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Abstract

This paper presents an approach for the global optimization of con-
strained nonlinear programming problems in which some of the con-
straints are mon-analytical (non-factorable), defined by a computa-
tional model for which no explicit analytical representation is avail-
able. A two phase approach to the global optimization is considered.
In the first phase the non-analytical functions are sampled and an in-
terpolation function is constructed. In the second, the interpolants are
used as surrogates in a deterministic global optimization algorithm.
The interpolants are designed in such a way as to allow valid over-
and under-estimation functions to be constructed so as to provide the
global optimization algorithm with a guarantee of e-global optimality.



1 Introduction

Chemical engineering models often cannot be defined by analytical expres-
sions and need to be computed by numerical means. Systems of ordinary or
partial differential equations are two frequently encountered models of this
type. When such models participate in the constraints of an optimization
problem a number of difficulties arise. Firstly, the functions these models
describe are likely to be nonconvex and the globally optimal solution to the
problem in which they participate can be missed by local optimization meth-
ods. Secondly, properties such as Lipschitz constants, on which deterministic
global optimization algorithms may be founded, are usually not available. In
addition, these functions may be expensive to evaluate.

Deterministic global optimization approaches without global function prop-
erties have been studied by several authors. Munack! applied a branch and
bound approach using interval arithmetic to the optimization of a function
with bound constraints. This branch and bound approach, proceeds by fit-
ting a multiquadratic function to a transformation of the objective function
in the current box and minimizing the multiquadratic surrogate. Esposito
and Floudas? considered the application of the BB algorithm?® to problems
in optimal control. In these studies the o parameter was estimated from a
set of sampled Hessians in the function domain. Lipschitzian approaches to
global optimization without a known Lipschitz constant have been studied
by Wood and Zhang?, Jones et al.?, and Hansen et al.®.

Several authors, including Sacks et al.”, Jones et al.®, and Gutmann® have
considered the global optimization of unconstrained black-box functions,
where each function evaluation is very expensive and no information be-
sides these evaluations is available. These methods use a response surface
approach in which the objective function is interpolated from a set of sample
points, a utility function based on this interpolation is optimized, and the
black-box function is sampled at the new optimum point before the process
is repeated. Jones!® provides an overview of global optimization methods
based on this idea.

This paper introduces techniques to address global optimization problems
which are constrained by differentiable “non-analytical” functions. The non-
analytical functions we consider here are those which can be computed, along



with their gradients, by a deterministic numerical algorithm. No further
details of their analytic structure need be known.

The optimization problem may be written as follows:

min_ fo(z)

z€[z,T]CR™

subject to :
filz) < 0 forall i1=1,...,m (1)
filz) = 0 forall i=m+1,...,p

Fi(za,) = ug, forall i=p+1,...,q

2

Where 4; C {1,...,n}, B;C{l,...,n}, Ai(B;=0foralli=p+1,...,q,
and the notation x4, refers to the subvector of the x with indices in the set
A;. Each non-analytical function F; : R — R*% maps a vector x4, € R% to
a vector zp, € R*. The functions f;,2 =0, ..., p are algebraic functions with

structure which can be used in a deterministic global optimization algorithm
such as the aBB12:13:14,

The solution of the optimization problem proceeds by three phases. In the
sampling phase the functions F and their gradients are evaluated at a set of
sample points. It is assumed that the function evaluations are cheap enough
to enable a large enough number of points to be sampled for the construc-
tion of a sufficiently accurate interpolation. The interpolating functions are
used as surrogates for the non-analytical functions in the global optimization
phase. The replacement of the original non-analytical functions by surrogates
serves two purposes: the surrogates are cheaper to evaluate and contain in-
formation on which a global optimization algorithm may be founded. In the
final local optimization phase, the global optimum of the interpolation prob-
lem is used as a starting point for a local optimization of the original problem
formulation. This is needed to correct for the approximations made in the
interpolation phase.

Alfeld'® provides an overview of the numerous approaches available for the in-
terpolation of multivariate functions. Of these approaches, numerical studies
indicate the radial basis functions to have superior accuracy'®. Such interpo-
lation functions, however, have poor interval extensions and are therefore not



suitable for deterministic global optimization. In section 2 the interpolating
function which we will refer to as the “blending” function is defined. These
functions are designed in such a way as to have properties which can be used
to generate rigorous over- and under-estimators. They are computationally
efficient versions of blending functions discussed by Shepard!?, Franke and
Nielsen '®, Franke'®, Barnhill et al.'®, and Farwig?.

Section 3 discusses an interval arithmetic approach for generating linear
under- and over-estimators for the blending function. An alternative “smooth
blending” interpolation function is introduced in section 4 and the approx-
imation properties of the respective functions are compared. In section 5,
a cutting plane approach to generating linear under- and overestimators for
the blending functions is described. Section 6 describes the algorithm used
to sample the interpolation points. The global optimization algorithm is
discussed in section 7, and numerical results are presented in section 8.

