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CHAPTER 1

Introduction

A large part of the mathematical optimization theory deals with the problem of
detecting a reah-dimensional pointz belonging to a sef/ C IR™ such that a
real-valued functiory attains its minimum ovef/ at this point, i.e., one tries to
solve the general problem

min f(z)

r e M. (GP)

The functionf : A — IR is usually defined on a suitable sétsatisfyingA > M.
In the field of global optimization we are interested in poiat& M satisfying
f(@) < f(z), forall z € M, i.e., we are looking for thglobal minimumof
Problem (GP). In contrast to this, the local optimization is satisfied if a poit\/
with the propertyf(z) < f(x), forallz € M N N, has been detected, whe¥eis
some neighborhood df, i.e., it suffices to determinelacal minimumof (GP).

In general, Problem (GP) is not solvable. In order to obtain practicable solution
approaches for this problem we need some knowledge about the structure of the
objective functionf as well as of the set/. The main interest in Problem (GP) is
motivated by real applications and, fortunately, there are a lot of such applications
leading to problems of type (GP) with a special usable structure.

In the present thesis we examine minimization problems, where the objective
function is a quadratic function and where the feasible regioa IR" is described
by a finite set of quadratic and linear constraints. These problems will be edlied
guadratic optimization problems. They are given in the following way

min 27 Q% + (d®)Tx
eTQlx + (d) Tz +c <0 I=1,...,p (QP)
x € P,
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where@! (I = 0,...,p) are realn x n matrices,d' (I = 0,...,p) are real
n-dimensional vectors and (I = 1, ... , p) are real numbers. The set

P ={xeR": Az < b}

is a polyhedron described by a realx n matrix A = (aq,... ,a,,)T and a real

m-dimensional vectob. We assume that the matric@$ (I = 0, ... , p) are sym-

metric. This is not a restriction to the generality of the considered problems of type

(QP). Indeed, ifQ! (I € {0,...,p}) is not symmetric, then we obtain a symmet-

ric matrix by settingQ' = 1(Q' + (Q")) with the propertyz” Q'z = 7 Q'x

(x € IR™). Therefore, we can replace in (QP) the matpixby the matrixQ’ with-

out altering the function values of the corresponding quadratic function. In view

of this symmetry assumption we know that the eigenvalue@'ofl = 0, ... ,p)

are real-valued (see, e.g., [JRA93]). Apart from the symmetry of the matrices

Q' (I =0,...,p) we assume furthermore that the polyhedfois a non-empty,

full-dimensional and bounded set. This is a slight restriction to the generality of

the considered problems of type (QP). However, the non-emptiness of tiit set

can easily be verified. Use, for example, the first phase of the Simplex-Algorithm,

which is the well-known solution method developed by DantzigNiB 3] for lin-

ear programs, i.e., for problems of type (GP) whérs a linear function and/

Is a polyhedron. The assumption tifats full-dimensional is not really needed for

the theory in this dissertation, but is nevertheless made in order to reduce the tech-

nical effort. The fact thaP is a polytope, i.e., that this set is bounded, cannot be

guaranteed in general. However, this assumption is satisfied for many applications.
Throughout the present work we denote by

F={zeP:z1Qu+d)Tz+d<0,l=1,...,p}

the feasible region of Problem (QP). Note that this set can be empty since we do
not require the existence of a feasible point for (QP).

With respect to the difficulty of detecting global minima of Problem (QP) and
the treatment of this problem in the literature we can distinguish some subclasses
of (QP). If all quadratic functions in the formulation of (QP) are convex, then it is
known that each local minimum of (QP) is a global minimum (see, e.gAN 4]
or [HPT95, Chapter 1)), i.e., there is no gap between the local and the global min-
imization of this problem. Moreover, it is known that such problems can be solved
in polynomial time up to a certain precision, if some assumptions are fulfilled (see,
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e.g., [HER94] and references therein). Several solution methods for this particu-
lar case of (QP) are available. Apart from the schemes developed only for convex
all-quadratic problems (see, for examplepP66] for problems with one qua-
dratic constraint, and [BrR72, EN75, RiH82] for arbitrary convex all-quadratic
problems) any algorithm for minimizing arbitrary convex functions under convex
constraints can be used (see, e.g., [FM68, GMW81]). Among these more gen-
eral approaches the class of so-caliei#rior point methodseceived a great deal

of attention during the last decade. These methods, first developed for linear prob-
lems, show numerically an efficient behavior, in particular for large scale problems.
Moreover, these efficient methods are applicable to special classes of convex op-
timization problems, for example in the fully convex all-quadratic case (see, e.g.,
[NN94, AR96] and references therein).

The convexity of a quadratic function can be checked easily. It is a known fact
[HPT95, Theorem 1.12] that a functign: C — IR, which is twice differentiable
on an open convex sét C IR", is convex if and only if its HessiaW?g(x) is pos-
itive semidefinite at each elemenbf the setC'. In order to verify the convexity of
the quadratic functions involved in (QP) we hence have to examine the eigenvalues
of the matrice€)’ ¢ R"*" (I = 0,... ,p). If one of these matrices has at least one
negative eigenvalue, the equivalence between the local and the global minima is not
guaranteed anymore, and we cannot expect to solve such problems in polynomial
time (see [PS88]). Actually it is known that even a problem with a quadratic objec-
tive function, whose describing matrix has one negative eigenvalue, and with a
feasible set determined by linear constraintd/i®-hard (see [PV91] or [HPT95,
Section 2.4)).

