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1 Introduction

Throughout this paper, for any two vectors x, y ∈ R
n we write x ≤ y (x < y, resp.)

to mean xi ≤ yi (xi < yi, resp.) for every i = 1, . . . , n. If a ≤ b then the box
[a, b] ((a, b], resp.) is the set of all x ∈ R

n satisfying a ≤ x ≤ b (a < x ≤ b, resp.).
A function f : [a, b]→ R is said to be increasing if

a ≤ x ≤ y ≤ b ⇒ f(x) ≤ f(y).

Recently a general mathematical framework has been developed [3] for studying
mathematical programming problems described by means of increasing functions,
or more generally, differences of increasing functions. It has been shown in [3] that
any mathematical programming problem of this class can be reduced to an equivalent
problem of the following form, called canonical monotonic optimization problem:

max{f(x)| g(x) ≤ 0 ≤ h(x)} (CM/A)

where f(x), g(x), h(x) are given increasing functions on R
n
+. An easily implementable

algorithm called the Polyblock Algorithm has been proposed for solving (CM/A).
Applications of this approach to certain classes of difficult nonconvex global opti-
mization problems have proved its efficiency ([1], [5], [6], [7]), especially when these
problems, originally of large scale, can be converted into problems (CM/A) in low-
dimensional space by a suitable change of variables.

If a problem involves discrete constraints, e.g. boolean constraints like xi ∈
{0, 1}, i = 1, . . . , m, then these constraints can be written as

∑m
i=1 xi(1 − xi) ≤

0, 0 ≤ xi ≤ 1 (i = 1, . . . , m), i.e.
∑m

i=1 xi −
∑m

i=1 x2
i ≤ 0, 0 ≤ xi ≤ 1 (i = 1, . . . , m)

where the functions
∑m

i=1 xi,
∑m

i=1 x2
i are increasing on R

n
+. Therefore, a mathemat-

ical programming problem with discrete constraints can in principle be reformulated
as a monotonic optimization problem and studied by methods of monotonic opti-
mization. However, this approach is generally not practical; moreover, its drawback
is that, since the basic algorithms for continuous monotonic optimization are iter-
ative procedures, by this approach only an approximate optimal solution can be
computed in finitely many steps.
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The aim of the present paper is to suggest an alternative, more efficient approach
to monotonic optimization problems with additional discrete constraints. Specifi-
cally, given a finite set S of points in the box [a, b] = {x ∈ R

n
+| a ≤ x ≤ b} with

a < b, and given increasing functions f(x), g(x), h(x) on [a, b], we will be concerned
with the following general optimization problem .

max{f(x)| g(x) ≤ 0 ≤ h(x), x ∈ S}.

which will be referred to as the Canonical Discrete Monotonic Optimization Problem
(DM/A). Setting G = {x ∈ [a, b]| g(x) ≤ 0}, H = {x ∈ [a, b]| h(x) ≥ 0}, we can
rewrite it as

max{f(x)| x ∈ G ∩H ∩ S} (DM/A)

In the sequel we propose to extend the basic algorithm for (continuous) monotonic
optimization in [3] to obtain a finite algorithm for solving (DM/A). Thus, by suitable
modifications of the basic algorithm for the continuous case, it will be possible to
obtain an exact optimal solution of(DM/A) in finitely many steps. Furthermore,
it is worth noticing that for many continuous monotonic optimization problems,
although the optimum is known à priori to be achieved on a certain finite set S,
an exact optimal solution cannot be obtained in finitely many steps by the basic
iterative algorithms of the continuous approach. The discrete version to be proposed
will help in many cases to turn this infinite procedure into a finite one, thus allowing
the exact optimum in these continuous problems to be found, too, in finitely many
steps.

In Sections 2 and 3, we discuss some pertinent geometric concepts, and also
some basic properties of the problem. For the sake of completeness and for the
convenience of the reader, all the proofs will be provided, although most of them
are simple and can be found in [2] or [3], and also in [4]. In Sections 4 and 5
we present the extended polyblock algorithm for solving(DM/A)and discuss some
implementation issues. Finally in Section 6, as illustration we apply the proposed
approach to a discrete maximin location problem.

2 Some Geometric Concepts

A set G ⊂ [a, b] is said to be normal if a ≤ x′ ≤ x, x ∈ G ⇒ x′ ∈ G. A set
H ⊂ [a, b] is conormal (reverse normal) if a ≤ x′ ≤ x, x /∈ H ⇒ x′ /∈ H. Thus the
set G = {x ∈ [a, b]| g(x) ≤ 0} defined above (with an increasing function g(x)) is
normal, whereas the set H = {x ∈ [a, b]| h(x) ≥ 0} (with an increasing function
h(x)) is conormal.

