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1. Introduction

The principal objective of this chapter is to summarize the key features and usage of the
LGO modeling and solver system, since it is applied to several case studies described
elsewhere in this book. Please see the chapters written by Isenor, Cada and Pintér (2001);
Tervo, Kolmonen, Jaatinen and Pintér (2001).

We shall first present a general GO model form with additional notes on key analytical
assumptions, and its most frequently studied special cases. This is followed by a concise
list of the most frequently used GO solution methods. Next, the principal stages of model
development, solution, and result analysis by using the LGO software system are
described. The discussion is concluded by pointing towards an extensive set of existing
and prospective applications of GO.



2. The Continuous Global Optimization Model

The practical objective of global optimization is to find the 'absolutely best' solution of
nonlinear decision models, in the (known or assumed) presence of multiple local optima.
A detailed exposition of the most prominent GO model types and (mostly exact,
deterministic) solution approaches can be found, for instance, in the Handbook edited by
Horst and Pardalos (1995). Several dozens of other textbooks and quite a few informative
WWW sites are also devoted to this emerging subject. The list of references provided at
the end of this paper gives a sample of the significant amount of GO information
available.

Let us consider the general continuous GO model defined by:

• x decision vector, an element of the real n-space Rn

•  f(x) continuous objective function
• D   non-empty set of admissible decisions (D is described by l, u, g below)
• l, u    explicit, finite bounds of x which define an embedding ‘box’ in Rn

• g(x)     m-vector of continuous constraint functions (m³0).

Applying this notation, the continuous global optimization model is stated formally as

(1) min f(x) subject to xeD:={x:   l£x£u   g(x)£0}ÌRn.

Explicit bounds on the constraint function values can also be imposed; however, such
models are easily rewritten in the form (1).

Let us observe first that, since the functions f and g are all continuous in D, model (1)
evidently has a non-empty set X* of globally optimal solutions. At the same time, one can
also immediately realize that, in its full generality, instances of model (1) can pose an
extreme numerical challenge. Since the usual convexity assumptions are absent, D may
be disconnected and/or non-convex, and the objective function f may well be
multiextremal. Therefore the number of local (pseudo-)solutions is typically unknown
and, in principle, it can be arbitrarily large; furthermore, the quality of the various local
solutions and the best one may also differ to an arbitrary degree.

To illustrate this point, see Figure 1 that displays a rather ‘hilly landscape’. (The picture
shows the surface plot of a relatively simple composition of trigonometric functions with
embedded low-order polynomial arguments, in just two variables). The function
displayed could be the objective f in (1) defined on the corresponding interval feasible
region [l, u], without the added constraints g. Note that adding the latter could make the
corresponding GO problem (even) more complicated, as the components of g could cut
out pieces of complicated geometry from the embedding rectangle [l, u].

In many practical cases, it is not too difficult to provide the bounds  [l, u], while g may
express (simple or complex) interactions among the components of the decision vector x.



Figure 1. A two-variable multiextremal function, as an instance of model (1).

To solve the problem (1) in the strict mathematical sense means to find the complete set
of  globally optimal solutions X*, and the associated global optimum value f*=f(x*),
x*ÎX*. In most cases, at least in the realm of continuous GO, we need to replace this
ambitious objective by finding a verified, or perhaps statistical estimate of f*, and the
corresponding approximation of a point (points) from the set X*. Naturally, such
estimates are to be determined on the basis of a finite number of algorithmically
generated sample points from D, or from the embedding interval [l,u].

For reasons of better analytical and numerical tractability, usually the following
additional assumptions are made:

• D is a full-dimensional subset (‘body’) in Rn

• X* is at most countable
• f and g (the latter component-wise) are Lipschitz-continuous functions on [l,u].

Observe that the first assumption (i.e., the fact that D is the closure of its non-empty
interior) makes algorithmic search possible within the set D. (For instance, this
requirement implies that nonlinear equality constraints need to be incorporated into the
objective function as done e.g., in Pintér (1996a), Chapter 4.1.)

With respect to the second assumption, let us note that in most practical contexts (at least
in most well-posed problems) the set of global optimizers consists only of a single point,
or at most of several points. (Note at the same time that practicioners applying GO may
formulate models whose solution set is a manifold: in such cases, proper numerical GO
software implementations will find a single solution, or several of them.)

