
LP-Form Inclusion Functions for Global

Optimization

Stuart G. Mentzer

Objexx Engineering

Natick MA 01760 USA

Based on an article in Computers Math. Applic. Vol 21, No. 6/7, pp. 51-65, 1991

Abstract. A new class of methods is presented for finding the global extrema of real-valued
functions using point values and gradient inclusions. These methods construct polyhedral envelopes
for each subfunction within regions generated by a subdivision strategy. The range of the envelopes
determines bounds on the functions and can be computed by linear programs. Partial monotonicity
conditions are presented that reduce the effective dimension or yield exact bounds on finite regions.

1 Introduction

Global optimization is concerned with finding extrema of a general class of real-valued
functions when no simplifying global properties such as convexity are known. A global
minimization problem can be stated as simply as

min z(x) : Rn → R for x ∈ D ⊆ Rn, D compact.

The dimension of this problem is the number of variables, n. The NP-hardness of this
class of problems makes worst-case polynomial time algorithms unlikely. Efforts in global
optimization have instead focused on stochastic methods, which assure some specific local-
ization of the optimal value with probability approaching one [2, 3, 16], or deterministic
methods, which guarantee asymptotic convergence to the optima but with a worst-case rate
of convergence that is exponentially slow in the problem dimension. Deterministic methods
tailored to separable, concave, and other special problem classes have better performance
[4, 17].

Our focus is on tools for deterministic methods that apply to a broad class of noncon-
vex, nonlinear programming problems. We require only that the objective z(x) and the
constraints defining D be factorable C1 functions. A number of branch and bound methods
have been developed for these problems that can be shown to converge to a superset of
global optima and to the optimal value under fairly weak conditions [6, 7, 10, 13, 14, 15].
With each of these methods, the branching, or subdivision, strategies generates a list of

1

subregions of D that are still candidates to contain a global optimum. Each region is evalu-
ated for bounds on the objective function value and feasibility of the constraints. Tests for
the existence of stationary points, convexity, or other necessary and sufficient optimality
conditions have also been used. All of these methods requires bounds on the objective,
constraints, and their gradients and Hessians. Regions shown not to contain the global
optimum can be discarded, but the remaining regions must be subdivided to obtain refined
bounds.

Each bounding problem occurring in these global optimization methods is an instance
of the generic problem: Find an inclusion for the range of a real-valued function z(x) on a

compact region D ∈ Rn. This is the problem we address.

Deterministic approaches have typically used fairly simple bounding techniques, depend-
ing heavily on the subdivision process. In problems of even moderate dimension the expense
of more accurate bounds can be more than justified against the exponential cost associated
with subdivision. In particular, we focus here on the “early” phase where the number of
regions can quickly proliferate unless exceptionally accurate bounds are used.

We present a new approach to the bounding problem. For a given subregion under
consideration, we construct a polyhedral envelope for each subfunction of z(x) based on
function values and bounds on the gradient. Given this information we show how to compute
(in some cases optimal) bounds using linear programs for the lower and upper envelopes.
The resulting range inclusions are better than the well-known natural interval extension
and mean value form of interval analysis. We also present a procedure for detecting and
exploiting partial monotonicities within this framework that can successively reduce the
effective dimension of subregions, and which produces the exact range on regions with a
weak monotonicity property. Thus the combined approach not only provides strong bounds,
but also attacks the inherent “curse of dimensionality”.

1.1 Interval Analysis

Interval analysis allows the construction of numerical bounds on real-valued factorable func-
tions over finite boxes. Let I be the set of real compact intervals [a, b] with a, b ∈ R. If
X = [a, b], we denote the lower and upper bounds of X by X = a and X = b. The width

of an interval is defined by w(X) = X − X. We define the set of n-dimensional boxes, In,
to be the set of Cartesian products of n intervals, such as

X = (X1, . . . , Xn) = [a1, b1] × · · · × [an, bn].

The width of a box is defined by w(X) = maxi (w(Xi)).

Operations in I are set-valued extensions of operations over the reals, so for
∗ ∈ {+, −, ×, ÷}

X ∗ Y
.
= {x ∗ y : x ∈ X, y ∈ Y }.

Properties of interval operations are discussed in [1, 13, 14, 15].

2

Factorable functions [10] are simply functions z(x) that can be represented as a rooted
directed acyclic graph with the variables at the in-degree zero leaf nodes and z(x) at the
root. Each nonleaf node represents a sum or product of its subfunctions or a unary function
of a single subfunction. Since taking an inverse is a unary function, quotients are clearly
allowable operations. Similarly, an exponentiation operation y(x)r(x) can be converted to
exp[r(x) ln(y(x))].

For a real-valued factorable function f(x), we denote the lower and upper bounds of
f(x) on a box X by

f(X)
.
= {inf (f(x) : x ∈ X)} and f(X)

.
= {sup (f(x) : x ∈ X)}

and the range of f(x) by f(X)
.
=

[

f(X), f(X)
]

.

We call F : In → I an inclusion for f(x) on the box X if F (Y) ⊇ f(Y) for all Y ⊆ X.
We call the restricted inclusion F : Rn → I an inclusion function. An inclusion F : In → I

is called Lipschitz [13] if there exists a K ∈ R such that

w(F (X)) ≤ Kw(X) ∀X ∈ In.

An inclusion F : In → I of a function f : Rn → R is said to have convergence of order α

[15] if for X ∈ In

w(F (X)) − w(f(X)) = O(w(X)α).

An inclusion F : In → I of a function f : Rn → R is said to be inclusion monotonic if

X ⊆ Y ⇒ F (X) ⊆ F (Y).

We restrict factorable functions to allow only those unary functions for which inclu-
sion monotonic inclusions are readily computed. In practice we can compute inclusions of
arbitrary precision for common unary functions such as sin(·), ln(·), or (·)2.

