Global optimization via evolutionary search with soft selection
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Keywords: Evolutionary algorithms, global optimization, The idea of natural evolution is applied in several well-
soft selection. known algorithms, e.g. Evolutionary Strategies [15], Evo-
lutionary Programming [2], Genetic Algorithms [6], and
some unfamiliar Evolutionary Search with Soft Selection
(ESSS) [3]. The last one is considered in this paper.

The ESSS algorithm is based on probably the simplest

ants of the Evolutionary Search with Soft Selection (ESSS)seIectlc_)n-mutatlon model of D"’.“W'”'a” gvgluuon_. The
searching process is executed in a multi-dimensional real

algorithms based on selected parameter optimization pro hich tive funci i

lems. They are tested with nine objective functions, most of>Pace, onwhich some non-negative function, calletess
them being strongly non-linear and multimodal. From the is defined. At the beginning the_populatlon of p(_)mFs IS ran-
results obtained it follows that all modified ESSS algorithms domly chosen from the searching space and is iteratively

are more effective and generally faster than the basic ESS ha.nged by selection and mutation ope.rators. As _the Se-
algorithm. ection operator the well-known proportional selection is

used. The entries of selected elements are mutated by adding
normally-distributed random values.
1 Introduction A long-life time of the latent phase results from the fact
that the selection process prefers new offsprings allocated in
The applicability of evolutionary inspirations in global op- well-exploited areas around the occupied peak. This is, of
timization is not questionable. The main advantage of evocourse, a disadvantage in the contest of the effectiveness of
lutionary processes is their capability of saddle crossing onthe optimization process. In order to overcome this problem,
multimodal surfaces. In contrast to conventional optimiza- 3 natural idea is to exclude the neighborhood of the occupied
tion methods, an evolutionary search does not get stuck (pOpeak in the exploration process. There are many instances of
tentially) in a local optimum trap, which is a crucial charac- this idea in specialized literature [5, 9].
teristic of global optimization. The aim of this paper is to introduce and compare three
Itis easy to prove that the Darwinian-type evolution has apjologically-inspired techniques which accelerate the saddle-
cyclic nature in multimodal adaptation landscapes [4]. Eachcrossing ability of the ESSS algorithm. These are:
cycle consists of two phases: active and latent. In relative
short active phases the population of individuals climbs onan 1. ESSS with Simple Variance Adaptation (ESSS-SVA)
adaptation slope to the neighbourhood of a local peak. The  [13],
latent phase is a quasi-stationary state with sporadic fluctua-
tions. If an occupied hill possesses a higher neighbour, then <
fluctuations can contribute to the crossing of the saddle and
anew active phase starts. . 3. ESSS with Forced Direction of Mutation (ESSS-FDM)
In the case of global optimization problems without con- [11].
strains a searching procedure has to reconcile the optimum
localization with the capability of saddle crossing. Applica- All above modifications are based on the idea of evolu-
tion of two specialized algorithms is a good solution to this tionary trap, which is observed in nature. The population
problem. However, although there are many specialized alwhich is trapped around a local quality pealn(ecological
gorithms of local optimization, the algorithms specialized in niche and whose quality growth is impossible, tries to ex-
saddle crossing are scarce. Pure Darwinian evolution is, oplore the environment in two possible ways. The first one
course, a compromise method, but its aim is adaptation, nois to increase the phenotype variety in the population. This
optimization. Consequently, its saddle crossing mechanismaechanism is proposed in ESSS-SVA and ESSS-FDM algo-
are more interesting. rithms. The other is an erosion of the actual quality peak (a
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Table 1. The outline of the ESSS algorithm.

Input data
1 — population size;
tmax — Maximum number of iterations (epochs);
o — standard deviation of the normal distribution;
$ : R™ — R — non-negative fitness function (adaptation landscape),

n number of features;
x{ — initial point.
1. Initiation

(@) P(0) = {x?,xg,...,xg (xg)i
k=1,2,...,n.