Finally, the Lipschitz assumption is a sufficient condition for estimating f* on the basis of
a finite set of search points. (The real-valued function h is Lipschitz-continuous on its
domain DÌRn, if h(x1)-h(x2)£L||x1-x2|| holds for all pairs x1,x2 in D; here L=L(D,h) is a
suitable Lipschitz-constant of h on the set D.) We emphasize that the factual knowledge



of the smallest suitable Lipschitz-constant is not required, and in practice it is quite
typically unknown indeed. The Lipschitz-criterion is met, e.g., by all continuously
differentiable functions defined on [l,u]. However, their class is even broader.

One should also mention at this point that optimization models including binary (or more
general integer) variables can also be stated in the general form (1). Although this may
not be the most suitable representation in many concrete cases, it certainly shows the
close connection between (and related complexity of) general integer and continuous GO
models. Quite a few of the solution approaches listed in the next section, mutatis
mutandis, can be applied to integer models, as well as to continuous GO problems. This
point is well illustrated in several chapters of the present volume.

3. Solution Strategies

Due to the very general model structure postulated above, classical numerical approaches
are generally not directly applicable to solve GO model instances (even much simpler
ones than the one in Figure 1). Instead, a truly global scope algorithmic search
methodology is needed that, in principle, enables us to 'visit around' the entire feasible
region D. The model (1) covers many specially structured problem-classes (such as e.g.,
the concave minimization problem under linear or convex constraints), as well as far
more general ones (such as differential convex, Lipschitz or general continuous
problems). Hence, one can reasonably expect that the GO methods suitably tailored to
certain model-types within (1) will also vary to a considerable extent. Very general
search strategies can be expected to work for most GO models, albeit their efficiency
might be (relatively) low for specially structured problems.

To illustrate this point by an (in fact, not too extreme) example: one can rightfully expect
to solve linear programming or convex nonlinear models by using GO tools, since such
models certainly belong to the model-class (1). However, these are not the typically
envisioned model-instances when designing GO methods. On the other hand, strictly
specialized solvers may not work at all for problem-types outside of their scope. LP or
convex programming solvers are incapable of handling GO models, except under highly
specific circumstances. Furthermore, even specially structured nonconvex optimization
methods may not necessarily be applicable to certain more general GO models. (For
example, recall Figure 1, and compare it to the concave minimization model under linear
constraints).

In the past decades (at least since the sixties), a considerable variety of GO models and
solution approaches have been proposed, analyzed, and applied. Most GO software
implementations are based upon one of the approaches listed below, quite possibly
combining ideas from several strategies. (Many of these approaches are applied to the
case studies and problems discussed in the present volume.)



Exact Methods

For these methods—under postulated analytical conditions—rigorous global convergence
properties can be proven. (This, however, says very little regarding their practicality,
especially since implementation depth and sophistication may vary.)

• adaptive stochastic search algorithms
• branch and bound algorithms (including also Lipschitz optimization and interval

methods)
• complete (enumerative) search strategies
• homotopy (parameter continuation) methods
• ‘naïve’ exact approaches (such as uniform grid or pure random searches)
• statistically based search algorithms (including Bayesian strategies)
• successive outer approximation (relaxation) methods
• trajectory (path-following) methods

For concise or more detailed discussions of exact methods, consult for instance the
following books: Horst and Pardalos (1995), Horst and Tuy (1996), Kearfott (1996),
Neumaier (1990), Pintér (1996a), Törn and Žilinskas (1989), Zhigljavsky (1991), as well
as issues of the Journal of Global Optimization. Several books mentioned later in
connection with GO applications also contain chapters that describe exact approaches.

Heuristic Strategies

These methods are most frequently based on attractive analogies from nature or from the
sciences. However, rigorous global convergence properties are (in general) unknown.
(Again, efficiency and practicality significantly depends on their implementation.)

• ant colony systems
• adaptive dynamic control (exact versions are also known)
• approximation (response surface, convex global underestimation,…) methods
• continuation methods (based on smoothing model transformations)
• direct search (flexible polyhedron, scatter search,…) approaches
• fuzzy logic-based search methods
• genetic algorithms, evolution strategies
• 'globalized' extensions of local search methods
• neighbourhood search approaches
• neural networks
• sequential improvement of local optima (tunneling, deflation, filled functions,…)
• simulated annealing
• tabu search

For discussions of (mostly) heuristic strategies, consult for instance the following books:
Aarts and Lenstra (1997), Falkenauer (1998), Goldberg (1989), Glover and Laguna
(1997), Kosko (1993), Laguna and González-Velarde (2000), Michalewicz (1996),



Michalewicz and Fogel (1999), Mockus, Eddy, Mockus, Mockus, and Reklaitis  (1996),
Mohammadian (1999), Osman and Kelly (1996), Van Laarhoven and Aarts (1987), Voss,
Martello, Osman and Roucairol (1999), as well as some articles in the Journal of Global
Optimization, and many more in the topical Journal of Heuristics.

