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ABSTRACT 
Two global optimization algorithms, namely 
Genetic Algorithm (GA) and Simulated 
Annealing (SA), have been applied to the 
aerodynamic shape optimization of transonic 
cascades; the objective being the redesign of an 
existing turbomachine airfoil to improve its 
performance by minimizing the total pressure 
loss while satisfying a number of constraints. 
This is accomplished by modifying the blade 
camber line; keeping the same blade thickness 
distribution, mass flow rate and the same flow 
turning. The objective is calculated based on an 
Euler solver and the blade camber line is 
represented with non-uniform rational B-splines 
(NURBS). The SA and GA methods were first 
assessed for known test functions and their 
performance in optimizing the blade shape for 
minimum loss is then demonstrated on a 
transonic turbine cascade where it is shown to 
produce a significant reduction in total pressure 
loss by eliminating the passage shock. 

1. INTRODUCTION 
Aerodynamic optimization methods are 
becoming very attractive in today’s competitive 
environment as they can reduce the design cycle 
time by automating the design process. Until 
recently, designers were relying mostly on 
manual optimization. As Computational Fluid 
Dynamics (CFD) matured over the last decade 
and as computing technology has greatly 
improved and has become more affordable, 
simulation-based optimization is becoming 
affordable and more popular than ever. This is 
due to the fact that optimization techniques give 
direct control on performance parameters, even if 
the computational cost is at least one order of 

magnitude larger than the cost of an analysis 
calculation. 

Aerodynamic shape optimization allows the 
designer to explore the design space to achieve a 
given objective. One possible design objective is 
to minimize flow losses, which can be measured 
by the total pressure loss (or entropy generation). 
Minimization of flow losses can be achieved by 
properly reshaping the blade profile. Automated 
aerodynamic design is accomplished by coupling 
a CFD (Computational Fluid Dynamics) flow 
simulation code with numerical optimization 
methods. As the aerodynamic shape optimization 
problem is a complex one with possibly many 
local minima, gradient-based methods can be 
trapped in a local optimum, unless the initial 
guess is close to the global minimum. For this 
reason, heuristic/evolutionary global algorithms 
such as Genetic Algorithm (GA) and Simulated 
Annealing (SA) are used to ensure reaching the 
global minimum. These algorithms have been 
recently applied in turbomachinery design 
problems; examples of such algorithms are given 
in [1-3]. 

Dennis et al. [1] used a combination of genetic 
and SQP algorithms to optimize a two-
dimensional turbine cascade. They enforced the 
equality constraints on the mass flow rate, blade 
exit angle and other quantities. The optimization 
scheme required from 220 to 675 calls to the 
flow analysis code. Wang et al. [2] implemented 
the Simulated Annealing method on multiple 
processors for Aerodyamic Shape Optimization. 
Their major focus was in the reduction of the 
computation associated with the stochastic 
global optimization algorithm, simulated 
annealing. Oyama et al. [3] worked on 3D blade 
shape optimization by including the mass flow 
rate and pressure ratio as constraints in the 
objective function. 



In this work, the objective is to minimize the 
total pressure loss for a two-dimensional cascade 
assuming inviscid transonic flow and given that 
the original and the optimized blades have the 
same thickness distribution, same mass flow rate, 
and accomplish the same overall flow turning (or 
work); they also have the same inlet and exit 
flow conditions. The objective function is 
constrained. The shape optimization is carried 
out for different transonic cascades to 
demonstrate the ability of the optimizer to 
minimize the total pressure loss by eliminating 
the passage shock. The present work uses 
stochastic and global optimization algorithms, 
Simulated Annealing (SA) and Genetic 
Algorithm (GA) as optimization schemes.  