Apart from the fully convex all-quadratic problems there is another subclass of
problems of type (QP), which was already treated extensively in the literature. In
the so-calledyeneral quadratic programming probleme is interested in the min-
imization of an arbitrary quadratic objective function with respect to linear con-
straints, i.e., problems of type (QP) with= 0 are considered. For information
about the theory, algorithms and applications of this type of all-quadratic prob-
lems we refer to the survey [FV95] and to more recent works [HPT95, IKAT96
DAPT97, Bom97, AT98, YF98] and references therein.

In the present dissertation we will examine the most general case of Problem
(QP), which has not been explored as widely in the literature as the fully convex
all-quadratic problem or the general quadratic programming problem. We are in-
terested in global minima of all-quadratic optimization problems with an arbitrary,
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in particular nonconvex, quadratic objective function and with at least one non-
convex quadratic constrainp (> 1). These problems have at first glance still a
nice structure. Only quadratic and affine functions are involved. However, such
problems have a nonconvex objective function and a feasiblé sethich is in
general not convex and, maybe, even not connected. This means that there is a gap
between the local and the global optimization of such problems and taking the pre-
vious considerations into account we know that these problems cAfifbeard.
Nevertheless, nonconvex all-quadratic global optimization problems have a wide
variety of applications.

1.1. Applications

Each n-dimensional all-quadratic problem can be easily transformed to a
2n-dimensional bilinear problem, as it is done, for example, in [AK92, HJ92].
In [HJ92] a strategy for reducing the necessary dimension of the resulting bilinear
program is also proposed. However, on the other hand bilinear optimization prob-
lems are nothing else than a special instance of Problem (QP). Pooling problems
in petrochemistry [FV98], the modular design problem introduced ini&b 3],
in particular the multiple modular design problemviE70, AK92] or the more
general modularization of product sub-assemblies [RS71], and special classes of
structured stochastic games [FS87] are only some examples of the wide range of
applications of bilinear programming problems.

Another large class of optimization problems are problems with linear or qua-
dratic functions additionally involving Boolean variables, i.e., variables IR
with the constraint; € {0, 1}. Since each Boolean variable can be represented by
a concave quadratic constraint

z; € {0,1} & 27—z >0,2;€[0,1],

i —

such integer programming problems can be transformed to (QP). An example of
this class of optimization problems is the so-calégtichronization sequence prob-
lem (SSP) resulting from an application in the satellite industry. In this problem
one is interested in an-dimensional integer vectar € {—1,1}" such that the
maximal value of the absolute values of the cyclic autocorrelation functions

g"(z) = ;xix[i+k]
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(k =1,...,n — 1) becomes minimal wherg + k| = i + k(modn). Problem
(SSP) can be formulated as
min ¢
k
r) <t
g'le) = k=1.... n—1 (SSP)
—g*(x) < —t

€ {-1,1} i=1,...,n,

and by using the substitutiony = 2y; — 1 (: = 1,... ,n) one obtains an integer
program with Boolean variablese {0, 1}".

The problem of packing € IN equal circles in a square, which can be trans-
formed to a (QP), is another problem widely explored in the literature. One looks
for the maximum radius of n non-overlapping circles contained in the unit square.
This problem is equivalent to an all-quadratic problem with a linear objective func-
tion and concave quadratic constraints. It can be formulated as

max t
t—|lzi —ayll3 <0 1<i<j<n (PP)
z; € [0,1)? i=1,....n.

How the optimal value* of (PP) and the optimal radiug are related is discussed

in Chapter 5 of the present research study. This chapter will deal extensively with
Problem (PP). A related class of global optimization problems are minimax loca-
tion problems [AH82], which also lead to quadratic constraints.

Production planning and portfolio optimization are examples where so-called
chance constraineihear programs occur (see, e.g. HI®82, WV91, DT92)).
These are problems, looking similar to linear programs. However, the matrix de-
scribing the linear constraints of such problems is not deterministic, it is a stochastic
one. Under certain restrictive assumptions it is possible to transform these stochas-
tic constraints to deterministic quadratic constraints (see agaiH§2, WV91)),
such that in general a problem of type (QP) is obtained.

In [AKHP92] it is shown thanonconvex all-quadratic problems can be used
for the examination of special instances of nonlinear bilevel programming prob-
lems. Other applications of (QP) include the fuel mixture problem encountered
in the oil industry [PTA94] and also placement and layout problems in integrated
circuit design (see [AKLV95, AKV96] and references therein).
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Hence there are many applications of the nonconvex all-quadratic optimiza-
tion problem (QP). Whether Problem (QP) is in practice applicable for solving,
for example, problems resulting from integer programming problems, depends on
the numerical efficiency of the solution method for (QP) that is used. Up to now
only few methods for solving the considered general case of Problem (QP) were
proposed in the literature. Most of them result from methods being developed for
other more general problem classes. In Section 1.3 we will shortly discuss some of
these solution methods. Before this we will sketch some basic concepts in global
optimization. These concepts are used in all solution approaches mentioned in this
dissertation.

1.2. Basic Concepts and Notations

In the field of deterministic global optimization there are at least two basic
schemes for solving a general problem of type (GP).