Interval analysis provides a simple procedure for computing an inclusion of the range of a
factorable function. The natural interval extension of a given representation of a real-valued
factorable function f(x) : Rn → R on a box X ∈ In is the inclusion N(X) obtained by
replacing all occurrences of each variable xi with the corresponding interval Xi, each unary
subfunction u(·) with its inclusion U(·), and each operation with the corresponding interval
operation [11]. The definition of the interval operations guarantees that N(X) ⊇ f(X).

The natural interval extension is, in general, strictly larger than the actual function range
because the intervals allow inconsistent values to be used for variables appearing in two or
more subfunctions. Nevertheless, it is not hard to see that the natural interval extension
is the tightest inclusion possible when each function receives only the inclusion interval of
its subfunctions for use in computing its inclusion. The natural interval extension of most
continuous, bounded factorable functions is Lipschitz and therefore linearly convergent [14].

For simplicity, we assume exact interval arithmetic. These results are readily modified
to the case of machine interval arithmetic. We also assume the extended form of interval
arithmetic that can handle unbounded intervals, as defined in [15].

3

1.2 Interval Inclusion Methods

A variety of methods for finding an inclusion of a function using interval analysis have been
applied to global optimization [6, 15]. The most popular inclusions that apply to a broad
class of functions f(x) are

N(X) (natural interval extension)

T1(X) = f(c) + G(X)(X − c) (mean value form)

T2(X) = f(c) + ∇f(c)(X − c) + 1
2(X − c)TH(X)(X − c) (Taylor form of order 2)

where c ∈ X, ∇f is the row vector gradient, G(X) is an inclusion for ∇f(X), and H(X) is
an inclusion for the Hessian. The mean value form requires f(x) ∈ C1 and the Taylor form
of order 2 requires f(x) ∈ C2. There are higher-order Taylor forms (the mean value form
is the Taylor form of order 1) but these are rarely used. Just as the N(X) is the interval
version of a function evaluation, the Taylor forms are interval versions of Taylor’s theorem.
Interval adaptations of Newton’s method have also been used to assess the existence of
stationary points [6].

The convergence properties of these inclusions have been investigated [15]. The natural
interval extension is linearly convergent if it is Lipschitz. The mean value form is quadrati-
cally convergent if G(·) is Lipschitz. The Taylor form of order 2 is quadratically convergent
if H(·) is bounded.

These bounding tools are used with subdivision strategies to localize the global optima.
Typically, the regions considered are boxes and subdivision of a box involves partitioning
the box in half along one of the coordinate directions. If we have an inclusion F (Y) ⊇ f(Y)
that is valid for all Y ⊆ X, and a partition X =

⋃

j Xj , we take F (X) =
⋃

j F (Xj) as the
inclusion on X. As the subboxes get smaller, these inclusions converge, and at some point
we can eliminate infeasible, nonoptimal, or suboptimal regions. The global convergence
behavior of some basic subdivision strategies is reviewed in [15].

The combination of a quadratically convergent inclusion and a globally convergent sub-
division strategy sounds more powerful than it is. The convergence is quadratic in the width
of a box, but it takes a partition into O(kn) subboxes to achieve a factor of k reduction in
the width in an n-dimensional problem. Ratschek and Rokne [15] have shown that for the
problem of computing the range of a function f(x) on an initial box X, given an inclusion
F (·) that has convergence of order α and is inclusion monotonic, the worst-case convergence
is given by

w(F (X)) − w(f(X)) = O(`−α/n)

where ` is the number of boxes examined. Thus the number of boxes may explode before
a significant part of the initial region has been eliminated. We cannot hope to solve high-
dimension problems by depending on subdivision to improve the bounds of weak inclusions.

The inclusions given above, although readily computed, do not make much effort to
generate strong bounds. Each of these uses a natural interval extension for the function,

4

gradient, or Hessian of the full function. No attempt is made to find the best inclusion
given all of the subfunction information.

1.3 Nested Inclusion Functions

To generate better inclusions we need to construct inclusion functions for each subfunction
that can be propagated through the function graph into an inclusion function for z(x) which
is amenable to optimization.

The interval analysis methods have implicit inclusion functions that could be used in
this way. For example, the mean value form inclusion function is

T1(x) = f(c) + G(X)(x − c).

We will see that the nonconvexity of this form makes it difficult to optimize and propagate.

A natural choice is to use convex envelope inclusion functions. The envelope of an
inclusion function F (x) on X is defined as

S(X, F) = {(x, y) : x ∈ X, y ∈ F (x)}.

McCormick [10] has developed a method for constructing convex envelope inclusion func-
tions. Some slack is introduced in this process, so the resulting inclusion function for z(x) is
generally larger than the actual convex envelope. The intermediate steps involve some com-
plex computations and the envelope representation can grow quite large and complicated.
Nevertheless, this is an elegant approach that can produce inclusions of high quality.

We take a middle approach, propagating polyhedral inclusion functions that are amen-
able to solution by linear programming. Like McCormick’s method, this is a purely global
tool, not an adaptation of a local method. In the basic approach, we simplify the inclusion
functions for each subfunction before propagating them up to the next level. This prevents
the resulting polyhedral envelopes from becoming too complicated and simplifies the pre-
sentation. In Section 4 we indicate how to generalize this to use the full envelopes. We
begin by examining the choices for inclusion of a univariate function.

2 Univariate LP-Forms

We consider the problem of finding bounds on a factorable univariate function z(x) ∈ C1

on the interval X ∈ I, given a representation of z(x) in terms of subfunctions. For each
function we compute an inclusion function from the inclusion functions of its subfunctions.
Here we assume that this inclusion function will be simplified to depend only on an overall
inclusion range and derivative inclusion. Thus we are interested in how good an inclusion
range can be computed from the inclusion functions of subfunctions. First we look at a
function that is a sum of subfunctions.