2. THE DESIGN PROBLEM 

2.1 Problem definition 
A common aerodynamic shape design problem is 
the redesign of an existing turbomachine airfoil 
to improve its performance. Aerodynamic shape 
redesign for an existing airfoil requires that a 
number of specific constraints be enforced; these 
constraints are as follows. The original and the 
new blades should have the same axial chord so 
that it may fit into the existing turbomachine. 
The inlet and exit flow angles should be the 
same in the redesigned blade as in the original 
one otherwise the velocity triangles will not 
match with the neighboring blade rows. The 
mass flow rate through the new blade row must 
be the same as the original blade row otherwise 
the turbomachine will perform at an off-design 
mass flow rate which can lead to serious drop in 
efficiency and create unsteady flow problems. 
The spacing between the blades will be kept 
fixed as the total number of blades in the 
turbomachine is to be maintained. The thickness 
distribution for the redesigned airfoil is chosen to 
be the same as the original airfoil. This is to 
avoid an unacceptably thin blade and to fix the 
section area so that it will be able to sustain the 
expected loads without performing a detailed 
elasticity analysis of the blade geometry. The 
objective is then defined as the minimization of 
the total pressure loss for a given specified flow 
boundary conditions and structural requirements. 

2.2 NURBS representation 
The geometric representation of the profiles is an 
important part in any aerodynamic shape 

optimization procedure. In this work, the blade 
profile is defined using the mean camber line and 
the tangential thickness distribution as shown in 
Fig. 1. Since the thickness distribution is 
prescribed, the camber line has to be modified to 
achieve the objective. The shape optimization 
procedure is conducted by iteratively 
determining the optimum airfoil shape that 
satisfies all the constraints and meets the 
objective function. This implies that a large 
number of airfoils will be created and examined 
using an appropriate fluid flow analyzer and 
optimization algorithm. In order to minimize the 
computations task, the airfoil shape is 
parameterized with a relatively small number of 
parameters that will then serve as design 
variables. This is achieved using Non-Uniform 
Rational B-Splines (NURBS). In addition 
NURBS have the advantage that local shape 
modification can be easily done without 
affecting other parts of the airfoil. 

The NURBS curve is given by a sum over all 
control points, n, of a rational B-spline Ni,p(u), 
times the control point coordinates, iP

r
, times a 

weight, wi, so that the coordinates of the blade 
profile are determined once the control points 
and the corresponding weights are specified. The 
NURBS curve is defined as [4]: 
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Where iP
r

 are the x- and y-coordinates of control 
point i, wi is the corresponding weight, Ni,p is the 
pth degree B-spline basis function, and C )(ui

r
 are 

the x- and y-coordinates of control point i on the 
curve, which corresponds to ui, the ith element of 
the knot vector ur . The latter is determined using 
the chord length method [4]. The basis functions 
Ni,p vanish everywhere except in the vicinity of 
point i, where the size of this vicinity depends on 
the order p. The weight wi provides control on 
the curve attraction towards control point i. The 
NURBS are defined on the non-uniform 
parameters called knots, so that some of the 
control points affect a larger region of the curve 
while others affect a smaller region depending on 
the knot vector distribution. 

The key feature of a NURBS curve is that its 
shape is determined/controlled by the set of 
control points and the corresponding weights. 



Moreover, placing and moving either one or 
more of the control points, the knots or the 
weights can accomplish either a local or a global 
change of the target shape. A NURBS curve also 
represents conics exactly, e.g. circles, ellipses, 
hyperbolas, cylinders, cones. This implies that 
NURBS functions can represent a much wider 
family of curves compared with what B-splines 
or Bézier curves can represent, while 
simultaneously ensuring the profiles smoothness. 
They are generalizations of B-splines and Bézier 
curves and surfaces and are becoming industry 
standard in surface representation. 

3. OPTIMIZATION ALGORITHMS 
The aerodynamic shape optimization problem 
reduces to solving a constrained optimization 
problem. Two global optimization techniques 
were used: Simulated Annealing (SA) and 
Genetic Algorithm (GA) methods are the two 
algorithms that are studied and the results are 
compared. 

3.1 Genetic Algorithm 
Genetic algorithms are general-purpose search 
algorithms based upon the principles of 
evolution observed in nature. Genetic algorithms 
combine selection, crossover, mutation, and 
elitism operators with the goal of finding the best 
solution to a problem. Genetic algorithms search 
for this optimal solution until a specified 
termination criterion is met [5,6]. 