2 Blending functions

Let x := [z,7] and F : R" — R be a function for which function values and
gradients are available from some subroutine call. We assume that we have
a list of design points z; € x (I € L) with components z;; (1 = 1,...,7)
and associated function values and gradients

fi=F@), g=VF().
Using the local linear approximations
filz) == fi+ gl (x — ), (2)
we define the blending function
. Ji if z = 1y,
flz) = { léwl(aﬁ)fl(x)/léwl(x) ifx#x foralllel, (3)

where the w;(z) are twice continuously differentiable weight functions such
that
0 <w(z) <oo=wx;) forxex\{z},
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Zwl )>0 forzxex.

leL

These conditions guarantee that f(z) is twice continuously differentiable. A
suitable set of weight functions is defined by

- Ti — T
(oo o (B2, 4
(Tt ) /5 e+ (222 2
where ¢ = 0 (but in practice, € is 1072 to avoid division by zero),

(€ — 2) @i — &)/ (w1 — ;) (T — w03)
L4+ (14 (€ —2y))?

for suitable constants -y,;. The x; = [z;,T;] form a family of boxes with x; €
int x; whose interiors cover int x. u, = max(u, 0) denotes the positive part
of a number u; the third power in (4) ensures that w;(z) is twice continuously
differentiable. A good choice of the ~;; is

wy;(§) = (5)

Ty + Ty — 2xy;
e+ (xi — 2) (T — z13)

(6)

Ti =

for some tiny ¢ > 0, since we have the following result.

2.1 Proposition. For the choice (6) with ¢ = 0, wy;(§) is increasing for
¢ € |z, ], decreasing for & € |z, Ty;], and vanishes at the end points
§ = Ty, Tii-

Proof.  The vanishing of wy;(§) at z;, and Z;; is clear. Here we show the
increasing, decreasing property. Differentiation and simplification gives

gw () = o (w1 =€) (2 + (€ — 213))
" A (T (€ - za))?)?

where
oy = (z; — &li)_Q + (T — 71) 3,

and we have z;; — z,, > 0 and Ty; — xy; > 0 for £ € [z, Ty].



The denominator and «y; are both positive. We now show that 2+ ;;(£ —xy;)
is also positive:

2476 —zn) = 242 Lw)
(E—z)

Coal o 1 forall € € [y, 7]

(T —x11)

The sign of the derivative it then the same as the sign of (z; — &), which
gives us the required result. O

As a consequence, w;(z) gets infinite weight at x = z;, finite positive weight
at x € int x; \ {z;}, and zero weight otherwise.

For a given box x’ C x, the monotonicity properties of wy;(§) imply that it
is straightforward to compute

wii = {[wy; (€), Wu(§)] | € € x,},

and hence an enclosure

wi(z) € W, = (ﬁ(wli)+)3/§: (e + (%)2) forzex. (7)

1=

Note that (for ¢ = 0) the denominators in (7) may contain 0, whence

0 <w <w; < oo.

Example 1 As an illustration, consider the function defined by a single
ordinary differential equation:

F(x1,29) = 2(ty)

%

dt

Z(to) = 1, ty = 0, tf =10

= —T1T2Z

This will serve as a non-analytical function for illustrative purposes, although
an analytical expression can be written, F(z1,z5) = e 102172,
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Here the evaluation of the blending function at an arbitrary point z =
(x1,22) = (0.30,0.37) is demonstated. Figure 1 shows the set of boxes which
contain this point, and the position of the design points associated with these
boxes. No other design point contributes to the evaluation of f (0.30,0.37).

The design points associated with these boxes are labelled 1, 2, 3 and 4 and
the data associated is summarized in Table 1.

The blending function evaluation data is summarized in Table 2. Note that,
although all 4 points contribute to the function evaluation, the weights are
such that the contributions of point 3 and 4 are smaller.

From this data the blending function can be evaluated:

F=Y %ﬁ(@ =0.3213 (8)

=1

The function F(x) equals 0.3296 at this point. Figure 2 illustrates, w;(z)/ > w;(x),
IeL
the fractional contributions of design points 1 and 2 to the blending function

over the supports of their weight functions.

As the blending function may involve a large number of design points the
implementation of the function needs to be efficient. As only a small fraction
of the total set of design points contribute a nonzero quantity to f(z) for
any given = € x, the key to the efficient evaluation of f(z) lies in the deter-
mination of the set of containing subregions {x; : z € x;,I € [1, L]}. This
can be facilitated by storing the sample data in a tree structure. Each node
of the tree corresponds to a subregion of the sample space, the root node
is associated with x, the leaf nodes with the subregions x;,1 € [1,L]. The
nodes which contribute to the blending function at any point can be found
by starting at the root node and descending via the nodes associated with
subregions which contain x.



3 Linear Under- and Overestimation by In-
terval Analysis

To determine linear under- and over-estimation functions for the blending
function on a box x’ C x, we observe that for a given Z € x Equations (2),
(3) imply the representation:

~

f(@) = f(z,%) + §(z)"(x — %) forzex, (9)

. Ji it =,
f(z,2) = { S wi(z) fi(7)) S wi(z), ifz#zforalllel, (10)

lel leL

a9 if x =,
9(z) = { Yowi(x)g/ Y. wi(zx), if z#ax foralllelL. (11)

leL leL

Both (10) and the components of (11) are weighted averages of known con-
stants, hence we can determine interval enclosures using the following result.

