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Mean Field Annealing Defor mable Contour Method: A Constrained Global

Optimization Approach

Abstract

This paper presents an efficient constrained global optimization approach based on mean field
annealing (MFA) theory to the problem of contour energy minimization with a contour interior
constraint for object boundary extractions In the method, with a given contour energy function, different
target boundaries can be modeled as constrained global optimal solutions under different constraints
expressed as a set of parameters characterizing the target contour interior structures. To search for the
constrained global optimal solutions, a fast and efficient global approach based on MFA is employed to
avoid local minima, which has been very difficult to achieve in most deformable contour methods. Asan
illustrative example, three target boundaries in a synthetic image are modeled as constrained global
energy minimum contours with different constraint parameters and are successfully located using the
derived algorithm A conventional variational based deformable contour method [1] with the same
energy function and constraint fails to achieve the same task. Experimental evaluations and comparisons
with other methods on ultrasound pig heart, MRI knee, and CT kidney images where gaps, blur contour
segments having complex shape and inhomogeneous interiors have been conducted with most favorable
results.

Keywords. Snakes, curve evolution, variational based approach, level set, and mean field annealing.

1. Introductions
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Image segmentation is a fundamental issue in computer vision. Energy based approach [22] [23] [2] may
be one of the most influential image segmentation approaches. The basic idea of energy based methods is
to model some globa image properties [22] that capture the characteristics of the target
regions/boundaries into energy functions; and then retrieve these target regions/boundaries via an energy
minimization process. There are two important factors in most energy based methods. energy function
formulations and energy minimization approaches. Energy functions may be classified as image based
energy functions [22], for segmenting an entire image, and contour/region based energy, for object
segmentations [2] [4]. Given an energy formulation, energy minimization approaches are then to
minimize energy for retrieving the desired energy minimum. Generaly, most energy minimization
approaches are local methods [2] [4]. Since local energy minima can be arbitrarily far from the global
optimum, these approaches may produce results that may not convey any of the global image properties
encoded in energy functions. Some doba approaches including smulated annealing 23] [14] [15],
graph theory [22], and deterministic annealing 21] have also been proposed with rather successful
results. Simulated annealing approaches often demand a high computational complexity [23] [14]. To
reduce the computational complexity, faster temperature parameter decreasing scheme are used but may
produce loca energy minimum solutions that may be far from the global optimal solutions [24]. Graph
theory based image segmentation methods provide a more efficient global approach for some energy
functions [22]. Most of these methods [22] are used for image classification and are difficult in
incorporating object shape information [25]. Deterministic annealing [26] has been successfully applied
for data clustering problems and is further extended for texture image classification applications [21].

In this paper, we apply mean field annealing approach (MFA), which is a deterministic annealing
approach and requires much less computational complexity than simulated annealing, to a problem of
globa energy minimization under aregion constraint for object boundary extraction. In the method, with
a given contour energy function, different target boundaries can be modeled as constrained global

optimal solutions under different constraints expressed as a set of parameters characterizing the target
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contour interior structure. To search for the constrained global optimal solutions, the method takes a
Lagrange approach and then introduces a quadratic constraint based on the square error of the current
parameter vaues and the optima vaues to convexify the Lagrange multiplier function [29]. The
proposed method considers the deformable contour and the associated variables as random functions or
variables in the convexified Lagrange multiplier; and then incorporates variational based deformable
contour searching into MFA framework using saddle point approximation and combines it with an MFA
parameter optimization scheme. High computational complexity is thus avoided. Notice that the mean
field approximation used in [17] is not the same as the mean field annealing used in this formulation to
achieve a global optima solution.

In Section 2, related works on deformable contour methods are reviewed. In Section 3 and 4, MFA
theory and the problem formulation are introduced and discussed. Section 5 details the derivation of the
proposed approach. Illustrative examples and parameter setting experiments are shown in Section 6and
Section 7 respectively , while applications on biomedical images are demonstrated in Section 8. In section

9, the conclusion regarding this method is provided.

2. Related works

Deformable contour methods (DCMs), since originated by Kass et a [2], receive tremendous amount of
atentions, and many efforts have been made to apply them to all sorts of problems. Typicaly, most
DCMs [2] [4] [12] [13] model boundary extractions as energy minimization problems. Traditionally
these methods often use functions of image gradient [2] [4] as contour energies. In cases where image
gradient information is either noisy or inaccurate in identifying target boundary, the image gradient based
energy functions often have multiple energy minima and as a result, these methods often result in
undesired local energy minimum contour instead of target boundary. To deal with this problem,

improvements in DCMs can be divided into two categories.
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In the first category, the methods [1] [5] [6] [7] [8] [16] propose new energy functions integrating region
based image features to aleviate the problem of multiple energy minima. In [6] [7], region based energy
functions firstly introduced in image classification methods are used to derive the deformable contour
formulations and in [8] theses functions are further combined with the image gradient based contour
energy functions to improve the performances. In general, the above methods are rather robust to noises
and the segmentation is efficiency is improved [16]. However, in more challenging situations, in which a
combination of region and image gradient information still can not accurately identify the target
boundary (such as gaps and inhomogeneous interiors al present in one contour extraction problem), the
methods still often result n undesired local energy minima; for instance, the resulting contours may
either expand beyond the gaps or gops at noisy interiors. One way to handle the problem is to integrate
priori shape modd into the frameworks [18] [19] [20] to assist identifying target boundary. The problem
with these methods is that a reliable shape modd construction often requires intensve manual
interventions.

