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Abstract

The aim of this work is to draw a comparison of four vari-
ants of the Evolutionary Search with Soft Selection (ESSS)
algorithms based on selected parameter optimization prob-
lems. They are tested with nine objective functions, most of
them being strongly non-linear and multimodal. From the
results obtained it follows that all modified ESSS algorithms
are more effective and generally faster than the basic ESSS
algorithm.

1 Introduction

The applicability of evolutionary inspirations in global op-
timization is not questionable. The main advantage of evo-
lutionary processes is their capability of saddle crossing on
multimodal surfaces. In contrast to conventional optimiza-
tion methods, an evolutionary search does not get stuck (po-
tentially) in a local optimum trap, which is a crucial charac-
teristic of global optimization.

It is easy to prove that the Darwinian-type evolution has a
cyclic nature in multimodal adaptation landscapes [4]. Each
cycle consists of two phases: active and latent. In relative
short active phases the population of individuals climbs on an
adaptation slope to the neighbourhood of a local peak. The
latent phase is a quasi-stationary state with sporadic fluctua-
tions. If an occupied hill possesses a higher neighbour, then
fluctuations can contribute to the crossing of the saddle and
a new active phase starts.

In the case of global optimization problems without con-
strains a searching procedure has to reconcile the optimum
localization with the capability of saddle crossing. Applica-
tion of two specialized algorithms is a good solution to this
problem. However, although there are many specialized al-
gorithms of local optimization, the algorithms specialized in
saddle crossing are scarce. Pure Darwinian evolution is, of
course, a compromise method, but its aim is adaptation, not
optimization. Consequently, its saddle crossing mechanisms
are more interesting.

The idea of natural evolution is applied in several well-
known algorithms, e.g. Evolutionary Strategies [15], Evo-
lutionary Programming [2], Genetic Algorithms [6], and
some unfamiliar Evolutionary Search with Soft Selection
(ESSS) [3]. The last one is considered in this paper.

The ESSS algorithm is based on probably the simplest
selection-mutation model of Darwinian evolution. The
searching process is executed in a multi-dimensional real
space, on which some non-negative function, calledfitness,
is defined. At the beginning the population of points is ran-
domly chosen from the searching space and is iteratively
changed by selection and mutation operators. As the se-
lection operator the well-known proportional selection is
used. The entries of selected elements are mutated by adding
normally-distributed random values.

A long-life time of the latent phase results from the fact
that the selection process prefers new offsprings allocated in
well-exploited areas around the occupied peak. This is, of
course, a disadvantage in the contest of the effectiveness of
the optimization process. In order to overcome this problem,
a natural idea is to exclude the neighborhood of the occupied
peak in the exploration process. There are many instances of
this idea in specialized literature [5, 9].

The aim of this paper is to introduce and compare three
biologically-inspired techniques which accelerate the saddle-
crossing ability of the ESSS algorithm. These are:

1. ESSS with Simple Variance Adaptation (ESSS-SVA)
[13],

2. ESSS with Deterioration of the Objective Function
(ESSS-DOF) [10], and

3. ESSS with Forced Direction of Mutation (ESSS-FDM)
[11].

All above modifications are based on the idea of evolu-
tionary trap, which is observed in nature. The population
which is trapped around a local quality peak (an ecological
niche) and whose quality growth is impossible, tries to ex-
plore the environment in two possible ways. The first one
is to increase the phenotype variety in the population. This
mechanism is proposed in ESSS-SVA and ESSS-FDM algo-
rithms. The other is an erosion of the actual quality peak (a



Table 1. The outline of the ESSS algorithm.

Input data

η – population size;

tmax – maximum number of iterations (epochs);

σ – standard deviation of the normal distribution;

Φ : Rn → R+ – non-negative fitness function (adaptation landscape),
n number of features;

x0
0 – initial point.

1. Initiation

(a)P (0) =
{

x0
1, x0

2, . . . , x0
η

}

:
(

x0
k

)

i =
(

x0
0

)

i + N(0, σ); (1)

i = 1, 2, . . . , n; k = 1, 2, . . . , η.

