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Mean Field Annealing Deformable Contour Method: A Constrained Global 

Optimization Approach 

 

Abstract 

This paper presents an efficient constrained global optimization approach based on mean field 

annealing (MFA) theory to the problem of contour energy minimization with a contour interior 

constraint for object boundary extractions. In the method, with  a given contour energy function, different 

target boundaries can be modeled as constrained global optimal solutions under different constraints 

expressed as a set of parameters characterizing the target contour interior structures. To search for the 

constrained global optimal solutions, a fast and efficient global approach based on MFA is employed to 

avoid local minima, which has been very difficult to achieve in most deformable contour methods. As an 

illustrative example, three target boundaries in a synthetic image are modeled as constrained global 

energy minimum contours with different constraint parameters and are successfully located using the 

derived algorithm. A conventional variational based deformable contour method [1] with the same 

energy function and constraint fails to achieve the same task. Experimental evaluations and comparisons 

with other methods on ultrasound pig heart, MRI knee, and CT kidney images where gaps, blur contour 

segments having complex shape and inhomogeneous interiors have been conducted with most favorable 

results. 

Keywords: Snakes, curve evolution, variational based approach, level set, and mean field annealing.  

 

1. Introductions 
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Image segmentation is a fundamental issue in computer vision. Energy based approach [22] [23] [2] may 

be one of the most influential image segmentation approaches. The basic idea of energy based methods is 

to model some global image properties [22] that capture the characteristics of the target 

regions/boundaries into energy functions; and then retrieve these target regions/boundaries via an energy 

minimization process. There are two important factors in most energy based methods: energy function 

formulations and energy minimization approaches. Energy functions may be classified as image based 

energy functions [22], for segmenting an entire image, and contour/region based energy, for object 

segmentations [2] [4]. Given an energy formulation, energy minimization approaches are then to 

minimize energy for retrieving the desired energy minimum. Generally, most energy minimization 

approaches are local methods [2] [4]. Since local energy minima can be arbitrarily far from the global 

optimum, these approaches may produce results that may not convey any of the global image properties 

encoded in energy functions. Some global approaches including simulated annealing [23] [14] [15], 

graph theory [22], and deterministic annealing [21] have also been proposed with rather successful 

results. Simulated annealing approaches often demand a high computational complexity [23] [14]. To 

reduce the computational complexity, faster temperature parameter decreasing scheme are used but may 

produce local energy min imum solutions that may be far from the global optimal solutions [24]. Graph 

theory based image segmentation methods provide a more efficient global approach for some energy 

functions [22]. Most of these methods [22] are used for image classification and are difficult in 

incorporating object shape information [25]. Deterministic annealing [26] has been successfully applied 

for data clustering problems and is further extended for texture image classification applications [21].  

In this paper, we apply mean field annealing approach (MFA), which is a deterministic annealing 

approach and requires much less computational complexity than simulated annealing, to a problem of 

global energy minimization under a region constraint for object boundary extraction. In the method, with  

a given contour energy function, different target boundaries can be modeled as constrained global 

optimal solutions under different constraints expressed as a set of parameters characterizing the target 
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contour interior structure. To search for the constrained global optimal solutions, the method takes a 

Lagrange approach and then introduces a quadratic constraint based on the square error of the current 

parameter values and the optimal values to convexify the Lagrange multiplier function [29]. The 

proposed method considers the deformable contour and the associated variables as random functions or 

variables in the convexified Lagrange multiplier; and then incorporates variational based deformable 

contour searching into MFA framework using saddle point approximation and combines it with an MFA 

parameter optimization scheme. High computational complexity is thus avoided. Notice that the mean 

field approximation used in [17] is not the same as the mean field annealing used in this formulation to 

achieve a global optimal solution.  

In Section 2, related works on deformable contour methods are reviewed. In Section 3 and 4, MFA 

theory and the problem formulation are introduced and discussed. Section 5 details the derivation of the 

proposed approach. Illustrative examples and parameter setting experiments are shown in Section 6 and 

Section 7 respectively , while applications on biomedical images are demonstrated in Section 8. In section 

9, the conclusion regarding this method is provided. 

 

2. Related works 

Deformable contour methods (DCMs), since originated by Kass et al [2], receive tremendous amount of 

attentions , and many efforts have been made to apply them to all sorts of problems. Typically, most 

DCMs [2] [4] [12] [13] model boundary extractions as energy minimization problems. Traditionally 

these methods often use functions of image gradient [2] [4] as contour energies. In cases where image 

gradient information is either noisy or inaccurate in identifying target boundary, the image gradient based 

energy functions often have multiple energy minima and as a result, these methods often result in  

undesired local energy minimum contour instead of target boundary. To deal with this problem, 

improvements in DCMs can be divided into two categories.  
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In the first category, the methods [1] [5] [6] [7] [8] [16] propose new energy functions integrating region 

based image features to alleviate the problem of multiple energy minima. In [6] [7], region based energy 

functions firstly introduced in image classification methods are used to derive the deformable contour 

formulations and in [8] theses functions are further combined with the image gradient based contour 

energy functions to improve the performances. In general, the above methods are rather robust to noises 

and the segmentation is efficiency is improved [16]. However, in more challenging situations, in which a 

combination of region and image gradient information still can not accurately identify the target 

boundary (such as gaps and inhomogeneous interiors all present in one contour extraction problem), the 

methods still often result in undesired local energy minima; for instance, the resulting contours may 

either expand beyond the gaps or stops at noisy interiors. One way to handle the problem is to integrate 

priori shape model into the frameworks [18] [19] [20]  to assist identifying target boundary. The problem 

with these methods is that a reliable shape model construction often requires intensive manual 

interventions.  