3.1 Proposition. Let the g; be sorted such that g1 < ¢ < ..., and

qw) =Y waq/Y w, wew, Y w >0, (12)

leL leL leL

where 0 < w, < w; < co. Then the minimum of g(w) is attained at w =
w™n(k) for some k, where

min _ wl lflgka
wi™" (k) {wl ifl> k.

and the maximum of q(w) is attained at w = w™**(k) for some k, where

max _ wl 1fl§k>
i (k)_{m ifl > k.



Proof. This follows from
g (X2 wi) — Yo wiq

aCI(w) . leL leL 49— Q(w)

dw; (> wp)? Y w

lel leL

Suppose the minimum is attained at w™™", then:

aq(wmin) _ qj o q(wmin)
ow; S wpmin

lel

If ¢; < g(w™™") then w < 0 and the minimum is attained at w; = w;.
J
BQ(w )

If ¢; > q(w™™) then o

> 0 and the minimum is attained at w; = w;

Suppose the maximum is attained at w™?*, then:

aq(wmax) _ q _ q( max)
ow; Swpex

lel

If ¢; < g(w™*) then %;;X) < 0 and the maximum is attained at w; = w;.
If ¢; > q(w™®) then % > 0 and the maximum is attained at w; = w;.
J

O

Note that updating the quantities

mm mm mm mln
E wy k)a, E wy

leL leL
_ § max max _ § max
- wl (k)ql; w
leL leL

when k changes to k£ + 1 costs only O(1) operations: If we introduce the
numbers
di =W — Wy,  Cx = Gedy,

we have
Zmll'l le:'llli + ck’ lel'l mln + dk,



max __ max max __ max

Thus the range of ¢(w) can be found with work proportional to the number
of terms in the sum with w; > 0. If one or more of the weights are infinite,
only a subset of the terms have to be calculated.

Applying this to (10) and (11) using (7), we find enclosures f(Z) of f(z, %)
and g of g(x), valid for all z € x'. Therefore, (9) implies the linear interval
enclosure

flz)ef(@)+g"(x—1) forzex' (13)

If £ = ', we find the linear enclosure

f@)+§"@-2) < fl@) < f@)+3 (@—2) forzex. (14)

Similar enclosures, but with different endpoints of g in the linear parts, can
be derived by choosing for  any other corner of x'; for instance, if Z = T,
we get

f@) +5 (a-7) < flo) < f@) +§"(x —7) forzex.

Thus we get up to 2" lower and 2" upper bounds. Note that g is independent
of Z, so that only the f(Z) need to be computed when changing Z. Note also
that if only lower bounds are needed one can save the computation of the

f (%); and similarly for upper bounds.

Remark. For improved approximation properties, it may be preferable to
apply the blending to a residual function instead of directly to f. In par-
ticular, one may use the given data to construct a quadratic or rational
approximation function and base the blending on the computed differences.

4 Blending Functions with Blending Deriva-
tives

A smoother function can be derived by blending the derivatives prior to
calculating the blending function. We base a local approximation around a
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design point z; on the following relation:

o T
~ wir g (.T—./L'l) dt 15
fo) = fi+ / 2| el 1o

Using the simplest approximation of this integral we define a local approxi-
mation as follows:

filz) == fi + 3(4(=) + g)" (@ — ), (16)
where the blending gradient g(x) is defined as follows:

lf.’L' = xy,

9(z) = { %EL wi(z)g/ Y. wi(x) if x#x forallel, (17)

leL

The blending function based on these local approximations is defined as
before:

o ,]Fl ifx = Zy,
f(a) = { e wi(@) fi(z)) S wi(z) if vz forall € L, (18)

leL

Example 1 - Continued. Returning to the illustrative function evaluation,
we can use the same weight values determined there, to calculate the values
of g(x) at x = (0.30,0.37), g(z) = (—1.2453,—1.0143). Using these values
of g(z) and equation (16) we calculate fi(z), fo(z), f3(x), fa(x) as 0.3282,
0.3305, 0.3325 ,and 0.3306 respectively. Using equation (18) with these values
we calculate f(:c) = 0.3295, a very good approximation of F(z) = 0.3296.

Example 2. Here we compare the interpolation properties of the respective
blending functions on the six hump camelback function®! 4z} —2.1z1 + 525 +
1179 — 423 + 4z}, over the domain ([—2.0,2.0],[—1.5,1.5]). The effects of
the amount of overlap and sample density were examined by sampling the
function over a uniform m xm grid, where m varied from 16 to 64. The space
was partitioned into m xm regions, and the design points placed at the center
of each of these box regions x;. The accuracy of the blending functions was
tested at points on a shifted grid, at point %@2 + %Tﬁ in each region xj. The

11



absolute error in the blending function f at a test point = is |f(z) — f(z)|.
The mean of the absolute errors, over the set of test points, is denoted 6( f),
and the maximum is denoted §™( f) In these tests the overlap between
boxes was determined by inflating each box x;, by a parameter ¢ such that,
=g — @I —2'),and T =T + ¢(Z — z'). § values for the test points are
tabulated in Table 3, and the 6™#* values are presented in Table 4.