The variables for the GA algorithm (the genes) 
can be either binary coded or real coded. In this 
work, a real coded genetic algorithm is 
implemented where the design parameters are 
represented using a floating-point representation 
where an individual is characterized by a vector 
of real numbers. A floating-point representation 
is more natural and closer to the design space 
than a binary representation, which also requires 
a longer string to represent the individual. 

The GA algorithm that was developed, 
implemented and reported in this work, involves 
four basic operations namely, selection, 
crossover, mutation and elitism. 

Selection is a genetic operator that chooses a 
chromosome from the current generation’s 
population for inclusion in the next generation’s 
population. Before making it into the next 
generation’s population, selected chromosomes 
may undergo crossover and/or mutation 

(depending upon a probability of crossover and 
mutation) in which case the offspring 
chromosome(s) are actually the ones that make it 
into the next generation’s population. 

There are different types of selection schemes. 
The one implemented in this work is the Roulette 
(rank biased) selection [6]. It is a selection 
operator in which the chance of a chromosome 
getting selected is proportional to its fitness or 
rank (which is based on the objective function). 
This is where the concept of survival of the 
fittest comes into play. 

Crossover is a genetic operator that combines 
(mates) two chromosomes (parents) to produce a 
new chromosome (offspring). The idea behind 
crossover is that the new chromosome may be 
better than both of the parents if it takes the best 
characteristics from each of the parents. 
Crossover occurs during evolution according to a 
user-defined crossover probability.  

Two kinds of crossover operations are included 
in the real-coded GA developed in this work 
namely, arithmetic and heuristic crossover 
operators. 

Arithmetic crossover operator combines linearly 
two parent chromosome vectors to produce two 
new offspring while heuristic crossover operator 
uses the fitness values of the two parent 
chromosomes to determine the search direction 
and creates the new offspring. 

Mutation is a genetic operator that alters one or 
more gene values in a chromosome from its 
initial state. This can result in entirely new gene 
values being added to the gene pool. With these 
new gene values, the genetic algorithm may be 
able to arrive at a solution better than was 
previously possible. Mutation is an important 
part of the genetic search as it helps to prevent 
the population from stagnating at any local 
optimum. Mutation occurs during evolution 
according to a user-defined mutation probability. 
This probability should usually be set fairly low 
(the default value is set to 0.01). If its value is set 
too high, the search will turn into a primitive 
random search. 

Uniform type mutation is used for the algorithms 
in this work; it replaces the value of the chosen 
gene with a uniform random value selected 
between the user-specified upper and lower 
bounds for that gene. 

For a generational GA, elitism makes few like 
two copies of the best performer in the old pool 



and places them in the new pool, thus ensuring 
that the fit chromosome survives. It is simply the 
guarantee that the fit solution found to date 
would remain within the population.  

Three stopping criteria are imposed: when the 
specified fitness threshold is reached, or the 
specified maximum number of generations is 
reached, or the elapsed evolution time exceeds a 
specified maximum. 

3.2 Simulated Annealing 
As its name implies, the Simulated Annealing 
exploits analogy between the way in which a 
metal cools and freezes into a minimum energy 
crystalline structure (the annealing process) and 
the search for a minimum in a general system. If 
a physical system is melted and then cooled 
slowly, the entire system can be made to produce 
the most stable (crystalline) arrangement, and not 
get trapped in a local minimum.  

The SA algorithm was first proposed by 
Metropolis et al. [9] as a means to find the 
equilibrium configuration of a collection of 
atoms at a given temperature. Kirkpatrick et al. 
[7] were the first to use the connection between 
this algorithm and mathematical minimization as 
the basis of an optimization technique for 
combinatorial (as well as other) problems.  