The second category of DCMs model target boundary as global energy minimum [14] [15] and take 

global optimization approaches, mostly simulated annealing, to locate them. These methods are robust to 

undesired local energy minima. However, in a complex image context, with a snake based contour 

energy function, the target boundary is usually a global energy minimum under certain constraints (for 

instance, the constraints of the contour interior characteristics) instead of the actual global energy 

minimum contour throughout the entire image. Thus in [14] [15], either a major modification of the 

energy function, incorporating specific prior knowledge on target boundary [14] to make it be the global 

energy minimum contour , or a preset mask [15] constraining the contour searching space within a 

neighborhood close to target boundary is often required.  

 

3. A Brief Review of Mean Field Annealing 
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Mean field annealing is a global optimization method derived from statistical mechanics [9]. Let f be a 

random variable  and )( fE  be an energy function to be minimized. Without any prior knowledge, the 

probability distribution of f is assumed to be Gibbs distribution,                                                    
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According to mean field annealing theory [9], )(Tf  is of importance due to the well known fact that as 

the temperature approaches zero, )(Tf  approaches the global optimal point *f ,  
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This suggests that instead of minimizing )( fE  directly, we can try to evaluate mean field )(Tf  and 

then track )(Tf  from a sufficiently high temperature down to zero. The value of )(lim
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global optimal point. 

In applications, )(Tf  can be evaluated using saddle  point approximation theorem [9]. The theorem 
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Note that in many applications, f is a random function of time t rather than a random variable. In these 

cases, the mean of f  at temperature T is also a function of t. 

 

4. Problem Formulation 

Problem statement 

Let Φ  be an open domain subset of 2ℜ  and ℜ→Φ:),( yxI  be the image intensity function. Consider a 

target object with boundary )(qΓ  and interior ΓΩ  in the image. The average image intensity in ΓΩ , 
0I , 

and the variance of image intensity in ΓΩ , 2σ , can be determined as 
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We can model target boundary )(qΓ  as a close contour having the global minimum energy, 

∫
Γ
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satisfying                ),( if    ),( ΓΩ∈≥ yxTyxD V
   (6) 

where s is the normalized arc length, q is the contour parameter. )))((( qIg Γ∇  is a contour energy 

function firstly introduced in [4], which can be any positive decreasing function. In the paper, we choose 

α+
Γ∇+

=Γ∇ 2))((1

1
)))(((

qI
qIg ,  (7)  

))(( qI Γ∇  is the gradient of ),( yxI  with ),( yx  on )(qΓ , 0>α  is a constant. As we can see from Eq. (7), 

when ))(( qI Γ∇  is large, )))((( qIg Γ∇  approaches its minimum α ; when ))(( qI Γ∇  approaches zero, 

)))((( qIg Γ∇  approaches its maximum α + 1. α  is related to contour smoothness. A large α  indicates a 

smooth contour while a small α  indicates just the opposite.  
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),( yxD , which is used to characterize ΓΩ , is a function of 
0I  and 2σ . In the paper, we choose 
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where β  is a positive constant set as 2.0. 0>VT  is a threshold that can be adjusted for modeling different 

target boundaries as constrained global energy minima. A large 
VT  often indicates a small admissible set 

of contours that satisfy the constraint of Eq. (6) while a small 
VT  indicates just the opposite.  

Then our problem is to estimate the optimal values of 2σ , 
0I  and then find a close contour C(q, t) 

enclosing region Ωc(t) at time t, such that 
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where k  is contour curvature and N
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equivalent to satisfying     0),,),(( *
10

2 =Γ λσ IqF     (13) 



For Submission to IEEE Transactions on Medical Imaging 

 

8 

In implementations, it may be difficult to find a *
1λ  satisfying Eq. (13). As an alternative, we search for a 

*
1λ  such that 
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where 
µ

a  is the µ  norm function of a and 0>µ . To simplify the computation of Eq. (14), we often 
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A brief review of the original constrained optimization approach [1] [16] and its limitations  

To minimize Eq. (15), the original constrained optimization deformable contour method (CODCM) [1] 

initially estimates 2σ , 
0I , *

1λ  and then minimizes ),,),,(( *
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2 λσ ItqCL  using a variational approach. The 

contour evolution formula is  
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Since ∫ ∇
C

dstqCIg ))),(((  is nonconvex having multiple  local energy minima and *
1λ  is often small, Eq. 