Given a set A ⊂ [a, b] the normal hull of A, written A�, is the smallest normal
set containing A. The conormal hull of A, written 	A, is the smallest conormal set
containing A.

Proposition 1 (i)The normal hull of a set A ⊂ [a, b] ⊂ R
n
+ is the set A� =

∪z∈A[a, z]. If A is compact then so is A�.
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(ii) The conormal hull of a set A ⊂ [a, b] ⊂ R
n
+ is the set 	A = ∪z∈A[z, b]. If A is

compact then so is 	A.

Proof It suffices to prove (i), because the proof of (ii) is similar. Let P = ∪z∈A[a, z].
Clearly P is normal and P ⊃ A, hence P ⊃ A�. Conversely, if x ∈ P then x ∈ [a, z]
for some z ∈ A ⊂ A�, hence x ∈ A� by normality of A�, so that P ⊂ A� and
therefore, P = A�. If A is compact then A is contained in a ball B centered at 0,
and if xk ∈ A�, k = 1, 2, . . . , then since xk ∈ [a, zk] ⊂ B, there exists a subsequence
{kν} ⊂ {1, 2, . . .} such that zkν → z0 ∈ A, xkν → x0 ∈ [a, z0], hence x0 ∈ A�,
proving the compactness of A�. �

A polyblock P is the normal hull of a finite set T ⊂ [a, b] called its vertex set.
By Proposition 1, P = ∪z∈T [a, z]. A vertex z of a polyblock is called proper if there
is no vertex z′ �= z “dominating” z, i.e. such that z′ ≥ z. An improper vertex or
improper element of T is an element of T which is not a proper vertex. Oviously, a
polyblock is fully determined by its proper vertex set; more precisely, a polyblock is
the normal hull of its proper vertices.

Similarly, a copolyblock (reverse polyblock) Q is the conormal hull of a finite set
T ⊂ [a, b] called its vertex set. By Proposition 1, Q = ∪z∈T [z, b]. A vertex z of a
copolyblock is called proper if there is no vertex z′ �= z “dominated” by z, i.e. such
that z′ ≤ z. An improper vertex or improper element of T is an element of T which
is not a proper vertex. Oviously, a copolyblock is fully determined by its proper
vertex set; more precisely, a copolyblock is the conormal hull of its proper vertices.

Proposition 2 (i) The intersection of finitely many polyblocks is a polyblock.
(ii) The intersection of finitely many copolyblocks is a copolyblock.

Proof If T1, T2 are the vertex sets of two polybocks P1, P2, respectively, then P1∩P2 =
(∪z∈T1 [a, z])∩ (∪y∈T2 [a, y] = ∪z∈T1,y∈T2 [a, z]∩ [a, y] = ∪z∈T1,y∈T2z ∧ y where u = z ∧ y
means ui = min{zi, yi} ∀i = 1, . . . , n. Similarly, if T1, T2 are the vertex sets of
two copolyblocks Q1, Q2, respectively, then Q1 ∩ Q2 = ∪z∈T1,y∈T2 [z, b] ∩ [y, b] =
∪z∈T1,y∈T2z ∨ y where v = z ∨ y means vi = max{zi, yi} ∀i = 1, . . . , n. �

Proposition 3 (i) The maximum of an increasing function f(x) over a polyblock
is achieved at a proper vertex of this polyblock.

(ii) The minimum of an increasing function f(x) over a copolyblock is achieved
at a proper vertex of this copolyblock.

Proof We prove (i). Let x̄ be a maximizer of f(x) over a polyblock P. Since a
polyblock is the normal hull of its proper vertices, there exists a proper vertex z
of P such that x̄ ∈ [a, z]. Then f(z) ≥ f(x̄) because z ≥ x̄, so z must be also an
optimal solution. �

Lemma 1 (i) If a < x < b, then the set [a, b] \ (x, b] is a polyblock with vertices

ui = b + (x− b)ei, i = 1, . . . , n. (1)

(ii) If a < x < b, then the set [a, b] \ [a, x) is a copolyblock with vertices

vi = a + (xi − ai)e
i, i = 1, . . . , n.
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Proof We prove (i). Let Ki = {z ∈ [a, b]| xi < zi}. Since (x, b] = ∩i=1....,nKi, we
have [a, b] \ (x, b] = ∪i=1,...,m([a, b] \ Ki), proving the Lemma because [a, b] \ Ki =
{z| ai ≤ zi ≤ xi, aj ≤ zj ≤ bj ∀j �= i} = [a, ui]. �

Note that u1, . . . , un are the n vertices of the hyperrectangle [x, b] that are ad-
jacent to b, while v1, . . . , vn are the n vertices of the hyperrectangle [a, x] that are
adjacent to a.