1.2.1. Outer Approximation Approaches. Outer approximation (cutting
plane) approaches use the following basic concept (see, e.g., [B] TCtapter
2]). Determine a supersét/ of M, which has a simple structure, for example a
polyhedron, and try to minimize the functigrwith respect to this bigger set. If the
minimization of f with respect to the simpler saf is still too complex, determine
a simpler functionf, which underestimategon the set\/, and solve the problem

min f(_x) P
xe M.
Problem GP) delivers a lower bound for the optimal value of (GP). Such problems
are usually calledelaxationsof the original problem. IfGP) is a linear program,
it is called anLP-relaxation of (GP). If the detected solutianh € M of (GP) is not
contained in the set/, then one tries to determine a functién IR" — IR such
that the set

M := Mn{zeR":{(z)<0} D M

has still a simple structure, but does not contain the pepiahymore. If/ is an
affine function, we call the sef = {z € IR" : /(x) = 0} acutting plane, since
the pointz is cut away by the hyperplari€. By solving the problenmin__ ,; f(x)
one obtains hopefully a better lower bound for the optimal value of (GP) and a new
solution# € M. This process is successively applied until a painge M has
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been calculated. If coincides withf at this point, thert is o?viously an optimal
solution of (GP). Otherwise one has to refine the functfoand to repeat the
described process.

1.2.2. Branch-and-Bound ApproachesAnother concept for treating global
optimization problems are branch-and-bound methods (see, e.g., g1 CH@pter
4]). These schemes start analogously to the outer approximation algorithms with
a relaxationV/® > M of the feasible regiod/ of (GP). This relaxation is cho-
sen such that a lower as well as an upper bound for the optimal value of Problem
(GP) can be determined. According to a so-caletddivision rule one splits in
subsequent steps the parthdf still of interest into more and more refined saf$
(branching. For these sets new hopefully improved bounds are calculbtadh@-
ing). If a setM* considered in the branch-and-bound tree has a lower bound, which
exceeds the current best known value for (GP), then this set is eliminated from fur-
ther considerationgfuning). Such sets cannot contain feasible points of Problem
(GP) with a smaller objective function value than the best value known so far.
Using these strategies one hopes that the algorithm concentrates the search for
a global minimum of Problem (GP) on a small portion of the feasible redion
One expects that a large part bf, which does not contain a global minimum of
(GP), isprunedfrom further considerations at an early stage of the examination of
the optimization problem by the branch-and-bound algorithm, which is applied for
the solution of this problem.

1.2.3. Subdivision SetsThe sets, which are mostly used in branch-and-
bound methods, are conesdimensional rectangles er-simplices. Throughout
this dissertation we use only rectangles and simplicesaAlimensional rectangle
R, which we would like to call dnyperrectangle is uniquely determined by two
vectorsl, L ¢ IR"

R = {xE]Rn:liSxSLi,izl,...,n}.

A simplex is the convex hull of an affine independent set of points, which form the
vertices of this simplex. Lefuvy, ... ,vx} C IR™ (k € IN) be an arbitrary set. Then

we denote by
k

k
[UO,... ,Uk] = {ZEEIR”ZﬁZ Z)\ﬂ)l , )\EIR]_T__Fl , Z)\@ = 1}
=0 1=0
the convex hull of the pointsvy, ... , vk, wherelRy := {A € R : A > 0} de-
notes the positive orthant. If the poinig, . .. , v, areaffine independent i.e., for
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an arbitrary, but fixed index € {0,...,k}, there holds that the s¢t; — v; :

j €1{0,...,k}\ {i}}is linear independent, the$ = [vy, ... ,vx] IS ak-dimen-
sional simplex, a so-calleklsimplex. For example, &-simplex is a triangle and a
3-simplex is a tetrahedron.

Hyperrectangles and-simplices are of course polytopes. Tiaeetsof these
sets are easy to determine, where the facet of-dimensional polytope” is de-
fined as ani, — 1)-dimensional intersection aP with a supporting hyperplane,
l.e., a (@ — 1)-dimensionafaceof P (see, e.qg., [HPT95, Chapter 1]). In the case
of ann-simplexS = vy, ... ,v,] there are the: + 1 facets

S'I: = [v())"'7Ui—17vi—|—17---7vn] i:O,...,n,

which are f — 1)-simplices. For a hyperrectangle= {x € IR" : [ < z < L} the

2n facets are given by
Rl={reR":I<z<L,x=1}
1=1,...,n.

In the branch-and-bound methods, which we will consider in this thesis, the
used subdivision set& c IR" are split into a finite number of subsets (i € I,
I finite index set) forming @artitionof Z.

DEFINITION 1.2.1.([HPT95, Definition 3.3])Let Z C IR" be a polyhedron
satisfyingintZ # (), and let] be a finite set of indices. A fami{yZ; : i € I} of
subpolyhedra of satisfying, for each € I, intZ; # () is called apartition of 7,

if Uz = 7
=

and, for each, j € I with: # j, there holds
ntZ; N intZ; = 0.
Simplices are usually subdivided using a so-calidial subdivision

DEFINITION 1.2.2.([HPT95, Definition 3.4])Let S = [vg,...,v,] be an

n-simplex and let a point € S\ {vo, ... ,v,} be given, which is uniquely repre-
sented by its barycentric coordinates, i.e.,
w = Z)\ZUZ
=0

with A € R S0 A = 1.
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Denote, for eacti € {j € {0,...,n} with \; > 0}, by S; then-simplex, which is
obtained by replacing the vertex of S by w, i.e.,

Sz’ = [Uo,... sy Vi—1, W, Vj41y--- ,Un] .

The subdivision of into then-simplicesS; (i € {j € {0,... ,n} with \; > 0})
is called aradial subdivisionof S with respect tav.

It is known [HPT95, Proposition 3.7] that the radial subdivision ofrasimplex

S = |vg, ... ,v,] With respect to an arbitrary point € S \ {vg,...,v,} forms a
partition of S. The choice of the pointy depends on the used subdivision (parti-
tioning) rule.