SA’s major advantage over other methods is its 
ability to avoid being trapped in local minima. 
The algorithm employs a random search, which 
not only accepts changes that decrease the 
objective function f, but also some changes that 
would increase it. The latter are accepted with a 
probability 
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Where δf is the increase in f and T is a control 
parameter, which by analogy with the original 
application is known as the system 
“temperature” irrespective of the objective 
function involved. Briefly SA works in the 
following way. Given a function to optimize, and 
some initial values for the variables, simulated 
annealing starts at a high, artificial, temperature. 
While cooling the temperature slowly, it 
repeatedly chooses a subset of the variables and 
changes them randomly in a certain 
neighborhood of the current point. If the 
objective function has a lower function value at 
the new iterate, the new values are chosen to be 
the initial values for the next iteration. If the 

objective function has a higher function value at 
the new iterate, then the new values are chosen 
to be the initial values for the next iteration with 
a certain probability, depending on the change in 
the value of the objective function and the 
temperature. The higher the temperature and the 
lower the change, the more probable the new 
values are chosen to be the initial variables for 
the next iteration. Throughout this process, the 
temperature is decreased gradually, until 
eventually the values do not change anymore. 
Then, the function is presumably at its global 
minimum. The global minimum is obtained by 
choosing an appropriate “cooling schedule”, 
which includes the temperature and its cooling 
rate. 

A cooling schedule describes the temperature 
parameter T, and gives rules for lowering it as 
the search progresses. Unfortunately, there is no 
systematic way of determining the best annealing 
schedule for a given optimization problem. The 
one implemented in this work is that suggested 
by Corana et al. [8] in which T is decreased 
geometrically after a predetermined number of 
function evaluations. An initial temperature Tin is 
given based on Kirkpatrick’s [7] suggestion, 
namely that a suitable initial temperature is one 
that results in an acceptance rate of about 80% 
for all moves and, after every m steps, T is 
multiplied by ε, a temperature reduction factor, 
which is a factor between zero and one. 

4. OPTIMIZATION SCHEME 
VALIDATION 

In order to test the SA and GA implementations, 
some standard optimization problems were 
chosen from the literature [14]. The problems 
size ranges from 2 to 40 design variables. The 
tests include the Rosenbrock banana function 
and the Rastrigin function. The test functions 
vary in difficulty, in number of local minima, 
and in number of design variables X. They have 
a global extremum that is hidden among many 
local extrema. Therefore they are appropriate for 
testing different implementations of global 
search optimizers such as GA and SA. The 
search range that was chosen for each function 
includes several local minima. These problems 
are given below. 

4.1 The Rosenbrock function 
The Rosenbrock test function is given by: 
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It is a classic optimization problem, also known 
as the banana function. The global minimum is 
inside a long, narrow, parabolic shaped flat 
valley. The convergence to the global optimum 
is difficult and hence this problem has been 
repeatedly used to assess the performance of 
optimization algorithms. 

The function has a global minimum value of zero 
at the point xi=1 for all i, i.e. f(1)=0 is the global 
optimum. Different ranges of the design 
variables were defined as ±2.048, ±10.048 and 
±60.048. In the following results, the range 
±10.048 was used. 

Table 1, which compares the current SA results 
with those of Ref. [14], shows that the present 
implementation of SA is more efficient in terms 
of the number of function evaluations needed to 
reach the global minimum. Figure 2 shows the 
convergence history for the problem of 
minimizing the Rosenbrock function with forty 
design variables, n=40. Both GA and SA have 
shown a large improvement in the optimal 
solution relative to the initial one, but SA 
outperforms GA in getting very close to the 
global solution. SA was able to find the global 
optimum with an absolute error of 10-20 with 
2,424,000 function evaluations. 

In all cases, the SA was able to find the global 
optimum point very accurately without any 
significant change in the computation time 
whereas the GA algorithm had difficulty in 
reducing the absolute error below 20, except for 
the case where n=2 (i.e., two variables) the GA 
did find the global minimum very accurately. 

4.2 The Rastrigin function 
The Rastrigin function is given by the following 
expression: 

∑
=

−+=
n

i
ii xxnXf

1

2 ))2cos(10(10)( π  (4) 

It is a widely used multivariable multimodal (i.e., 
with several local extrema) test function. The 
function global minimum value is 0 and it occurs 
at xi=0, i.e. the global minimum is f(0)=0. In the 
optimization search, all the xi's are defined in the 
range ±5.12 and ±10.12. 