5

2.1 Sums

Consider a function f(x) =
∑

j fj(x) where the fj(x) are C1 and where the inclusions
Fj(X) ⊇ fj(X) and F ′

j(X) ⊇ f ′
j(X) are known and we are given the function values fj(c)

for some c ∈ X. We wish to compute an inclusion F (X) for f(X).

The natural interval extension gives the inclusion

N(X) =
∑

j

Fj(X)

and the mean value form gives the inclusion

T1(X) =
∑

j

fj(c) +

∑

j

F ′
j(X)

 (X − c)

for any c ∈ X selected. It is not difficult to construct the optimal inclusion function F ∗(x)
for the same information.

Lemma 1 For a function f(x) =
∑

j fj(x), with all fj(x) ∈ C1, given only the inclusions
Fj(X) ⊇ fj(X) and F ′

j(X) ⊇ f ′
j(X) and the values fj(c) for c ∈ X ∈ I and for all j, the

inclusion function for f(x)

F ∗(x) =
∑

j

F ∗
j (x) =

∑

j

[

Fj(X)
⋂

(

fj(c) + F ′
j(X)(x − c)

)

]

(2.1)

is optimal. That is, for any other inclusion function E(x) ⊇ f(x), F ∗(x) ⊆ E(x) for all
x ∈ X.

Proof. First we show that the F ∗
j (x) are optimal inclusions of the fj(x) for the given

information. Suppose Ej(x) is a better inclusion function of fj(x) on X. For any x ∈ X

where F ∗
j (x) 6⊆Ej(x), a C1 function f̂j(x) can be constructed that satisfies

f̂j(c) = fj(c) , f̂j(X) ⊆ Fj(X) , and f̂ ′
j(X) ⊆ F ′

j(X)

but for which f̂j(x) 6∈ Ej(x), contradicting the claim that Ej(x) is an inclusion function for

any C1 function fj(x) for which Fj(X), F ′
j(X), and fj(c) are valid. Such a function f̂j(x)

can be pasted together from at most five function segments, including one sloped linear
function, two circular arcs, and two constant functions.

Given no other information about the functions fj(x), the F ∗
j (x) are independent and

the optimal inclusion function for f(x) with x, c ∈ X is simply the sum F ∗(x) given in the
lemma. 2

6

It is not hard to see that |y − c| < |x − c| ⇒ F ∗(y) ⊆ F ∗(x), thus the optimal inclusion
is

F ∗(X) = F ∗(X)
⋃

F ∗(X)

which is readily computed. The ranges N(X) or T1(X) are obtained by ignoring one or the
other of the intersected ranges, verifying their nonoptimality. The inclusion F ∗(X) has the
desirable properties of these weaker inclusions.

Lemma 2 If the inclusions Fj(X) in (2.1) are Lipschitz then the inclusion F ∗(X) is lin-
early convergent. If the inclusions F ′

j(X) are Lipschitz then the inclusion F ∗(X) is quadrat-
ically convergent.

This lemma follows directly from the respective properties of N(X) and T1(X) [14], and
the fact that w(F ∗(X)) ≤ min(w(N(X)), w(T1(X))) which follows from Lemma 1.

2.2 LP-Forms for Sums

It is not difficult to extend the above approach to obtain optimal inclusions when other
information is provided on some interval. One drawback to using interior values fj(c) is
that the resulting inclusion function envelope,

S(X, F ∗) = {(x, y) : x ∈ X, y ∈ F ∗(x)},

is not in general convex. Thus finding F ∗(X) would be difficult in higher dimensions.
Another drawback is that F ∗(X) does not generally produce exact bounds even when f(x)
is known to be monotonic on X, for example when

∑

j F ′
j(X) is nonnegative or nonpositive.

An alternative which avoids these drawbacks is to use the function values fj(X) and fj(X)
instead of fj(c) in the inclusion.

Lemma 3 For a function f(x) =
∑

j fj(x), with all fj(x) ∈ C1, given only the inclusions

Fj(X) ⊇ fj(X) and F ′
j(X) ⊇ f ′

j(X) and the values fj(X) and fj(X) for all j, the inclusion
function for f(x)

F �(x) =
∑

j F �
j (x)

=
∑

j

[

Fj(X)
⋂

(

fj(X) + F ′
j(X)(x − X)

)

⋂

(

fj(X) + F ′
j(X)(x − X)

)

]

is optimal. That is, for any other inclusion function E(x) ⊇ f(x), F �(x) ⊆ E(x) for all
x ∈ X.

The proof of this lemma is analogous to that of Lemma 1, and F �(x) also shares the
convergence properties of F ∗(x) given in Lemma 2. It is not difficult to show that the
envelope of F �(x) is convex on X. Since F �(x) is also polyhedral, we call it an LP-form.

7

Definition. An inclusion function F (x) is an LP-form on X if the envelope of F (x) on
X is polyhedral (and thus convex).

The inclusion range implied by an LP-form can be computed by solving two linear
programs whose constraint sets are precisely the lower and upper envelopes of the LP-form.
We call these the primal linear programs. Some insight into the significance of monotonicity
in the LP-form can be gained by considering the dual problem of finding the best bounds
on the inclusion range.

For the subfunction f(x) =
∑

j fj(x) where the fj(x) are C1, consider the representation

f(x) =

∑

j

αjfj(x) + δx

 +

∑

j

βjfj(x) − δx

 +

∑

j

γjfj(x)

 (2.2)

where αj , βj , γj , δ ∈ R and αj + βj + γj = 1 for all j.