For any two z, y define J(z, y) = {j| zj > yj}.
Proposition 4 (i) Let P be a polyblock with proper vertex set T ⊂ [a, b], let x ∈
[a, b], be such that T∗ := {z ∈ T | z ≥ x} �= ∅. For every z ∈ T∗ and every i = 1, . . . , n
define zi == z + (xi − zi)e

i. Then the vertex set of the polyblock P \ (x, b] is

T ′ = (T \ T∗) ∪ {zi| z ∈ T∗, zi > xi, i ∈ {1, . . . , n}}, (2)

where the improper elements are those zi such that J(z, y) = {i} for some y ∈ T∗.
(ii) Let Q be a copolyblock with proper vertex set T ⊂ [a, b], let x ∈ [a, b], be such

that T∗ := {z ∈ T | z ≤ x} �= ∅. For every z ∈ T∗ and every i = 1, . . . , n define
zi == z + (xi − zi)e

i. Then the vertex set of the copolyblock Q \ [a, x) is

T ′ = (T \ T∗) ∪ {zi| z ∈ T∗, zi < xi, i ∈ {1, . . . , n}}, (2∗)

where the improper elements are those zi such that J(y, z) = {i} for some y ∈ T∗.

Proof We prove (i). Since [a, z] ∩ (x, b] = ∅ for every z ∈ T \ T∗, it follows that P \
(x, b] = P1∪P2, where P1 is the polyblock with vertex T \T∗ and P2 = (∪z∈T∗ [a, z])\
(x, b] = ∪z∈T∗([a, z]\(x, b]). Noting that [a, b]\(x, b] is a polyblock with vertices given
by (1), we can then write [a, z]\ (x, b] = [a, z]∩ ([a, b]\ (x, b]) = [a, z]∩ (∪i=1,...,nu

i) =
∪i=1,...,n[a, z] ∩ [a, ui] = ∪i=1,...,n[a, z ∧ ui], hence P2 = ∪{[a, z ∧ ui]| z ∈ T∗, i =
1, . . . , n}, which shows that the vertex set of P \ (x, b] is the set T ′ given by (2).

It remains to show that every y ∈ T \ T∗ is proper, while a zi with z ∈ T∗ is
improper if and only if J(z, y) = {i} for some y ∈ T∗.

Since every y ∈ T \ T∗ is proper in T, if z′ ≥ y for some z′ ∈ T ′, then z′ must be
some zi with z ∈ T∗, i ∈ {1, . . . , n}. But then z ≥ z ∧ ui = zi ≥ y, conflicting with
y being proper in T. Therefore, every y ∈ T \ T∗ is proper. On the other hand, if
zi ≤ y for some y ∈ T \ T∗ then xi = zi

i ≤ yi, while xj ≤ zj = zi
j ≤ yj ∀j �= i, hence

x ≤ y, i.e. y ∈ T∗, conflicting with y /∈ T∗. Consequently, if zi is improper then
zi ≤ yl for some (y, l) �= (z, i), y ∈ T∗, i, l ∈ {1, . . . , n}. We cannot have y = z, l �= i
for then the relation zi ≤ zl would imply zl = zi

l ≤ zl
l = xl, conflicting with (2). So

y �= z and zi
j ≤ yl

j ∀j = 1, . . . , n. Remembering that

zi
j =

{
xi ≤ zi for j = i
zj forj �= i

yl
j =

{
xl ≤ yl for j = l
yj for j �= l

we then infer l �= i. In fact if l = i, then zj ≤ yj ∀j �= i, hence, since z �≤ y
(z being proper), zi > yi ≥ xi, contradicting (2). Thus, y �= z and l �= i. Since
zi

j ≤ yl
j ∀j = 1, . . . , n, we must then have zj ≤ yj ∀j /∈ {i, l}, while for j = l : zi

l ≤ yl
l,

i.e. zl ≤ xl ≤ yl. Hence, zj ≤ yj ∀j �= i, and again since z �≤ y, we derive zi > yi
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and J(z, y) = {i}. Thus any improper zi must satisfy J(z, y) = {i} for some y ∈ T∗.
Conversely, if J(z, y) = {i} for some y ∈ T∗ then zj ≤ yj ∀j �= i, hence zi ≤ yi, i.e.
zi is improper. This completes the proof of the Proposition. �

Remark 1 When T∗ is a singleton, T ′ is exactly the proper vertex set of P \ (x, b].

3 Basic properties

In this section we discuss some properties of problem (DM/A) relevant to opti-
mization. Similar properties can be established for problem (DM/B), consisting of
minimizing, instead of maximizing, f(x) over G ∩H ∩ Z.