It is not reasonable to apply the concept of radial subdivisions also for the
partitioning of a hyperrectanglg, since the resulting polytopes do not necessarily
have a rectangular structure anymore. If a painE R is given, which does not
belong to the set of vertices dt, then a subdivision of? is usually defined via
hyperplanes parallel to the facets®f This strategy leads to a partition &finto
up to 2" hyperrectangles, where the number of the resulting subhyperrectangles
depends on the choice of.

1.2.4. Convex Envelopeln outer approximation as well as in branch-and-
bound methods we often need a simpler functforvhich underestimates the ex-
amined functionf with respect to a given set/. Since convex functions lead —
from a theoretical point of view — to easily solvable problems, the so-cabtlegex
envelopeof an arbitrary functiory is a concept frequently used for determining the
desired functiory.

DEFINITION 1.2.3. Letg : C — IR be a lower-semicontinuous function de-
fined on a non-empty convex getC IR". Theconvex envelopef g on the set”
is a functiony : IR"™ — IR with the properties

(i) ¢ is convex on the sét;
(i) p(x) < g(x), forall z € C;
(i) if 7 : C — IR is a convex function satisfying, for eacte C, 7(z) < g(x),
then there holds, for alt € C, 7(z) < ¢(z).

Hence, the convex envelogeof a functiong on a setC is the best convex
underestimating function fay on the given set. For an overview of the properties
of the convex envelope we refer to [HPT95, Section 1.3]. Unfortunately, in gen-
eral the construction of a convex envelgpés a problem, which might be harder
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to solve than the considered optimization problem itself. For some instances, how-
ever, the explicit form of the convex envelope is known. For example,isfa
concave function and' is a polytope with given vertex s&t(C') = {v1,... , v},

the convex envelopg of g with respect ta” is given by [HPT95, Theorem 1.21]

k k k
gp(x) = min{Z)\ig(vi) = Z)\Z‘Uz‘, A E IRk , Z)\Z = 1} .
=1 =1 =1

This implies that the convex envelope of a concave funggiovith respect to an
n-simplexS = [vg, ... ,v,] is the uniquely determined affine function, which co-
incides in then + 1 vertices ofS with g [HPT95, Theorem 1.22].

In some cases an overestimating function for a given fungtiamh respect
to a setC' is needed additionally. In this situation the analogous concept of the
so-calledconcave envelope can be applied.

DEFINITION 1.2.4. Letg : C — IR be an upper-semicontinuous function
defined on a non-empty convex 6etC IR". Theconcave envelopef g on the set
C'is a functiony : R™ — IR such that—+ is the convex envelope efg on the
setC.

Hence, the concave envelopgeof a functiong is the best concave overesti-
mating function ofg on the setC". Obviously, the concave envelope of a convex
function g with respect to am-simplex.S is also the uniquely determined affine
function, which coincides in the vertices 8fwith g.

1.2.5. Further Notations and Conventions.Throughout the present thesis
we interpret am-dimensional vector: € IR", as usual, as a column vector, i.e.,

X1
:L.TL

Consequently, a matrid € IR™*"™ is given as a connection af m-dimensional
vectors, i.e.,

Am1l *°° Amn
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We use the superscrifft for identifying the corresponding transposed vectors and
matrices, i.e.,

ail - Gmi1
2l = (v1,...,2,) € R and AT =| : D e RV,

Aln - Qmn

As a measure for the distance of twedimensional points we use tt&uclidean

norm| - |2 : IR" — R
n , 3
lalls = (z 24 )
=1

orthelo,-norm|| - || : R" — IR

[#][oc = max |z;].
=1

ceey

The abbreviation
intM = {x € M :3e > 0with B(x,¢e) C M}

denotes thenterior of an arbitrary set\/ C IR", whereB(z,¢) = {y € R" :
|z — y||2 < €} describes the sphere centered atith radiuse. The notation

clM = {r e M :Ve>03y € B(x,e) N M}
is used for theslosureof M and
OM = cIM \ intM

denotes théoundary of M.
Finally, a constraint of the form

g(z) < 0
with a concave functiog : IR — IR is called areverse convexconstraint (see,
e.g., [HPT95, Chapter 4]).
1.3. Solution Approaches
For brevity we define (using® = 0), for eachl € {0,... ,p},
¢'(x) = 2" Qw+ (d) Tz + .

As mentioned before, most of the solution methods in the literature for Problem
(QP) were developed for more general problem classes.
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1.3.1. D.C. Optimization. Using the fact that the functiorng (I = 0, ... , p)
can be written as so-calletic. functions (see Section 3.2), i.e., as a difference of
two convex functions, Problem (QP) can be interpreted as a general d.c. problem.
Therefore, one possible approach for solving (QP) is the application of algorithms
developed for solving general d.c. global optimization problems. See, for example,
[HPT95, Chapter 4] and the surveyy¥95] for the framework of d.c. optimiza-
tion. INn[PTA94] a special d.c. algorithm is proposed and applied to a quadratically
constrained optimization problem resulting from the fuel mixture problem.

1.3.2. Semidefinite Programming.Another class of optimization problems,
which can be used for the examination of all-quadratic problems and which has
received a great deal of attention in recent times, is the so-csdimtefinite pro-
gramming problem (SDP). This class of problems is a generalization of linear
programs and can also be solved in polynomial time. In contrast to a linear program
the variabler to optimize in an (SDP) belongs to the space of positive semidefi-
nite symmetric matrices and not to thedimensional real space. An (SDP) can be
written in the following way (see, e.g., [A95])

min C e X
X =0,
whereX,C, A; €¢ R™™" (: = 1,...,m), X is symmetric,e denotes the inner

product of matrices (see Section 2.1) axid- 0 means tha¥ is positive semidef-
inite.