We can construct linear programs for upper and lower bounds on f(X) based on this
representation and using only the values fj(X), fj(X), Fj(X), and F ′

j(X). The idea will
be to find the partition into monotonically increasing, monotonically decreasing, and non-
monotonic terms which gives the best bounds. The linear program for the lower bound
is

(DΣ) max

∑

j

αjfj(X) + δX

 +

∑

j

βjfj(X) − δX

 +

∑

j

γjF j(X)

subject to
∑

j αjF
′
j(X) + δ ≥ 0

∑

j βjF
′
j(X) − δ ≤ 0

αj + βj + γj = 1 ∀ j

αj , βj , γj ≥ 0 ∀ j

The first constraint assures that the first grouped term in (2.2) is monotone nondecreas-
ing and the second constraint assures that the second term is monotone nonincreasing. The
objective terms are valid lower bounds given their monotonicities. The last term is the non-
monotonic part for which the corresponding objective term is clearly a valid lower bound.
Any feasible solution to DΣ is then a valid lower bound on f(X). More importantly, an
optimal solution to DΣ gives the optimal lower bound F �(X).

Theorem 4 The optimal value of the linear program DΣ is the optimal lower bound F �(X)
of f(x) =

∑

j fj(x) for x ∈ X given only the values fj(X), fj(X), Fj(X), and F ′
j(X) for

all j.

8

Proof. The primal linear program for F �(X) is

(PΣ) min
∑

j

ej

subject to

ej ≥ fj(X) + F ′
j(X)(x − X) ∀ j

ej ≥ fj(X) + F ′
j(X)(x − X) ∀ j

ej ≥ F j(X) ∀ j

x ≥ X

x ≤ X

It is not hard to show that PΣ is indeed dual to DΣ; thus they both produce the optimal
value F �(X). 2

The optimal upper bound F �(X) can be found by analogous linear programs. Note that
the optimal ej values will be F �

j (x) for the optimal x value.

The feasible solutions to the dual DΣ are worth examining. Setting γj = 1 for all j and
all other variables to zero reproduces the natural interval extension bound N(X). Setting
all the αj = 1 or all the βj = 1 and taking the least feasible δ value gives the T1(X)
bounds expanded around X or X, respectively. When f(x) is shown to be monotonic, that
is, when

∑

j F ′
j(X) is nonnegative or nonpositive, DΣ has as a feasible solution one of the

boundary values f(X) or f(X). The monotonicity proves that this is also the exact bound
of f(X) and thus it is an optimal solution to DΣ. This assures that an LP-form inclusion
with convergent (of any order) inclusions F ′

j(X) converges to exact bounds on any region
of strict monotonicity in a finite number of subdivision steps. We note that the LP-form
inclusion is quadratically convergent if either F ′

j(·) or F ′
j(·) is Lipschitz, since it lies inside

the mean value forms with c = X and c = X.

By comparing the number of variables and the number of constraints, we see that at
most four of the αj , βj , or γj can be nonintegral at an optimal feasible solution; thus at
most two of the fj are fractionally decomposed. The dual can be simplified in a number of
ways. For example, if F ′

j(X) ≥ 0 or F ′
j(X) ≤ 0 , we can set γj = 0. The solution of the

primal can be efficiently found by sorting the set of breakpoints in the F j(x) functions and

the endpoints X and X, and performing a discrete Fibonacci search [9] for the minimum
value of the convex objective

∑

j ej .

Example

Although LP-form inclusions are intended to extend the class of higher-dimension, nested
factorable functions that can be optimized, the quality of the LP-form bounds can be
illustrated with a simple one-dimensional sum.

9

Consider the problem of finding a lower bound on the function

f(x) = 2x2 − 4x3/2 + 5 sin(7x)

on [0, 5]. This function has five interior local minima, with the minimum

f(X) ≈ f(2.4666) ≈ −8.3270.

We consider lower bounds for three successively smaller intervals containing the minimum
point. The natural interval extension bound is given by

N(X) = 2 X2 − 4 X
3/2

+ 5 sin(7X).

The mean value form using the natural interval extension F ′(X) ⊇ f ′(X) is given by

T 1(X) = f(c) + F ′(X)(X − c)

where we can choose c to give the best bound from

c =

X if F ′ ≥ 0

X if F
′
≤ 0

F
′

(X)X −F ′

(X)X

F
′

(X)−F ′

(X)
otherwise.

The Taylor form of order 2 using the natural interval extension F ′′(X) ⊇ f ′′(X) is given by

T 2(X) = f(c) + f ′(c)(X − c) + 1
2F ′′(X)(X − c)2

where c is the center point of X (the best point can not be determined from F ′′(X)).

For X = [0, 5] we get

N(X) = 0 − 4 · 53/2 − 5 ≈ −49.72

T 1(X) ≈ f(2.3408) + (−48.4164)(5 − 2.3408) ≈ −135.25

T 2(X) = −∞

and the LP-form lower bound (shown as the optimal dual objective) is

F �(X) ≈ (.329 · 0 + 1 · 0 + 13.416 · 0) + (.671 · 50 − 13.416 · 5) + (−5) ≈ −38.54.

The table below summarizes the results for all three intervals.

On X = [2.4, 2.6], the second derivative is provably positive from F ′′(X), and in practice
a more efficient local search method could be used to complete the solution.

The additional dependence on subdivision of the standard methods can be seen even in
this simple one-dimensional example. For example, to obtain T1 bounds that at least match
the LP-form bounds requires examining at least seven boxes for each of the three starting
intervals. The cost of even this amount of finer granularity in a higher-dimension problem
would be dramatic.