Observe that a basic property of convex sets that has been used in almost every
study of convex optimization (though sometimes indirectly or in some equivalent
form) is the separation theorem which states that a convex closed set can always
be separated from a point outside by a halfspace containing that point but disjoint
from the convex set.

We now prove a similar (but not quite the same) separation property for normal
(conormal) closed sets.

Let G ⊂ [a, b] be a normal closed set. For any v ∈ [a, b] define πG(v) to be the
last point of G on the halfline from a through v, i.e.

πG(v) = a + λ(v − a), with λ = sup{α ≥ 0| a + α(v − a) ∈ G}. (3)

Clearly, if v ∈ G then πG(v) = v.

Proposition 5 If v ∈ [a, b] \G then G ∩ (πG(v), b] = ∅
Proof If there were x ∈ G such that x > πG(v) then [a, x] ⊂ G by normality of G,
so that one would have a + α(v − a) ∈ G for some α > λ, contradicting (3). �

This Proposition says essentially that a normal closed set can be separated from
a point outside by a cone congruent to the orthant of the space (more precisely, a
translate of this orthant).

On the basis of this property, a polyblock approximation method has been devel-
oped [3] for solving canonical monotonic optimization problems (CM/A). We now
extend this method to the discrete optimization problem (DM/A). First observe the
following.

Proposition 6 Let G̃ = (G ∩ S)�. Problem (DM/A) is equivalent to

max{f(x)| x ∈ G̃ ∩H} (4)

Proof Since the feasible set of (DM/A) is contained in the feasible set of (4), the
optimal value of (DM/A) cannot exceed that of problem (4). Conversely, if x̄ solves
(4) then x̄ ∈ G̃, and by Proposition 1 x̄ ∈ G∩S, hence x̄ is feasible to (DM/A) and
consequently, the optimal value of (4) cannot eceed that of (DNO). Therefore, the
two problems (DM/A) and (4) have the same optimal value. �
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Solving problem (DM/A) is thus reduced to solving (4) which is a monotonic
optimization problem without explicit discrete constraint. The difficulty, now, is
how to handle the polyblock G̃ which is defined only implicitly as the normal hull of
G ∩ S. In a sense the discrete condition has been incorporated in this normal hull.

It turns out, fortunately, that a separation property for G̃ = (G ∩ S)� can be
derived from the corresponding property of G ∩ S. First, without loss of generality
we can assume that

ai = min{xi| x ∈ S} i = 1, . . . , n (5)

Now we introduce the operation 	 �S by defining for any v ∈ (a, b] :

	v�S = ṽ, with ṽi = max
y∈S
{yi| yi < vi} (i = 1, . . . , n). (6)

A frequently encountered special case is when S = S1 × · · · × Sn, and every Si is a
finite set of real numbers. In this case

ṽi = max{ξ| ξ ∈ Si, ξ < vi}, i = 1, . . . , n, (7)

so ṽ ∈ S. (For example, if each Si is the set of integers, then ṽi is the largest integer
still less than vi).

Note that ṽ = 	v�S is uniquely defined for every v ∈ (a, b]. We shall refer to 	v�
as the S-adjustment of v.

For our purpose the most useful property of S-adjustment is the following.

Proposition 7 If [x, b] ∩ (G ∩ S) = ∅ and ṽ = 	x�S then (ṽ, b] ∩G ∩ S = ∅.
Proof Suppose there is y ∈ (ṽ, b] ∩G ∩ S. Since y ∈ (ṽ, b] we have yi > ṽi for every
i = 1, . . . , n. On the other hand, since y ∈ G ∩ S while [x, b] ∩ G ∩ S = ∅, there is
at least one i ∈ {1, . . . , n} such that yi < xi. From the definition of ṽ it then follows
that ṽi ≥ yi, a contradiction. �

Proposition 8 Let P be a polyblock containing G̃ ∩ H, let v be a proper vertex of
P such that v ∈ H \ G̃. Define x = πG(v), and

ṽ =

{
x if x ∈ S
	x�S if x /∈ S.

(8)

Then (ṽ, b] ∩ G̃ = ∅, i.e. the cone {x| x ≥ ṽ} separates v from G̃.