The second category of DCMs model target boundary as global energy minimum [14] [15] and take
global optimization approaches, mostly simulated annealing, to locate them. These methods are robust to
undesired local energy minima. However, in a complex image context, with a snake based contour
energy function, the target boundary is usually a global energy minimum under certain constraints (for
instance, the congtraints of the contour interior characteristics) instead of the actual global energy
minimum contour throughout the entire image. Thus in [14] [15], either a mgjor modification of the
energy function, incorporating specific prior knowledge on target boundary [14] to make it be the global
energy minimum contour, or a preset mask [15] constraining the contour searching space within a

neighborhood close to target boundary is often required.

3. A Brief Review of Mean Field Annealing
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Mean field annealing is a global optimization method derived from statistical mechanics[9]. Let f bea
random variable and E(f) be an energy function to be minimized. Without any prior knowledge, the

probability distribution of f is assumed to be Gibbs distribution,
P(f)——expg, E(f)— @
with the partition function Z being

Z:a expg E(f);_a @

P

where P is all the possible configurations of f and T is the temperature. The statistical mean of f at

temperature T is defined as,

fMm=4 fA(H=a f e TE(NS ®

fiP

According to mean field annealing theory [9], f(T) is of importance due to the well known fact that as
the temperature approaches zero, f(T) approaches the global optimal point f°,

nmf(r)_nma fR(f)=f" 4

fIP

This suggests that instead of minimizing E(f) directly, we can try to evaluate mean field f(T) and

then track f(T) from a sufficiently high temperature down to zero. The value of |im f(T) is then the
T®O0

global optima point.
In gpplications, f(T) can be evaluated using saddle point approximation theorem [9]. The theorem

states that at temperature T, the partition function Z can be approximated by

E(TT)S

Q I-O:

Z»M expg-ei
e T

=f()

whereM isaconstant and E(f(T)) satisfies '"F;T(ff) =0.
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Note that in many applications, f is arandom function of timet rather than a random variable. In these

cases, themean of T at temperature Tisaso afunction of t.

4. ProblemFor mulation
Problem statement

Let F be an open domain subset of A? and I(x,y):F ® A be the image intensity function. Consider a

target object with boundary G(g) and interior W in the image. The average image intendity in W, |

01
and the variance of image intengty in W, s 2 can be determined as

hS)

a, I (X, y)dxdy

C‘QG dxdy

o =

@G (I (xy)- 1, )dedy
@, o '

We can model target boundary G(q) as aclose contour having the global minimum energy,

and s?2=

NI (G(q)))ds )

Ec(Qa)) = o

G(a)
satisfying D(x,y)3 T, if (xy)T W, (6)
where s is the normalized arc length, g is the contour parameter. g(NI(Gq))) is a contour energy

function firstly introduced in [4], which can be any positive decreasing function. In the paper, we choose

TIEOE ™

1
NICC)
NI (G(qg)) isthegradient of 1(x,y) with (x,y) on G(q), a >0 isaconstant. As we can see from Eq. (7),
when NI (C(q)) islarge, g(NI(Gq))) approaches its minimum a ; when Ri(G(q)) approaches zero,
g(|N| (G(q)j) approaches itsmaximum a + 1. a isrelated to contour smoothness. A large a indicatesa

smooth contour whileasmall a indicates just the opposite.
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D(x,y), which is used to characterize W, isafunction of 1, and's 2. In the paper, we choose

D(x, y)=expgf —(I(X’g)-z IO)ZB’ ®
é S b

where b isapositive congtant set as 2.0. T, >0 isathreshold that can be adjusted for modeling different
target boundaries as condtrained globa energy minima. A large T,, often indicates asmall admissible set
of contours that satisfy the constraint of Eq. (6) whileasmall T, indicates just the opposite.

Then our problem is to estimate the optimal values of s 2, | and then find a close contour C(qg, t)

0

enclosing region W(t) at timet, such that

E.(C(a,1) = ¢ g(NI (C(a,1)))ds ©

is the global minimum under the constraint,
D(xy)2 T, for(x,y)T W,(t) (10)
The Lagrange formulation of Eq. (9) is

LC(at)s % 1,) = ¢g(NI (C(a)]ds- | 1@, (D(x.y)- T, )dxdy (11)

where | | >0 isalagrange multiplier. Since G(q) isthe constrained global energy minimum, according

to Lagrange multiplier condition, the optimal setting of | |, | ;, should satisfy

L(C(A,1),5 21,1 )]

=0 12)
iC(a,t) ||C(:q|,,t>=e<q)