10

X N(X) T 1(X) T 2(X) F �(X)

[0, 5] -49.72 -135.25 −∞ -38.54

[2, 3] -17.78 -27.22 -42.68 -9.51

[2.4, 2.6] -10.25 -10.40 -9.01 -8.36

2.3 LP-Forms for Products

LP-forms can also be applied to products, although not directly. Consider the product
f(x) =

∏

j fj(x), with all fj(x) ∈ C1 where, as for sums, we are given the inclusions

Fj(X) ⊇ fj(X) and F ′
j(X) ⊇ f ′

j(X) and the values fj(X) and fj(X) for all j. Following
the reasoning of Lemma 3, the optimal inclusion function for f(x) is

F �(x) =
∏

j F �
j (x)

=
∏

j

[

Fj(X)
⋂

(

fj(X) + F ′
j(X)(x − X)

)

⋂

(

fj(X) + F ′
j(X)(x − X)

)

]

.

The difficulty with using F �(x) is that the segmented lower and upper bounding func-
tions generated by the products of F �

j (x) are not linear and the envelope is not convex,
in general, so in this case F �(x) is not an LP-form. This precludes solving for F �(X) by
linear programming and leaves us with yet another difficult global optimization problem.
We avoid this difficulty by finding an optimal inclusion for a transformed version of f(x)
that is amenable to linear programming, although in general this inclusion will be worse
than F �(X).

Assume, for now, that the fj(x) are known to be nonnegative on X, that is, F j(X) ≥ 0.
Nonpositive factors (and their inclusions) can be scaled by −1 and included, possibly chang-
ing the product being considered below to −f(x). We apply a logarithmic transformation
to f(x), which gives

l(x)
.
= ln(f(x)) =

∑

j

ln(fj(x))
.
=

∑

j

lj(x).

We can treat l(x) exactly as the sums of the previous section. The optimal inclusion
function for l(x) on X is the LP-form

L�(x) =
∑

j L�
j (x)

=
∑

j

[

Lj(X)
⋂

(

lj(X) + L′
j(X)(x − X)

)

⋂

(

lj(X) + L′
j(X)(x − X)

)]

.

Note that L�(x) 6= ln(F �(x)) in general.

11

By analogy to (2.2) we consider the representation

f(x) =

eδx
∏

j

f
αj

j (x)

e−δx
∏

j

f
βj

j (x)

∏

j

f
γj

j (x)

which transforms to

l(x) =

∑

j

αjlj(x) + δx

 +

∑

j

βjlj(x) − δx

 +

∑

j

γjlj(x)

where αj , βj , γj , δ ∈ R and αj + βj + γj = 1 for all j. The linear programs and their
optimality theorems are identical to those presented for sums in Section 2.2 with l and L

replacing f and F , respectively. The inclusion for l(x) is turned into an inclusion for f(x)
by taking F (X) = exp(L�(X)).

The values needed for these linear programs are easily obtained from the inclusions for
the fj(x). Specifically,

lj(X) = ln
(

fj(X)
)

, lj(X) = ln
(

fj(X)
)

, Lj(X) = ln
(

Fj(X)
)

, and L′
j(X) =

F ′

j(X)

Fj(X)

where we extend ln(·) to provide an exact inclusion for an interval argument. If F j(X) = 0,
the range of L′

j(X) may include ±∞ and we can set the corresponding αj and/or βj in
the dual to zero. The interval division appearing in the inclusion for l′(X) is the reason
that the inclusion function L�(x) is not generally as good as F �(x). In some cases l′j(x) =
f ′

j(x) /fj(x) may have a representation that gives a tighter inclusion than the one given
above, and L�(x) could be better than F �(x).

Mixed sign factors can be treated with these methods by partitioning them into a sum
of fixed sign factors. For example, if fm(X) ⊆ Fm(X) ⊆ [a, b] where a < 0 and b > 0, the
product p(x)fm(x) becomes

p(x)
(

fm(x) − a
)

+ p(x)a or p(x)
(

fm(x) − b
)

+ p(x)b

where now each term is a product of fixed sign factors if p(x) has fixed sign. Inclusions
obtained from these sums of products may not be better than the product of the factor
inclusions P (X)Fm(X), particularly if fm(x) is not known monotonic on X or if L′

m(X)
includes ±∞.

The inclusion for f(x) can be used to generate a good inclusion for f ′(x) by using the
representation

f ′(x) = f(x)

∑

j

l′j(x)

12

which gives the inclusion

F ′(X) = F (X)

∑

j

L′
j(X)

.

If the L′
j(X) are bounded this may be a better inclusion than the “product rule” inclusion

F ′(X) =
∑

i

F ′
i (X)

∏

j 6=i

Fj(X)

.

2.4 Other Functions

The other nonunary factorable function operations we consider are exponentiation and
taking the maximum or minimum of subfunctions. We can reduce exponentiation to the
product case, for example

(

y(x)
)r(x)

becomes exp
[

r(x) ln
(

y(x)
)]

which involves only unary functions and a product.

For the function f(x) = maxj (fj(x)), the maximum of convex functions is convex and
the optimal lower bound F �(X) can be found by solving a linear program of the form

min e

subject to

e ≥ fj(X) + F ′
j(X)(x − X) ∀ j

e ≥ fj(X) + F ′
j(X)(x − X) ∀ j

e ≥ F j(X) ∀ j

x ≥ X

x ≤ X

The upper envelope of f(x) is not concave but the upper bound F (X) = maxj

(

Fj(X)
)

is
clearly optimal. The derivative inclusion is F ′(X) =

⋃

j F ′
j(X). Note that f(x) is not, in

general, a C1 function (although it is continuous), so we are really using an inclusion of the
subgradient of f(x). This is discussed further in Section 5. The analogous results hold for
taking a minimum of subfunctions.