1=1,2,...,n;
(b) g3 = @ (x5)
2. Repeat:
(a) Estimation

P(t) — ®(P(t)) = {qf,qé,...,q%} :

t+1

t oyt oyt t t+1 .
{xb,xE x5, xE Y = xgt e g

(c) Selection

where {(;};_, are random variables u
on the interval[0, 1).
(d) Mutation
P(t) — P(t+1);
(x"); = (%,), + N(0,0),
where N (m, o) is a normally-distribute

until ¢ > tax-

(X(O))l. + N(0,0);

(b) Choice of the best element in the history

= max{q} },

@(P(t)) — {h17h27...,hn} i hy = min{h'

i=1,2,.

with expectationm and standard deviatios.

(1)

)

gy =@(xt), k=1,2,...,1.3)

k=0,1,... (4)

) 7
h t
1=14

2l g Ck}’

niformly distributed

(5)

k=1,2,...,m, (6)

N K

d random variable

deterioration of the ecological niche), which is implemented
in the ESSS-DOF algorithm.

2 ESSS algorithm

A basic phenotype evolution model was proposed by Galar
[3]. Foundations of this algorithm are as follows:

e There exists an environment of invariant properties
which have a limited capacity.

e There exists a population of reproducing elements (in-
dividuals of the same species). The elements of the pop-
ulation are characterized by a set of features (phenotype e
quantitative features). The set of all possible values of

the features determines the type of each element (phe-
notype). Each type is assigned its fitness.

The assumption that each element occupies one place in
environment is made. The elements "live" in the envi-
ronment for some length of time (generation), and then
a new generation is produced out of the actual one (re-
production).

The new generation is created by selecting parent el-
ements from the actual generation and changing their
features (asexual reproduction).

The choice of the parents is accomplished by soft selec-
tion which is random process. Each parent element has



a chance of allocating a descendant in the environmentvhereT defines the ellipsoidal contour line of the peak. Sim-
with probability proportional to the element quality. ilarly, let us assume that the population distribution et of

. the normal form
e The descendant elements are not perfect copies of the

parent elements. Type differences result from clear ran- 1 n
dom mutation. pe(X) =

vV 27 det Ct (11)
The relevant assumptions can be formalized by the numer- 1 )
ical ESSS algorithm (Table 1). Some results of the inves- X exp ( —5(x— (x)TCH(x — <Xt>)>,

tigations regarding the efficiency of the ESSS algorithm are

presented in [4]. Numerical tests proved essential advantagggnereC, is the population covariance matrix atet) is the
of soft selection over selection which reaches only a local opyopulation expectation vector at If the initial population
timum. The ESSS algorithm is not an optimization algorithm has isotropic symmetry, e.g(0) is obtained by normal mu-
in the sense of reaching an optimum with a desired accuracygations of a given phenotypex®), then we may expect that,
Evolution is not asymptotically convergent to an optimum atter some epochs, the matric@én (11) andT (10) have the

and the interpolation efficiency of the soft selection is weak.same set of eigenvectors. Hence, after a similarity transfor-
Evolution leads next generations to an elevated response sufpation, equations (10) and (11) have the forms

face, rather than to maxima. Evolution which started from a

high and narrow peak could terminate on a lower and wider n 72

peak. In spite of that, search advantages of the ESSS algo- o(x) = [ [ exp ( ~ 3 le> (12)
rithm suggest that this algorithm can be used in numerical i=1 ‘

packages for global numerical optimization, especially wheng,q

combined with local optimization algorithms.

n 1 (Z'L <rl>)2
_ == e L 13
3 Elements of convergence analysis pu{) 1;[1 Varve L ( 2w ~