Proof If x ∈ S so that ṽ = x then (ṽ, b] ∩ G = ∅ from the property of x = πG(v),
hence (ṽ, b]∩G̃ = ∅. If x /∈ S, then, since [x, b]∩G∩S = ∅, it follows from Proposition
7 that (ṽ, b] ∩ G ∩ S = ∅, i.e. G ∩ S ⊂ [a, b] \ (ṽ, b], hence G̃ ⊂ [a, b] \ (ṽ, b], and so
(ṽ, b] ∩ G̃ = ∅. �

In the next section we exploit this separation property to devise a polyblock
approximation method for solving (DM/A).
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4 The Discrete Polyblock Algorithm

Observe that if g(a) > 0 i.e. a /∈ G then, since g(x) is increasing, it follows that
g(x) > 0 ∀x ∈ [a, b] and the problem is infeasible. Similarly, if h(b) < 0, i.e. b /∈ H
then h(x) < 0 ∀x ∈ [a, b], and the problem is infeasible. Therefore, without loss of
generality we can assume that

a ∈ G, b ∈ H. (9)

Before proceeding to the solution of the problem it is useful to reduce the size of the
rectangle [a, b] if possible. For this let

βi = sup{β > 0 : a + βei ∈ G}, b′ = a +
n∑

i=1

βie
i,

αi = sup{α > 0 : b′ − αei ∈ H}, a′ = b′ −
n∑

i=1

αie
i.

Then clearly G∩H ⊂ [a′, b′]. Further, by resetting G← G∩ [a′, b′], H ← H ∩ [a′, b′],
we have a box [a, b] which is generally a tighter approximation of G ∩ H than the
original one.

To solve (DM/A) we now construct a sequence of polyblocks, P0 ⊃ P1 ⊃ · · ·
together with a sequence of numbers γ0 ≤ γ1 ≤ · · · , such that:

(i) γk = f(x̂k), for some x̂k ∈ G ∩H ∩ S, if γk > −∞;
(ii) Pk ⊃ G ∩H ∩ Sγk

where Sγk
= {x ∈ S| f(x) > γk}.

We start with an initial polyblock P0 ⊃ G ∩H ∩ S, e.g. P0 = [a, b], with vertex set
T0 = {b}, and γ0 = −∞. At iteration k = 0, 1, . . . , let Pk be the current polyblock, Tk

its vertex set, γk the current best value, and x̂k the current best solution, satisfying
(i) and (ii). Reduce Tk using the following rules:

• Drop any improper v ∈ Tk;

• Drop any v ∈ Tk \H ;

• Drop any v ∈ Tk such that f(v) ≤ γk.

Let T̃k be the set that remains from Tk after this pruning operation. Reset Tk ← T̃k.
If Tk = ∅ the procedure terminates: the current best feasible solution is optimal (if
γk > 0), or the problem is infeasible (if γk = −∞). If Tk �= ∅ let Pk be the polyblock
with vertex set Tk and select

vk ∈ Tk.

(e.g. vk ∈ argmax{f(x)| x ∈ Tk}. Two cases can be distinguished:

Case 1: vk ∈ G ∩ S. Since vk ∈ H, then vk ∈ G ∩ H ∩ Sγk
and vk is a

feasible solution of (DM/A) with objective function value no less than γk. We
set x̂k+1 = vk, γk+1 = f(vk), and define Pk+1 as the polyblock with vertex set
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Tk+1 = Tk \ {vk}. Also in this case define ṽk = vk.

Case 2: vk /∈ G ∩ S. Then we find xk = πG(vk), set ṽk = xk if xk ∈ Sγk
,

ṽk = 	xk�Sγk
if xk /∈ Sγk

. Let Tk,∗ = {z ∈ Tk| z ≥ ṽk}, and compute

Tk+1 = (Tk \ Tk,∗) ∪ {zk,i| z ∈ Tk,∗, zi > ṽk
i , i = 1, . . . , n} (10)

where zk,i = z + (ṽk
i − zi)e

i. Define Pk+1 as the polyblock with vertex set Tk+1.
Furthermore, if a new feasible solution has appeared that has a better objective

function value than γk, then let ẑk+1 be the best among them, and set γk+1 =
f(ẑk+1); otherwise, set ẑk+1 = ẑk, γk+1 = γk.

Proposition 9 Let γk = f(x̂k+1), where x̂k+1 is the new current best feasible so-
lution. The polyblock Pk+1 still contains G ∩ H ∩ Sγk

and Pk+1 ⊂ Pk \ (ṽk, b]. (So
conditions (i),(ii) still hold for k ← k + 1.)

Proof This is obvious in case 1, because f(x) ≤ f(vk) ∀x ≤ vk while (vk, b]∩Pk = ∅
(vk is a proper vertex of Pk). In case 2, if vk ∈ G \ S, then, since Pk ⊃ G ∩H ∩ Sγk

whereas [vk, b] ∩ Pk = {vk} because vk is a proper vertex of Pk, we must have
[vk, b] ∩G ∩ Sγk

= ∅ (note that vk /∈ S and [vk, b] ⊂ H because vk ∈ H). Therefore,
by Proposition 7, (ṽk, b] ∩ G ∩ Sγk

= ∅, and consequently, Pk+1 ⊃ G ∩ H ∩ Sγk
⊃

G ∩ H ∩ Sγk+1
. On the other hand, if vk /∈ G, then Proposition 8 implies that

(ṽk, b] ∩ G ∩ Sγk
= ∅, and again Pk+1 ⊃ G ∩ H ∩ Sγk

⊃ G ∩ H ∩ Sγk+1
. That

Pk+1 ⊂ Pk \ (ṽk, b] follows from Proposition 4. �

Thus, Pk+1 and γk+1 will still satisfy (i), (ii) (for k ← k + 1). We can then go to
iteration k + 1.