(b) q0
0 = Φ

(

x0
0

)

(2)

2. Repeat:

(a)Estimation

P (t) → Φ
(

P (t)
)

=
{

qt
1, q

t
2, . . . , q

t
η

}

: qN
k = Φ

(

xt
k

)

, k = 1, 2, . . . , η.(3)

(b) Choice of the best element in the history
{

xt
0, xt

1, xt
2, . . . , xt

η

}

→ xt+1
0 : qt+1

0 = max{qt
k}, k = 0, 1, . . . , η. (4)

(c) Selection

Φ
(

P (t)
)

→
{

h1, h2, . . . , hη
}

: hk = min
{

h :
∑h

l=1 qt
l

∑η
l=1 qt

l
> ζk

}

, (5)

where{ζk}η
k=1 are random variables uniformly distributed

on the interval[0, 1).

(d) Mutation

P (t) → P (t + 1);
(

xt+1
k

)

i =
(

xt
hk

)

i + N(0, σ), i = 1, 2, . . . , n; k = 1, 2, . . . , η, (6)

whereN(m,σ) is a normally-distributed random variable
with expectationm and standard deviationσ.

Until t > tmax.

deterioration of the ecological niche), which is implemented
in the ESSS-DOF algorithm.

2 ESSS algorithm

A basic phenotype evolution model was proposed by Galar
[3]. Foundations of this algorithm are as follows:

• There exists an environment of invariant properties
which have a limited capacity.

• There exists a population of reproducing elements (in-
dividuals of the same species). The elements of the pop-
ulation are characterized by a set of features (phenotype
quantitative features). The set of all possible values of

the features determines the type of each element (phe-
notype). Each type is assigned its fitness.

• The assumption that each element occupies one place in
environment is made. The elements "live" in the envi-
ronment for some length of time (generation), and then
a new generation is produced out of the actual one (re-
production).

• The new generation is created by selecting parent el-
ements from the actual generation and changing their
features (asexual reproduction).

• The choice of the parents is accomplished by soft selec-
tion which is random process. Each parent element has



a chance of allocating a descendant in the environment
with probability proportional to the element quality.

• The descendant elements are not perfect copies of the
parent elements. Type differences result from clear ran-
dom mutation.

The relevant assumptions can be formalized by the numer-
ical ESSS algorithm (Table 1). Some results of the inves-
tigations regarding the efficiency of the ESSS algorithm are
presented in [4]. Numerical tests proved essential advantages
of soft selection over selection which reaches only a local op-
timum. The ESSS algorithm is not an optimization algorithm
in the sense of reaching an optimum with a desired accuracy.
Evolution is not asymptotically convergent to an optimum
and the interpolation efficiency of the soft selection is weak.
Evolution leads next generations to an elevated response sur-
face, rather than to maxima. Evolution which started from a
high and narrow peak could terminate on a lower and wider
peak. In spite of that, search advantages of the ESSS algo-
rithm suggest that this algorithm can be used in numerical
packages for global numerical optimization, especially when
combined with local optimization algorithms.

3 Elements of convergence analysis

The convergence analysis of evolutionary algorithms is very
difficult or, sometimes, impossible owing to their nonlinear,
stochastic or heuristic nature. Standard tools of dynamic sys-
tems analysis are not effective, even though simple models
are used. A first attempt at the ESSS convergence analy-
sis was presented in [7, 8]. For simplicity let us assume an
infinite size of the population. The population state can be
represented by a distribution functionpt(x) defined on the
phenotype space at a discrete time momentt [7]. Let Φ(x)
be a nonnegative fitness function andg(x − y) be a mod-
ification function which describes the transformation of an
elementy into x:

g(x− y) =

(

1√
2πσ

)n

exp
(

− ‖x− y‖2

2σ2

)

. (7)

The population distribution after selection (5) can be calcu-
lated from the formula

p′t(x) =
Φ(x)pt(x)

∫

·· ·
∫

Rn Φ(z)pt(z)dz
=

Φ(x)pt(x)
〈Φ(z)〉

(8)

and after mutation by

pt+1(x) =
∫

· · ·
∫

Rn
p′t(y)g(x− y)dy (9)

Equations (8) and (9) do not possess, in general, closed-
form solutions. Let us consider the fitness function in the
Gaussian peak form with a maximum localized in the centre
of the reference frame:

Φ(x) = exp
(

− 1
2
xTT−1x

)

, (10)

whereT defines the ellipsoidal contour line of the peak. Sim-
ilarly, let us assume that the population distribution att is of
the normal form

pt(x) =

(

1√
2π detCt

)n

× exp
(

− 1
2
(x− 〈xt〉)TC−1

t (x− 〈xt〉)
)