Figure 3 shows a comparison of the SA and GA 
algorithms applied to the Rastrigin function, with 

forty design variables, n=40. Both SA and GA 
brought a large improvement in the optimal 
value. SA improved the optimal value by 99.6 % 
relative to the initial value while GA improved it 
by 100 %. The absolute error is less than 10-14 
for GA and 4.97 for SA. 

The range of the design variables was 
successively increased form ±5.12 to ±10.12, 
which increased the number of local optima from 
11 to 21 as each integer corresponds to a local 
minimum of the Rastrigin function. In all cases 
the GA was able to find the global minimum 
accurate to 10-14 without any significant change 
in the computation time. The values reported in 
Table 2 correspond to an xi range of ±10.12. 

Fogel and Beyer [15] reported results for the 
Rastrigin function with 30-variables; the best 
function value that they reported was larger than 
10 after 200,000 function evaluations. In the 
present work, starting from the same initial range 
of design variables, a function value of 10-6 was 
achieved in 88,100 function evaluations, and a 
value less than 10-14 was achieved with 278,800 
function evaluations. 

Deb et al. [14] reported results for the same 
function but with 20-variables and starting the 
optimization from an initial solution away from 
the global optimum, they were only able to 
reduce the function to a value between 10 and 
20. 

4.3 Concluding remarks 
Further tests were carried out with GA and SA 
and, in almost all cases tested, it was found out 
that SA and/or GA were able to track the global 
optimum in a reasonable computational effort 
however the algorithm parameters have to be 
well tuned. 

The solution accuracy and convergence rate for 
both SA and GA algorithm depends on the 
respective parameters. For SA, the solution is 
most sensitive to the cooling schedule 
parameters i.e., the temperature (T) and its 
reduction factor (rt). A temperature of 5x106 and 
106 are used for the Rosenbrock and Rastrigin 
test functions respectively, and a temperature 
reduction factor of 0.85 is used for both cases. 

The value of the parameters used in testing the 
GA on the Rosenbrock and Rastrigin functions 
are as follows. The cross over probability is 0.65 
and 0.85, the mutation probability is 0.01 and 
0.05 and the elitism is 2, respectively. 



The test functions that vary in difficulty, in 
number of local minima, and in number of 
design variables X, have been tested with the GA 
and SA routines developed by the authors. The 
GA algorithm had difficulty with the Rosenbrock 
function, which has a long flat valley near the 
global minimum; while the SA algorithm had 
difficulty with the Rastrigin function, which has 
numerous local minima. This suggests that any 
optimizer would not necessarily work for all 
cases. 

5. AERODYNAMIC OPTIMIZATION 
PROBLEM 

Blade shape optimization is a crucial step in the 
design cycle of a turbomachine. This research is 
focused on adjusting the blade profile so as to 
minimize the total pressure loss subject to some 
geometric as well as flow constraints. 

Blade design using optimization techniques is 
becoming desirable and practical; one important 
issue is how to choose the design variables and 
reduce their number to a minimum while 
maintaining the freedom and quality of the blade 
shape representation. The x-coordinates of the 
NURBS control points, used in the blade 
geometric parameterization, were fixed while the 
y-coordinates and weights were taken as the 
design variables. This parameterization ensures 
good continuity of the blade profile, it fixes the 
chord length, and the parameters defining the 
geometry have intuitive meaning that facilitates 
imposing constraints on their variation so as to 
restrict the design space. The cost function is the 
total pressure loss subject to several aerodynamic 
and mechanical requirements, which include 
fixed mass flow rate, fixed inlet and exit flow 
angles, fixed exit static pressure, fixed axial 
chord and spacing and fixed thickness 
distribution. 