(16) tends to be trapped into local energy minima. An extra constant balloon force b has to be added,  
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The added balloon force b can be viewed as to increase the weight of the region constraint. The difficulty 

with Eq. (17) is that with a small b, ),,),,(( *
10

2 λσ ItqCL  is still nonconvex and has multiple minima while  

with a large b, locating the global minimum of ),,),,(( *
10

2 λσ ItqCL  is equivalent to locating a local 

energy minimum near the maximum of ∫∫Ω
−

C

dxdyTyxD V )),(( , which is not necessarily the constrained 

global energy minimum. Though CODCM is rather successful in many applications [16], in more 

challenging situations, in which gaps and inhomogeneous interiors are all present in a single  contour 
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extraction problem, the methods may still either expand beyond the gaps (with a large b) or stops at the 

noisy interiors (with a small b).  

Another problem is that when some a priori information about the target object is unavailable , an 

accurate estimation of 2σ , 
0I , and *

1λ  is often difficult especially when the object interior is 

inhomogeneous as shown in Fig. 6.1a; In [1], 
0I  is computed as the mean brightness of the deforming 

contour and is updated during the contour deformation. Since *
1λ  is small, b+*

1λ  can be approximated by 

the constant b. 2σ  is the only parameter needs tuning. 

 

5. The Derivation of the Approach 

Energy function formulation 

To overcome the difficulties of CODCM [1] [16], we add an extra constraint 0≤− pp TE  that can 

convexify Eq. (15) without deviating the global optimal solutions,  
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where 02 >λ  is another Lagrange multiplier. IIE  is a convex quadratic function [29] with the global 

minimum at )(qΓ . With the introduction of IIE  and a large *
12 λλ >> , ),,),,(( *

10
2 λσ ItqCLp  is convexified 

with the global minimum at target boundary )(qΓ . The introduction of IIE  is to require that the 

associated parameters of the resulting contour closed to those of target boundary )(qΓ . We can take a 

derivative based approach to minimize Eq. (22), which produces alternating procedures of contour 

evolution (computed according to Eq. (16)) and the updating of 2σ , 
0I , and *

1λ  (by letting 22
Cσσ = , 

CII 00 = , and C
1

*
1 λλ = ). The problem is that the approach is a local method and often fails to locate global 

energy minimum.  

The derivations of the proposed approach 

To find the global optimal solution, we apply the framework of MFA discussed in Section 3 to minimize 

Eq. (22). Consider ),( tqC  as a random function of time t and parameters 2σ , 
0I , and *

1λ  as random 

variables. Consider a proper temperature sequence 
iT , ni ≤≤1 , satisfying 

ii TT <+1
, 0=nT . According to 

MFA approach, ),( tqC , 2σ , 
0I , and *

1λ  can be regarded as all random functions of temperature 
iT . Thus 

we denote ),( tqC , 2σ , 
0I , and *

1λ  as ),,( iTtqC , )(2
iTσ , )(0 iTI , )(*

1 iTλ . Our strategy to search for the 

global optimum of ),( tqC , 2σ , 
0I , and *

1λ  is to track the mean values of ),,( iTtqC , )(2
iTσ , )(0 iTI , and 

)(*
1 iTλ  until 

iT  drops to zero as i goes from 1 to n. To estimate the mean values of ),,( iTtqC , )(2
iTσ , 

)(0 iTI , and )(*
1 iTλ , according to [9], we can ignore the correlations of the mean field of ),,( iTtqC , 

)(2
iTσ , )(0 iTI , )(*

1 iTλ  and proceed to update each variables separately by holding all other parameters 

unchanged. Let ),0,( 1TqC  be the given initial contour denoted as )( 1TC . Let 2
)(1

2
1

)( TCin T σσ = , 

)(
010

1)( TCin ITI = , and )(
111

1)( TCin T λλ = . Let 1=i  and go to Step 1.  

Step1 is to keep )()( 22
iini TT σσ = , )()( 00 i

in
i TITI = , )()( 1

*
1 i

in
i TT λλ =  constant and compute the mean 

value of ),,( iTtqC . By MFA theory discussed in Section 3, the mean of ),,( iTtqC  can be evaluated from 
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partition function using the saddle point approximation. At temperature 
iT , the partition function Z can be 

approximated by 
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To implement constraint of Eq. (23), we relax it as 
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where 0≥CT  is a given constant. To reduce computational complexity, instead of satisfying Eq. (23), 

contour ),( tqC  is deformed for a certain time interval l > 0 and we assume that Eq. (25) can be satisfied 

after the interval. Then ),,( iTtqC  can be computed according to Eq. (24) by letting ),(),,( lqCTtqC i =  

with )()0,( iTCqC =  being the initial contour.  

Step2 is to keep ),,( iTtqC  constant and calculate )(2
iTσ , )(0 iTI , )(*

1 iTλ . We denote the mean values of 

)(2
iTσ , )(0 iTI , )(*

1 iTλ  as )(2
iTσ , )(0 iTI , )(*

1 iTλ  and )(2
iC Tσ , )(0 i

C TI , )(1 i
C Tλ  as values of 2

Cσ , CI0
, and C

1λ  

computed from ),,( iTtqC , respectively. With the derivation given in the Appendix, we have 

)()( 00 i
C

i TITI = ,            (26)                                                 
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σσ i
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T
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and              
π
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Then let  )()( 010 ii
in TITI =+

, )()( 2
1

2
iiin TT σσ =+ , )()( *

111 ii
in TT λλ =+

, ),,()( 1 ii TtqCTC =+
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Let 1+= ii  and go to Step1 until temperature drops to zero.    