,

(11)

whereCt is the population covariance matrix and〈xt〉 is the
population expectation vector att. If the initial population
has isotropic symmetry, e.g.P (0) is obtained by normal mu-
tations of a given phenotype〈x0〉, then we may expect that,
after some epochs, the matricesC in (11) andT (10) have the
same set of eigenvectors. Hence, after a similarity transfor-
mation, equations (10) and (11) have the forms

Φ(x) =
n

∏

i=1

exp
(

− x2
i

2τ2
i

)

(12)

and

pt(x) =
n

∏

i=1

1√
2πνti

exp

(

−
(

xi − 〈xt
i〉

)2

2ν2
ti

)

(13)

If we use the above formulae in (8) and (9), then the popula-
tion distribution at timet + 1 is normal with the expectation
vector

〈xt+1
i 〉 = 〈xt

i〉
τ2
i

ν2
ti + τ2

i
, i = 1, 2, . . . , n (14)

and the variance vector

νt+1,i =

√

σ2 +
τ2
i ν2

ti

ν2
ti + τ2

i
, i = 1, 2, . . . , n. (15)

It is easy to see thatlimt→∞ ‖〈xt〉‖ = 0, so the ESSS
algorithm, in the case of an infinite population size, is con-
vergent to the optimum of the fitness function. In the latent
phase, the system is stablept+1(x) = pt(x) and has normal
distribution form with the zero mean and the variance vector:

ν∞,i = σ

√

√

√

√

1
2

(

1 +

√

1 +
(

2τi

σ

)

)

, i = 1, 2, . . . , n,

(16)
Analyzing (16) one can deduce the following characteristics:

• If τi � σ, then the variance of the population distribu-
tion can be approximated by the variance of the modi-
fication functionν∞,i ≈ σ. This is the proof that the
optimum point is an attractor which does not allow the
population to disperse.

• If τi ≈ σ, thenν2
∞,i ≈ σ2(1 +

√
5)/2 ≈ 1.618σ2, so

there are no quality differences between this case and
that described above.



• If τi � σ, then the variance of the population dis-
tribution can be approximated by the geometric mean
of modification and fitness functions variancesν∞,i ≈√

τiσ.

Small changes in the population variance account for the
observed fact that the population is concentrated during the
searching process unless the scoured area is a plateau.

4 Family of modified ESSS algorithms

4.1 ESSS-SVA

The idea is the following. When the population is trapped
around a local peak then the standard deviation of mutation
increases. This fact manifests itself in a larger variance of
population and a worse mean fitness of population. In this
way the mean fitness of population decreases to a saddle level
and the possibility of saddle crossing increases.

In comparison with the ESSS, the ESSS-SVA algorithm is
enriched by a additional mechanism, which consists of three
new procedures:

1. Trap test– the objective of this procedure is to deter-
mine whether the population quality changed substan-
tially for a given number of epochstt. The output is
positive if the population displacement for the lasttt
epochs is of the same order as the mutation varianceσt

2. Adaptation of the mutation variance– This procedure
is fired if an evolutionary trap is detected. The variance
of the normal distribution used in mutation is multiplied
by a constantα > 1.

3. Coming back to the initial variance– It the evolutionary
trap is not detected then the variance of normal distribu-
tion is equal to an initial, relatively low value.

The ESSS-SVA algorithm can be written in the following
form (see Table 1):

1. Initiation

2. Repeat

(a) Estimation;

(b) Choice of the best element in the history;

(c) If Trap TestthenAdaptation of the mutation vari-
anceelseComing back to the initial variance;

(d) Selection;

(e) Mutation;

Until t > tmax.

The ESSS-SVA algorithm was successfully applied in the
training process of multilayer feedforward neural networks
[14]. A network was used to solve the approximation prob-
lem of a multi-variate function. Owing to the presence of
many local minima in the error function to be minimized,

ESSS and ESSS-SVA algorithms were explored. They were
compared with the Back-Propagation algorithm, which was
the most popular existing approach. Simulation experiments
show that the evolutionary algorithms considered here are
effective in the sense of finding global minima of the error
function.

4.2 ESSS-DOF algorithm

The effectiveness of the ESSS and ESSS-SVA algorithms is
limited in the case of a fitness function which consists of a
group of concentrated local optimum peaks and other distant
peaks. If the population starts near this local group, then it
cyclically jumps from peak to peak of the group and cannot
move towards a remote one. In order to overcome this prob-
lem, the erosion mechanismhas been proposed in the ESSS-
DOF. The erosion is inspired by the natural mechanism: if
the population finds an ecological niche, where the existence
conditions are much better than in the neighborhood, then
it has troubles with running away toward other areas. The
population is evolutionary trapped. The long-standing ex-
ploitation of the niche is the cause of its deterioration. The
existence conditions of the population go down. A few indi-
viduals try to explore toward other unknown areas.

