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Abstract

This paper presents a fuzzy control approach for
improving convergence time in stochastic global
minimization algorithms .We show concrete results
when the method is applied to an efficient algorithm
based onideas related to Simulated Annealing.

1. Introduction

Thetask of global minimization of numericd
functions has paramount importance in severa areas of
Knowledge . It appearsin fields like Engineeaing ,
Finance, Management , Medicine, etc..

In practical cases, the function to be minimized
showsitself in the form of a cst measure that varies
with several parameters and is subject to certain
constraints, impased by its environment . When the
objective function is “well-behaved” , there ae several
methods to find points in which it attains the minimum
value, satisfying the constraints.

Problems dart to rise when the given function
presents several local minima, each ane havingits own
attradion basin , making , typicaly , the final result to
depend onthe starting point . Unfortunately , most real
problems originate very complex oljective functions
that are nonlinear , discontinuous , multi-modal , high
dimensional , etc. .

To solve such a dass of problems, stochastic
methods sem to be agood (sometimes, the only) way
to go . Genetic dgorithms and simulated annealing are
among the most popular approaches to stochastic
global optimization .

The problem in that case is related to speed of
convergence and , in the genetic approach , warranty
of the ability to reach a global optimum , under general
conditions . Pure anneding methods, by the other side
, have results asauring its convergence to aglobal
minimum with probability 1, but the performance
presented by most implementationsis not very
encouraging . Despite this, reseachers have found
ways to overcome the limitations of original annealing
schemes, leadingto VFSR (Very Fast Simulated Re-
annealing) , that is a sophisticated and really effective
global optimization method. VFSR is particularly well
suited to applications involving neuro-fuzzy systems
and neura network training, taking into account its
superior performance and simplicity.

ASA (Adaptive Simulated Annealing) is

an implementation of VFSR, that brings us the benefits of
being publicly available , parameterizable and well -
maintai ned.

Besides, ASA showsitself asan alternative to GAs,
according to the published benchmarks, that demonstrate its
good quality .

Unfortunately , stochastic global optimization algorithms
share afew bad charaderisticslike, for example, large
periods of poor improvement in their way to a global
extremum . In SA implementations, that is mainly dueto the
“coadling” schedule , whase spedl is limited bythe
characteristics of probahility density functions (PDFs) used to
generate new candidate points . In this manner , if we choose
to employ the so called Boltzmann Anneding (BA) , the
“temperature” hasto be lowered at a maximum rate of T(k) =
T(0) / In(K) . In case of Fast Annealing (FA) , the schedule
becomes T(k) = T(0) / k , if assurance of convergence with
probability 1isto be maintained , resulting in afaster
schedule. ASA has an even better default scheme, given by

1
T: () =T; (0) x exp(-C;k D)
(Ci = user - defined parameter )

, thanksto itsimproved generating dstribution . Note that
subscripts indicate independent evolution of temperatures for
each parameter dimension . In addition, it's possible for the
ASA user to take alvantage of Simulated Quenching (SQ) ,
resultingin

Q
T () =T; (0) xexp(-C;k D)

(Q; =quenching parameter)

If we set quenching parameters to values greder than 1,
thereisagain in speed but the mnvergence to aglobal
optimum is no longer assured ( see[1] ).

Such a procedure could be used for higher-dimensional

parameter spaces , when computational resources are scarce.
Despite (or because) all that features, there

is much tuning to be done, from the user’s

viewpoint (“Nonlinea systems are typically

not typical” , as says Lester Ingber — the

creator of ASA).



Inthe sequel , we describe awell -succeeded approach to
accelerate ASA agorithm using a simple Mamdani fuzzy
controller that dynamically adjusts certain user parameters  quenching that all ow us to improve the mnvergence
related to quenching . It's shown that , by increasing the speed . S0, it'spossible to tailor parameter and cost
algorithm’s perception d slow convergence, it's possibleto temperatures evolution by changing selected
speed it up significantly and to reduce enormously (perhaps quenching factorsin an easy and clean manner .
eliminate) the user task of parameter tuning . That is done

. Quenching facilities —as we cited before , ASA code
has several user settable parameters related to

without changing the original ASA code .