Lastly, we consider the unary functions. Suppose f(x) = u(y(x)) and we have the
inclusion (from an LP-form or otherwise) Y (X) ⊇ y(X). The inclusion for f(x) on X

would then be simply F (X)
.
= U(Y (X)) ⊇ u(Y (X)) where U(·) is our inclusion for u(·).

13

No LP-forms are involved here; this is same approach used in forming the natural interval
extension. Derivative inclusions F ′(X) can be obtained from the chain rule

f ′(x) =
du

dy
y′(x).

3 Multivariate LP-Forms

LP-form inclusion functions extend in a natural way to multivariate functions. We consider
each subfunction f(x) on X, where

x = (x1, . . . , xn) and X = (X1, . . . , Xn).

For now we assume that, for propagating f(x) to higher-level functions, we will simplify
the envelope to use only a combination of values of f(x), an inclusion for f(X), and an
inclusion for its gradient. We generalize the univariate approach by allowing an arbitrary
set of values of f(v), where v is a vertex of the box X, and the vertex set is V(X) =
{

v = (v1, . . . , vn) : vi ∈ {Xi, Xi}
}

. Our focus here will be to take envelopes of this form
for the subfunctions of f(x) and find an inclusion of f(X).

Consider the function f(x) =
∑

j fj(x) where we are given the information

(

fj

(

v
(k)

)

∀ v
(k) ∈ V ⊆ V(X), Gj(X) ⊇ ∇fj(X), and Fj(X) ⊇ fj(X)

)

∀ j (3.1)

with which to compute the inclusion for f(x). The gradient and its inclusion are taken to
be row vectors here. By analogy to Lemma 3 for univariate functions, we can show that
the optimal inclusion function for f(x) on X is the LP-form

F �(x) =
∑

j

F �
j (x) =

∑

j

Fj(X)
⋂

[

⋂

k

(

fj

(

v
(k)

)

+ Gj(X)
(

x − v
(k)

)

)]

.

The primal linear program for the lower bound is

min
∑

j

ej

subject to

ej ≥ fj

(

v
(k)

)

+ G
(k)
j (X)

(

x − v
(k)

)

∀ k, ∀ j

ej ≥ F j(X) ∀ j

xi ≥ Xi ∀ i

xi ≤ Xi ∀ i

14

where we define

(

G
(k)
j (X)

)

i

.
=

Gji(X) ⊇ ∇ji(X) if v
(k)
i = Xi

Gji(X) ⊇ ∇ji(X) if v
(k)
i = Xi.

The dual, which we need below, is

max
∑

k

∑

j

α
(k)
j fj

(

v
(k)

)

 +
∑

j

γjF j(X) +
∑

i

δi

(

Xi − Xi

)

(3.2)

subject to

∑

k∈Ki

∑

j α
(k)
j G

(k)
ji (X) + δi ≥ 0 ∀ i

∑

k∈Ki

∑

j α
(k)
j G

(k)
ji (X) − δi ≤ 0 ∀ i

∑

k α
(k)
j + γj = 1 ∀ j

α
(k)
j , γj ≥ 0 ∀ k, ∀ j

(3.3)

where

Ki
.
=

{

k : v
(k) ∈ V, v

(k)
i = Xi

}

and Ki
.
=

{

k : v
(k) ∈ V, v

(k)
i = Xi

}

.

The first two sets of constraints on the dual enforce the monotonicity of all objective terms
that contain Xi or Xi, respectively.

The multivariate LP-forms for products and the other types of functions are analogous
generalizations of the univariate cases. We now consider improvements to this basic multi-
variate approach.

3.1 Generalizations

We can generalize the LP-form approach for multivariate functions in a number of ways.
For one, there is no reason that we must use the same vertex set V for each subfunction in
the LP-forms. There may be different advantageous choices Vj for each fj(x). We can also
use different vertex sets for the upper and lower LP-form envelopes (the definition of F �(x)
can be modified to reflect this use of partial information).

A valuable modification of the LP-forms given above is to use a gradient inclusion that
has fewer interval arguments than the full gradient inclusion ∇f(X). This idea has been
used in the algorithms of Hansen [5, 6]. We replace the gradient inclusion of (3.1) with an
inclusion having components

G
(k)
i (X) ⊇ ∇if

(

X1, . . . , Xi, v
(k)
i+1, . . . , v

(k)
n

)

. (3.4)

15

The inclusion function f(v(k)) + G(X)(x − v
(k)) then becomes an inclusion of f(x) on

successively higher dimension subboxes of X, that is,

f
(

x1, . . . , xm, v
(k)
m+1, . . . , v

(k)
n

)

⊆ f
(

v
(k)

)

+
∑

i≤m

∇if
(

X1, . . . , Xi, v
(k)
i+1, . . . , v

(k)
n

) (

xi − v
(k)
i

)

for any (x1, . . . , xm) ∈ (X1, . . . , Xm).

3.2 Exploiting Monotonicity

The improved gradient inclusion of (3.4) can be used in an adaptive algorithm that produces
better inclusions that are exact under a weak monotonicity condition. This property is based
on reordering the variables xi in the successive gradient expansion of (3.4).

Definition. A real-valued function f(x) ∈ C1 has the lower successive monotonicity

property on X if there exists an ordering x1, . . . , xn such that ∇if
(

X1, . . . , Xi, v
(∗)
i+1, . . . , v

(∗)
n

)

is either nonnegative or nonpositive for each i, where

v
(∗)
i

.
=

Xi if ∇if
(

X1, . . . , Xi, v
(∗)
i+1, . . . , v

(∗)
n

)

≥ 0

Xi if ∇if
(

X1, . . . , Xi, v
(∗)
i+1, . . . , v

(∗)
n

)

≤ 0.
(3.5)

The upper successive monotonicity property is defined analogously, with

v
(∗)
i

.
=

Xi if ∇if
(

X1, . . . , Xi, v
(∗)
i+1, . . . , v

(∗)
n

)

≤ 0

Xi if ∇if
(

X1, . . . , Xi, v
(∗)
i+1, . . . , v

(∗)
n

)

≥ 0.
(3.6)

Note that this is a weaker condition than monotonicity on X, which requires ∇if(X) to
be either nonnegative or nonpositive for each i. These definitions lead to an easy lemma
showing that the f(v(∗)) values are exact bounds on f(X).