The ESSS-DOF influences on the topology of the objec-
tive function. If an evolutionary trap (Trap test) is detected,
thenErosionis activated. This procedure transforms the ob-
jective functionΦ(x) as follows:

Φ(x) =
{

Φ(x)−G(x) for Φ(x) ≥ G(x),
0 for Φ(x) < G(x), (17)

where

G(x) = qt
max exp

(

− 1
2
(x−〈xt〉)TE−1(x−〈xt〉)

)

, (18)

and〈xt〉 is the expectation vector ofP (t). The covariance
matrix E of the erosion peak has to be chosen in the form
which allows for deterioration of the occupied peak as ef-
fectively as possible. If this peak can be approximated by a
Gaussian peak, then its covariance matrix can be calculated
from (16) using the following procedure:

1. Calculate the covariance matrixCt of the actual popu-
lation;

2. Find all the eigenvectors and eigenvalues of the matrix
Ct in order to define an orthonormal matrixU and a
diagonal matrixdiag(ν2

ti|i = 1, 2, . . . , n) such that

Ct = U diag(ν2
ti|i = 1, 2, . . . , n)UT ; (19)

3. Calculate the variances of the erosion peak (16):

τ2
i = ν2

ti

(

ν2
ti

σ2 − 1
)

; (20)

4. Calculate the covariance matrixE of the erosion peak:

E = Udiag(τ2
i |i = 1, 2, . . . , n)UT . (21)



Finally, the ESSS-DOF algorithm can be written in the fol-
lowing form:

1. Initiation;

2. Repeat

(a) Estimation;

(b) Choice of the best element in the history;

(c) If Trap TestthenErosion;

(d) Selection;

(e) Mutation;

Until t > tmax.

The ESSS-DOF algorithm has a much greater convergence
rate than the other algorithms from the ESSS family. If the
population gets stuck in an evolutionary trap, then the pro-
cess of local peak erosion is started. This effect decreases
the average fitness of the population. The population fitness
reduces to a saddle level and running away towards other
quality peak is possible. The deteriorated peak will never
be attractive for the searching population. The disadvantage
of the ESSS-DOF is its numerical complexity.

4.3 ESSS-FDM

Although, the ESSS-DOF algorithm seems to be the most ef-
fective algorithm from those presented above , it cannot be
applied in the case of a time-varying adaptation landscape.
In order to overcome this problem, the ESSS-FDM algorithm
has been proposed. The idea of FDM mechanism possesses
a biological inspiration. If natural conditions existing in the
environment reward some direction of alteration in the phe-
notype space, then this direction is preferred not only by se-
lection but also by mutation.

The ESSS-FDM algorithm differs from the standard ESSS
algorithm only in the modification step. The selected el-
ements are mutated by adding to each componenti a
normally-distributed random variable with expectationmi 6=
0, unlike the ESSS algorithm, wheremi = 0 in (6). Hence
(see Tab.1):

(d) Modification

P (t)→ P (t + 1);
(

xt+1
k

)

i =
(

xt+1
hk

)

i + N(mt
i, σ); (22)

i = 1, 2, . . . , n; k = 1, 2, . . . , η;

mt
i = µσ

Ei(P (t))−Ei(P (t− 1))
‖Ei(P (t))− Ei(P (t− 1))‖

;

Ei(P (t)) =
1
η

η
∑

k=1

(

xt
k

)

i.

The modified expectation vectormt depends on the stan-
dard deviationσ and is parallel to the latest trends of the
population drift. The exogenous parameterµ, which is called
momentum, determines the proportion between the standard

deviationσ and the length of the vectormt : µ = ‖mt‖/σ.
If µ is too small, then there is no difference between the
ESSS-FDM and the ESSS. In the case of a very largeµ
(

‖mt‖ � σ
)

, there is no possibility of changing the popula-
tion drift direction, which has been chosen in the beginning
of the searching process.