2. General structure of Simulated Annealing algorithms

SA agoarithms are based on the ideas introduced by
N. Metropolis and others ,widely known as Monte
Carlo importance-sampling techniques.

The method uses three fundamental components, that
have grea impact on the final implementation :

- A probabili ty density function ¢(.) , used in the
generation d new candidate points .

- A PDFa(), usedinthe aceptance/rgjection of
new generated points.

- A schedule T(.) , that determines how the
temperatures will vary during the execution o the
algorithm , that is, their dynamical profile.

The basic gpproach is to generate a starting point ,
chosen according to convenient criteria, and to set the
initial temperature so that the space state could be
“sufficiently” explored . After that , new points are
iteratively generated according to the generating PDF
g () and probabilistically accepted or rejected , as
dictated by PDF a(.) . If acceptance occurs, the
candidate point beamesthe aurrent base point .
Duringthe run , temperatures are lowered and that
reduces the probabili ty of aaceptance of new generated
points with higher cost values than that of the aurrent
point . However , thereis anon-zero probabili ty of
going “uphill” , giving the opportunity to escape from
local minima.

3. Main features of ASA/VFSR

Aswas sid before, ASA |, that isa practicd
redization d VFSR , isbased upon the concept of
simulated annealing , possessing in addition agrea
number of positive feaures . Among them wefind :

. Re-annealing — it isthe dynamical re-scaling o
parameter temperatures , adapting generating
distributions for each dimension accordingto the
sensitivities siown in agiven search drection .Ina
few words, if the mst function doesn’'t show
significant variations when we vary one given
parameter , it may be worth to extend the search
interval for that particular dimension and vice-versa.

. High level of parameterization — ASA is coded in
such away that we can alter virtually any building
block without significant effort . Thisway , it's
possible to change generation/acceptance processes
behavior , stopping criteria, starting pant generation ,
logfile detail level , etc. .

ASA was designed to find gobal minima belonging
to agiven compact subset of n-dimensional Eucli dean
space. It generates points component-wise , according
to

Xiyg =X +AX;

with Ax; =y, (B, -A}),

[A,B,] =i -th dimensionparameterange,

y; O[-1,1] is given by

y, =sgn(u —1/2)T[(1+L1T)*% -1] where
u, 0[0,1] is generatedrom uniform distribution,
T, = current tenperaturerelative to dimensioni .

The mmpactness of the search spaceis not a severe
limitation in practice, and in the @sence of prior
information about the passible location of global
minima, it suffices to choose a sufficiently large
hyper-rectangular domain .

4. Fuzzy quenching control of ASA

Aswe said before, by using the so-cdled simulated
guenchingwe an improve the dficiency of the
annealing schedule, asauming the risk of reaching a
nonglobal minimum . In certain cases, however , we
have no choice, asisthe cae for domainswith very
large number of dimensions, for instance.

To solve this problem , afuzzy controller was
designed . The gproach is smple : we consider ASA
asaMISO (Multiple Input Single Output) dynamical
system and “close the loop’ , by sampling ASA’s
output (current cost function value) and acting onits
inputs (a subset of settable parameters related to
guenching) according to afuzzy law (quenching
controller) that does nothing more than emulate human
reasoning about the underlying process . So, by the
use of an intelli gent controller we can speed up and
slow down the temperature schedule, in addition to
being able to take evasive ationsin case of premature
convergence .



We faced two main dbstaclesto get to our target :

1 —How the sampled outputs (cost function values)
could tell usthe present status of the progressing run ?
2 —How do we change ASA inputsin arder to leave
undesirabl e situations (permanence near non-global
minima/ slow progress) ?

The first question was handled thanks to the concept
of sub-energy function , used in the TRUST method
(see[?]) .

The sub-energy functionis given by

SE(xX,) = log(1/[1+exp(-(f(x)- f(x,)) - a)])
whereaisarealconstantand X, is the
current'basepoint”.