In Table 3 we see that the approximation by f deteriorates with increasing
¢, while f tends to improve with greater overlap, while the error of f is an
order of magnitude less than that of f.

Similar trends are evident in Table 4. The maximum error is an order of
magnitude greater than the mean error owing to regions of high curvature
towards the boundary of the domain.

From Proposition 4.1 we see that linear under- and over-estimation functions
for the modified blending function can be derived using a similar approach
as before.

4.1 Proposition. f(z) = f(z,&) + §7(x — &) where

f,3) = Y w(@) @)/ w()

i(x) = D w@)g/d wlz)

Proof. This follows from

fl@) = D w@)fi(x)] Y we)
Swd
= sz(x) fi+ | 39 +2W ((z =) + (& — 1)) /sz

leL el leL

> wi(z)g]

= f(%f)-i-;wl(l‘) 591 +%W (z —7) /;wl(x)

> wi(z )ng
= f(z,2)+ Zwl(:p) lgT y 1L /Zwl (x — 1)

>
’UJ
leL el leL

12



= f(z,%)+§"(z —7)

5 Cutting Plane Approaches

The linear under- and over-estimating functions derived through interval
analysis can be relatively weak in regions containing a large number of sample
points. An alternative to the interval analysis approach is to use a separa-
tion algorithm to construct valid linear inequalities. This is based on the
observation that the graph of the blending function f (-) is contained in the
convex hull of the local linear approximations. This property does not apply
to the smooth blending function f(-).

5.1 Proposition. Let y4 C x4 be a hyper-rectangle. For any r4 € y4 the
following holds:

($A,f(.’L‘A) e C
C := conv((dy, fi(zy): foralla'y € E(L)) (19)
EL) = ext(xgyNya),l €L
L' == {leL:xyNyas#0}

where conv(-) denotes the convex hull, and ext(-) denotes the set of extreme
points.

Proof. From the blending function definition, we see that the function is a
convex combination of local linear approximations:

Fwa) =Y Nfi(za)

ler

where > A, = 1,\; > 0. These linear approximations are in turn convex
ler

combinations of extreme points. O
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Let (T4,7B), T4 € R',Zp € R’ be a point which does not satisfy the
constraint f(x4) = rp. A linear constraint, mx7z4 + 7plzp < mp, sepa-
rating (Z4,Zp) from the feasible set can be found provided (Z4,%p5) ¢ C.
74 € R,mg € R° and my € R are found through the solution of a linear
program of the form:

max 7al34+7pT2p — m
TAYTB,TO
subject to
maTxa+ 75T fi(xa) —mo < 0 for all z4 € ext(xq Nya),l €L

[[ma, ma]lly <1

The objective in this problem is to generate a linear constraint which maxi-
mizes the infeasibility of the point (Z4,Zp) while ensuring that all points in
C satisfy this constraint. The norm constraint is required to truncate the fea-
sible cone, ensuring that the maximum objective function value is bounded.

Example 3.

In Figure 3 the solid line depicts a blending function representing the con-
straint f(x1) = xo. This blending function is constructed from the design
points (+) given in table 5.

The overlap between adjacent regions is 0.1 times the width of the design
box regions, resulting in a function which is almost piecewise linear. The
construction of a cut separating the point (Z4,Zg) = (—0.25,—0.5), marked
as O in Figure 3, from the feasible region in a given interval is illustrated
here. The interval under consideration, z; € [—0.55,0.25], is demarcated by
dotted lines. The points in the set {(z'y, fi(z'4)) : 2’4 € E(L')} are marked as
o and are given in Table 6. The separation problem is formulated explicitly
as follows:

14



max —0.25m; + —0.579 — g
7r1,7r2,7r0,7ri"',7r3'

subject to
—0.55m; — 0.18007m, — 19 < 0
—0.497m1 — 0.1368my — 1 < 0
—0.51m; — 0.0992m — 1 < 0
—0.29m; — 0.02887m, — 19 < 0
—0.31m; — 0.01687m — 19 < 0
—0.097; 4+ 0.00087my — g < O
—0.117’(’1 + 0000071'2 — T S 0
—0.117’(’1 + 0000071'2 — T S 0
0.097’(’1 - 000087T2 — T S 0
0.25m; +0.0120m —m < 0
> m
o> —m
T >
T, > -
i 4+m <1

The variables 7;" have been introduced so as to represent the norm constraint
as a set of linear inequalities. From the solution of this linear programming
problem we find m; = 0.1935, m, = —0.8065 and 7y = 0.0387. This gives us
the linear inequality 0.1935x; — 0.8065x5 + 0.0387 < 0, which is represented
as the dashed line in Figure 3.