Brief annotated discussions of predominantly combinatorial algorithms are collected in
Skiena (1998); see also Press, Teukolsky, Vetterling and Flannery (1992) on several
heuristic methods. Even more concise reviews of GO approaches, available through the
World Wide Web, are provided, for instance, by Neumaier (2000), Pintér (1999), and
Gray, Hart, Painton, Phillips, Trahan, and Wagner (1997).

4. Software  Development 

In spite of significant theoretical advances, GO software development and ‘standardized’
use lag behind. This can be largely explained by the potential numerical difficulty of GO
problems, as illustrated by the 'simple' two-dimensional box-constrained optimization
problem depicted by Figure 1. Even much simpler problem-instances, such as e.g.,
indefinite quadratic programming, belong to the hardest class of mathematical
programming problems. Among others, several chapters in Horst and Pardalos (1995)
offer related discussions of GO model complexity issues.

There exist several broad classes of exact GO approaches (see above) that possess strong
theoretical convergence properties, and—at least, in principle—are straightforward to
implement and apply. However, all such rigorous approaches involve a computational
demand that increases exponentially as a function of problem-size, even in case of the
simplest GO problem instances. Therefore—and also in view of the related comments
made in Section 3—many practical GO strategies are supplemented (completed) by a
'traditional' local optimization phase(s). Global convergence, however, is only guaranteed
by the global scope algorithm-component(s): the latter theoretically should be used in a
complete, 'exhaustive' fashion. The above remarks indicate the inherent theoretical and
practical difficulty of developing robust, yet efficient GO software.

Since the computational demand of rigorous deterministic strategies can be proved to be
some exponential function of the problem dimensionality, GO problems in Rn (n being
just 5, 10, 20, 50, or 100,...) can have rapidly increasing and practically prohibitive
complexity. The complexity issue will remain valid, in spite of the fact that
computational power seems to grow at an unbelievable pace: the so-called 'curse of
dimensionality' is here to stay. This observation makes a strong case for applying (also)
randomized search components, if efficiency is a significant issue. Obviously, this will
happen at the expense of losing the rigorous convergence guarantee of exact deterministic
approaches (such as e.g., branch-and-bound strategies).

A few years ago, a survey on continuous GO software was prepared for the newsletter of
the Mathematical Programming Society (Pintér, 1996b). Drawing on the responses of
software developers and some additional information available, over 50 software



products were annotated in that review. By now the number of solvers aimed at solving
GO models is probably in the order of a few hundreds. However, the general impression
is that many of the known software products are still at an experimental development
stage, and of dominantly ‘academic’ character, as opposed to ‘industrial strength’ tools.
(Of course, it is entirely possible that software products used by industry and private
companies are not announced publicly.)

Some key aspects that should be addressed by professional quality GO software
development are listed below:

• well-specified hardware and software environments (supported development
platforms, operating systems and modeling/programming languages)

• quality user guidance: clearly outlined model development procedure, sensible
modeling and troubleshooting tips, user file samples (templates), simpler and also
non-trivial(!) numerical examples

• fully functional and friendly user interface
• 'fool-proof’ solver selection and execution procedures
• good communication and documentation: clear system output for all foreseeable

program compilation, linking, execution situations, including proper error messages,
and result file(s)

• visualization features which are especially desirable in nonlinear systems modeling,
to avoid problem  misrepresentation, and to assist in finding alternative models and
solution procedures

• reliable, quality user support
• continuous product maintenance and development (since not only science progresses,

but hardware devices, operating systems, as well as target development platforms are
in permanent change).

This tentative ‘wish-list’ of requirements indicates that although the task is not
impossible, it is and remains a challenge—especially in the context of GO.