According to [1],

L(C(a,t),s2,1,,1,)

e MFC@DsLInl) = D@0, y(@.) - T, |+ ka(Ri (C@.) - Rg(i (C(a,t)) N

where k is contour curvature and N is the normal direction of C(q, t). Thus satisfying Eq. (12) is

equivalent to satisfying F(QQ),s % 1,l1;)=0 (13
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In implementations, it may be difficult to find a | | satisfying Eq. (13). As an alternative, we search for a

| ; such that
[F@&@.s 210,15, =min|F(@a).s *.00.1,), forl,TA (14

where ||al|m isthe m norm function of aand > 0. To Smplify the computation of Eq. (14), we often

choose r as ¥, and | ; can then be determined. With this, Eq. (11) can be finally written as

LC(at)s * 10,1 1) =¢a(NI(C(a.t))ds- | 1@, (D(xy) - T, )y (15)

A brief review of the original constrained optimization approach [1] [16] and its limitations
To minimize Eq. (15), the original constrained optimization deformable contour method (CODCM) [1]
initialy estimates s 2, |

|, and then minimizes L(C(q,t),s ?,1,,l;) using avariaiona approach. The

[ 1|01

contour evolution formulais
% ={:[D(xy)- T, ]+ kg(f) - Rig =N (16)

Since ¢ (NI (C(q,t)))ds is nonconvex having multiple local energy minima.and | ; is often small, Eq.
C

(16) tends to be trapped into local energy minima. An extra constant balloon force b has to be added,

= {0 +boecy)- T, [k - g 40

The added balloon force b can be viewed as to increase the weight of the region constraint. The difficulty

with Eq. (17) isthat with asmall b, L(C(q,t),s ?,1,,!;) istill nonconvex and has multiple minima while
with a large b, locating the globa minimum of L(C(q,t),s?,1,,1;) is equivaent to locating a local
energy minimum near the maximum of C\(l% (D(x,y)- T, )dxdy, Which is not necessarily the constrained

global energy minimum. Though CODCM is rather successful in many applications [16], in more

challenging situations, in which gaps and inhomogeneous interiors are all present in a single contour
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extraction problem, the methods may till either expand beyond the gaps (with a large b) or stops at the
noisy interiors (with asmall b).

Another problem is that when some a priori information about the target object is unavailable, an

accurate estimation of s?, and | is often difficult especially when the object interior is

ly

inhomogeneous as shown in Fig. 6.1a In[1], |1 is computed as the mean brightness of the deforming

0

contour and is updated during the contour deformation. Since | ; issmal, |} +b can be approximated by

the constant b. s 2 isthe only parameter needs tuning.

5. The Derivation of the Approach

Energy function formulation

To overcome the difficulties of CODCM [1] [16], we add an extra constraint E, - T, £0 that can
convexify Eq. (15) without deviating the global optimal solutions,

where E,=(s%-82)+(lo-1§)2+ (17 -15)? (18)

T, 20 isasmadl condant. s 2, IS, and | ¢ areobtained from w () asfollows:

. C‘QNC I (%, y)dxdy (19)
° (‘chxdy ’
L d%[l(x, y)- I,J dxdy 0)
Se” (‘QC dxdy

[Fc@n.s? 15,19 =min[FC@n.s? 1,0, (@)

Then Eqg. (15) can be written as,

E E

Lp(C(@.t):s % 1o, 1) = @u(NI(C(a)ds - 11, (D(x.y) - T)exdy +1,(E, - T,) (22)
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where | , >0 is another Lagrange multiplier. E is a convex quadratic function [29] with the global
minimum at G(q) - With theintroduction of E, andalargel, >>1;, L (C(q,t),s ?,1,,1}) isconvexified
with the globa minimum at target boundary G(q). The introduction of E, is to require that the

associated parameters of the resulting contour closed to those of target boundary G(q) . We can take a
derivative based approach to minimize Eq. (22), which produces alternating procedures of contour

evolution (computed according to Eq. (16)) and the updating of s?, 1, and 1 (by letting s ?=s¢,

I, =1g,and |} =1¢). The problem is that the approach is alocal method and often fails to locate global

0

energy minimum.
The derivations of the proposed approach

To find the global optimal solution, we apply the framework of MFA discussed in Section 3 to minimize

Eq. (22). Congder C(q,t) as arandom function of time t and parameters s 2, |, and |; as random
variables. Consider a proper temperature sequence T, 1£i £n, salisfying T, <T, T =0. According to
MFA approach, C(q,t), s?, I,,and | can beregarded as all random functions of temperature T,. Thus
we denote C(q,t), s, I,,and | as C(q,t,T)), s(T;), 1,(T,), |,(T,). Our strategy to search for the
global optimum of C(q,t), s?, 1,,ad | isto track the mean values of C(q,t,T), s ?(T,), I,(T,), and
|;(T,) until T dropsto zeroas i goesfrom 1to n. To estimate the mean values of C(q,t,T), s *(T),
I,(T,), and | (T,), according to [9], we can ignore the correlations of the mean field of C(q,t,T),
s?(T), 1,(T,), I',(T,) and proceed to update each variables separately by holding al other parameters
unchanged. Let C(q,0T,) be the given initid contour denoted as C(T). Let sZ(T)=slq,
InT) =15, and 1T =15™. Let i=1 and go to Step 1.