While r is small, the size of the set {z4 € R" : x4 € £(L')} is |L'|2", where
|L'| may be of the order of 100 000. In addition to the large number of con-
straints, the problem faces numerical difficulties due to similarities between
constraints and redundancy in the constraint set. For these reasons, the sep-
aration problem is solved via a sequence of smaller separation problems. The
procedure can be summarized as follows:

Determine L.
Let £ be a randomly chosen set of n points from £(L').
Solve the separation problem for 74, Tg, 7.
while ( {x € E(L') : maTza +m5Tap —m >0} #0) {
Augment &' with points in {z4 € E(L') : maTza+78T fi(za) —m > 0}.

15



Solve the separation problem defined by &’ for 7, 7.

}

Stronger cuts may be derived by reducing the size of the sets x4;. Cuts
approximating the constraint f;(z4;) = xp, can be used in this reduc-

tion during the generation of cuts representing fi(z4,) = xp, whenever
A;N(A;UB;j) # 0. Let such a cut be expressed as:

Z TETr + Z TETE + Z TETr + Z T — Mo < 0

kEAj ﬂP kEAjﬂN kEBj ﬂP kEBjﬂN

where the indices are classified insets P = {i : m; > 0} and N = {i : m; < 0}.
Choose a k' € A;((A;UBj). Then we can attempt to tighten the bounds
on component £’ of the box x4;. We denote the original bounds as z;/, T,
and the updated bounds as as z},,T},. These bounds may be updated using
the formula:

9 = %k,(ﬂ'()— Z szk— Z ijk_
ke(A; N P)\K ke(A; NN)\K
Y. kI — Y., TTk)
ke(B; A P)\K! ke(B; AN\
T;c’ = min{fk:,ﬁ} if my >0
zj, = max{z,,0} if m <0

For example let B; = {1,2,3} and A; = {2,3,4}. Suppose we have the
following valid cut: mx; + moxe + m3x3 < 7o and let m, Mo, m3 > 0. A
relaxation of this cut is mz; + mexs + mM3z3 < M. New upper and lower
bounds on x5 in the box x4; may be derived using the relation:

o — Ty — 7T3£3}

— . —
Ty, = min{Ts,
2

6 Sampling Algorithm

Here we consider the procedure of choosing the design points to represent
the non-analytical function F : R” — R®. An initial design is sampled over a
grid, the resolution of which is determined by a parameter M. Resampling

16



over a shifted grid is then carried out to assess the error in the blending
function approximation. The algorithm for this procedure is summarized
below. If the accuracy determined on the shifted grid is too low, points are
resampled on a finer initial grid.

Step 1: Partition x into L° = 2M* subregions, and store the structure of
this partitioning scheme. Set L = L°.

Step 2: For every subregion x;,/ € [1, L°] evaluate f; and g; at the design
point x; = iﬂ + %x_l.

Step 3: For every subregion x;,/ € [1,L° evaluate f(z,.1), fo41 and
gr+1 at the design point z741 = 2z, + 17;. Set the error estimate §, =

jmax fj(@rs) = firaal Set J = arg max, (L) = firaal- Set L= L+1,

and partition x; into two equal size regions, x; and x;,, bisecting the axis k,

where
. (afJ
= max

ie{l,..,s} \ Ox;

_0fs
8$i

) (xl,z' - $L+1,z')

TL41 Zp

such that x; € x;, 1 € xr.

7 Branch and Cut Algorithm

The algorithm outlined in this section can determine an e-global optimal solu-
tion of the following optimization problem where the non-analytical functions
in problem 1 have been replaced by blending function surrogates:

mingc [z,T]CR™ fo (3? )

subject to :
filz) < 0 forall 1=1,...,m
filz) = 0 forall i=m-+1,...,p

fz(xAz)

g, forall t=p+1,...,q

17



Step 0: Initialize

Choose an optimality tolerance e.

Set upper bound on the global minimum objective function, f, < +oo.
Set lower bound on the global minimum objective function, L) +— —oQ.
Initialize iteration counter: iter < 0.

Initialize list of subregions: £ « 0.

Read in blending function data.

Step 1: Compute Upper Bound

Solve NLP problem with bounds x. . . B
If a feasible solution z with objective function f; was obtained set: fy — f,,
T —z*.

Step 2: Compute Lower Bound

Generate a relaxed lower bounding problem with convex feasible region using
interval linear over- and underestimators to represent the blending functions.
Solve the NLP or LP lower bounding problem.

If the problem is feasible let the solution be Z and the optimal objective
function value be Jfj.

If the problem is infeasible, terminate, otherwise generate cuts by solving a
series of separation problems, separating Z from the relaxation of the feasible
region.

If new cuts have been determined, add these cuts to the lower bounding
problem and repeat step 2, otherwise purge cuts which are not active at Z,
set T — x®, fo — f&, L — L|JR and continue to step 3.

Step 3: Check for Convergence
If fo — i 0 < € terminate; otherwise set iter — iter + 1.