The convergence analysis of evolutionary algorithms is verylf we use the above formulae in (8) and (9), then the popula-
difficult or, sometimes, impossible owing to their nonlinear, tion distribution at time + 1 is normal with the expectation
stochastic or heuristic nature. Standard tools of dynamic sysvector

tems analysis are not effective, even though simple models )

are used. A first attempt at the ESSS convergence analy-  (;i+1) = (zty—C ;=12 ... .n (14)
sis was presented in [7, 8]. For simplicity let us assume an Vi + 75

infinite size of the population. The population state can be

represented by a distribution functign(x) defined on the and the variance vector

phenotype space at a discrete time momdii. Let ®(x) 22,2
be a nonnegative fitness function angk — y) be a mod- Vitli = (|02 + —5 te 55 1=1,2,...,n. (15)
ification function which describes the transformation of an Vie T7i

elementy into x: .
v x It is easy to see thdim;_., [|(x')|| = 0, so the ESSS

1 " Ix — |2 algorithm, in the case of an infinite population size, is con-

g(x—y)= () €xp (— 22) (7) vergent to the optimum of the fitness function. In the latent
Vamo ? phase, the system is stablg 1 (x) = p;(x) and has normal

The population distribution after selection (5) can be calcu-distribution form with the zero mean and the variance vector:

lated from the formula

1 27; .
p(x) = P (x)pe(x) _ (x)pe(x) ®) Vi = 04| 3 (1 +4/1+ ((Z)), i=1,2,...,n,
S Jan @(2)pe(z)dz (©(z)) (16)
and after mutation by Analyzing (16) one can deduce the following characteristics:
Pri1(x) = / / Pi(y)g(x — y)dy 9) ° If T; < 0, then the yariance of the pqpulation distribu-_
n tion can be approximated by the variance of the modi-

fication functionv., ; ~ o. This is the proof that the
optimum point is an attractor which does not allow the
population to disperse.

Equations (8) and (9) do not possess, in general, closed-
form solutions. Let us consider the fitness function in the
Gaussian peak form with a maximum localized in the centre

of the reference frame: o If 7, ~ o, thenv? , ~ 02(1 + V/5)/2 ~ 1.61802, s0
1 rg there are no quality differences between this case and
O(x) =exp | — ;X Tx ), (10) that described above.



e If 7, > o, then the variance of the population dis- ESSS and ESSS-SVA algorithms were explored. They were
tribution can be approximated by the geometric meancompared with the Back-Propagation algorithm, which was
of modification and fitness functions varianaes ; ~ the most popular existing approach. Simulation experiments
VTio. show that the evolutionary algorithms considered here are

) ) ) effective in the sense of finding global minima of the error
Small changes in the population variance account for theynction.

observed fact that the population is concentrated during the
searching process unless the scoured area is a plateau. 42 ESSS-DOF algorithm

4 Family of modified ESSS algorithms '_rh_e eff_ectiveness of the _ESSS and I_ESSS-_SVA algqrithms is
limited in the case of a fitness function which consists of a
4.1 ESSS-SVA group of concentrateq local optimum pgaks and other distapt
peaks. If the population starts near this local group, then it
The idea is the following. When the population is trapped cyclically jumps from peak to peak of the group and cannot
around a local peak then the standard deviation of mutatiormove towards a remote one. In order to overcome this prob-
increases. This fact manifests itself in a larger variance ofiem, the erosion mechanishas been proposed in the ESSS-
population and a worse mean fitness of population. In thiSDOF. The erosion is inspired by the natural mechanism: if
way the mean fitness of population decreases to a saddle levegde population finds an ecological niche, where the existence
and the possibility of saddle crossing increases. conditions are much better than in the neighborhood, then
In comparison with the ESSS, the ESSS-SVA algorithm isit has troubles with running away toward other areas. The
enriched by a additional mechanism, which consists of thregopulation is evolutionary trapped. The long-standing ex-
new procedures: ploitation of the niche is the cause of its deterioration. The
L Tiap et th ojecive of s proedur st dtr- =515 CHns 1 e poulton g o, fewin
{Pa:n; fvt\)/:] (:ltg?\;etr:]em?%%uel?té?negg?&y C$ﬁgg§$:l:1tbiztan— The ESSS-DOF influences on the topology of the objec-
' tive function. If an evolutionary trapTtap tesj is detected,