Stepl is to keep s *(T,) =s 2(T,), 1,(T,)=1(T,), 1,(T,)=1(T,) constant and compute the mean

vaue of C(q,t,T,). By MFA theory discussed in Section 3 the mean of C(q,t,T,) can be evaluated from
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partition function using the saddle point approximation. At temperature T, the partition function Z can be

approximated by
Z»M expg 2L, C@ET)S M) M1 T) 2
i 9
where TL:(C@1).,8 *(M), 1,(T),1:(T))| —0. Inapplications, the variationsof 1¢,s2,and 1S

fC(a,t) |c<q,t):0(q,t,Ti)

are much dower comparing to that of C(q,t) therefore we neglect their fluctuations during the

deformation of C(q,t). With this, according to [1], C(qg,t,T.) can then be computed by letting,

1C(a.t) _ T, (S0, *(T), Lo(T), 1 3(T))|

Ml fic(an e
where '"C;?’t) ={ @by T) - T, |+ ko - Rig<NJN (24)
2
and D , ,T- :(I(X’y)_ IO(Tl)) i
YT = o)

To implement congtraint of Eq. (23), we rdlax it as

Icla.t) ET, (29

ft  [c@v=Clatm)
C(a.0)=C(T,)

where T_ 2 0 is a given constant. To reduce computational complexity, instead of satisfying Eq. (23),
contour C(q,t) isdeformed for a certain time interval | > 0 and we assume that Eq. (25) can be satisfied
after the interval. Then C(q,t,T,) can be computed according to Eq. (24) by letting C(q,t,T,) = C(q.!)
with C(q,0) = C(T;) being theinitial contour.

Step2istokeep C(q,t,T,) constant and calculate s *(T;), 1,(T,), I;(T,) . We denote the mean values of

S2(TM), 1,(T), 15(T) ass?(T), 1,(T), I ,(T) ad sZ(T), I$(T), I{(T,) asvauesof sZ, I1S,and | ¢

computed from C(q,t,T,), respectively. With the derivation given in the Appendix, we have

o (5) =15 (T, (26)
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STm=sim+ [ (27)
- T
and Il(Ti):If(Ti)+\g (28)
Then let 1T, =1,(T) s s 2(T.) =s 2(T). 1 " (T,,) =11(T,), C(T.,)) =C(q,t.T,)- (29)

Leti=i+1 and goto Stepl until temperature drops to zero.
Comments:

The above solution includes two aternative procedures of contour deformation of Eq. (24) and
parameter updating of Eq. (26) to (28). Eq. (24) is similar to Eq. (16) of CODCM [1]. However, in Eq.
(24), the values of s *(T;), 1,(T,), and |(T,) vary during the contour deformation as shown in Eq. (26)
to Eq. (28). From Eqg. (27), it is easy to see that s *(T,) is large when temperature is high and s *(T)
gradually reduces when the temperature lowers as the contour grow outward. The value of temperature T,
controls the dynamic range of s ?(T,) thus determines the method's adaptability to the inhomogeneous

interiors and noises. It is also interesting to note that according to Eg. (28) the magnitude of the balloon
force velocity term in EQ. (24) is decaying during the contour evolution process. This feature provides the
method more robustness to noisy interiors while enhancing its performances in situations of gaps and
blur boundaries. In general, the whole contour deformation process can be viewed as an annealing
process, in which contour flows outward in a high temperature and then cools down and anneals near the
target boundary.

Algorithm description

From the above discussions, an iterative algorithm can be derived as follows:

For an initid contour C(q,t) with the size of 5 by § t=0 and interior W_(t), at temperature T, =T

i=1,whereT  istheinitid temperature, let C(qg,t,T) =C(q,t) do

i) Compute s 2, 15, and | ¢ from C(q,t,T,) using Eq. (19), Eq. (20), and Eq. (21).
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ii) Update s *(T;), I, (T.),and 1 (T,) using Eq. (26), Eq. (27), and Eq. (28).
iii) Let T, =T *decT, and update s2(T), I'(T,), I"(T,), and C(T,) according to Eq. (29), where
0 < decT <1 isthe updating factor.

iv) Evolve c(q,t) for | iterations (| >0 isa constant) according to Eq. (24) using narrow band numerical
scheme [3] with C(q,0) = C(T,) being the initia contour. Let C(q,t,T.) = C(q,!) . Stop when the maximum
velocty of C(qg,l) issmaller than athreshold v, or a maximum iteration number t_ has been reached,
where v and t_ are positive constants. To further increase the robustness of the algorithm to the setting

of iteration number t_, we compute the value of contour energy according to Eq. (9) and record the

lowest energy contour. The output contour is then the contour with lowest contour energy.

It should be noted that we can also set the stopping criteria as when the temperature T, drops to zero.
However, this stopping criterion is too sengitive to the settings of T and decT thusis not used.

