optimation.
We used the chaotic annealing method, but we proposed a
special modefication of the chaotic annealing in order to use
it with the inertial gradient dynamics in this paper. It solved
the problem we have found before that the decision variable
doesn’t converge to any of the local optima if the chaotic
annealing is applied to the inertial gradient dynamics in the
same way as to the non-inertial ones.

In the numerical simulations section, we demonstrated the
distinguishing characteristics of the chaos generated from
our proposing model. Such were the great progresses that the
modefied chaotic annealing method applied to the discrete
inertial gradient dynamics shown to be available for global
optimization. On the other hand, judging from the compari-
son with our previous results in which the chaotic annealing
was used with discrete non-inertial gradient dynamics3, 4) or
the convergence rate to the global optimum, we found it still
difficult to argue in this paper that the use of chaos generated
in the discrete inertial dynamics gives significant advantages.

Figure 7: Bifurcation diagram of eq.(15) for the problem
eq.(19).

In addition, we found a great difficulty in availing the
chaos of the discrete inertial dynamics for global optimiza-
tion on a simplex, which will be a new task for us to solve.

References

[1] H.Sugata and K.Shimizu, Global Optimization Using
Chaos in a Quasi-Steepest Descent Method, IEICE
Transactions (A), Vol. J79-A, No. 3, pp. 658–668, 1996
(in Japanese)

[2] I.Tokuda, K.Onodera, R.Tokunaga, K.Aihara and
T.Nagashima, Global Bifurcation Scenario for Chaotic
Annealing Dynamical System which Solves Optimiza-
tion Problem and Analysis on Its Optimization Ca-
pability, IEICE Transactions (A), Vol. J80-A, No. 6,
pp. 936–948, 1996 (in Japanese)



Figure 8: Annealing diagram of eq.(15) for the problem
eq.(19).

[3] K.Masuda and E.Aiyoshi, Hybrid Type of Global
Optimization Method with Discretized Chaos Map-
pings and Increase Accepting Methods, T.IEE Japan,
Vol. 122-C, No. 5, pp. 892–899, 2002 (in Japanese)

[4] K.Masuda and E.Aiyoshi, Chaotic Dynamics on a Sim-
plex and Global Optimization Method with Normal-
ized Constraints, IEEJ. Trans. EIS., Vol. 123-C, No. 6
(in printing), 2003 (in Japanese)

[5] T.Okamoto, K.Masuda and E.Aiyoshi, Constrained
Optimization by an Inertia Model on a Simplex – Opti-
mization by Dissipative Chaos Dynamics on a Simplex
–, SICE Symp. on Systems and Imformation, pp. 121–
124, 2002 (in Japanese)

[6] M.Hata, Euler’s Finite Difference Scheme and Chaos
in Rn, Proc. Japan. Acad., vol. 58(A), pp. 178–181,

1982

[7] K.Masuda and E.Aiyoshi, Hybrid Type of Global Opti-
mization Methods with Discretized Chaotic Mappings
and Accepting Methods, SICE Symp. on Systems and
Imformation, pp. 31–36, 2001 (in Japanese)