Step 4: Select Subregion

If £ = () the problem is infeasible; otherwise select the region with the best

lower bound: R < arg m1£n /&, and delete this region from the list £ — L\R.
S

Step 5: Branch

Choose a variable on which to branch and partition R into subregions R,
and RQ.

Solve the upper bounding problem in each subregion.

Step 6: Update Bounds on Variables

18



In each subregion R;, set x <— R; and solve a variable bound update problem
for a given variable.

Let the solution to this problem be z.

If the problem is infeasible, terminate; otherwise update R; and x then gen-
erate cuts by solving a series of separation problems, separating z from the
relaxation of the feasible region.

If new cuts have been determined, add these cuts to the bound update
problem and repeat step 6, otherwise purge cuts which are not active at
Z. Continue to step 7 once the bound updating for all selected bound update
variables has been completed in R; and Rs.

Step 7: Compute Lower Bounds for Subregions

Set x «+— R;

Generate a relaxed lower bounding problem with convex feasible region using
interval linear over- and underestimators to represent the blending functions.
Solve the NLP or LP lower bounding problem.

If the problem is feasible let the solution be Z and the optimal objective
function value be fj.

If the problem is infeasible, terminate; otherwise generate cuts by solving a
series of separation problems, separating Z from the relaxation of the feasible
region.

If new cuts have been determined, add these cuts to the lower bounding
problem and repeat step 7; otherwise purge cuts which are not active at z,
set & — xR, fo = f&, £L — L|JR and continue to step 3.

The algorithm was implemented in C as an extension of the aBB code of
Adjiman et al.'*. CPLEX 7.0?2 was used to solve the LPs, and MINOS 5.4
% was used for the NLPs.
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8 Computational Studies

8.1 Example 4

min T1 + To
z1€[0.1,1.0],22€[0.1,1.0]
subject to :
T3 = 0.5
.7:(.’13) — T3 = 0

where F(z) is defined as the system of equations:

F(z1,29) = 2(ty)
@
dt

Z(t()) = 1, t() = 0, tf =10

= —T1T2z

We first assess the influence of the inclusion of cutting planes on the conver-
gence rate.

In Figure 4 the convergence rates of the global optimization algorithm with
and without cutting planes are compared. In these runs both lower bounding
and bound tightening problems were solved on each iteration, and for the run
with cutting planes, cuts where generated for every problem.

The cutting planes produce much stronger lower bounds than the algorithm
using only those constraints derived through interval analysis. The effect of
the density of sampling points on the convergence rate is illustrated in Figure
5.

The plots represent the gap between lower and upper bounds, f — f, on the
global minimum objective function value for runs with 512, 2048 and 8192
evenly distributed design points. We see that the greater the number of the
design points the smaller the gap, due to tighter lower bounds, and the fewer
the number of iterations required for convergence.
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Figure 6 shows the feasible region and optimal point in the z;, x5 domain.
Cutting planes generated on the first iteration are also represented on this
figure. Note the small gap between the optimal point and the cutting planes.
The cutting planes are valid for the convex hull, C, defined in Equation 19
which is an extension of the convex hull of the feasible region. Tighter cuts
are generated on subsequent iterations once points supporting the earlier cuts
have been eliminated from £(L’). The cuts are stronger when there are more
design points as C is then a more accurate representation of the convex hull
of the feasible region. Useful as the cuts are, it may not always be possible
to close the gap between upper and lower bounds using only cutting planes.
For this reason the constraints derived using interval methods are essential
for convergence.

The solutions and CPU times obtained for the runs without cutting planes
are given in Table 7, the convergence criterion for this example was set as
f—f <5x107* CPU times are on an HP C-160. Table 8 shows results
when cutting planes are used. The global solution to the problem is z; =
x9 = 0.2633, f = 0.5266.

From Tables 7 and 8 we observe that although the number of iterations
required for convergence is substantially less for the runs where cuts were
generated, the time needed to generate these cuts, in this case, undermines
these savings. The number of different solutions is due to the occurrence of
kinks in the blending function representation which do not exist in the orig-
inal problem. Note that the optimal solution points and objective function
values for the interpolated problems are very similar to each other indicating
that they are likely to provide good starting points for the local optimization
phase, which indeed leads to the global optimum.

8.2 Oilshale Pyrolysis Problem

This problem involves the optimization of the temperature profile of a plug
flow reactor in order to maximize of the production rate of a selected species.
This example has been studied by Luus?*, Luus and Rosen?®, Carrasco and
Banga?® and Esposito and Floudas?. The system of chemical reactions oc-
curing are assumed to be as follows:

A, o4,
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A, oA,
A+ Ay sy As + Ay
A+ Ay M A+ A,

A1+A2 — A4+A2

The following optimal control problem formulation is that of maximizing the
valuable product A,, subject to bounds on the temperature and the system
dynamics.

t

rgg;Zz( 1)

subject to
2'1 = —k121 - (k‘3 + k4 + k5)2’122
Zo = k121 — kozo + k32129

where
ki = a;exp (#/R) 1=1,...,5

2(0) = (1,0)

698.15 < u(t) < 748.15 for all t € [0, #;]

In this formulation z;(t) is the concentration of component 4 at time ¢; the
final time ¢; is set to 10 and the temperature is denoted as u(t). Data for
the parameters a and b is provided in Table 9. In this study we examine
the cases where the control variable u(t) is parametrized using a piecewise
constant profile on 2 or 3 equally spaced time intervals. The non-analytical
function in this system is defined as follows:

o Fi(A s ) = (A, 4)
(217 27) = (2(0), 2(0))
(21, 2) = (2a(ty), 22(t}))
Z.l = —kl(uz)

u')z — (kg(ul) + kg(u?) + ks(u?)) 2122
2.2 = kl(u’)zl — k'g !

