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Abstract
 This paper presents a fuzzy control approach for
improving convergence time in stochastic global
minimization algorithms .We show concrete results
when the method is applied to an eff icient algorithm
based on ideas related to Simulated Annealing.

 1.  Introduction
  The task of global minimization of numerical
functions has paramount importance in several areas of
Knowledge . It appears in fields like Engineering ,
Finance , Management , Medicine , etc..
  In practical cases , the function to be minimized
shows itself in the form of a cost measure that varies
with several parameters and is subject to certain
constraints , imposed by its environment . When the
objective function is “well -behaved” , there are several
methods to find points in which it attains the minimum
value , satisfying the constraints.
  Problems start to rise when the given function
presents several local minima, each one having its own
attraction basin , making , typically , the final result to
depend on the starting point . Unfortunately , most real
problems originate very complex objective functions
that are nonlinear , discontinuous , multi -modal , high-
dimensional , etc. .
  To solve such a class of problems , stochastic
methods seem to be a good (sometimes , the only) way
to go . Genetic algorithms and simulated annealing are
among the most popular approaches to stochastic
global optimization .
  The problem in that case is related to speed of
convergence and , in the genetic approach , warranty
of the abili ty to reach a global optimum , under general
conditions . Pure annealing methods , by the other side
, have results assuring its convergence to a global
minimum with probability 1 , but the performance
presented by most implementations is not very
encouraging . Despite this , researchers have found
ways to overcome the limitations of original annealing
schemes , leading to VFSR (Very Fast Simulated Re-
annealing) , that is a sophisticated and really effective
global optimization method. VFSR is particularly well
suited to applications involving neuro-fuzzy systems
and neural network training, taking into account its
superior performance and simplicity.
  ASA (Adaptive Simulated Annealing) is

an implementation  of VFSR , that brings us the benefits of
being publicly available , parameterizable and well -
maintained.
  Besides , ASA shows itself as an alternative to GAs ,
according to the published benchmarks , that demonstrate its
good quali ty .
  Unfortunately , stochastic global optimization algorithms
share a few bad characteristics like , for example , large
periods of poor improvement in their way to a global
extremum . In SA implementations , that is mainly due to the
“cooling” schedule , whose speed is limited by the
characteristics of probabili ty density functions (PDFs) used to
generate new candidate points . In this manner , if we choose
to employ the so called Boltzmann Annealing (BA) , the
“ temperature” has to be lowered at a maximum rate of T(k) =
T(0) / ln(k) . In case of Fast Annealing (FA) , the schedule
becomes T(k) = T(0) / k  , if assurance of convergence with
probabili ty 1 is to be maintained , resulting in a faster
schedule. ASA has an even better default scheme , given by

, thanks to its improved generating distribution . Note that
subscripts indicate independent evolution of temperatures for
each parameter dimension . In addition , it’s possible for the
ASA user to take advantage of Simulated Quenching (SQ) ,
resulting in

  If we set quenching parameters to values greater than 1 ,
there is a gain in speed but the convergence to a global
optimum is no longer assured ( see [1] ).

Such a procedure could be used for higher-dimensional
parameter spaces , when computational resources are scarce.
  Despite (or because) all that features , there
is much tuning to be done, from the user’s
viewpoint (“Nonlinear systems are typically
not typical” , as says Lester Ingber – the
creator of ASA).
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  In the sequel  , we describe a well -succeeded approach to
accelerate ASA algorithm using a simple Mamdani fuzzy
controller that dynamically adjusts certain user parameters
related to quenching . It’ s shown that , by increasing the
algorithm’s perception of slow convergence , it’s possible to
speed it up significantly and to reduce enormously (perhaps
eliminate) the user task of  parameter tuning . That is done
without changing the original ASA code .

2.  General structure of Simulated Annealing algorithms
  SA algorithms are based on the ideas introduced by
N. Metropolis and others ,widely known as Monte
Carlo importance-sampling techniques.
  The method uses three fundamental components , that
have great impact on the final implementation :

- A probabili ty density function g(.) , used in the
generation of new candidate points .

- A PDF a(.) , used in the acceptance/rejection of
new generated points .

- A schedule T(.) , that determines how the
temperatures will vary during the execution of the
algorithm , that is , their dynamical profile .

  The basic approach is to generate a starting point ,
chosen according to convenient criteria , and to set the
initial temperature  so that the space state could be
“suff iciently“ explored . After that , new points are
iteratively generated according to the generating PDF
g (.) and probabilistically accepted or rejected , as
dictated by PDF a(.) . If acceptance occurs , the
candidate point becomes the current base point .
During the run , temperatures are lowered and that
reduces the probabili ty of acceptance of new generated
points with higher cost values than that of the current
point . However , there is a non-zero probabili ty of
going “uphill” , giving the opportunity to escape  from
local minima .

3.  Main features of ASA/VFSR
  As was said before , ASA , that is a practical
realization of VFSR , is based upon the concept of
simulated annealing , possessing in addition a great
number of positive features . Among them we find :

. Re-annealing – it is the dynamical re-scaling of
parameter temperatures , adapting generating
distributions for each dimension according to the
sensitivities shown in a given search direction . In a
few words , if the cost function doesn’ t show
significant variations when we vary one given
parameter , it may be worth to extend the search
interval for that particular dimension and vice-versa .

. Quenching facilities – as we cited before , ASA code
has several user settable parameters related to
quenching that allow us to improve the convergence
speed . So , it’s possible to tailor parameter and cost
temperatures evolution by changing selected
quenching factors in an easy and clean manner .