Lemma 5 If f(x) ∈ C1 has the lower successive monotonicity property on X, then f(X) =

f(v(∗)) with v
(∗) defined in (3.5). If f(x) ∈ C1 has the upper successive monotonicity

property on X, then f(X) = f(v(∗)) with v
(∗) defined in (3.6).

In practice we can readily test for these properties by first examining Gi(X) ⊇ ∇if(X)
for each i, selecting the appropriate coordinates of v

(∗) for each i where Gi(X) is nonnegative
or nonpositive, and placing those coordinates at the end of the reordered list. Then we
repeat this process for the subbox of X with the fixed coordinates until all coordinates of v

have been fixed or no more monotonic directions remain. Let the set of all vertices matching

16

the fixed coordinates be V (∗) and the subbox of X matching the fixed coordinates be X
(∗).

As long as Gi(·) is inclusion monotonic, that is, if

X ⊆ Y ⇒ Gi(X) ⊆ Gi(Y),

this procedure will detect lower or upper successive monotonicity if it can be detected using
the inclusions Gi(·). If the Gi(·) are Lipschitz inclusions, performing these monotonicity
tests assures that an exact inclusion for f(·) will be obtained on a finite box containing
each point x̂ where ∇f(x̂) has no zero components. For most C1 functions this guarantees
convergence to exact bounds in a finite number of steps everywhere but on a set of measure
zero.

If successive monotonicity is detected and the appropriate v
(∗) is in V , the LP-form

bounds are also the exact value f(v(∗)), as we would hope. For example, consider the dual
lower bound linear program for a sum given in (3.2) and (3.3). Suppose that f(x) is lower
successive monotonic on X for the ordering x1, . . . , xn with the minimum occurring at v

(∗),
and that this has been detected, that is,

G
(∗)
i

(

X1, . . . , Xi, v
(∗)
i+1, . . . , v

(∗)
n

)

=
∑

j

G
(∗)
ji

(

X1, . . . , Xi, v
(∗)
i+1, . . . , v

(∗)
n

)

is either nonnegative or nonpositive for each i. It is not hard to verify that the following is
a feasible solution to the dual

(

α
(∗)
j = 1, α

(k)
j = 0 ∀ α

(k)
j 6= α

(∗)
j , and γj = 0

)

∀ j, and δi = 0 ∀ i

and thus the corresponding objective value of f(v(∗)) is a lower bound on f(X). But since
this value is actually achieved at v

(∗) ∈ X we can conclude that this is also the optimal
value of the dual and the exact lower bound f(X).

If we fail to prove a successive monotonicity property, the fixed coordinates we obtain are
still good in the sense that we restrict the lower or upper bounding problem to a subbox X

(∗)

where the desired extremum occurs. This reduces the effective dimension for all subsequent
subboxes of X. If the function is the objective function in our overall optimization problem
then we can actually replace X by X

(∗). This improves the quality of the bound as long
as the overall bound process is itself inclusion monotonic. The linear programs can be
simplified by using only vertices from the set V (∗) and eliminating the variables xi of the
primal and δi of the dual corresponding to the fixed coordinates. If we are willing to pay
the price of recursion, we can also use the better inclusions Fj(X

(∗)) instead of Fj(X).

The validity of the simplification is demonstrated by showing that the optimal value of
the dual can only increase when a vertex not in V (∗) is replaced by the corresponding vertex
of V (∗), and then that the optimal value of δi for the fixed coordinates is zero. Alternately,
it can be shown that the LP-form bounds are indeed inclusion monotonic.

17

4 General Polyhedral Envelopes

We can expect a better inclusion for z(x) if we propagate the full LP-form envelopes through
the function graph instead of simplifying the envelopes for each subfunction. This ap-
proaches a polyhedral analogue of the methods of McCormick [10], but without the diffi-
culties arising from the need to maintain differentiability. The convex envelopes of unary
functions used by McCormick are tighter than polyhedral envelopes, but our treatment of
products is generally tighter. We will also use vertex gradient expansions at each stage to
improve the envelopes and allow monotonicity to be exploited, as before.

Assume now that each function will be represented by an LP-form F �(x) ⊇ f(x) on a box
X. Given such an LP-form for each subfunction in f(x) =

∑

j fj(x), the optimal LP-form
for f(x) is simply F �(x) =

∑

j F �
j (x). The primal linear programs for f(X) contain all of

the lower or upper constraints defining the F �
j (x). If each F �

j (x) has gradient expansion
constraints for the same vertex set V , then gradient expansions from V are already included
for F �(x). A gradient inclusion for f(x) better than

∑

j Gj(X) may be available. We may
also want to use a different V for f(x) than was used for the fj(x), particularly to exploit
the monotonicities of f(x). The simplest approach is just to allow any additional constraints
to be added to F �(x).

For the case of products we must handle the logarithmic transformation of the LP-forms
F �

j (x), which leaves a sum that we handle as above. The logarithm transform will be
handled as an instance of a unary function. Before addressing the unary functions, we
discuss the maximum and minimum of subfunctions. The lower envelope of a maximum
and the upper envelope of a minimum are handled simply by combining the corresponding
constraints, as in the univariate case of Section 2.4. The other halves of the envelopes must
be convexified, and there is no simple method for doing this. The best approach is probably
to use the simplified envelope analogous to the one given for the univariate case.