5. LGO: An Integrated Model Development and Solver System

The Lipschitz(-Continuous) Global Optimizer (LGO) program system analyzes and
numerically solves optimization problems of the general form (1), under the structural
assumptions listed in Section 2. Therefore it is particularly suitable to handle GO
problems related to models that are supported by limited (or difficult to use) analytical
information.

Below a summary of the principal LGO features is presented; followed (in Section 6) by
a short description of the recommended application development steps. For theoretical
background, including also some key implementation details, consult Pintér (1996a).
Additional aspects related to more recent developments, current LGO features, and
detailed user guidance are discussed by Pintér (1998, 2000).



Application Program Structure

The interdependence of the key program components is shown on Figure 2.  MAIN
symbolizes the driver program that invokes LGO; it may have also other functions such
as communicating with external programs. FCT describes the application program
developed by the LGO user. The input parameters are additional model descriptors and a
few key optimization parameters. This structure enables repeated runs, making use of the
same executable program that combines the MAIN and FCT source code with the LGO
file system. The output consists of automatically generated (summary and detailed) result
text files; additional options for result analysis will also be discussed later.

{Input parameters}
↓

MAIN ↔  LGO ↔  FCT
↓

{Results}

Figure 2. LGO application program: basic structure.

LGO supports a range of flexible options to use MAIN and FCT. The latter files can be
provided in any of several compatible programming languages. They can be connected to
additional program (source or object code) files; can be provided as compiled object files,
or even as executables. Simpler structures are also possible. For instance, LGO can be
provided as an executable program that calls only FCT, so that MAIN is absent (being
built into LGO); or MAIN and FCT combined can call LGO in a 'silent subroutine' mode.
The listed options include genuine ‘black box’ optimization, assuming that proper input/
output communication is established between LGO and the external user files.

Solver Options

Motivated by the related discussion in Sections 3 and 4, the core of LGO is a suite of
robust and efficient nonlinear (global and local) optimization methods. Currently, the
following component algorithms are offered:

• global adaptive partition and search (branch-and-bound method, enhanced with
random sampling)

• global adaptive random search
• unconstrained local search, applying an exact penalty function approach
• constrained local search, based upon sequentially generated local approximations of

the model functions

Note that the component algorithms themselves are made up by several (sub)algorithms,
but these are 'hidden' from the user, in order to make the usage of LGO easier. The built-
in global scope algorithms are also equipped with statistical tools. These generate a
statistical lower bound estimate, based upon the search points and corresponding function
values sampled in the global phase of LGO. Both global scope algorithms are gradient-



free procedures. This fact makes their application easy in many practical modeling
situations in which higher order information is difficult (or computationally expensive) to
obtain. The global solvers, when activated with suitable parameterization, enable a robust
and theoretically established approximation of the solution.

In most practical cases, numerical efficiency requires the additional use of local search
strategies. This is the main reason for using also built-in local solvers. As emphasized
earlier, the exclusive use of local solvers per se may miss the global optimum, unless the
problem is postulated to have a convex structure. In the local solver options, gradient
information is numerically approximated, by finite differences. (Automatic differentiation
options can also be used, in the presence of suitable program libraries supporting such
operations: however, currently this is not offered as a standard feature.)

Solver Operational Modes

The LGO solvers can be activated automatically or interactively. The automatic option
only asks the LGO user to select one of the global search modes; which will be followed
automatically by the local search procedures.

The interactive option makes possible to select solvers one by one, followed by the
explicit allocation of computational effort to each solver mode invoked (by setting the
maximal number of objective and constraint function evaluations). This approach makes
possible to provide globally established optimum estimates, even in case of a limited
search effort (forced e.g., by expensive function evaluations and a limited solution time).

LGO also offers an automatic local search procedure (that includes both local solvers)
launched from a user-supplied initial solution. This feature supports the solution of
convex models, while it also enables the fast use of pre-specified expert estimates of the
global solution. LGO can also be used to solve linear programming models, although this
can not be expected to be its main virtue. Rather, it can be considered and used also as an
effective dense nonlinear solver.

Development Environments and Connectivity Issues

The current standard version of LGO has been developed in Fortran 90 (LF90, by Lahey
Computer Systems, 1998) for personal computers. In addition to immediate LF90 and
LF95 connectivity, Dynamic Link Library (DLL) connection is also supported by LF90
(as of September 2000) with respect to the following development environments: Borland
C/C++ and Delphi; Microsoft Visual Basic and Visual C/C++. Connection to other
applications via DLLs (and in certain cases, via static link options) is also possible.