Some remarks on Appendix:

Asillustrated in Appendix, if W_(t,T,) T W, where W_(t,T,) istheinterior of C(q,t,T,) and w; isthe
interior of target boundary, there exists at least one temperature sequence T,, 1£i £ n such that C(q,t,T)
computed according to Eq. (24) and Eq. (26) to (28) satisfies W (t,T) i W In applications, we assume
that W_(t,T,) I W, can be satisfied by a careful selection of T, and decT. Tuning T, and decT are
thus needed in some applications. As an advantage, with the satisfaction of W_(t,T,) i W, the method
can be applied to extract any target boundary C(q) that can be modeled as the globa energy minimum
contour with the constraint W i W, where W is the interior of an arbitrary contour inside W, as
shown in Fig. 8.4 and 8.5. In the viewpoint of global optimization, the physical meaning of the solutions

Eq. (24) and (26) to (28) is that snce W, (t,T)) i W, is satisfied and the contour is mainly moving
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outward, when i approaches n, C(q,t,T,) is more closed to the target boundary and s 2(T,), I5(T,),

2 *
|(T) aemoreclosetos®, 1,,and | .

6. lllustrative Examples

In this section, we will show that different target boundaries in a single image can be modeled as the
constrained global minimawith different settings of T, . Wethen illustrate the processes of locating these
constrained global energy minima using the proposed method with a comparison to the results using Eq.
(17) of CODCM [1] assuming that s > and |, of the target objects are known.

The examples shown in Fig. 61(a) is a 165 by 165 image designed with three overlapping circles MC,,
MC,, MGC; of size r, =40 pixels (MC,), r, =55 pixels MC,), r,=70 pixels MC;) at different center
locations, where r, ,i =1,2,3 istheradius of circle MC;. The interior brightness of circles MC, and MG; is
radially decreasing from the centers to their perimeters in a straight line fashion for circle MC; from 255
to 207, circle MG; from 160 to 69 with the scale of 255 gray levels while the interior brightness of MC, is
radially increasing from the center to the perimeter in a straight line fashion from 40 to 150. The values

of s?, 1,,and D, (xy) inside MC;, MC,, MCs, and the respective contour energy E. (computed

min

according to Eq. (9)) arelisted in the Table 6.1, where D_, (x,y) isthe minimum of D(x, y),

Dmin (Xr y) s? | o EC
MC, 0.016 127.7 223 0.00383
MC, 0.289 2359 178 0.00547
MGC; 0.174 3682 142 0.00411

Table 6.1 The parameters and contour energy for MC,;, MC,, and MC;
It is easy to see that when T, is set smaller than 0.016, the value of D (x,y) indde MC,, MC, isthe

constrained globa energy minimum. When T, is larger than 0.016 but smaller than D_, (x,y) insde
MG, 0.174, the constrained global energy minimum is MC,. When T, is larger than 0.174 but smaller

than D (x,y) insde MC,, 0.289, MC, becomes the constrained global energy minimum. Thus MC,,
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MC,, MC; can al be modeled as the constrained global energy minimum by setting different values of
T, , respectively T, =001 for MC,, T, =0.1 for MCs, T,, =0.25 for MC;. The extraction processes of

MC;, MC,, MC; are shown in Fig. 6.1b to 6.1e, 6.2a to 6.2e, and 6.3a to 6.3e. With the same initia
contour position indicated as the black dot in Fig. 6.1a, the method successfully locates al the
constrained global energy minimum contours. In the experiments, we set decT as 0.966 and respectively

set T

init

=10° for MC,, T.. =108 for MC,,and T

init

=10" for MC;. The results of [1] using the same

initial contour in Fig. 6.1a and Eq. (17) by assuming that 1, and s ? of MC,, MC,, and MG; are known

(aslisted in Table 6.1) are shown in Fig. 6.4bto 4e, 5ato 5e, and 6ato 6e. Though Eq. (17) successfully

extracts MC,, it fails to extract MC, and MG;. To illustrate the key differences between the behaviors of

the two methods, Fig. 6.7a to 6.7e show the scaled images of D(x,y,T)- T, = (1 (X’by)'z(;f)(n))z -7, in
S i

Eq. (24) under the temperatures respectively corresponding to Fig. 6.3ato 6.3e; and Fig. 6.8a show the

i 1Y - 16%)° e, 2 i
scaled image of p(x, y) - T, =X "0 7 in Eq. (17), where | "< and s ;. are the mean brightness
bs ’

MC,
and variance of image intensity inside MC,. We note that n Fig. 6.7a and 6.7b the variations of
D(x,y,T.)- T, aresmdl and the fluctuations of the brightness distributions across MC,, MC,, and MC;
are only mildly reflected n contour velocity. Therefore it is easy for the contour to overcome the

inhomogeneous interiors of MC;. From 6.7c to 6.7e, the variaions of D(x,y,T,)- T, become larger and
the steep fluctuations of the brightness distributions across MC;, MGC,, MC; becomes more evidently
reflected in contour velocity. Noting that the contour has aready marched over most sections of MC,,
MC; and has been closed to MC; as shown in Fig. 6.3c to 6.3e, the steep variations of D(x,y,T)- T, can
only help the contour stop at target boundary MCs. In Fig. 6.8a, the constant distribution of D(x,y) - T,

using CODCM [1], though can stop the contour near MC;, is inhomogeneous inside M C; and the contour

has difficulties in marching over MC,. Thus the method [1] fails to extract MCs.
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7. Parameter Setting Experiments
The proposed algorithm has over all ten parameters: T, (Eq. (6)), a (Ed. (7)), b (Eg. (8)), threshold
T, (Eq. (22)), multipliers |, (Eq. (22)), | (iteration number per parameter updating in algorithm Step iv),

and temperature updating

init ?