Comments: 

The above solution includes two alternative procedures of contour deformation of Eq. (24) and 

parameter updating of Eq. (26) to (28). Eq. (24) is similar to Eq. (16) of CODCM [1]. However, in Eq. 

(24), the values of )(2
iTσ , )(0 iTI , and )(*

1 iTλ  vary during the contour deformation as shown in Eq. (26) 

to Eq. (28). From Eq. (27), it is easy to see that )(2
iTσ  is large when temperature is high and )(2

iTσ  

gradually reduces when the temperature lowers as the contour grow outward. The value of temperature iT  

controls the dynamic range of )(2
iTσ  thus determines the method’s adaptability to the inhomogeneous 

interiors and noises. It is also interesting to note that according to Eq. (28) the magnitude of the balloon 

force velocity term in Eq. (24) is decaying during the contour evolution process. This feature provides the 

method more robustness to noisy interiors while enhancing its performances in situations of gaps and 

blur boundaries. In general, the whole contour deformation process can be viewed as an annealing 

process, in which contour flows outward in a high temperature and then cools down and anneals near the 

target boundary.  

Algorithm description 

From the above discussions, an iterative algorithm can be derived as follows: 

For an initial contour ),( tqC  with the size of 5 by 5, 0=t  and interior )(tCΩ , at temperature 
initi TT =  

1=i , where 
initT  is the initial temperature, let ),(),,( tqCTtqC i =  do 

i) Compute 2
Cσ , CI0

, and C
1λ  from ),,( iTtqC  using Eq. (19), Eq. (20), and Eq. (21). 
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ii) Update )(2
iTσ , )(0 iTI , and )(*

1 iTλ  using Eq. (26), Eq. (27), and Eq. (28). 

iii) Let decTTT ii *1 =+ , and update )(2
iin Tσ , )(0 i

in TI , )(1 i
in Tλ , and )( iTC  according to Eq. (29), where 

10 << decT  is the updating factor. 

iv) Evolve ),( tqC  for l  iterations ( 0>l  is a constant) according to Eq. (24) using narrow band numerical 

scheme [3] with )()0,( iTCqC =  being the initial contour. Let ),(),,( lqCTtqC i = . Stop when the maximum 

velocity of ),( lqC  is smaller than a threshold 
tV  or a maximum iteration number 

mt  has been reached, 

where 
tV  and 

mt  are positive constants. To further increase the robustness of the algorithm to the setting 

of iteration number 
mt , we compute the value of contour energy according to Eq. (9) and record the 

lowest energy contour. The output contour is then the contour with lowest contour energy.  

It should be noted that we can also set the stopping criteria as when the temperature 
iT  drops to zero. 

However, this stopping criterion is too sensitive to the settings of 
initT  and decT  thus is not used. 

Some remarks on Appendix: 

As illustrated in Appendix, if 
ΓΩ⊆Ω ),( 1TtC

, where ),( 1TtCΩ  is the interior of ),,( 1TtqC  and 
ΓΩ  is the 

interior of target boundary, there exists at least one temperature sequence niTi ≤≤1  ,  such that ),,( iTtqC  

computed according to Eq. (24) and Eq. (26) to (28) satisfies 
ΓΩ⊆Ω ),( iC Tt . In applications, we assume 

that 
ΓΩ⊆Ω ),( iC Tt  can be satisfied by a careful selection of 

initT  and decT . Tuning 
initT  and decT  are 

thus needed in some applications. As an advantage, with the satisfaction of 
ΓΩ⊆Ω ),( iC Tt , the method 

can be applied to extract any target boundary )(qΓ  that can be modeled as the global energy minimum 

contour with the constraint 
ΓΩ⊆Ωin

C
, where in

CΩ  is the interior of an arbitrary contour inside ΓΩ , as 

shown in Fig. 8.4 and 8.5. In the viewpoint of global optimization, the physical meaning of the solutions 

Eq. (24) and (26) to (28) is that since 
ΓΩ⊆Ω ),( iC Tt  is satisfied and the contour is mainly moving 
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outward, when i  approaches n , ),,( iTtqC  is more closed to the target boundary and )(2
iC Tσ , )(0 i

C TI , 

)(1 i
C Tλ  are more close to 2σ , 

0I , and *
1λ . 

 

6. Illustrative Examples 

In this section, we will show that different target boundaries in a single image can be modeled as the 

constrained global minima with different settings of 
VT . We then illustrate the processes of locating these 

constrained global energy minima using the proposed method with a comparison to the results using Eq. 

(17) of CODCM [1] assuming that 2σ  and 
0I  of the target objects are known.  