202g?1/:ig ;?tehenglrj:]ae“g? d:rlsffs!a:ﬁ‘;mmeur;;;grnt\r:rilagée thenErosionis activated. This procedure transforms the ob-
P ay jective function®(x) as follows:

2. Adaptation of the mutation variance This procedure d(x) — @ for B(x) > O
D) = { () =Gl Tor#( > G0, g

)

is fired if an evqlut_longry trap is detectgd. The variance 0 for (x) < G(x
of the normal distribution used in mutation is multiplied
by a constant > 1. where

3. Coming back to the initial variance It the evolutlon_ary G(x) = ¢, exp <_ S(x—(xNTE (x— <Xt>)>7 (18)
trap is not detected then the variance of normal distribu- 2
tion is equal to an initial, relatively low value. and (x*) is the expectation vector dP(¢). The covariance
The ESSS-SVA algorithm can be written in the following Matrix I of the erosion peak has to be chosen in the form
form (see Table 1): which allows for deterioration of the occupied peak as ef-
fectively as possible. If this peak can be approximated by a
1. Initiation Gaussian peak, then its covariance matrix can be calculated
from (16) using the following procedure:

2. Repeat
1. Calculate the covariance mati®; of the actual popu-
(a) Estimation lation;
(b) Choice of the best elem-ent in the h'StO“_/ _ 2. Find all the eigenvectors and eigenvalues of the matrix
(c) If Trap TestthenAdaptation of the mutation vari- C; in order to define an orthonormal matrix and a
anceelseComing back to the initial variance diagonal matrixdiag(v2]i = 1,2,...,n) such that
(d) Selection C, = Udiag(2]i = 1,2,...,n)UT;  (19)

(e) Mutation
Until £ ¢ 3. Calculate the variances of the erosion peak (16):
nul'z > tmax.

2
The ESSS-SVA algorithm was successfully applied in the Ti = Vi (V” - ); (20)
training process of multilayer feedforward neural networks
[14]. A network was used to solve the approximation prob- 4. Calculate the covariance matiiof the erosion peak:
lem of a multi-variate function. Owing to the presence of
many local minima in the error function to be minimized, E = Udiag(r/|i = 1,2,...,n)U". (21)



Finally, the ESSS-DOF algorithm can be written in the fol- deviations and the length of the vectan® : ;1 = ||m?|/o.
lowing form: If p is too small, then there is no difference between the
ESSS-FDM and the ESSS. In the case of a very large
(Jlm*[| > o), there is no possibility of changing the popula-
tion drift direction, which has been chosen in the beginning
of the searching process.

1. Initiation;
2. Repeat

(a) Estimation

(b) Choice of the best element in the history 5 Experiment

(c) If Trap TesthenErosion
(d) Selection Many simulations (about 1600) with nine two-variable ob-
jective functions have been carried out. Test functions used

(€) Mutatiory during simulations are listed below:

until ¢ > tmax. . .
= tma e function f; (sum of two Gaussian peaks):
The ESSS-DOF algorithm has a much greater convergence ) )
rate than the other algorithms from the ESSS family. If the fi(z1,22) = exp(—21 — 23)
population gets stuck in an evolutionary trap, then the pro- 1 , 5. (23)
o ; + —exp(—(z1 — 2.3)* — z3),
cess of local peak erosion is started. This effect decreases 2

the average fithess of the population. The population fitness

reduces to a saddle level and running away towards other o function f, (De Jong’s function F2):

quality peak is possible. The deteriorated peak will never

be attractive for the searching population. The disadvantage fa(z1, 29) = 3500 —100(z? — 25)2 — (1 —21)?%, (24)
of the ESSS-DOF is its numerical complexity.

