Numerical Optimization

Objective function

f(x) (formula or simulation algorithm)

- scalar function to be optimized
- multi-objectives can be combined into a single function

Variables (unknowns) x

- reals \Rightarrow **continuous** optimization
- discrete ⇒ **combinatorial** optimization

Constraints

$$g_i(x) = 0, h_i(x) \ge 0$$

- equality, inequality, no constraints
- can be embedded into objective function

A.k.a. nonlinear programming problem

The Optimization Problem

Find values of the variables that minimize (or maximize) the objective function while satisfying the constraints.

• To maximize, can minimize -f(x) or 1/f(x)

programming, local optimization)

• Problem is often difficult or intractable

⇒ many specific methods have been devised for particular kinds of problems (e.g., linear, quadratic, integer, and mixed-integer

But there are also heuristic methods for general problems of ${\bf global}$ optimization

Some Global Optimization Methods

- branch and bound
- continuation/smoothing
- dynamic programming
- evolutionary algorithms
- exhaustive search
- hybrid global/local
- multistart
- random search
- \bullet simplex
- simulated annealing
- tabu search

Curse of Dimensionality

Exhaustive search using multidyadic levels of resolution

For *n* dimensions need $(2^n)^l$ function evaluations at level *l*

Curse of Dimensionality

Suppose we can do 10^6 function evaluations per second. How long does it take to exhaustively search at level 1 these numbers of dimensions:

n	Time (seconds, minutes, hours, days, weeks, etc.)
20	
26	
32	
36	
39	Frame of reference:
45	Earth life $\approx 3.5(10)^9$ years
51	
74	

Supercomputers

- Workstations becoming faster and cheaper
- Supercomputers still wanted for modeling weather, defense, etc.
- Trend is to cluster numerous nodes

Players	Year Available	Speed
Silicon Graphics/Cray,	present	100 Gflops
NASA		
SKY Computers, DOD	< 2003	256 Gflops
IBM, Lawrence	present	3.88 Tflops
Livermore		
IBM, Intel, SG/Cray, Sun,	2001	30 Tflops
Los Alamos, Sandia, LL	2004	100 Tflops