The examples shown in Fig. 6.1(a) is a 165 by 165 image designed with three overlapping circles MC1, 

MC2, MC3 of size 401 =r  pixels (MC1), 552 =r  pixels (MC2), 703 =r  pixels (MC3) at different center 

locations , where 3,2,1, =iri
 is the radius of circle MCi. The interior brightness of circles MC1 and MC3 is 

radially decreasing from the centers to their perimeters in a straight line fashion for circle MC1 from 255 

to 207, circle MC3 from 160 to 69 with the scale of 255 gray levels while the interior brightness of MC2 is 

radially increasing from the center to the perimeter in a straight line fashion from 40 to 150.  The values 

of  2σ , 
0I , and ),(min yxD  inside MC1, MC2, MC3, and the respective contour energy 

CE  (computed 

according to Eq. (9)) are listed in the Table 6.1, where ),(min yxD  is the minimum of D(x, y), 

  ),(min yxD   2σ  
0I  CE  

MC1 0.016 127.7 223 0.00383 
MC2 0.289 2359 178 0.00547 
MC3 0.174 3682 142 0.00411 

Table 6.1 The parameters and contour energy for MC1, MC2, and MC3 

It is easy to see that when 
VT  is set smaller than 0.016, the value of ),(min yxD  inside MC1, MC1 is the 

constrained global energy minimum. When 
VT  is larger than 0.016 but smaller than ),(min yxD  inside 

MC3, 0.174, the constrained global energy minimum is MC3. When 
VT  is larger than 0.174 but smaller 

than ),(min yxD  inside MC2, 0.289, MC2 becomes the constrained global energy minimum. Thus MC1, 
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MC2, MC3 can all be modeled as the constrained global energy minimum by setting different values of 

VT , respectively 01.0=VT  for MC1, 1.0=VT  for MC3, 25.0=VT  for MC3. The extraction processes of 

MC1, MC2, MC3 are shown in Fig. 6.1b to 6.1e, 6.2a to 6.2e, and 6.3a to 6.3e. With the same initial 

contour position indicated as the black dot in Fig. 6.1a, the method successfully locates all the 

constrained global energy minimum contours. In the experiments, we set decT  as 0.966 and respectively  

set 610=initT  for MC1, 810=initT  for MC2, and 1110=initT  for MC3. The results of [1] using the same 

initial contour in Fig. 6.1a and Eq. (17) by assuming that 
0I  and 2σ  of MC1, MC2, and MC3 are known 

(as listed in Table 6.1) are shown in Fig. 6.4b to 4e, 5a to 5e, and 6a to 6e. Though Eq. (17) successfully 

extracts MC1, it fails to extract MC2 and MC3. To illustrate the key differences between the behaviors of 

the two methods, Fig. 6.7a to 6.7e show the scaled images of 
V

i

i
Vi T

T
TIyxITTyxD −−=−

)(
))(),((),,(

2

2
0

βσ
 in 

Eq. (24) under the temperatures respectively corresponding to Fig. 6.3a to 6.3e; and Fig. 6.8a show the 

scaled image of 
2

2
0

3

3 )),((),(
MC

MC

V
IyxITyxD

βσ
−=−  in Eq. (17), where 3

0
MCI  and 2

3MCσ  are the mean brightness 

and variance of image intensity inside 
3MC . We note that in Fig. 6.7a and 6.7b the variations of 

Vi TTyxD −),,(  are small and the fluctuations of the brightness distributions across MC1, MC2, and MC3 

are only mildly reflected in contour velocity. Therefore it is easy for the contour to overcome the 

inhomogeneous interiors of MC3. From 6.7c to 6.7e, the variations of 
Vi TTyxD −),,(  become larger and 

the steep fluctuations of the brightness distributions across MC1, MC2, MC3 becomes more evidently 

reflected in contour velocity. Noting that the contour has already marched over most sections of MC1, 

MC2 and has been closed to MC3 as shown in Fig. 6.3c to 6.3e, the steep variations of 
Vi TTyxD −),,(  can 

only help the contour  stop at target boundary MC3. In Fig. 6.8a, the constant distribution of 
VTyxD −),(  

using CODCM [1], though can stop the contour near MC3, is inhomogeneous inside MC3 and the contour 

has difficulties in marching over MC1. Thus the method [1] fails to extract MC3.   
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7. Parameter Setting Experiments 

The proposed algorithm has over all ten parameters: 
VT  (Eq. (6)), α (Eq. (7)), β  (Eq. (8)), threshold 

pT  (Eq. (22)), multipliers 
2λ  (Eq. (22)), l (iteration number per parameter updating in algorithm Step iv), 

velocity threshold 
tV , maximum iteration number 

mt , initial temperature 
initT , and temperature updating 

factor decT . In the method, we do not need to tune pT  and 
2λ  since their setting does not affect solution. 

Velocity threshold 
tV  and maximum iteration number 

mt  are common parameters for level set algorithms 

[3] and in all the experiments, we keep 
tV  constant as 0.005 and 

mt  as 120. β  is an implicit parameter of 

CODCM [1] and is set constant 2.0. l is related to the time step of every level set iteration and is set 

constant as 1. Thus in the method, there are four parameters, 
VT , α , 

initT  and decT , need tuning. The 

setting of α  is related to contour smoothness and is set large for boundaries with large gaps. In case of 

small or no large gap, α  is often set as 0.01.  