In a formal way we can state

Algorithm 1. (Discrete Polyblock Algorithm)
Initialization. Take an initial polyblock P0 ⊃ G ∩H, with proper vertex set T0.
Let x̂0 be the best feasible solution available (the current best feasible solution),
γ0 = f(x̂0). If no feasible solution is available, let γ0 = −∞. Set k = 0.
Step 1. From Tk remove: all z ∈ Tk \H and all z ∈ Tk such that f(z) ≤ γk. Let
T̃k be the resulting set. Reset Tk ← T̃k.
Step 2. If Tk = ∅, terminate: if γk = −∞, the problem is infeasible; if γk >
−∞, x̂k is an optimal solution.
Step 3. If Tk �= ∅, select vk ∈ Tk.

If vk ∈ G ∩ S define Tk+1 = Tk \ {vk}, x̂k+1 = vk, γk+1 = f(x̂k+1), increment
k and return to Step 1.
Step 4. If vk ∈ G \ S, compute ṽk = 	vk�Sγk

(using formula (6) for S ← Sγk
).

If vk /∈ G compute xk = πG(vk) and define ṽk = xk if xk ∈ Sγk
, ṽk = 	xk�Sγk

if xk /∈ Sγk
.

Step 5. Let Tk,∗ = {z ∈ Tk| z ≥ ṽk}. Compute

T ′
k = (Tk \ Tk,∗) ∪ {zk,i| z ∈ Tk,∗, zi > ṽk

i , i = 1, . . . , n} (11)
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where zk,i = z + (ṽk
i − zi)e

i. Let Tk+1 be the set obtained from T ′
k by removing

every zi such that {j| zj > yj} = {i} for some y ∈ Tk,∗.
Step 6. Determine the new current best feasible solution x̂k+1 and γk+1 = f(x̂k+1).
Increment k and return to Step 1.

Theorem 1 Algorithm 1 is finite.

Proof For every i = 1, . . . , n the set Xi = {ξ ∈ R : ξ = xi, x ∈ S} is finite, hence
the set X =

∏n
i=1 Xi is also finite. At each iteration k a point yk ∈ X ∩ Pk is

generated (namely yk = vk in Step 3 and yk = ṽk in Step 4) such that the rectangle
(yk, b] contains no point of Pl with l > k, hence no yl with l > k. Therefore, there
can be no repetition in the sequence {y0, y1, . . . , yk, . . .} ⊂ X. The finiteness of X
then implies that of the algorithm. �

Remark 2 If in Step 3 we always select

vk ∈ argmax{f(v)| v ∈ Tk} ⊂ argmax{f(x)| x ∈ Pk} (12)

then the value f(vk) gives an upper bound of the optimal value of (DM/A), so if it
so happens that vk ∈ G ∩ Z then vk is an optimal solution of (DM/A).

Remark 3 A similar discrete copolyblock algorithm can be developed for discrete
monotonic minimization problem (DM/B): min{f(x)| x ∈ G ∩ H ∩ S}. The roles
of G and H will then be interchanged, the operation x = πG(v) will be replaced by
x = ρH(v) (the last point of H on the halfline from v through b), and the operation
	v� by

�v� = ṽ, with ṽi = min{yi| y ∈ S, yi > vi}.

5 Alternative Branch and Bound Algorithm

Algorithm 1 can be interpreted as a branh and bound algorithm in which a node z
of the branch and bound tree represents a box [ā, z] and branching is performed by
splitting a node into n descendants while the bound over a node z is taken to be
f(z). A positive feature of this algorithm is that the bound computation is straight-
forward. However, since each node has n descendants, storage problems may arise
with the growth of the number of iterations. Therefore, for large scale problems an
alternative rectangular branch and bound algorithm in a more conventional format
such as the following one may be more efficient.