Finally, we consider unary functions. Suppose f(x) = u(y(x)) and we have the LP-form
Y �(x) for y(x) on X. We assume that the inclusion Y �(X) has been computed and that
we can compute a polyhedral envelope U�(y) ⊇ u(y) on Y �(X). Then an LP-form for f(x)
is F �(x)

.
= U�(Y �(x)) where we extend U�(·) to an inclusion in the natural fashion. It is

not hard to show that a composition of LP-forms is always an LP-form.

In practice we would simply combine the constraints on u(y) in U�(y) with the constraints
on y(x) in Y �(x), keeping the additional variable y. This effectively defines an LP-form
F �(y, x)

.
= U�(y ∩ Y �(x)) for which F �(x) = F �(Y (X), x). In general this F �(x) does not

include gradient expansions from the values u(y(v)) at vertices v ∈ V(X), but these can be
added to F �(x).

This process introduces additional variables and the number of constraints grows at each
level of the function graph, but the growth is only additive in the number of subfunctions.
The improvement in the overall inclusion can easily justify the additional effort required to
propagate these more accurate LP-forms.

18

5 Discussion

The LP-form approach to global optimization is really a class of methods for generating
polyhedral envelope inclusions for real-valued functions. A variety of additions can be made
to the envelope-defining constraints. We might, for example, wish to add expansions from
facets of X, such as F (X1, v2)+G2(X)(x2−v2) for a two-dimensional problem. The essence
of the ideas presented is to use the available information to propagate tractable and accurate
inclusion functions through the function graph.

There are a few ways to improve the gradient inclusions used in the LP-forms. First,
for expansions from a particular vertex v we can replace an inclusion of the gradient with
a slope inclusion

Ĝi(X) ⊇
f(x) − f(x1, . . . , xi−1, vi, xi+1, . . . , xn)

xi − vi

where we can restrict some components of x to match those of v to get a successive ex-
pansion that can be used in the same way as (3.4) with modified versions of the successive
monotonicity properties. This requires a different set of slope inclusions for each vertex
used, but the range of the slope is smaller than the corresponding gradient component and
it may be possible to find good slope inclusions for some functions.

We can also apply the LP-form approach to finding good gradient inclusions. This
requires Hessian bounds and increases the effort by an O(n) factor. The value of proving
even partial successive monotonicity may make the effort justified. It may be possible to use
the Hessian bounds directly in the LP-forms, but they are more suited to a nonpolyhedral
method.

The results of Section 3.2 demonstrate that monotonicity is powerful and easily exploited
within the LP-form inclusion process. The ability to obtain exact bounds in regions where
the function is neither convex nor fully monotonic is surprising and welcome. More im-
portantly, using partial monotonicities to reduce the effective dimension of the bounding
problem may be crucial to the practical success of deterministic global optimization on
medium- and high-dimension problems.

A number of extensions are possible. The methods presented can be applied to nondif-
ferentiable functions if we replace the gradient inclusions with subgradient inclusions. The
quadratic convergence is lost on boxes containing gradient discontinuities. We can allow
discrete variables if we employ subgradients and perform a shrinking operation on each box
generated.

Linear constraints on x can be directly incorporated into the LP-forms if we define
F (∅) = ∅ to indicate infeasible boxes. Linear constraints on the value of a subfunction are
also easily included in the LP-form for the subfunction.

LP-forms can also be used for applications of interval analysis other than global opti-
mization, such as solving nonlinear systems of equations.

19

References

[1] Alefeld, G. and Herzberger, J. Introduction to Interval Computations. Academic
Press, New York (1983).

[2] Dixon, L.C.W. and Szego, G.P. eds. Towards Global Optimisation. North Holland,
Amsterdam (1975).

[3] Dixon, L.C.W. and Szego, G.P. eds. Towards Global Optimisation 2. North Holland,
Amsterdam (1978).

[4] Falk, J.E. and Soland, R.M. An algorithm for separable nonconvex programming
problems. Manag. Sci. 15 550-569 (1969).

[5] Hansen, E.R. On solving systems of equations using interval arithmetic. Math. Comp.

22 374-384 (1968).

[6] Hansen, E.R. Global optimization using interval analysis - The multi-dimensional
case. Numer. Math. 34 247-270 (1980).

[7] Hansen, E.R. and Sengupta, S. Global constrained optimization using interval analy-
sis. In Interval Mathematics 1980, ed. W. Nickel. Academic Press, New York (1980).

[8] Horst, R. An algorithm for nonconvex programming problems. Math. Prog. 10 312-
321 (1976).

[9] Kiefer, J. Sequential minimax search for a maximum. Proc. Amer. Math. Soc. 4 502
(1953).

[10] McCormick, G.P. Nonlinear Programming - Theory, Algorithms, and Applications.

Wiley, New York (1983).

[11] Moore, R.E. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey (1966).

[12] Moore, R.E. On computing the range of a rational function of n variables over a
bounded region. Computing 16 1-15 (1976).

[13] Moore, R.E. Methods and Applications of Interval Analysis. (SIAM Studies in Applied
Mathematics). SIAM, Philadelphia (1979).

[14] Ratschek, H. and Rokne, J. Computer Methods for the Range of Functions. Ellis
Horwood, Chichester (1984).

[15] Ratschek, H. and Rokne, J. New Computer Methods for Global Optimization. Ellis
Horwood, Chichester (1988).

[16] Rinnooy Kan, A.H.G. and Timmer, G.T. Global Optimization. Report 8612/A,
Econometric Institute, Erasmus University, Rotterdam (1986).

[17] Rosen, J.B. Global minimization of a linearly constrained concave function by parti-
tion of feasible domain. Math. Oper. Res. 8 215-230 (1983).

20