(u®)zg + k3(u')z1 29

where t', = t;/N, and N is the number of time intervals in the parametrized
problem.
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This function was sampled on 8192 evenly distributed points over the do-
main (2071, 2571, uf) € ([0,1], [0, 1], [698.15, 748.15]) using the numerical in-
tegration package DASPK?". Using F the parametrized problem can be
expressed as follows:

max z;'
. . subject to
F( 125 ut) = (2, 2) foralli=1,...,N
0 =1
2 =
29 = 0.

Table 10 shows the results for convergence to an absolution tolerance of 1073.

Using the results in Table 10 as starting points, the solutions to the original
problems were determined using the package MINOPT?® with the local NLP
solver MINOS 5.42%. These solutions are presented in Table 11.

In Figure 7 the progress of the upper and lower bounds for the algorithms
with cutting planes generation is compared to the progress of the algorithm
using constraints generated by interval arithmetic only. In this figure the
cutting planes can be seen to greatly improve the rate of convergence. With
the cutting planes the initial lower bound is much tighter and the initial rate
of convergence is rapid.

8.3 Nonlinear CSTR Problem

The continuous stirred tank reactor system with nonlinear dynamics is an
example of optimal control problem with multiple solutions, first studied by
Aris and Amundson?® and subsequently by Lapidus and Luus3® and Mekara-
piruk and Luus?!.
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in 23 (¢
min zs(t)

subject to
Z1 = g(z) — (2+u)(z +0.25)
Zog = 0.5—20—g(2)
Z3 = 21+ 22+ 0.1u?
Z1 (tf) =0
where
9(2) = (22 +0.5)exp(2%5)

2(0) = (0.09,0.09,0.00)

—1<u(t) <5 forallte|0,t;=0.78]

The non-analytical function in this system is defined as follows:

( . 1‘7: :. (lzi_l)a Zé_la UZ) - (Z{, Zéa ziz’,)
4,2 ,0) =

2y, C (21(0), 22(0), 25(0))
(Z’i: 257 Zg) = (Zl(tlf)a ZQ(tlf)7 Z3(tlf))
7z = g(z) — (2+ u")(z1 + 0.25)
Zo = 0.5 — 29— g(2) '
2'3 = (21)2 + (22)2 + Ol(u’)Q

where ¢, =t;/N, and N is the number of time intervals in the parametrized

problem.

This function was sampled on 8192 evenly distributed points over the do-
main (z1(t;), z2(t;), u;) € ([-0.2,0.2],[—0.2,0.2],[—1,5]). The parametrized
problem, with a penalty term in the objective function, can be expressed as

follows:

N
min 10((2])? + (20")?) + X 24
u,z" =1

subject to
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F(2t 27 uh) = (2,28, 28) foralli=1,...,N
2 = 0.09
2 = 0.09

Results for convergence to an absolute tolerance of 5 x 107 are presented
in Table 12. Using these values as a starting point, the local solver obtained
the solutions in Table 13. Using the solution from the problem with three
time intervals as a starting position, a local solution of the original problem
with 21 time intervals was obtained using MINOPT?. The control policy
shown in Figure 8 was obtained. An optimal objective function value of
z3(ty) = 0.14433 was found and the constraints on the final states were within
an acceptable tolerance z;(t;) = 5.57 X 107% and 2(¢;) = —6.74 x 1078,

9 Conclusions

Numerical results indicate that the interpolation by blending functions when
used to represent the non-analytical functions in a global optimization al-
gorithm can yield solutions which approximate the global optima. Through
the use of rigorous linear over- and under-estimators the proposed global
optimization algorithm can guarantee the optimality of the solution for the
interpolated problem. Discrepancies between the global optimal solution for
the original problem and that using the blending interpolation functions de-
pend on the sample density of the blending function design points. For non-
analytical functions involving a small number of variables, the use of blending
function interpolation can be a useful strategy. The number of design points
required to interpolate grows rapidly as the number of variables increases,
limiting the method to functions of low dimensionality. The cutting plane
approach was found to greatly enhance the convergence rate of the proposed
optimization algorithm. There is scope for the use of similar, cutting from
design points, techniques for a broad class of global optimization problems.
Such methods may be useful for generating a convex representation of ana-
lytical functions if the computational cost of cutting plane generation can be
offset by increased convergence rates.
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Figure Captions