In order to redesign a given blade, the following 
approach is used. Initially we have a transonic 
blade which has a shock formed on the blade 
suction side. The original blade profile, which is 
described by its camber line and tangential 
thickness distribution, is taken as the initial 
design. The camber line is represented by 
NURBS using from 7 to 11 control points 
whereas the thickness distribution remains fixed 
for all design candidates so that the resulting 
profile does not end up with an unacceptably thin 
blade. 

The optimization algorithm generates a new 
blade profile by changing the control points for 
the camber line. The unstructured grid is 
generated for this new blade geometry, Euler 
equations CFD solver is then used to simulate 
the flow and compute the total pressure loss, 
which is the objective function, and the mass 
flow rate and exit flow angle, which are the 
constraints. These steps are repeated until the 
total pressure loss is reduced to a minimum, 
which implies that the shock is either eliminated 
or at least weakened, and the mass flow rate and 
exit flow angle are fixed to within a tolerance. 

The objective function is penalized with delta 
mass flow rate and delta exit flow angle (to 
enforce a given mass flow rate and flow turning) 
and the other constraints are directly enforced 
through the prescribed inflow boundary 
conditions imposed in the CFD code, which are 
the total pressure, total temperature and inlet 
flow angle as well as the static pressure at the 
outflow boundary. The mathematical form of the 
objective function, E, could be expressed as 

221 β∆+∆+∆= CmCPE t  (5) 

Where ∆Pt is the total pressure loss, ∆β2 is the 
difference between the computed and the target 
exit flow angles in degree, and ∆m is the 
difference between computed and target mass 
flow rates. The weights C1 and C2 are user 
specified penalty coefficients; they assume the 
following values. 

For GA, C1 and C2 are zero below a certain 
threshold, otherwise they take the following 
values: 

C1 = 1000 when ∆m>0.01 
C2 = 10 when ∆β2>1º 

For SA, C1 = 0.5 and C2 = 0.002; they are chosen 
so as to have equal penalizing effect on the 
objective function. 

5.1 Flow simulation method 
The two-dimensional inviscid transonic flow in a 
linear cascade is simulated using a cell-vertex 
finite volume space discretization method on an 
unstructured triangular mesh. The steady state 
solution is reached by pseudo-time marching the 
Euler equations using an explicit five-stage 
Runge-Kutta scheme. Local time stepping and 
implicit residual smoothing were used for 
convergence acceleration. The non-linear blend 
of second and fourth order artificial viscosity 



was found to be successful in capturing shocks 
and eliminating pressure-velocity decoupling 
with minimal numerical diffusion. The method 
of characteristics was used to impose inflow and 
outflow boundary conditions. More details on 
the discretization method can be found in 
Ahmadi and Ghaly [13]. 

The flow at the inlet and exit planes, which are 
placed one chord upstream and downstream of 
the cascade, is always subsonic. At the exit 
plane, the exit static to inlet total pressure is 
specified. The boundary conditions at inlet that 
can be imposed in this CFD code are total 
pressure, total temperature and inlet flow angle, 
or reduced mass flow rate, total temperature and 
inlet flow angle. The first set of inlet boundary 
conditions is used in the constrained 
optimization where the objective function is 
penalized by delta mass flow rate, while the 
second set is used in the optimization with no 
constraints, since all geometry and flow 
requirements are explicitly specified. 

6. RESULTS AND DISCUSSION 
The optimization algorithms, presented in the 
previous sections, were used to design several 
transonic cascades. Since the algorithms 
behavior for these different cascades was similar, 
only one of these cases in hereby presented, that 
of an impulse turbine cascade, see Ref. [10], 
which is originally transonic; and it was 
redesigned for minimum total pressure loss. 

The optimization parameters for the GA and SA 
algorithms were studied and were properly tuned 
for this case. 

6.1 A transonic turbine cascade 
This is an impulse cascade with sharp leading 
and trailing edges. The spacing to chord ratio is 
0.526 and the thickness distribution assumes a 
parabolic profile with a maximum thickness to 
chord ratio of 21.45% occurring at mid-chord. 
The inlet flow angle is 40.63° and the ratio of 
exit static to inlet total pressure is 0.833. 