In the following, we will illustrate the experiments that evaluate the effects using different settings of 
VT , 

initT , and decT on energy minimization. To facilitate the evaluations, we keep 01.0=α  unchanged and 

assume that 
ΓΩ⊆Ω ),( iC Tt  is satisfied as the contour evolves. The first experiment is to evaluate the 

effect of the setting of 
VT  on constrained global energy minimization. We keep 

initT  as 710  and DecT as 

0.9 unchanged, then reduce the values of 
VT  and evaluate the energies of the resulting contours 

corresponding to different 
VT s. With smaller 

VT ,  the region constraint is more relaxed and the resulting 

contours tend to have lower energy. Fig. 7.1a is a 256 by 256 synthetic image. The image is composed of 

four concentric circles, 4~1, =iCRi
, with their brightness radially distributed according to sine function 

and edges sharpened by four edge profile functions. The values of ),(min yxD , 2σ , 
0I  inside each of the 

circles and the respective contour energy 
CE  are listed in the following table, 
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  ),(min yxD   2σ  
0I  CE  

1CR  0.395 917 214 0.0173 

2CR  0.158 744 203 0.0157 

3CR  0.044 636 192 0.0111 

4CR  0.0087 570 182 0.0098 

Table 7.1 The parameters and energy for 
1CR , 

2CR , 
3CR , and 

4CR  

In the experiment, the initial contour is set at the center of circles 4~1, =iCRi
 and we respectively 

choose 
VT  as 0.0001, 0.03, 0.1, and 0.35. The resulting contours 

1CR , 
2CR , 

3CR , and 
4CR  are shown in 

Fig. 7.1b to 7.1e. From the experiment, we can see that with a small 0001.0=VT , 
1CR , 

2CR , 
3CR , and 

4CR  all satisfy the region constraint thus the contour with lowest energy is resulted. As the value of 
VT  

increases, fewer contours satisfy the region constraint thus contours with higher energy are resulted as 

shown in Table 7.1.  

The second experiment is to evaluate the effect of the settings of decT and 
initT  on constrained global 

energy minimization. In the experiment, we keep 001.0=VT  unchanged. The experiments are conducted 

in a 256 by 256 MRI brain image shown in Fig. 7.2a with the initial location I marked as a white dot 

shown in Fig. 7.2b. As we can see, in Fig. 7.2a, the interior of the intracranial is very inhomogeneous, 

where numerous local energy minima exist. Since 001.0=VT  is small, most of the local energy minimum 

contours satisfy the region constraint of Eq. (10). By evaluating the energies of the resulting contours 

with different decT and 
initT , we will show that for a given value of decT (or 

initT ), a higher 
initT  (or 

decT) is more capable of overcoming local energy minima and results lower contour energy while a 

lower 
initT  (or decT) indicates just the opposite.  

To test the effect of the settings of 
initT , we set 85.0=decT  and conduct the experiments by increasing 

the value of 
initT  from 510*5=initT  to 910*5=initT . The energies of the resulting contours with different 

settings of 
initT  are listed in Table 7.2. One can observe that increasing 

initT   has the effects of producing 

contours with lower contour energy. To test the effect of the settings of decT, we set 610*5=initT  and 
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conduct the experiments by increasing the value of decT from 0.85 to 0.98 with the energies of the 

resulting contours listed in Table 7.3. One can also observe that increasing decT  has the effects of 

increasing the capability of overcoming local contour energy minima and resulting lower energy contour.  

The third experiment is to test the sensitivity of the algorithm to the positions of the initial contour. In 

order to quantify the sensitivity, we pick two extra initial points, initial point II and III, besides initial 

point I shown in Fig 7.2b and compute the average distance between the resulting contours using these 

initial contours. We take two measures to quantify the distances between different contours. The first 

distance measure is introduced in [27] , which is written as 
EPTP
EPTP

∪
∩

−= 11ε  with TP denoting the set 

of pixels inside one of the resulting contour 1C  and EP denoting the set of pixels inside another resulting 

contour 2C . The measure 1ε  is an indicator of the overall distance between the resulting contours. The 

second distance measure is ),(
minmax

21
2 YXdist

CYCX ∈∈
=ε  with dist(X, Y) function representing the 

Euclidean distance between the integer coordinates of the pixels X and Y. 2ε  is a local measure useful in 

determining the distance between the high curvature portions of the resulting contours. To test the 

sensitivity of 1ε  and 2ε  to 
initT , we keep decT unchanged at 0.85 and increase 

initT  from 610*5  to 

810*5 . To test the sensitivity to decT, we keep 
initT  unchanged at 610*5  and increase decT from 0.85 to 

0.98.  The computed average distances are listed in Table 7.4. As we can see from the data, the algorithm 

becomes to be more sensitive when 
initT  and decT increase and vice versa.  