velocity threshold v, maximum iteration number t_, initial temperature T,
factor decT . In the method, we do not need to tune T, and | , since their setting does not affect solution.
Velocity threshold v/ and maximum iteration number t  are common parameters for level set algorithms
[3] and in all the experiments, we keep V, constant as0.005and t, as120. b isan implicit parameter of

CODCM [1] and is set congtant 2.0. | is related to the time step of every level set iteration and is set

constant as 1. Thus in the method, there are four parameters, T,, a, T, and decT, need tuning. The

setting of a isrelated to contour smoothness and is set large for boundaries with large gaps. In case of
small or no large gap, a is often set as 0.01.

In the following, we will illustrate the experiments that evaluate the effects using different settings of T, ,

T

init ?

and decT on energy minimization. To facilitate the evaluations, we keep a =0.01 unchanged and
assume that W,_(t,T.) i W, is satisfied as the contour evolves. The first experiment is to evaluate the
effect of the setting of T, on constrained global energy minimization. Wekeep T as 10’ and DecT as
0.9 unchanged, then reduce the values of T, and evaluate the energies of the resulting contours
corresponding to different T, s. With smaller T, the region constraint is more relaxed and the resulting
contours tend to have lower energy. Fig. 7.1ais a 256 by 256 synthetic image. The image is composed of

four concentric circles, CR,i =1~ 4, with their brightness radialy distributed according to sine function

and edges sharpened by four edge profile functions. The valuesof D (x,y), s?, I, indde each of the

0

circlesand the respective contour energy . are listed in the following table,
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Doin (X,Y) s? I E.
CR 0.395 917 214 0.0173
CR, 0.158 744 203 0.0157
CR, 0.044 636 192 0.0111
CR, 0.0087 570 182 0.0098

Table 7.1 The parameters and energy for CR, CR,, CR,, and CR,
In the experiment, the initial contour is set at the center of circles CR,i =1~4 and we respectively
choose T, as0.0001, 0.03, 0.1, and 0.35. The resulting contours CR, CR,, CR,, ahd CR, areshownin
Fig. 7.1b to 7.1e. From the experiment, we can see that with asmall T, =0.0001, CR, CR,, CR,, ad
CR, dl satisfy the region constraint thus the contour with lowest energy is resulted. As the vaue of T,
increases, fewer contours satisfy the region constraint thus contours with higher energy are resulted as

shown in Table 7.1.

The second experimert is to evaluate the effect of the settings of decT and T, on constrained global
energy minimization. In the experiment, we keep T, =0.001 unchanged. The experiments are conducted

in a 256 by 256 MRI brain image shown in Fig. 7.2a with the initial location | marked as a white dot
shown in Fig. 7.2b. As we can see, in Fig. 7.2, the interior of the intracrania is very inhomogeneous,

where numerous local energy minimaexist. Since T,, =0.001 issmall, most of the local energy minimum

contours satisfy the region constraint of Eq. (10). By evaluating the energies of the resulting contours

with different decT and T,

init ?

we will show that for a given value of decT (or T_ ), ahigher T

init

(or
decT) is more capable of overcoming local energy minima and results lower contour energy while a

lower T

init

(or decT) indicates just the opposite.

To test the effect of the settings of T

init ?

we set decT=0.85 and conduct the experiments by increasing

=5*10°t0 T

init

thevalueof T from T,

init =5*10’. The energies of the resulting contours with different
settings of T . arelisted in Table 7.2 One can observe that increasing T, . has the effects of producing

contours with lower contour energy. To test the effect of the settings of decT, we set T,;, =5*10° and
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conduct the experiments by increasing the value of decT from 0.85 to 0.98 with the energies of the
resulting contours listed in Table 7.3. One can aso observe that increasing decT has the effects of
increasing the capability of overcoming loca contour energy minima and resulting lower energy contour.
The third experiment is to test the sensitivity of the algorithm to the positions of the initial contour. In
order to quantify the sensitivity, we pick two extrainitial points, initial point 1l and 111, besides initia
point | shown in Fig 7.2b and compute the average distance between the resulting contours using these

initial contours. We take wo measures to quantify the distances between different contours. The first

|TP C EP|

distance measure is introduced in [27] , which is writtenas €, =1- ————
|TP E EP|

with TP denoting the set

of pixels inside one of the resulting contour C, and EP denoting the set of pixelsinside another resulting
contour C,. The measure €, is an indicator of the overall distance between the resulting contours. The

max min

second distance measure is e, = X1 CyicC
1 2

dist (X,Y) with dist(X, Y) function representing the

Euclidean distance between the integer coordinates of the pixels X and Y. e, isaloca measure useful in
determining the distance between the high curvature portions of the resuiting contours. To test the

we keep decT unchanged at 0.85 and increase T from 5*10° to

init

sengitivity of €, and €, t0 T,
5*10°. To test the sensitivity to decT,wekeep T unchanged at 5*10° and increase decT from 0.85 to
0.98. The computed average distances are listed in Table 7.4. As we can see from the data, the algorithm

becomes to be more sensitive when T . and decT increase and vice versa.