LGO versions can be run in 'plain' DOS sessions, in a DOS 'box' of any of the currently
used Windows (95/98/2000/NT) versions, or as a fully Windows-style application. LGO
sessions can also be called directly from other Windows applications that support
external program calls. As mentioned above, LGO can invoke external application



programs, in order to evaluate functions, execute subroutines or auxiliary calculations
that may contribute to modules of the GO problem analyzed.

The LGO 'command-line' mode is available also for workstation and mainframe
platforms, or for other PC Fortran platforms, without the interactive graphics capabilities
to be discussed later. This mode provides plain text output to the screen and/or to files.
The description presented in the next section refers to the current menu-driven Windows
version, but model development using any other LGO version follows essentially the
same guidelines.

6. Model Development Using LGO

LGO Menu Interface

In the Windows 95/98/NT/2000 implementation, the solver system is embedded under a
menu-driven interface, to assist LGO users. Upon launching the program system, the
following menu options can be activated (the principal menu options indicated by
boldface letters lead to the selection of corresponding submenu items):

Model Formulation Model Solution Result Analysis Help Exit
Project File Names Input Parameter File Summary Output File LGO Information Summary Quit
User Main File Run LGO Detailed Output File Model Development Summary
User Function File External System Call About LGO
Compile LGO Model
External System Call

Figure 3. LGO menu options.



The functionality of the menu options is described below.

Model Formulation

In order to apply LGO, the user first needs to define the optimization problem, according
to standard specifications. The Project File Names option prompts the user to give names
to the following program items (their functionality is shown in brackets, in accordance
with the basic structure shown by Figure 2):

• user main file (see MAIN in Figure 2; provides main application program frame)
• user function file (see FCT in Figure 2; provides model description)
• project executable file (combines the user files named above with the LGO system,

and subsequently generates LGO output files)
• input parameter file (provides runtime information for the project executable file)
• summary output file (contains principal information regarding run results)
• detailed output file (contains more detailed information regarding run results).

Upon invoking this menu option, default file names are provided in a Windows dialog.
The given names correspond to a test problem file system available to LGO users, as an
example to set up their own applications. The defaults can—and, of course, should—be
overwritten following the user application needs, while keeping the sample user files. The
sample files are commented in sufficient detail to assist their easy usage.

Selecting next the User Main File option invokes the application frame program file,
under the name chosen in the previous menu option. In standard LGO shipments the
simple Notepad text editor (a Windows accessory) is activated to display and manipulate
this file, as well as all other LGO text files discussed later on. (If LGO users prefer to use
a different text editor, then this can also be simply arranged upon request.) In the main
user file the input/output files are opened, and the call to the LGO solver system is made.
Optional, application-dependent user actions can be also included here, before and/or
after executing the LGO run.

The User Function File option serves to open a file, in order to describe the optimization
model that will be submitted to LGO. The objective function and the constraints are
defined here, following again a commented sample file.

The Compile LGO Model option invokes the generation of object files on the basis of the
user source files discussed above; then links these to the LGO object file system and the
auxiliary files (modules, libraries, and resource file) needed. The actual compilation
obviously depends on the (Lahey Fortran 90 or 95, Borland C/C++ or Delphi, Microsoft
C/C++ or Visual Basic) development environment used. If all compilation and linking
operations are successful, then control is returned to the main menu level, and the user
may proceed to the model solution stage. In case of compilation and/or linking errors,
corresponding messages appear on the screen (in a DOS ‘box’ under Windows). The
LGO system also indicates the errors: a message prompts the user to return to editing
mode. (All errors need to be corrected as this point, before proceeding further.)



The External System Call option can be used to launch direct calls to arbitrary program
systems available to the user, either by simply typing the name of an executable program
(available from the path), or by invoking Windows Explorer. This option—available also
under the Result Analysis main menu item—can be helpful in describing and analyzing
models, and/or in exporting LGO results.

Model Solution

Following successful model compilation and linking, the LGO executable program is
ready to run, but it still needs certain input parameters. These parameters are set by
selecting the Input Parameter File option. Again, a commented sample of this file is
provided to assist users, thus its preparation is straightforward. In particular, the number
of variables and constraints, explicit lower and upper bounds, nominal values (to support
local search) and a few key optimization parameters are defined in this file. This structure
allows for repeated runs on different feasible interval sets, launched from different
starting poins, and/or using modified optimization parameters, using the same executable
program.