Each all-quadratic problem of type (QP) can be transformed to an (SDP) with
an additional rank-one constraintAR 93]. Omitting this additional constraint one
obtains the widely explored SDP-relaxation of (QP) (see, e.g0f5, PRW95,
FK97, $H098]). The properties of this relaxation were examined in the literature
(see, e.g., [FK97, Hs98]) and improvements of this relaxation were discussed
(for example, [@KRT98]). However, to the author’s knowledge there was only
one report about the global optimization of (QP) via (SDP). Ramama[$3]
presented a cutting plane approach using this SDP-relaxation for solving (QP) (see
also [HR98] and Chapter 2, respectively, for an extension of this approach). Note
that in the fully convex case an all-quadratic problem can be solved by an (SDP)
since the rank-one constraint is not necessary in this case (see, e.g., [VB96]).
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1.3.3. Bilinear Programming. As mentioned in the context of the applica-
tions, each problem of type (QP) can be transformed to a bilinear program. Hence,
solution methods developed for bilinear programs can be applied to the noncon-
vex all-quadratic optimization problem. For example, Floudas and Visweswaran
[FV90B, FV93B] propose an algorithm for solving problems belonging to a more
general class, which contains in particular general bilinear programs. They solve
such problems through a series of primal and relaxed dual problems. The solution
of the primal problem provides an upper bound on the global minimum of the con-
sidered problem and delivers additionally the corresponding Lagrange multipliers.
These multipliers are then used to formulate a Lagrange function that is used in
the dual subproblem. Making use of several properties of the considered problem,
the proposed algorithm solves the dual problem also through a series of subprob-
lems that, taken together, provide a lower bound on the optimal value. Iterating this
process leads to an approach, which is reported to deliver in finite time an approx-
imate solution [FV93B8]. In [FV93A] it is shown that it is possible to enhance the
computational performance of this algorithm in the case of bilinear programs. The
subproblems are considerably more tractable in this special case.

Another method for solving bilinear programs was developed by Sherali and
Tuncbilek. In[ST92] (see also [SA99]) they present an algorithm for solving poly-
nomial programming problems, i.e., for optimization problems with a polynomial
objective function and polynomial constraints, and hence especially for bilinear
programs. Under the assumption that additional box constraints for the variables
are known they generate nonlinear implied constraints, which are then included in
the original problem. After that they linearize each nonlinear function involved
in the resulting problem by defining new variables, one for each distinct nonlinear
term (see [SA92] for the reformulation-linearizationtechnique in the bilinear case).
The solution of the linear program generated by this reformulation-linearization
technique is then a lower bound of the considered problem with respect to the used
box constraints. By embedding this reformulation-linearization technique in a rect-
angular branch-and-bound scheme they obtain a convergent algorithm. Hence, the
resulting algorithm for solving polynomial global optimization problems combines
a linear outer approximation of the feasible set with a branch-and-bound scheme.

1.3.4. Direct Solution Methods. There exist only a few approaches in the
literature, which consider Problem (QP) directly and not as a special instance of
a more general class. The first approach mentioned in the literature for solving
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(QP) was developed by ReevesHE/'5]. However, this approach is restricted to
all-quadratic problems, where the matric@s(l = 0, ..., p) are simultaneously
diagonalizable, i.e., his algorithm is only able to manage separable quadratic func-
tions. Extending an idea introduced by Falk and Soland [FS&®,73%] for op-
timizing problems with nonconvex separable functions, Reeves{R] presents

a rectangular branch-and-bound method for solving a problem of type (QP) with
separable quadratic functions and additional box constraints. For this special type
of quadratic functions the convex envelope with respect to a hyperrectangle can
be easily derived such that — using the convex envelope concept — lower bounds
for (QP) on the considered hyperrectangles can be calculated. Reeves refines the
branch-and-bound algorithm by applying additionally a local search procedure in
order to obtain feasible points. Moreover, he developed a strategy for identifying
neighborhoods of local solutions, where these solutions are even global, such that
these neighborhoods can be eliminated from further considerations.

Using the same basic concepts as Reeves, Al-Khayyal et al. [AKLV95],
[AKV96] propose a rectangular branch-and-bound scheme for general problems
of type (QP) with the additional property that box constraints for the variables are
known. By substituting) = Q'z ¢ IR” (I = 0,...,p) each functiong!(z)
is first interpreted as a bilinear functigf(z,y'). In order to obtain a lineariza-
tion of the feasible region of the resulting bilinear program, each bilinear term
vyt i = 1,...,n; 1 = 0,...,p) is bounded from below by its convex enve-
lope and from above by the corresponding concave envelope. Since the convex
envelope of the two-dimensional bilinear functiop on a rectangle is the maxi-
mum of two affine functions [AKF83], they obtain by introducingi 1) auxiliary
n-dimensional vectorg' (I = 0,...,p) an LP-relaxation of the examined bilin-
ear program in the variablasy®, ... ,y?,t%, ... ,t*. The resubstitutiof)!z = v*
(l=0,...,p)results in an LP-relaxation of the original problem with the variables
z,t%, ... ,t?. This LP-relaxation is then used in a rectangular branch-and-bound
scheme for calculating lower bounds for the optimal value of (QP) with respect to
the considered hyperrectangle. As in Sherali and Tuncbilek’s approach for poly-
nomial programs, Al-Khayyal et al. obtain a solution method for (QP), which is
a combination of a successively refined outer approximation of the feasible region
with a rectangular branch-and-bound scheme.
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1.4. Overview

The main aim of the present dissertation is the development and the theoretical
as well as the numerical examination of solution methods for the nonconvex all-
quadratic optimization problem (QP).