init

Table7.1
T =5%10° T, =5*10° T, =5*10" T, =5*10° T, =5*10°

Contour Energy 0.04144 0.030626 0.030192 0.024595 0.0185531

Table 7.2
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DecT=0.85 DecT=0.92 DecT=09 DecT=0.96 DecT=0.98

Contour Energy 0.030626 0.0299965 0.0251968 0.0163892 0.0141091
Table 7.3
e, S
T =5%10°, DecT=0.85 01195 5.886
T =5*10", DecT=0.85 0.1505 9.025
T.. =5*10°, DecT=0.85 01725 22923
T« =5*10° DecT=0.94 0.1295 18.669
T =5%10°,DecT=098 434 20.695
8. Applications

Our experimental evaluations and comparisons can be divided into three separate items and we separately

discuss each category asfollows:

i) Contour evaluations are performed on a set of challenging contour extraction problems including
ultrasound pig heart images having noisy contour interiors, sharp contour segment protrusions, and gaps
asshownin Fig. 8.1, MRI knee images having thick and very blur contour segment and contour-within-
contour segment as shown in Fig. 82, and MRI brain images having contours with complex shape,
inhomogeneous interiors, and blur segments as shown in Figs. 8.3, 8.4, and 8.5. All resulting contours
are shown on the right-hand side of their originalsin Figs. 8.1, 8.2, 8.4 and 8.5. Notice that for the MRI
brain images, we perform three separate extractions of external boundary of intracrania (Fig. 8.3),
cerebral boundary (Fig. 8.4), and sulci boundary (Fig. 8.5). Furthermore, Fig. 8.3 shows a sequence of

contour progression images. All these contours are considered very good results.
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i) A performance comparison between the proposed method and CODCM [16] is made on four images
shown in Figs. 8.6 (a), 8.6(b), 8.7(a), and 8.8(a) of visua blood cell image, MRI knee image, and two
MRI brain images respectively. In Fig. 8.6(a), the cells have rather large gaps and in Fig. 8.6(b), there are
blur boundary segment and a rather inhomogeneous interior. In Fig. 8.7(a) and 8.8(a), there are very
inhomogeneous interiors inside the external boundaries of intracranial. As we see from the results shown
in Fig. 8.6(c) to 8.6(f), 8.7(b), 8.7(c), 8.8(b), 8.8(c), comparing to the result of [16], substantial
improvements can be seen.

iif) The proposed method is aso compared to other conventional deformable contour methods; the first

two methods are geodesic snake [4], and area & length active contour [10] using p(x, y) :;2 as
1+|NG* 1|

the edge detection function and the third method is T-snake [11]. We select two zoomed images of Fig.
8.9a astomach CT image with additive noise of Gaussian noise (variance 3000), and Fig. 810a amidline
sagittal MRI brain image. Similar to al other three methods, a Gaussian filter N(O, 1) is applied to both
images as a preprocessing operation. No a priori information of object shape or brightness distribution is
assumed (that is why [6][7][8] are not included). To provide an objective comparison, two sets of three
dark dotsin Fig. 8.9a and Fig. 8.10a are used as initial candidate locations for al four methods including
ours. Each method using an initial candidate location provides a resulting contour. The best contour (best
of the three resulting contours for Fig. 89a and Fig. 8.10a) of each method from all initial candidate
locations is selected for comparison. Comparing these resulting contours, our proposed method has the
best contours. It should be noted that similar comparisons have been conducted in [16] and a thorough

comparison with quantitative analysis may be found in [28].

9. Conclusions
In this paper, a constrained global optimization formulation has been proposed for boundary extraction
problems. The formulation overcomes the problems of multiple local energy minima while preserves

good controllability in extracting target boundaries with different region characteristics. The



For Submission to |EEE Transactions on Medical Imaging 21

effectiveness of the approachin locating constrained global energy minima is evaluated in a synthetic test
image, where constrained global energy minima are known. The results are compared to those of
CODCM [1] with the same energy function and region constraint, where an accurate estimation of the
object interior features is assumed. The experiment proves that the contribution of the method can not
be reduced as only providing a dynamic parameter estimation to avoid manual parameter tuning. The
performance of the method is then demonstrated on very challenging segmentation applications and is
compared to those of other deformable contour methods and substantial improvements in handling
segmentation difficulties ncluding gaps, noises, and blur boundaries are reported. The method is
computationally efficient usually taking 10 seconds to 2 minutes on workstation Ultra Sun Blade 100 for

most applications.