Figure 4 gives the optimization history for the 
GA and SA. For the GA, the objective function 
is reduced from 0.0043 to 0.0025 in six 
generations, each consisting of 30 individuals, 
hence involving 180 CFD calls in all. For about 
the same objective function reduction (from 
0.0043 to 0.0026), the SA algorithm used about 
118 function evaluations to eliminate the shock. 

A single flow field analysis took around eight 
minutes (when starting from a converged 
solution obtained for a given candidate of the 
previous generation) with a CFL number of 4 on 
a mesh with 2800 points. 

Figures 5 and 6 give the Mach number profiles 
for the original and the GA-optimized blade, 
where the flow over the original cascade exhibits 
a shock around mid-chord; this shock has been 
eliminated in the optimized profile. Figures 7 
and 8 give the Mach number profiles for the 
original and SA-optimized blade. 

Note that the inlet and exit Mach numbers are 
about the same in the original and optimized 
cascades. In both schemes, it was possible to 
eliminate the shock by modifying the blade 
camber line. Figure 9 shows that the changes in 
shape between the original and the redesigned 
blades are relatively small, which would be 
difficult to achieve by manually changing the 
blade shape. Note also that both designs have a 
reversed curvature along the blades suction side 
so that the flow can compress reversibly. Other 
researchers [10,11], who were using inverse 
design methods, have also observed similar 
behavior. 

7. CONCLUSIONS 
A robust aerodynamic shape optimization 
method that uses two global optimization 
algorithms namely, GA and SA, has been 
developed and demonstrated. The objective 
function is evaluated using a 2D Euler solver. 
The blade geometry was approximated using 
NURBS, which provide great flexibility and 
accuracy. The GA has better power in exploring 
the design region and best suited for large scale 
problem where the number of design variables 
and the size of the design space are relatively 
large, while the SA method seems to be more 
accurate and quick for relatively low number of 
design variables. The design optimization 
algorithm was applied to redesigning a two-
dimensional cascade to be retrofitted into a 
turbomachine, with the objective of minimizing 
the losses (by eliminating any existing passage 
shocks) for the same mass flow rate, same 
thickness distribution and the same overall flow 
turning (work load). The optimized blades were 
shock-free transonic blades and the optimization 
process took a relatively short number of 
function evaluations, each involving a CFD 
calculation. 
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Table 1. The SA result for the Rosenbrock function 

ROSENBROCK PROBLEM 

# OF FUNCTION EVALUTAIONS 

(Absolute error <10-20) 

 PRESENT WORK LITERATURE [14]

20 DV 1,174,000 1,396,496 

30 DV 1,764,000 3,719,887 

40 DV 2,424,000 --- 

 

Table 2. The computation result of SA and GA for the 
Rastrigin function 

RASTRIGIN PROBLEM 

20,30,40 Design Variables (DV) 

SA GA 

Cases
Optimal 
Value 

# of 
function 

Optimal 
Value 

# of 
function

20 DV 2.98 5,601 10-14 592,000 

30 DV 2.98 8,401 10-14 278,900 

40 DV 4.97 16,801 10-14 318,700 
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Figure 1. Blade geometry description 

No. of function evaluations

O
bj

ec
tiv

e
fu

nc
tio

n

101 102 103 104 105 106 107

10-7

10-5

10-3

10-1

101

103

GA
SA

 

Figure 2. Convergence history for the Rosenbrock test 
function with 40 design variables 
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Figure 3. Convergence history for the Rastrigin test 
function with 40 design variables 
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Figure 4. Convergence history of Impulse Turbine 

Cascade 
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Figure 5. Isentropic Mach contours for Impulse 

Turbine Cascade using GA. 
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Figure 6 Isentropic Mach number along the blade 

surfaces for the impulse turbine using GA 
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Figure 7. Isentropic Mach contours for Impulse 
Turbine Cascade using SA 
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Figure 8 Isentropic Mach number along the blade for 
impulse turbine using SA 
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Figure 9 Original and redesigned blade profiles 
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