In Chapter 2 we discuss an indirect approach for solving (QP). We do not de-
velop an algorithm to determine an optimal solution of Problem (QP). We present
several approaches for solving certain so-calledry problemsEach problem of
type (QP) is equivalent to a unary problem, as we will see in this chapter. Thus, we
can use algorithms for solving unary problems in order to detect optimal solutions
of quadratic problems. This idea is due to RamanaMR3, Chapter 7] and is
related to the semidefinite programming approach for all-quadratic problems men-
tioned before (see Subsection 1.3.2). Since the outer approximation (cutting plane)
algorithm introduced by Ramana for solving unary problems cannot be guaran-
teed to be convergent, we present new approaches overcoming this theoretical de-
ficiency. The resulting algorithms are combinations of linear outer approximations
and branch-and-bound like subdivisions of the feasible region of the considered
unary problem. In Chapter 2 we give, in particular, an explicit formulation of a
so-calledregularn-simplex with all its vertices on the boundary of the unit sphere
B = {zx € R" : ||z|]] < 1}. The theoretical properties of such arsimplex
were known before, but — to the author’s knowledge — such a set has not yet been
constructed. Unfortunately, we have to recognize that this indirect solution method
for (QP) is not applicable in practice. Only small dimensional all-quadratic prob-
lems can be solved with acceptable computational effort via the solution of the
equivalent unary problem.

Chapter 3 deals with a direct approach for solving (QP). This method shows
a significantly better performance than the foregoing indirect one. The develop-
ment of the proposed new algorithm was motivated by the work of Al-Khayyal et
al. [AKLV95]. The branch-and-bound method for solving problems of type (QP)
introduced in [AKLV95] is based on a rectangular subdivision of the feasible re-
gion of (QP) and exploits the convex and concave envelopes of the two-dimensional
bilinear functionzy on a rectanglé® c IR?, as described in Subsection 1.3.4. By
using a simplicial partitioning strategy and the convex envelope of a concave func-
tion on ann-simplex (see Subsection 1.2.4), we obtain a simplicial branch-and-
bound scheme involving mainly linear programming subproblems. The numerical
comparison of our new approach with the rectangular branch-and-bound method
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by Al-Khayyal et al. shows that the simplex algorithm often outperforms the rect-
angular algorithm.

In the definition of the simplicial branch-and-bound algorithm in Chapter 3
we use the so-callebisectionfor subdividing ann-simplex. Because of the spe-
cial property of this subdivision strategy, it is a so-calkdaustivesubdivision
rule, the convergence of the presented approach can be ensured. The convergence
IS meant in the sense that each accumulation point of a sequence generated by
the proposed algorithm is an optimal solution of Problem (QP). Some authors fa-
vor another subdivision rule in simplicial branch-and-bound methods, the so-called
w-subdivision ruleThis strategy is not necessarily exhaustive, and the convergence
of an algorithm using this rule was still an open question.

In Chapter 4 we give an answer to this question. We consider a generalization
of Problem (QP). We assume that the nonlinear functions involved in the global
optimization problem under examination are d.c., not necessarily quadratic. After
presenting an algorithm, which is a generalization of the simplicial branch-and-
bound method introduced in Chapter 3 and which is applicable to the generalized
problem class, we examine the convergence of this approach with respect to differ-
ent subdivision rules. The convergence of the simplicial branch-and-bound scheme
using thew-subdivision rule can only be guaranteed for optimization problems with
a d.c. objective function and with concave constraints. We present in Chapter 4 a
counterexample, which shows that the presented method using this rule does not
converge in general. In view of our theoretical results we are non the less able to
develop a new convergent subdivision strategy — combighsgibdivision and bi-
section. The numerical performance of some variants of this mixed strategy will be
examined. The convergence concept, which we use in Chapter 4 in connection with
the examination of the-subdivision, is — from a theoretical point of view — weaker
than the one used in Chapter 3. We will not prove that each accumulation point of a
sequence generated by the variant of our approach ussupdivisions is optimal.

We will only show that this method determines in finite time either an approximate

solution or the emptiness of the feasible region of the considered problem. As we
will see in Chapter 4 — from a practical point of view — this convergence concept

has non the less the same quality as the stronger concept mentioned above.

We conclude the more theoretically oriented Chapter 4 with a finiteness re-
sult. We prove that a simplicial branch-and-bound algorithm, which employs only
w-subdivisions and which is applied to the minimization of a concave function
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with respect to linear constraints, is even finite, if two additional assumptions are
fulfilled.

In Chapter 5 we close our consideration of Problem (QP) by examining an ap-
plication of this class of global optimization problems. This chapter deals with the
problem of packing: equal circles of maximal radius into the unit square, which
we will call packing problemUnfortunately, the solution methods, which we de-
veloped for general problems of type (QP), are not able to solve the optimization
problem resulting from this application. At least they are not able to solve the prob-
lem for a high enough number of circles. Therefore, we develop a special global
optimization algorithm for solving this problem.