The Run LGO menu option launches the application. As mentioned earlier, LGO
executable programs can be run in automatic global and local search modes, as well as in
interactive operational modes. All user actions are prompted by the system, with added
brief on-line explanations. During program execution, LGO generates troubleshooting
messages as needed and terse progress reports (current solver mode, incumbent optimum
estimate, and the current number of function calls) to the screen. In interactive mode,
after completing each solver option the user is prompted to select another (recommended)
solver or to terminate the optimization procedure. Upon successful completion, two
automatically generated output files are available for inspection and further work. In case
of runtime errors caught by LGO or by the operating system the user needs to return to
the model formulation stage. (Such errors are caused most typically by modeling flaws.)

Visualization

LGO has built-in visualization capabilities to assist the model development procedure.
Specifically, upon completing the optimization process the user can view projections of
an aggregated merit function (objective plus constraint-induced penalties, as needed) in
interactively selected variable subspaces. In these projections, all other coordinates are
held at their optimized estimate. The search progress is also summarized in these figures
by displaying the projected scatterplot of improving search points (all other coordinates
of the points correspond to the actually found sequence of improving solution vectors).

Figure 4 displays a projection of the merit function, using a standard LGO test function as
an example. (This particular, fairly complex test problem has 10 variables and 6
constraints, some of the latter being nonconvex: the code can be provided upon request to
interested colleagues.) Feasible/infeasible set projections with respect to selected
constraint functions can also be generated interactively: see the example shown in Figure



5. (Both Figures 4 and 5 are based on original pictures generated by LGO, saved as color
bitmaps; please see the explanatory notes provided in the pictures.)

Figure 4. Aggregated merit function in a standard LGO test problem

Figure 5. Feasibility plot in a standard LGO test problem



Although the use of these visualization options can be simply skipped, in most cases it is
a salient idea to check the graphical information, at least in subspaces of special interest.
By visual analysis, the user can verify a hypothesis regarding the expected shape and
complexity of the objective and constraints. This can effectively help in finding modified
problem formulations and/or LGO input parameters to be applied in subsequent LGO
runs. Such pictures may also be used to suggest tentative reductions of the search region,
in order to enable a more detailed 'exploration' (in a subsequent run) around the current
estimated optimum, or somewhere else. As mentioned earlier, runs on modified box
regions, or from various starting points can be launched without recompiling the LGO
executable program.

After the LGO optimization run is terminated, control is returned again to the main menu
level. Accordingly, repeated model formulation, compilation and linking, input file
changes, or result analysis may follow.

Result Analysis

The solution procedure is typically followed by an inspection of the text result files
generated by LGO. This includes two options. The Summary Output File option displays
a basic report of the results: optimum estimate, (global search phase based) lower bound
estimate, solution vector estimate, and the total runtime. The Detailed Output File option
displays a more thorough description of the program run. Namely, it echoes the variable
ranges, the given nominal values, and the input parameters of all sequentially invoked
solver options. Furthermore, it also keeps track of the improving solutions found in the
global search phase(s), and the stopping criteria met during execution, in addition to the
information presented in the summary output file.

The two result files may have different importance at different stages of model
development. The summary file is most useful in well-tested ‘routine’ LGO runs, while
the additional information provided by the detailed output file can assist both model
development and the choice of LGO solver parameterizations.

The results obtained may be directly communicated to other programs. These external
programs can be made available from the user main and function files of LGO, but can
also be run independently. Finally, they can also be invoked by using the External System
Call options discussed above. (For example, using these options one can directly import
text information into the LGO user files, as well as export results from LGO to a report
generator or to some advanced visualization environment.)

After the analysis of results is completed, control is returned again to the main menu
level. In a typical application development process, the model formulation, run and
analysis stages are applied in an iterative fashion.



Help

In addition to the detailed User’s Guide (Pintér, 2000), concise on-line help is available.
The LGO Information Summary menu option serves to introduce novice users to the
program system. The Model Development Summary option provides instructions
regarding the essential stages of application development using LGO. The About LGO
option displays the LGO front screen, including copyright and licensee information.

Exit

Upon selecting the Exit | Quit option, all current project files are closed and saved; all
temporary files are deleted; and the LGO run is terminated.