Table 7.1  
 

 510*5=initT  610*5=initT  710*5=initT  810*5=initT  910*5=initT  

Contour Energy 0.04144 0.030626 0.030192 0.024595 0.0185531 

 
 

Table 7.2  
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85.0=DecT  92.0=DecT  94.0=DecT  96.0=DecT  98.0=DecT  

Contour Energy 0.030626 0.0299965 0.0251968 0.0163892 0.0141091 

 
Table 7.3 

 

 
1ε  2ε  

85.0,10*5 6 == DecTTinit  0.1195 5.886 

85.0,10*5 7 == DecTTinit  0.1505 9.025 

85.0,10*5 8 == DecTTinit  0.1725 22.923 

94.0,10*5 6 == DecTTinit  0.1295 18.669 

98.0,10*5 6 == DecTTinit  0.134 20.695 
 

8. Applications  

Our experimental evaluations and comparisons can be divided into three separate items and we separately 

discuss each category as follows: 

i) Contour evaluations are performed on a set of challenging contour extraction problems including 

ultrasound pig heart images having noisy contour interiors, sharp contour segment protrusions, and gaps 

as shown in Fig. 8.1, MRI knee images having thick and very blur contour segment and contour-within-

contour segment as shown in Fig. 8.2, and MRI brain images having contours with complex shape, 

inhomogeneous interiors, and blur segments as shown in Figs. 8.3, 8.4, and 8.5. All resulting contours 

are shown on the right-hand side of their originals in Figs. 8.1, 8.2, 8.4 and 8.5. Notice that for the MRI 

brain images, we perform three separate extractions of external boundary of intracranial (Fig. 8.3), 

cerebral boundary (Fig. 8.4), and sulci boundary (Fig. 8.5). Furthermore, Fig. 8.3 shows a sequence of 

contour progression images. All these contours are considered very good results. 
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ii) A performance comparison between the proposed method and CODCM [16] is made on four images 

shown in Figs. 8.6 (a), 8.6(b) , 8.7(a), and 8.8(a) of visual blood cell image, MRI knee image, and two 

MRI brain images respectively. In Fig. 8.6(a), the cells have rather large gaps and in Fig. 8.6(b), there are 

blur boundary segment and a rather inhomogeneous interior. In Fig. 8.7(a) and 8.8(a), there are very 

inhomogeneous interiors inside the external boundaries of intracranial. As we see from the results shown 

in Fig. 8.6(c) to 8.6(f), 8.7(b) , 8.7(c), 8.8(b), 8.8(c), comparing to the result of [16], substantial 

improvements can be seen.  

iii) The proposed method is also compared to other conventional deformable contour methods; the first 

two methods are geodesic snake [4], and area & length active contour [10] using 
2*1

1
),(

IG
yxh

∇+
=  as 

the edge detection function and the third method is T-snake [11]. We select two zoomed images of Fig. 

8.9a a stomach CT image with additive noise of Gaussian noise (variance 3000), and Fig. 8.10a a midline 

sagittal MRI brain image. Similar to all other three methods, a Gaussian filter N(0, 1) is applied to both 

images as a preprocessing operation. No a priori information of object shape or brightness distribution is 

assumed (that is why [6][7][8] are not included). To provide an objective comparison, two sets of three 

dark dots in Fig. 8.9a and Fig. 8.10a are used as initial candidate locations for all four methods including 

ours. Each method using an initial candidate location provides a resulting contour. The best contour (best 

of the three resulting contours for Fig. 8.9a and Fig. 8.10a) of each method from all initial candidate 

locations is selected for comparison. Comparing these resulting contours, our proposed method has the 

best contours. It should be noted that similar comparisons have been conducted in [16] and a thorough 

comparison with quantitative analysis may be found in [28].  

 
9. Conclusions 

In this paper, a constrained global optimization formulation has been proposed for boundary extraction 

problems. The formulation overcomes the problems of multiple local energy minima while preserves 

good controllability in extracting target boundaries with different region characteristics. The 
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effectiveness of the approach in locating constrained global energy minima is evaluated in a synthetic test 

image, where constrained global energy minima are known. The results are compared to those of 

CODCM [1] with the same energy function and region constraint, where an accurate estimation of the 

object interior features is assumed. The experiment proves that the contribution of the method can not 

be reduced as only providing  a dynamic parameter estimation to avoid manual parameter tuning. The 

performance of the method is then demonstrated on very challenging segmentation applications and is 

compared to those of other deformable contour methods and substantial improvements in handling 

segmentation difficulties including gaps, noises, and blur boundaries are reported. The method is 

computationally efficient usually taking 10 seconds to 2 minutes on workstation Ultra Sun Blade 100 for 

most applications.  