We start in Chapter 5 with a study of the packing problem from a theoretical
point of view. Some properties, which have to be satisfied by at least one solu-
tion of this problem, are introduced. These properties state the intuitive fact that
as many circles as possible should touch the boundary of the unit square. Sub-
sequently we propose a basic rectangular branch-and-bound algorithm and derive
special bounds exploiting the structure of the packing problem. We introduce some
tools with respect to the subdivision and the possible refinement of the considered
hyperrectangles, which again exploit the special structure of the packing problem.
They use in particular the theoretical properties of some solutions mentioned above.
Applying these tools in the rectangular branch-and-bound algorithm we obtain an
efficient algorithm.

In the literature good solutions of the packing problem with upGaircles
are known. However, the quality of these solutions with respect to their optimality
Is mostly not known — at least for the packing problem with more @taaircles.

The new approach developed in this thesis is able to guaranteeoghtemality of
determined solutions of this problem. We will see, furthermore, that the implemen-
tation of our solution method showed a really good numerical performance for the
packing problem with up t@7 circles. Moreover, we were also able to solve this
problem approximately with up t81 circles. This means that global optimization
problems with a dimension of up &3 can be solved up to a certain accuracy.

1.5. Test Examples

Throughout this thesis several algorithms are presented, which can be applied
for solving nonconvex all-quadratic optimization problems. In order to test the nu-
merical performance of these approaches, particularly to compare the numerical
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performance of different variants, we used a randomly generated set of test ex-
amples. Since the same set of test examples will be used for the examination of
the approaches presented in Chapter 2, 3 and 4, we complete the introduction of
this dissertation with a short description of these examples. For each combina-
tion of the dimensiom € {2,...,8,10} and the number of quadratic constraints
p € {1,...,2n} we constructed fifty test problems with the general form of (QP)
according to the following specifications.

First a polytopeP with a non-empty interior was constructed. Starting with a
randomly generated dense matrdxe IR?"*™ with integer entries between10
and 10 we obtained a non-empty polyhedréh = {z € R" : Az < b} by
choosing an appropriate right-hand side veétar IR*". In order to ensure the
boundedness of the sé& we intersected the polyhedrdn with the n-simplex
Sn = [0,neq,... ,ne,|, wheree; (i = 1,...,n) denotes the-th unit vector.
The polytopeP = P N S,, is then described by &% + 1)xn matrix A and a
(3n + 1)-dimensional vectob. We iterated the construction of the polyhedi@n
until the interior of the resulting polytopE was not empty, and a poifit € int P
= {z € R" : Az < b} was found. In order to avoid in our numerical tests
excessive running-times for problems with higher dimensions we used only such
polytopesP, which could be circumscribed by ansimplex with a diameter not
bigger thanl 0.

In the next step dense x n matricesQ’ and n-dimensional vectors!
(Il = 0,...,p) were randomly generated also with integer entries betwelh
and10. The coefficientg! (I = 1, ..., p) for the quadratic constraints were chosen
such thatg'(z) = z7Q'z + (d")Tz + ¢! < —§ < 0 holds for the known point
T € intP and a prespecified value This strategy guaranteed that we obtained
all-quadratic optimization problems of type (QP) with

intF #£ ).

The average values, the standard deviations and sometimes also the medians
of the effort, which a proposed solution approach needs for solving the fifty test
examples for a combination of the dimensiore {2,...,8,10} and the number
of quadratic constraings € {1, ... ,2n}, will serve as a measure of the numerical
performance of this approach.



CHAPTER 2

Convergent Outer Approximation Algorithms for
Solving Unary Problems

The first solution method for the all-quadratic Problem (QP), which we propose in
detail in the present dissertation, is an indirect one. Instead of solving (QP) directly
we determine an optimal solution of a certain so-called unary problem, which is
equivalent to (QP). Equivalence between (QP) and this unary problem holds in the
sense that each solution of the unary problem yields a unique solution of the (QP)
and vice versa.

This chapter deals with solution methods for general unary problems. These
approaches are derived from an outer approximation scheme introduced by Ra-
mana [RAM93]. Since the convergence of his approach cannot be guaranteed, it
Is the purpose of this chapter to develop solution methods which overcome this
theoretical deficiency.

2.1. Introduction

In order to introduce the class of unary problems we first have to clarify the
concept of unary matrices.

DEFINITION 2.1.1. A real symmetric matrixy € IR"*" is called aunary
matrix, if and only if there exists a vectore IR™ with

U = vl .
Denote by
S, = {Se€R"": S symmetric}
the space of real symmetnicx n matrices and by
U, = {U €S, :Uunary}

19
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the subset ofS,, consisting of all unary matrices. Moreover, &t € S,
(i = 0,...,d) be given and let/ : R? — S,, be an affine matrix mapping de-
fined by

d
U(z) = U+ ) _zU", (2.1.1)

=1

A unary problem is then defined as follows.

DEFINITION 2.1.2. Given U* € S, (i = 0,...,d) and h € TRY
A= (ay,...,a,)T € R™™% bcR™, the optimization problem

min At z
Az < b (UP)
U(z) eUy,,zecR?

Is called aunary problem

REMARK 2.1.1. Itis obvious (see Lemma 2.3.1) that thelebf unary ma-
trices consists of all positive semidefinite matridése S,, with the additional

property
rank(U) = 1.

Therefore, Problem (UP) can also be formulated as a semidefinite program with
an additional rank constraint (for related discussion, see agaio§%, RAM93,
PRW95, VB96, FK97] and Subsection 1.3.2).

As we will see in Section 2.2 it is possible to transform an all-quadratic prob-
lem of type (QP) to an equivalent unary problem where the polyhedron

P := {zcR%: Az <b}

Is bounded, i.e.P is a polytope. Even though we discuss in this chapter solution
methods for general problems of type (UP), our interest in Problem (UP) is only
motivated by such problems which are equivalent transformations of all-quadratic
problems. Regarding the intention of this dissertation it is thus not a restriction to
assume thaP is always bounded, as we have done in the sequel.