The base point is the best minimum point found so
far . So, the function SE behaves qualitatively like the
original f(.) when the search visits “better” points than
the current minimum and tends to be flat in “worse”
points. Thus, it's possible to asses when the seach is
located above, near or under the aurrent minimum
point by the inspection of values assumed by the sub-
energy function . Such a detection process resultsin
approximate mnclusions like

The search is NEAR the current minimum
or
The search is VERY FAR from the current minimum

leading naturally to a fuzzy modeling goportunity .

Thesecond question aboveis related to the
consequent parts of the fuzzy rule base , in which we
have to place arrective actions to keep the search
progressing toward the global minimum . That was
done by varying quenching degrees for generating and
acceptance PDFs . The implementation used individual
guenching factors for each dimension and one st
guenching factor .

The fuzzy controller’ s rule-base contains rules like

- IFAveSub ISNEAR ZERO THEN
increase Quenching

- IF AveSub ISNEAR current minimum
THEN increase Quenching

- IF StdDevSub IS ZERO THEN
decrease Quenching

where:

- AveSubisalinguistic variable crresponding to
the aisp average of last 100 sub-energy values.

- StdDevSub isalinguistic variable arresponding
to the aisp standard deviation o last 100 sub-
energy values.

Having outlined the structure of the whole scheme,
it’s time to show some practical results obtained from
the optimization of some difficult functions.

5. Results

We will present four test cases in which multi-modal
functions were submitted to three methods: ASA
fuzzy controlled ASA and awell known and effective
floating point GA.

ASA andfuzzy ASA have exactly the same
parameters; the only diff erence beingthe adivation of
the fuzzy controller , located in an external module
that is called from within the st function . The
controller was kept unchanged across the runs,
evidencing its independencerelative to oljective
function characteristics and/or dimensionality .

The GA has the foll owing settings :

- Population size—75

- Elitism—ON

- Initial population identical to ASA starting pant
- 3crossover operators

- 5mutation operators

The test functions are :

Functionl:

Domain:{ x OR*: x, [ -10000,10000] }

f(x) = x2(2+5sin(120x%)) + X5(2+sin(220x%)) +
%(2+sin(50x))

Globalminimumat (0,0,0).

Minimum value=0.

Function2:

Domain:{ xOR*: x, 0-[10,10]}

f(x) =100(% - X,)* + (1- X,)* +90(% - x3)* +
(1-X5)* +10.2((% -1)* +(x, -1)°) +
19.8(x,-1)(x,-1)

Globalminimumat (1,1,1,1).

Minimum value=0.



Function 3:

Domain:{ x OR® : x, O[-10,10]}
f(x) = £,(x) +,(x) +f5(X)

00 = 2(0x)

P00 = 2(X3 +5SX, +x7,)°

fy(x) = %(Jllnz(l+‘ iSin?X,, + 2X; +3X;.,

)
with X, = X5, and Xg; =X,

Global minimumat 00 R*.

Minimum value=0.

Function4:
Domain: Thesameas function 3.
f(x) =f,(x) +f,(x) +5(X)

00 = 2(0x)

Fo(0) = 2isin’(x,,Sinx, -, +8inx,.,)

4(9) = SHN(L+I (X7, - 2, +3%,,,-COSX, +1)°)
with X, = X, and Xg; =X,

Global minimumat 000 R.

Minimum value=0.

In the sequence, we show the evolution of the
minimization processes . On the x-axis , we have the
number of cost function evauations and on the y-axis,
the best (minimum) value found so far .

As can be seen from the graphs ,the new agorithm
presents better performancein all cases when
compared to original ASA . In higher-dimensiona
cases, it outperforms the FPGA too , presenting itself
as an dternative solution to real world problems.
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6. Conclusions

It was shown that VFSR/ASA performance can be
improved by the gpplication of fuzzy control
techniques . Results sowed also that fuzzy controlled
ASA can be faster than a general purpose FPGA in
difficult minimization problems. It's important to note
that starting points were the same for al three methods
(in each run) and their location was chosen to bethe
“worst possible” and “very far” from basins of
attradion of global minima.The graphs were
constructed by averaging 50runs for each test function
/ method combination .
We have used Fuzzy ASA inthetraining o ANNSs,
neuro-fuzzy systems and other “devices’ , demanding
difficult global minimization tasks. The pradical
results are very good and additional research isin
progress .
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