 

Appendix 

Noting that in Eq. (22) 
2

*
1 λλ <<  and IIp EL ≈ , )(0 iTI  can be computed as  
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In the following, we compute )(2
iTσ  and )(*

1 iTλ . We assume that 
ΓΩ⊆Ω ),( 1TtC

, where ),( 1TtCΩ  is the 

interior  of ),,( 1TtqC . Noting that ),0,( 1TqC  is a 5 by 5 contour inside target boundary )(qΓ , the 

condition can be easily satisfied in most applications. Let i = 1. )(2
iTσ  should satisfy 

                             ),(),(for          
)(

)),((
expmin),(min 2

2
0

iCV
i

TtyxT
T

IyxI
yxD Ω∈≥







 −
−=
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Let 2
oσ  satisfy  ),(),(for          

)),((
expmin 2

2
0

iCV
o

TtyxT
IyxI

Ω∈=






 −
−

βσ
 

It is obvious that 22 )( oiT σσ ≥ . Since the computation of )(2
iTσ  based on 2

oσ  is rather complex, in 

implementations, we approximate 2
oσ  by )(2

iC Tσ  and compute )(2
iTσ  as, 
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Similarly, the estimated value of )(*
1 iTλ  has to satisfy 
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From Eq. (A-1) and (A-2), it is obvious that )()( 22
iCi TT σσ ≥ , )()( 1

*
1 i

C
i TT λλ ≥ . Let 2

),0,(0
2

1
)( TqCC T σσ = , 

),0,(
101

1)( TqCC T λλ = , and ),0,(
000

1)( TqCC ITI = . Please be noted that 
0T  does not exist and the above equations 

only serve to simplify notations for the following discussions. Since the contour deformations made in 

Step1 are small, the differences between )(2
iC Tσ  and )( 1

2
−iC Tσ , )(1 i

C Tλ  and )( 11 −i
C Tλ  can be ignored. In Eq. 

(A-1) and (A-2), as 0→iT , )()()( 111
*
1 −≈→ i

C
i

C
i TTT λλλ , )()()( 1

222
−≈→ iCiCi TTT σσσ , 

)()()( 1000 −≈= i
C

i
C

i TITITI , ),,( 1+iTtqC  computed according to Eq. (24) either will stop at ),,( iTtqC  (for 

1=i ) or may even move backward (for 1>i ) therefore 
Γ+ Ω⊆Ω ),( 1iC Tt  is guaranteed to be satisfied. By 

a careful selection of 
iT , ),,( 1+iTtqC  can move outward and approach target boundary while satisfy 

Γ+ Ω⊆Ω ),( 1iC Tt . With 
Γ+ Ω⊆Ω ),( 1iC Tt , we can then repeat the above procedures for computing )( 1

*
1 +iTλ , 

)( 1
2

+iTσ , )( 10 +iTI  and let i = i + 1 until i equals n.  
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Fig. 6.1b to 6.1e illustrate the contour evolution process of extracting MC1 using the proposed 
method. Fig. 6.2a to 6.2e, and Fig. 6.3a to 6.3e illustrate the contour evolution process of 
extracting MC2 and MC3 respectively using the proposed method 
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Fig. 6.7a to 6.7e illustrate the scaled image of 
Vi TTyxD −),,(  in Eq. (24) 

under the temperatures corresponding to Fig. 6.3a to 6.3e respectively. Fig. 
6.8a illustrates the scaled image of 

VTyxD −),(  in Eq. (17).  
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Fig. 6.4b to 6.4e illustrate the contour evolution process of extracting MC1 using Eq. (17). Fig. 6.5a 
to 6.5e, and Fig. 6.6a to 6.6e illustrate the contour evolution process of extracting MC2 and MC3 
respectively using Eq. (17) 
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Fig. 7.2a Test image for parameter sensitivity experiments. Fig. 7.2b Zoomed 
image of the brain and the positions of the initial locations I, II, and III. 
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1a 1b 1c 

1d 1e 

1CR  2CR  3CR  

4CR  

Fig. 7.1a The test image for different settings of 
VT . Fig. 7.1b The resulting contour with 

35.0=VT , Fig. 7.1c The resulting contour with 1.0=VT , Fig. 7.1d The resulting contour with 

03.0=VT , Fig. 7.1e The resulting contour with 0001.0=VT . 
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Fig. 8.3 (a) Original MRI brain image (white dot indicates the position of the initial contour). (b) to (g) The 
extraction process of the exterior boundary of intracranial 

Fig. 8.1 Ultrasound pig heart original images in the left 
column and the ir corresponding results in the right column 
 

Fig. 8.2 MRI knee original images on the left 
column and the ir corresponding results on the right 
column 
 

Fig. 8.4 MRI brain image two and the result 
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Fig. 8.5 MRI brain image three and the result 
 

(2b) 

(f) (g) 

(h) 

Fig. 8.6 Comparison results with CODCM 
[16]. (c) and (e) are segmentation results using 
the proposed method. (d) and (f) are 
segmentation results using CODCM [16].  
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Fig. 8.7 Comparison results with CODCM [16]. (b) is the segmentation result  of the external 
boundary of intracranial using the proposed method. (c) is the segmentation result of the 
external boundary of intracranial using CODCM [16].  
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Fig. 8.9a, 10a Original images of the comparison, 9b, 10b The results of T-snake, 9c, 10c The 
results of geodesic snake, 9d, 10d The results of Area-length snake, 9e, 10e The results of 
proposed method. 

Fig. 8.8 Comparison results with CODCM [16]. (b) is the segmentation result  of the external 
boundary of intracranial using the proposed method. (c) is the segmentation result of the 
external boundary of intracranial using CODCM [16].  
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