Summing up the review of LGO menu options, it can be seen that essential background
information related to the subject of global optimization, to LGO, and to the model
structure used is permanently available. In addition, all principal stages of user
application (code) development—editing, compilation, linking, program execution, visual
and text result analysis—can be directly activated from the menu. These features
effectively support rapid prototyping and testing, thereby making the application
development process faster and easier.

During the past decade, LGO has been applied to a most diverse set of GO problems,
arising from a variety of disciplines. Several of these are described elsewhere in this
volume; in the next section some additional pointers are provided.

7. GO Test Problems, Existing and Potential Applications

The quantitative analysis of natural—physical, chemical, biological, environmental, or
even economic and societal—systems and their governing processes naturally involves
(often highly) nonlinear functions. Consequently, management/optimization/control
models based on such nonlinear systems description frequently possess multiple local
optima. For sophisticated examples and general principles, as well as for illuminating and
far-reaching discussions consult, for instance, Casti (1990), Eigen and Winkler (1975),
Mandelbrot (1983), Murray (1989), Schroeder (1991).

The present discussion is concluded by pointing towards the possibility of applying GO
methods to a huge variety of test and real-world challenges.

Extensive sets of nonlinear programming test problems, often derived from real-world
applications, have been collected by Moré, Garbow and Hillström (1981); Hock and
Schittkowski (1987); Floudas and Pardalos (1990); Jansson and Knüppel (1992);
Floudas, Pardalos, Adjiman, Esposito, Gumus, Harding, Klepeis, Meyer and Schweiger
(1999). On the WWW, one can visit, e.g., the site of Neumaier (2000), and those of
Argonne (1993) and Sandia National Laboratories (Gray, Hart, Painton, Phillips, Trahan,
and Wagner, 1997). Especially Neumaier’s GO pages provides numerous further links



and pointers, including also discussions of test problems. (There is a growing number of
further informative WWW sites devoted to GO and related subjects.)

For additional literature on real-world applications, the reader may like to consult, for
example, the following works.

• Bomze, Csendes, Horst and Pardalos (1997) is an edited volume with contributions
on decision support systems and techniques for solving GO problems, but also on
molecular structures, queuing systems, image reconstruction, location analysis and
process network synthesis.

• Corliss and Kearfott (1999) review several industrial and financial applications of
rigorous GO: currency trading, portfolio management, finite element analysis,
magnetic resonance imaging, gene prediction, computer algebra, and signal
processing.

• De Leone, Murli, Pardalos and Toraldo (1998) is an edited volume with applications
in graphs, econometry, traveling salesman type problems, inverse problems,
astronomy.

• Greenberg (1995) provides an annotated bibliography on the use of mathematical
programming in environmental systems modeling and management; a number of the
listed (over 350) items are—or clearly should be—tackled by GO techniques.

• Grossmann (1996) is an edited volume on GO algorithms and their applications,
primarily in chemical engineering (engineering design, process network synthesis,
planning, scheduling, and distribution systems).

• Hendrix (1998) presents a variety of interesting applications, e.g., from the fields of
environmental management, geometric design, robust product design, and model
parameter estimation.

• Migdalas, Pardalos and Värbrand (1997) is another edited volume on multilevel
optimization algorithms and their applications.

• Mistakidis and Stavroulakis (1997) present engineering applications of the finite
element method.

• Mockus, Eddy, Mockus, Mockus and Reklaitis (1996) discuss network problems,
combinatorial optimization (knapsack, travelling salesman, and flow-shop) and batch
process scheduling models.

• Pintér (1996a) discusses a variety of detailed numerical tests and case studies
(systems of nonlinear equations, data classification, combination of expert opinions,
chemical mixture design, environmental model calibration, industrial wastewater
systems design, river and lake water quality management, risk assessment and control
of pollution accidents).

Although the present chapter is largely focused on continuous GO, one should mention
here also the significant number of combinatorial optimization applications described in
Glover and Laguna (1997), Laguna and González-Velarde (2000), Michalewicz (1996),
Osman and Kelly (1996), Voss, Martello, Osman and Roucairol (1999).

Numerous issues of the Journal of Global Optimization, the Journal of Heuristics, and
Reliable Computing—as well as a large number of other professional OR/MS, natural



science and engineering journals—also publish articles describing, or calling for, GO
applications.

As the above illustrative list and the present volume itself demonstrate, the application
potentials of global optimization are very significant and most diverse indeed.
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