Figure 1: Illustration Design Point and Box Position

Figure 2: Fractional Contributions, w;(z)/ Y w;(z), of Design Points 1 and 2
IeL

Figure 3: Illustration of Cut Generation

Figure 4: Convergence Rate with (+) and without (¢) Cutting Planes

Figure 5: Convergence Rate for Cutting Plane Approach with ¢: 512; + 2048
and [] 8192 Design Points

Figure 6: Illustrative Problem: Feasible Set, Cutting Planes and the Global
Solution

Figure 7: Progress of f and S with and without Cutting Planes
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Tables

l Tn Ty Tn T2 Ty T2 F(z) 3{1 3—;

110.2875 0.2125 0.3625 | 0.2875 0.1750 0.4750 | 0.4376 -1.2580 -1.2580
2 10.2875 0.2125 0.3625 | 0.4375 0.3250 0.6250 | 0.2843 -1.2437 -0.8173
310.3625 0.2875 0.4375 | 0.5125 0.3250 0.6250 | 0.1560 -0.7996 -0.5656
41 0.3625 0.2875 0.4375 ] 0.3625 0.1750 0.4750 | 0.2687 -0.9741 -0.9741

Table 1: Data Required for Blending Function Evaluation at z = (0.3,0.37)

L fi (ac) T Y2 wu(x) wl2($) wz(ﬂi) %
1103180 0 3.5556 0.4861 0.3632 0.06664  0.4412
2103239 0 3.5556 0.4861 0.3448 0.08181 0.5417
3103223 0 -3.5556 0.1528 0.4984 0.00254  0.0168
4102866 0 -3.5556 0.1528 0.1664 0.00004  0.0003

Table 2: Illustration of Blending Function Evaluation

m

16

32

64

¢

3(f)

3(f)

3(f)

3(f)

3(f)

3(f)

0.01
0.5
1.0
2.0

0.338
0.413
0.611
1.568

0.338
0.135
0.115
0.126

0.044
0.053
0.079
0.189

0.044
0.021
0.015
0.013

0.007
0.009
0.013
0.031

0.007
0.004
0.003
0.002

Table 3: Mean error estimates for blending function approximations
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m 16 32 64

6 [7=()_&™(F) [7=()_o™(F) [57() o™(])
0.01 | 4.119 4.119 0.846 0.846 0.189 0.189
0.5 | 4.684 0.702 0.948 0.124 0.209 0.025
1.0 | 6.171 0.943 1.157 0.150 0.242 0.029
2.0 | 11.735  1.006 1.906 0.136 0.364 0.026

Table 4: Maximum error estimates for blending function approximations

zy | -1 -08 -0.6 -0.4 0.2 0 0.2 0.4 0.6 08 1
z2 | -1 -0.512 -0.216 -0.064 -0.008 O 0.008 0.064 0.216 0.512 1
Table 5: Example 3 List of Design Points (+)
z1 | -0.55  -0.51 -0.49 -0.31 -0.29 -0.11 -0.09 0.09 0.11  0.25
z2 | -0.18 -0.0992 -0.1368 -0.0168 -0.0288 0.00 0.0008 -0.0008 0.00 0.012

Table 6: Example 3 List of Cut Generation Points (o)

Design Points | 3 To x3 f Iterations CPU (s)
012 0.2898 0.2361 0.5000 0.5260 95 0.82
2048 0.2503 0.2761 0.5000 0.5264 47 1.49
8192 0.2588 0.2677 0.5000 0.5265 47 6.50

Table 7: Solutions without Cutting Planes to Blending Function Represen-
tation

Design Points | 3 T T3 f  Tterations CPU (s)
512 0.2652 0.2607 0.5000 0.5260 14 1.59
2048 0.2611 0.2603 0.5000 0.5264 10 5.15
8192 0.2588 0.2677 0.5000 0.5265 6 12.14

Table 8: Solutions Using Cutting Planes to Blending Function Representa-
tion
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In a; bZ/R
8.86 10215.4
24.25 18820.5
23.67 17008.9
18.75 14190.8
20.70 15599.8

U W N | .

Table 9: Data for the oil shale pyrolysis example.

N| o u? u? 2
2 | 713.78 698.15 - 0.3592
3 |1698.93 722.96 698.15 0.3614

Table 10: Results for Interpolated Oilshale Pyrolysis Problem

N| o u? u? 29 (ty)
2 | 719.71 698.15 - 0.3510
3|1 698.15 724.80 698.15 0.3517

Table 11: Solutions for Oilshale Pyrolysis Problem

N
N ‘ u! u? ud 2V x 102 2 x 102 Yz obj
i=1
2 | 2385 -0.625 - -2.385 -2.980  0.242 0.256
302375 0329 -0250 -1.593  -2.327 0.148 0.156

Table 12: Results for Interpolated Nonlinear CSTR Problem

N| u? ud  zi(tp) x 10 2o(tp) x 10*  23(tf)  obj
212404 -0.482 - -3.042 -3.053 0.246 0.264
312615 0.197 -0.243 -1.664 -1.993 0.185 0.192

Table 13: Solutions for Nonlinear CSTR Problem
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