Appendix

Noting that in Eq. (22) || <<l , and L, » E,, I,(T,) can becomputedas

N - Ly(lo) £, (ly)
l,e ™ dl, l,e ™" dl,
2 0‘ S HOE

IO(TI) - Oie'l‘p(ll))dl 0£e ||(|o)d|
In the following, we compute s *(T;) and | (T;) . We assumethat W_(t,T,) I W, where W_(t,T,) isthe
interior of C(q,t,T,). Noting that C(q,0,T,) is a5 by 5 contour inside target boundary G(q), the

condition can be easily satisfied in most applications. Leti =1. s *(T,) should satisfy

2 (I (x Y)- 1)°0,

min D(x, y) = min expg bs (1) - T, for (x,y)T W,(t,T))
i (%]
Lets 2 satisfy min expg 2 1 y) 0)2 —-T for (x, y)T W, (t,T)

It is obvious that s *(T)3 s 2. Since the computation of s ?(T,) based on s? is rather complex, in

implementations, we approximate s 2 by s Z(T;) and compute s *(T,) as,
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F 2 L)yl 2 N L2 E6E2) g 2
s‘%e " 'ds s‘e ds
SZ(Ti):Qé - =s2(T)+ /l (A-1)
p

Similarly, the estimated value of | (T,) hasto satisfy

mm?—c(?nt 19 mln[{ (T)[D(x y.T)-T, ]+ kg(N1)) - Ng ><N} ] 0 for (x, )T C(q,t,T)
2

Let|° be minfl ¢[Dx, y,T) - T, ] + kg1 ) - Ng =N |=0 for(x,y)T C(q.tT)

Then we have | ;(T;) * max(l ;,0) . To simplify computations, we approximate max(l ?,0) by | {(T;) and

(\i|*exp:,_ (Il'lf)zi:ldl
thus have NP Ticz b =If(Ti)+Jf‘ (A-2)
éexpge (s )-dl P

From Eq. (A-1) and (A-2), t is obvious that s *(T,)2 s&(T), 1,(T)2 IT(T). Let s&(T)) =SZqom
1S(T,) =159 and 1S (T,) =15@°™. Please be noted that T, does not exist and the above equations
only serve to simplify notations for the following discussions. Since the contour deformations made in

Stepl are small, the differences between s 2(T) and s (T,,), | $(T;) and | $(T,_,) can be ignored. In Eq.

(A-) and (A2, a T®0, IL,TM®ITM»II ), s T)®s(T)»si(Ta),
1,(T) =1S(T) » 1$(T,), C(q,t,T,,,) computed according to Eq. (24) either will stop at C(q,t,T,) (for
i =1) or may even move backward (for i >1) therefore W_(t,T,,) I W, is guaranteed to be satisfied. By

a careful sdlection of T, C(q,t,T,) can move outward and approach target boundary while satisfy

WL (t,T,,) I W, With W_(t,T,,,) i W,, we can then repeat the above procedures for computing 1 (T,.,) .

s ’(T..), 1,(T,) andleti =i+ 1untl i equalsn.
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Fig. 6.1b to 6.1e illustrate the contour evolution process of extracting MC,; using the proposed
method. Fig. 6.2a to 6.2e, and Fig. 6.3a to 6.3e illustrate the contour evolution process of

extracting MC, and MG; respectively using the proposed method
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Fig. 6.4b to 6.4eillustrate the contour evolution process of extracting MC, using Eg. (17). Fig. 6.5a
to 6.5e, and Fig. 6.6a to 6.6e illustrate the contour evolution process of extracting MC, and MC;
respectively using Eq. (17)

b 7c 7d Te

Fig. 6.7a to 6.7e illustrate the scaled image of D(x,y,T)- T, in Eq. (24)
under the temperatures corresponding to Fig. 6.3a to 6.3e respectively. Fig.
6.8aillugtrates the scaled image of D(x,y) - T, in Eq. (17).
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Fig. 7.1a The test image for different settings of T,. Fig. 7.1b The resulting contour with
T, =0.35, Fig. 7.1c The resulting contour with T, =0.1, Fig. 7.1d The resulting contour with
T, =0.03, Fig. 7.1e The resuiting contour with T, = 0.0001.

Fig. 7.2a Test image for parameter sensitivity experiments. Fig. 7.2b Zoomed
image of the brain and the positions of theinitial locations I, 11, and I11.

27
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Fig. 8.2 MRI knee origind images on the left
column and their corresponding results on the right
column

2

Fig. 8.1 Ultrasound pig heart origina images in the left
column and their corresponding results in the right column

Gt S SR >
Fig. 8.2 (a) Origind MRI brain mage (white dot indicates the position of the initia contour). (b) to (g) The
extraction process of the exterior boundary of intracranial
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Fig. &5 MRI brain image three and the result

Fig. 8.6 Comparison results with CODCM
[16]. (c) and (e) are segmentation results using
the proposed method. (d) and (f) are
segmentation results using CODCM [16].

Fig. 8.7 Comparison results with CODCM [16]. (b) is the segmentation result of the external
boundary of intracrania using the proposed method. (c) is the segmentation result of the

externa boundary of intracranial usng CODCM [16].
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Fig. 8.8 Comparison results with CODCM [16]. (b) is the segmentation result of the external
boundary of intracrania using the proposed method. (c) is the segmentation result of the
externa boundary of intracranial usng CODCM [16].
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Fig. 8.9a, 10a Origina images of the comparison, 9b, 10b The results of T-snake, 9¢, 10c The
results of geodesic snake, 9d, 10d The results of Area-length snake, 9e, 10e The results of

proposed method.