e function f3 (De Jong’s function F5):
4.3 ESSS-FDM

Although, the ESSS-DOF algorithm seems to be the most ef- f3(z1,22) = 500 — {0.002
fective algorithm from those presented above , it cannot be
applied in the case of a time-varying adaptation landscape. 25 2 1-1) 1 (25)
In order to overcome this problem, the ESSS-FDM algorithm + Z [j + Z(Iz‘ - aij)()] } )
has been proposed. The idea of FDM mechanism possesses j=1 i=1
a biological inspiration. If natural conditions existing in the
environment reward some direction of alteration in the phe- 32 —32\ ©
notype space, then this direction is preferred not only by se- —-16 —-32
lection but also by mutation. 0 -32
The ESSS-FDM algorithm differs from the standard ESSS 16 —-32
algorithm only in the modification step. The selected el- 32 -32
ements are mutated by adding to each comporieat -32 -—16
normally-distributed random variable with expectation -~ (aij) = : : (26)
0, unlike the ESSS algorithm, where; = 0 in (6). Hence ' '
(see Tab.1): —32 32
(d) Modification —16 32
0 32
P(t) — P(t +1); 16 32
(ki) = (xi1), + N(ml, 0); (22) 282
i=L2...mn k=12 e function f;:
it — o BPD) = Ei(P(t = 1)
IE:(P(D) — E:(P(t— 1) 1+ cos (12¢/27 1 23)
n T1,Ta) = , 27
B = 30 (), fal@r, @) TR T T 27)
M=
e function f5 (Michalewicz’s function):
The modified expectation vectan’ depends on the stan-
dard deviations and is parallel to the latest trends of the f5(@1,22) = Sin(acl)(sin(azﬁ/w))20
population drift. The exogenous parametewhich is called (28)

. . 2 20
momentum, determines the proportion between the standard +sin(z) (sin(z3/7)) ",



Algorithm Parameter# Values‘
all tmax 1000
n 20
o 0.05
ESSS-SVA ! 11
ESSS-SVA and ESSS-DOF ¢, 10
ESSS-FDM i 0.3

Table 2: Parameter values used in the simulations.

e function fs (Shubert’s function):

5
fo(x1,z2) = 200 + Zicos ((i+ 1Dz +1)

i=1

. (29)
X Zicos ((i+1)z2+ 1),
=1
e function f; (Rastring’s function):
f7(1‘1,$2) =100 — (!,C% + LL‘%) (30)

— 10 (cos(2mxy1) + cos(2mz2)),

o function fs (Acley’s function):

1 /1
fs(z1,20) =5+ 20exp [— QW}

~exp {; [cos(2ma) + cos(2ma2)] }
(31)

All those functions are strongly non-linear and multimodal.
The fitness function has been chosen in the form :

v =r ) - St (1) @

func- | ESSS| ESSS| ESSS| ESSS
tion -SVA | -FDM | -DOF
fi | 38 | 100 | 87 | 100
f» | 53 | 88 | 79 | 100
f3 0 42 | 58 0
i 0 37 0 0
fs | 12 | 27 | 13 | 41
fo | 22 | 98 | 81 | 39
fr | 26 | 59 | 74 | 23
fs 0 69 0 13

Table 3: Percentages of runs, in which the global optimum
has been found.

the ESSS-DOF wins in the case of a fitness function which
consists of a group of concentrated local optimum peaks and
other distant peaks. If the population in the ESSS-SVA starts
in the area of this local group, then it cyclically moves from
peak to peak of the group and cannot achieve a remote one.
The ESSS-DOF erodes peaks in turn and slowly, but conse-
guently, leads toward the global optimum.

6 Conclusions

The aim of this work has been the effectiveness analysis of
the Evolutionary Search with Soft Selection in the global pa-
rameter optimization. Apart from the ESSS algorithm, its
three biologically inspired variants were considered: ESSS-
SVA, ESSS-DOF and ESSS-FDM. All of them are more ef-
fective than the standard ESSS. Especially the ESSS-SVA
and ESSS-DOF seem to be useful in technical applications.
All the objective functions used in work are two-

dimensional. It would be interesting to analyze whether the
effectiveness of the SVA, DOF and FDM mechanisms is kept
when increasing the searching landscape dimension. This
problem determines our plans for further research.
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