5 Experiment

Many simulations (about 1600) with nine two-variable ob-
jective functions have been carried out. Test functions used
during simulations are listed below:

• functionf1 (sum of two Gaussian peaks):

f1(x1, x2) = exp(−x2
1 − x2

2)

+
1
2

exp(−(x1 − 2.3)2 − x2
2),

(23)

• functionf2 (De Jong’s function F2):

f2(x1, x2) = 3500−100(x2
1−x2)2− (1−x1)2, (24)

• functionf3 (De Jong’s function F5):

f3(x1, x2) = 500−
{

0.002

+
25
∑

j=1

[

j +
2

∑

i=1

(xi − aij)6
]−1

}−1

,
(25)

(

aij
)

=











































−32 −32
−16 −32
0 −32
16 −32
32 −32
−32 −16

...
...

−32 32
−16 32
0 32
16 32
32 32











































T

(26)

• functionf4:

f4(x1, x2) =
1 + cos

(

12
√

x2
1 + x2

2

)

1
2 (x2

1 + x2
2) + 2

, (27)

• functionf5 (Michalewicz’s function):

f5(x1, x2) = sin(x1)
(

sin(x2
1/π)

)20

+ sin(x2)
(

sin(x2
2/π)

)20
,

(28)



Algorithm Parameters Values

all tmax 1000

η 20

σ 0.05

ESSS-SVA α 1.1

ESSS-SVA and ESSS-DOF tt 10

ESSS-FDM µ 0.3

Table 2: Parameter values used in the simulations.

• functionf6 (Shubert’s function):

f6(x1, x2) = 200 +
5

∑

i=1

i cos
(

(i + 1)x1 + 1
)

×
5

∑

i=1

i cos
(

(i + 1)x2 + 1
)

,

(29)

• functionf7 (Rastring’s function):

f7(x1, x2) = 100−
(

x2
1 + x2

2

)

− 10 (cos(2πx1) + cos(2πx2)) ,
(30)

• functionf8 (Acley’s function):

f8(x1, x2) = 5 + 20 exp
[

− 1
2

√

1
2
(

x2
1 + x2

2

)

]

− exp
{

1
2
[

cos(2πx1) + cos(2πx2)
]

}

.

(31)

All those functions are strongly non-linear and multimodal.
The fitness function has been chosen in the form :

Φ
(

xt
k

)

= f
(

xt
k

)

− f t
min +

(

1
η

)2

(32)

where f t
min = min (f (xt

k) |k = 1, . . . , η) is the minimal
value of f taken over all the elements in the actual popu-
lation, andf is a given objective function which has to be
maximized. Such a fitness function is non-negative and its
relative values in the actual population make the proportional
selection (5) effective.

At first, simulations were carried out several times for dif-
ferent sets of input parameters. When the best set of param-
eters was allocated for each algorithm (see Table 2), several
starting points were tested. The results are compared in Ta-
ble 3.

Analysis of results shows that all mechanisms (SVA, FDM
and DOF) applied to the standard ESSS algorithm accelerate
the crossing of the objective function saddles and increase the
effectiveness of the global optimum finding. Two algorithms,
ESSS-SVA and ESSS-DOF, compete which is the best. The
ESSS-SVA seems to be the most effective algorithm. But

func- ESSS ESSS ESSS ESSS

tion -SVA -FDM -DOF

f1 38 100 87 100

f2 53 88 79 100

f3 0 42 58 0

f4 0 37 0 0

f5 12 27 13 41

f6 22 98 81 39

f7 26 59 74 23

f8 0 69 0 13

Table 3: Percentages of runs, in which the global optimum
has been found.

the ESSS-DOF wins in the case of a fitness function which
consists of a group of concentrated local optimum peaks and
other distant peaks. If the population in the ESSS-SVA starts
in the area of this local group, then it cyclically moves from
peak to peak of the group and cannot achieve a remote one.
The ESSS-DOF erodes peaks in turn and slowly, but conse-
quently, leads toward the global optimum.

6 Conclusions

The aim of this work has been the effectiveness analysis of
the Evolutionary Search with Soft Selection in the global pa-
rameter optimization. Apart from the ESSS algorithm, its
three biologically inspired variants were considered: ESSS-
SVA, ESSS-DOF and ESSS-FDM. All of them are more ef-
fective than the standard ESSS. Especially the ESSS-SVA
and ESSS-DOF seem to be useful in technical applications.

All the objective functions used in work are two-
dimensional. It would be interesting to analyze whether the
effectiveness of the SVA, DOF and FDM mechanisms is kept
when increasing the searching landscape dimension. This
problem determines our plans for further research.
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[7] Karcz-Dulęba I.Simulating Evolutionary Processes as
a Tool of Global Optimization inRn, PhD thesis, Tech-
nical University Press, Wrocław, 1992, (in Polish).
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