The initial rectangle of the branch and bound tree is [a, b]. Branching is performed
by rectangular subdivision and for each generated subrectangle M = [p, q] ⊂ [a, b]
an upper bound µ(M) and a lower bound ν(M) are computed for max{f(x) : x ∈
G ∩ H ∩ S ∩M} by applying a number of iterations of Algorithm 1 for the latter
problem.
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BRANCHING. Let M = [p, q] be a candidate for subdivision, such that p, q ∈
X, where X =

∏n
i=1 Xi denotes the set defined in the proof of Theorem 1. Compute

δ(M) = maxi=1,...,n(qi − pi) = qiM − piM and divide M into two boxes

M+ = {x ∈M | xiM ≥ piM + 	δ(M)/2�Xi
},

M− = {x ∈M | xiM ≤ piM + 	δ(M)/2�Xi
}

where 	δ/2�Xi
denotes the largest element of Xi still not exceeding δ/2. Clearly,

if riM = piM + 	δ(M)/2�Xi
then M− = [p, q − riM eiM ], M+ = [p + riM eiM , q] with

q − riM eiM ∈ X, p + riM eiM ∈ X.

For the initial box [a, b] if for every i = 1, . . . , n we let âi = minx∈S∩M xi, b̂i =
maxx∈S∩M xi, and set [a, b] ← [â, b̂] then a, b ∈ X and every subbox M = [p, q] ⊂
[a, b] generated by the above subdivision rule will satisfy p, q ∈ X.

BOUNDING. Given a partition set M = [p, q], compute µ(M) such that

µ(M) ≥ γ(M) := max{f(x) : x ∈ G ∩H ∩ S ∩M}.
Let CBS denote the current best solution, i.e. the best feasible solution to problem
(DM/A) known thus far, and CBV the current best value, i.e. the objective function
value at CBS.

First observe that if p /∈ G (g(p) > 0) or q /∈ H (h(q) < 0) then µ(M) = −∞
(because M contains no feasible point); if q ∈ G ∩H then µ(M) = f(q). If none of
these cases occurs, reduce the box M by computing

βi = sup{β > 0| p + βei ∈ G ∩ S, pi + β ≤ qi}, q′ = p +
∑n

i=1 βie
i (13)

αi = sup{α > 0| q′ − αei ∈ H ∩ S, pi ≤ q′i − α}, p′ = q′ −∑n
i=1 αie

i. (14)

and setting [p, q]← [p′, q′]. Then compute µ(M) using either of the following mehods.

Method I

Step 0. Let L = (user supplied) maximal number of iterations to be
executed. Set v1 = q, T1 = {v1}. Set l = 1 (iteration counter for the
bounding subroutine).
Step 1. Compute xl = intersection of the surface g(x) = 0 with the
segment joining p and vl (this can be done because g(p) ≤ 0, g(q) > 0),
then compute ṽl = 	vl�S . Let Tl,∗ = {z ∈ Tl| z ≥ ṽl} and compute

T ′
l = (Tl \ Tl,∗) ∪ {zi| z ∈ Tl,∗, zi > ṽl

i, i = 1, . . . , n}
where zi = z + (ṽl

i − zi)e
i. If ṽl is feasible to (DM/A), use it to update

CBS and CBV.
Step 2. Let Tl+1 be the set that remains from T ′

l after removing all z /∈ H,
all z such that f(z) ≤CBV and all improper elements. If Tl+1 = ∅, set
µ(M) = CBV. Otherwise, compute

vl+1 ∈ argmax{f(z)| z ∈ Tl+1}
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If l = L, set µ(M) = f(zl+1), v(M) = vl+1, x(M) = xl+1. Otherwise,
set l ← l + 1 and return to Step 1.

Method II
Consider a grid U = {c0, c1, . . . , cn} ⊂ {x ∈ R

n
+|

∑n
i=1 xi = 1}. For example, let

U consist of the following points

c0 = e/n (barycentre of unit simplex)

ck =
(n + 1)e− nek

n2
k = 1, . . . , n

(ck is barycentre of simplex spanned by c0, ei, i �= k).

For each k = 0, 1, . . . , n, let xk = π(ck) := p +λkc
k, with λk = sup{α| p +αck ∈ G}.

Construct a set T by proceeding as follows:

Step 0. Let T = {u1, . . . un} with ui = q + (x0
i − qi)e

i i = 1, . . . , n. Set
k = 1.
Step k. Compute xk = π(ck), let T∗ = {z ∈ T | z ≥ xk}, and compute

T ′ = (T \ T∗) ∪ {zi| z ∈ T∗, zi > xk
i , i = 1, . . . , n}

where zi = z + (xk
i − zi)e

i. From T ′ remove all zi for which there exists
y ∈ T∗ such that {j| zj > yj} = {i}. Reset T equal to the set of remaining
elements of T ′. If k < n, let k ← k + 1 and go back to Step k. If k = n,
stop.

If T is the last set obtained by the above procedure then an upper bound is taken
to be

µ(M) = max{f(z)| z ∈ T}
while a lower bound is given by

ν(M) = max{f(xk)| k = 0, 1, . . . , n}.