. High level of parameterization – ASA is coded in
such a way that we can alter virtually any building
block without significant effort . This way , it’s
possible to change generation/acceptance processes
behavior , stopping criteria , starting point generation ,
log file detail level , etc. .
  ASA was designed to find global minima belonging
to a given compact subset of n-dimensional Euclidean
space . It generates points component-wise , according
to

  The compactness of the search space is not a severe
limi tation in practice , and in the absence of prior
information about the possible location of global
minima , it suff ices to choose a suff iciently large
hyper-rectangular domain .

4. Fuzzy quenching control of ASA
  As we said before , by using the so-called simulated
quenching we can improve the eff iciency of the
annealing  schedule , assuming the risk of reaching a
non-global minimum . In certain cases , however , we
have no choice , as is the case for domains with very
large number of dimensions , for instance .
  To solve this problem , a fuzzy controller was
designed . The approach is simple : we consider ASA
as a MISO (Multiple Input Single Output) dynamical
system and “close the loop” , by sampling ASA’s
output (current cost function value) and acting on its
inputs (a subset of settable parameters related to
quenching) according to a fuzzy law (quenching
controller) that does nothing more than emulate human
reasoning about the underlying process . So , by the
use of an intelli gent controller we can speed up and
slow down the temperature schedule , in addition to
being able to take evasive actions in case of premature
convergence .
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  We faced two main obstacles to get to our target :

1 – How the sampled outputs (cost function values)
could tell us the present status of the progressing run ?
2 – How do we change ASA inputs in order to leave
undesirable situations (permanence near non-global
minima / slow progress) ?
  The first question was handled thanks to the concept
of sub-energy function , used in the TRUST method
( see [2] ) .

  The sub-energy function is given by

  The base point is the best minimum point found so
far . So , the function SE behaves quali tatively like the
original f(.) when the search visits “better” points than
the current minimum and tends to be flat in “worse”
points . Thus , it’ s possible to asses when the search is
located above , near or under the current minimum
point by the inspection of values assumed by the sub-
energy function . Such a detection process results in
approximate conclusions like

The search is NEAR the current minimum
or
The search is VERY FAR from the current minimum

leading  naturally to a fuzzy modeling opportunity .
  The second  question above is related to the
consequent parts of the fuzzy rule base , in which we
have to place corrective actions to keep the search
progressing toward the global minimum . That was
done by varying quenching degrees for generating and
acceptance PDFs . The implementation used individual
quenching factors for each dimension and one cost
quenching factor .
  The fuzzy controller’s rule-base contains rules like

- IF AveSub IS NEAR ZERO THEN
      increase Quenching
- IF AveSub IS NEAR current minimum
      THEN increase Quenching
-     IF StdDevSub IS ZERO THEN
      decrease Quenching

where :

- AveSub is a linguistic variable corresponding to
the crisp average of last 100 sub-energy values.

- StdDevSub is a linguistic variable corresponding
to the crisp standard deviation of last 100 sub-
energy values.

  Having outlined the structure of the whole scheme ,
it’s time to show some practical results obtained from
the optimization of some diff icult functions.

5. Results
  We will present four test cases in which multi -modal
functions were submitted to three methods : ASA ,
fuzzy controlled ASA  and a well known and effective
floating point GA.
  ASA and fuzzy ASA have exactly the same
parameters; the only difference being the activation of
the fuzzy controller , located in an external module
that is called from within the cost function . The
controller was kept unchanged across the runs ,
evidencing its independence relative to objective
function characteristics and/or dimensionali ty .
  The GA has the following settings :

- Population size – 75
- Eliti sm – ON
- Initial population identical to ASA starting point
- 3 crossover operators
- 5 mutation operators

  The test functions are :

. point" base"current  
 theis   xand ,constant  real a is a where

a)])-))f(x-exp(-(f(x)log(1/[1)xSE(x,

0

00 +=

0.   valueMinimum
(1,1,1,1).at   minimum Global
1)-1)(x-19.8(x          

)1)-(x1)-10.1((x)x-(1          
)x-90(x)x-(1)x-100(xf(x)

} ] 10 , 10 -[x:R x{ :Domain 
: 2Function 

0.   valueMinimum
. (0,0,0)at   minimum Global

))sin(50x(2         x
))sin(220x(2x))sin(120x(2xf(x)

} ] 10000 , 10000- [ x:R x{ :Domain  
: 1Function 

42

2
4

2
2

2
3

22
31

2
1

2
12

i
4

1
2
3

1
2
22

2
1

i
3

=

+++
+++=

∈∈

=

+
++++=

∈∈



4

  In the sequence , we show the evolution of the
minimization processes . On the x-axis , we have the
number of cost function evaluations and on the y-axis,
the best (minimum) value found so far .
  As can be seen from the graphs ,the new algorithm
presents better performance in all cases when
compared to original ASA . In higher-dimensional
cases , it outperforms the FPGA too , presenting itself
as an alternative solution to real world problems.
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6. Conclusions
  It was shown that VFSR/ASA performance can be
improved by the application of fuzzy control
techniques . Results showed also that fuzzy controlled
ASA can be faster than a general purpose FPGA in
diff icult minimization problems. It’s important to note
that starting points were the same for all three methods
(in each run) and their location was chosen to be the
“worst possible” and “very far” from basins of
attraction of global minima .The graphs were
constructed by averaging 50 runs for each test function
/ method combination .
 We have used Fuzzy ASA in the training of  ANNs ,
neuro-fuzzy systems and other “devices” , demanding
diff icult global minimization tasks .  The practical
results are very good and additional research  is in
progress .
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