The more dense the grid U the tighter the upper bound is, but also the more costly
the computation is. Therefore a reasonable trade-off should be resolved between the
denseness of the grid and the quality of the bound.

Algorithm 2.(Branch and Bound Discrete Polyblock Algorithm)
Initialization. Start with P1 = S1 = {M1 = [a, b]} (supposed to have been
reduced). Let CBS = x̄ be the best feasible solution available, CBV= f(x̄) (if
no feasible solution is available, set CBV= +∞). Set k = 1.
Step 1. For each box M = [p, q] ∈ Pk compute µ(M) (using Method I or II) and
update CBS and CBV whenever possible.
Step 2. Delete every M ∈ Sk such that µ(M) ≤ CBV. Let Rk be the collection
of remaining members of Sk. If Rk = ∅, then terminate: x̄ =CBS is an optimal
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solution if CBV< +∞, or the problem is infeasible otherwise.
Step 3. Select Mk ∈ Rk}. Choose jk ∈ argmaxi{qi − pi} and divide Mk into two
subboxes via the hyperplane yjk

= (pk
jk

+ qk
jk

)/2. Let Pk+1 be the partition of Mk.
Step 4. Set Sk+1 = (Rk \ {Mk}) ∪ Pk+1. Set k ← k + 1 and go back to Step 1.

Proposition 10 Algorithm 2 terminates after finitely many iterations, yielding an
optimal solution of (FP) or establishing that the problem is infeasible.

Proof The set X defined in the proof of Theorem 1 is finite. But, according to
the subdivision rule when branching, every box M is of the form M = [p, q] with
p ∈ X, q ∈ X. Therefore, the total number of nodes of the branch and bound tree is
finite, which implies finiteness of the algorithm itself. �

6 Application: A discrete location problem

Consider the following discrete location (DL) problem:
Given m points ai ∈ R

n, (i = 1, . . . , m) together with m positive numbers
αi(i = 1, . . . , m), and a finite set S ⊂ R

n, find an x ∈ S such that ‖x− ai‖ > αi for
every i = 1, . . . , m.

This problem is encountered in various applications. For example, if ai, i =
1, . . . , m, are the locations of m obnoxious facilities and αi > 0 is the radius of
the polluted region of facility i then an optimal solution of the above problem is a
location x ∈ S outside all polluted regions.

To solve this problem we replace it by the following problem

maximize z subject to
‖x− ai‖ ≥ αi i = 1, . . . , m
x ∈ S ⊂ R

n
+, z ∈ R+.

(P)

Clearly if the optimal value of problem (P) is positive then any optimal solution x̄
of it solves (DL); otherwise, (DL) is infeasible.

Since ‖x− a‖2 = ‖x‖2 + ‖a‖2 − 2〈a, x〉 problem (P) can be rewritten as

maximize z s.t. (15)

‖x‖2 + ‖ai‖2 − (z + 2〈ai, x〉+ αi) ≥ 0 i = 1, . . . , m (16)

x ∈ S, z ∈ R+ (17)

The set of constraints (16) can be transformed into a single constraint as follows

‖x‖2 + ‖ai‖2 − (z + 2〈ai, x〉+ αi) ≥ 0 i = 1, . . . , m

⇔ min
i=1,...,m

{‖x‖2 + ‖ai‖2 − (z + 2〈ai, x〉+ αi)} ≥ 0

⇔ ‖x‖2 − z − max
i=1,...,m

{2〈ai, x〉+ αi − ‖ai‖2}] ≥ 0

⇔ ‖x‖2 − ϕ(x) ≥ z (18)
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where
ϕ(x) = max

i=1,...,m
(2〈ai, x〉+ αi − ‖ai‖2) (19)

Finally, problem (P), and hence, problem (DL), reduces to the following

max{‖x‖2 − ϕ(x)| x ∈ S} (20)

where ϕ(x) is defined by (19). If (DL) is feasible, the optimal value of the latter
problem is positive, and any optimal solution of it solves (DL).

Now without loss of generality we can assume that all ai as well as the set S are
contained in a box [0, b] ⊂ R

n
+. Then both functions ‖x‖2 and ϕ(x) are increasing,

so that in parfticular, 0 ≤ ϕ(b) − ϕ(x) ≤ ϕ(b) − ϕ(0) ∀x ∈ [0, b]. Therefore, the
problem (20) can be written as

max{‖x‖2 + t− ϕ(b)| t + ϕ(x) ≤ ϕ(b), x ∈ S, 0 ≤ x ≤ b, 0 ≤ t ≤ c1}
where c1 = ϕ(b)−ϕ(0). This is a discrete monotonic optimization problem and can
be solved by the proposed algorithm. We refer the interested reader to [8], where
some preliminary computational experience with the implementation of this mehod
has been reported.
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