The equivalence between (QP) and a special problem of type (UP) is one of
the interesting observations proposed without proof in the dissertation of Ramana
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[RAM93, Chapter 7], which was our main motivation for considering unary prob-
lems. In Section 2.2 a detailed proof of this equivalence is given. A second ob-
servation suggested in Ramana’s research study is based on eigenvalue inequalities
due to Weyl: given an optimal vertex solutierof the LP-relaxatiomin,cp h’ 2

of (UP) satisfyingU (z) ¢ U,,, and given the eigenvalues bf(z), a linear con-
straint/(z) < 0 can be constructed satisfyirigz) > 0 and, for allz € R?

with U(z) € U, ¢(z) < 0. Therefore, by adding successively such valid cuts
¢(z) < 0 to LP-relaxations of (UP), one obtains an outer approximation (or cut-
ting plane) algorithmic approach for solving (UP). Several variants of this cutting
plane approach together with some preliminary numerical results, which are really
promising, are proposed in fR193]. In Section 2.3 we compile some prelimi-
naries underlying the basic ideas of this outer approximation approach and present
Ramana’s algorithm.

A serious deficiency of this algorithmic approach, however, consists in the fact
that cuts can possibly become very shallow. Therefore, the convergence of the
sequence of optimal solutions of the outer approximations to an optimal solution
of (UP) cannot be guaranteed. A similar deficiency was observed in other cutting
plane methods for certain global optimization problems (see, e.g., [H,TOBap-
ter 6]). By proposing alternative outer approximation algorithms for solving (UP),
which are convergent in the sense that each accumulation point of the sequence of
optimal solutions of the outer approximations is an optimal solution of (UP), we
overcome the above deficiency.

As we will see in Section 2.4, it suffices in Problem (UP) with (2.1.1) to con-
sider matrice¢/* € S,, (i € {1, ... ,d}), which form an orthonormal system with
respect to the inner produet S, x S, — IR :

BeC = tx(BTC) = Y bjcij, (2.1.2)

1,7=1

whereB = (bij)lgz‘,jgn andC = (Cij)lgi,jgn, andtr(A) = Z?:l ai; denotes

the traceof a matrixA € IR"*™. Using this observation we derive in Section 2.4 a
valid quadratic cut. This is a reverse convex constraint. For each optimal solution
z of an LP-relaxation of (UP) satisfying(z) ¢ U, it cuts a sufficiently large ball
(with respect to the Euclidean norm) centered att of the feasible region of this
LP-relaxation of (UP) without eliminating a feasible point of (UP), i.e., without
affecting the unarity.
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If this cut is used directly in an outer approximation scheme, the convergence
of such a method can be guaranteed. Unfortunately, the direct use of this cut would
lead to relaxations of (UP), which are as hard to solve as (UP) itself. If a suffi-
ciently large polytope inscribed in the Euclidean norm ball is known, then we can
cut this polytope out of the feasible region instead of the balls. Though the result-
ing subproblems are still hard to solve, using the fact that a polytope is described
by a finite number of linear constraints, we obtain a convergent and practicable al-
gorithm by building up this polytope by successive cutting planes. The basic idea
of this approach is presented in Section 2.5. The proposed algorithm is not a pure
outer approximation scheme. It is a combination of an outer approximation and a
successive subdivision of the feasible region of (UP).

In Section 2.6 we propose three possible ways to construct polytopes contain-
ing a sufficiently large part of the intersection of the feasible region of an arbitrary
LP-relaxation of (UP) and the relevant Euclidean norm ball. Each one of these
types of polytopes can then be used in order to obtain an implementable solution
scheme for (UP). In each iteration of these new algorithms we have to split a given
polytope into a fixed number of subsets, and then we have to examine each of these
subsets — as it is the case in branch-and-bound methods (see, e.g. g HCh@fter
4]). From a numerical point of view this can lead to excessive storage requirements.
In order to reduce the number of necessary splits and, thus, in order to reduce the
number of generated polytopes, we develop in Section 2.7 a convergent algorithm
which does not subdivide each considered polytope. The resulting method com-
bines the cuts introduced by Ramana, a new cut introduced in Section 2.6 and the
subdivision strategy developed in Section 2.5. Most of the theoretical results of
Section 2.2 up to Section 2.6 were published in [HR98].

In the final Section 2.8 we discuss the numerical performance of the proposed
new approaches. Since we are interested in solution methods for all-quadratic prob-
lems we tried to solve the unary problems resulting from the equivalent transfor-
mation of the problems belonging to our test set (see Section 1.5). Even though
a slight modification of the algorithms leads to a significant improvement of their
numerical performance, our numerical results in Section 2.8 show that the practical
application of the unary problem approach to all-quadratic problems of type (QP)
is limited to very small sizes.



2.2. UNARY PROBLEMS AND ALL-QUADRATIC OPTIMIZATION PROBLEMS 23

2.2. Unary Problems and All-Quadratic Optimization Problems

In this section it is shown that an arbitrary all-quadratic problem of type (QP) in
n variables is equivalent to a unary problemilia- (”‘2”) +n variables. By reasons
which will become evident in Section 2.4, we choose a transformation which yields
a unary problem, where the matridés(i = 1, ... , d) form an orthonormal system
with respect to the inner matrix product (2.1.2).

As usual we have used in the formulation of (QP) as well as in the formulation
of (UP) the lettersA andb, respectivelyP for describing the linear constraints. In
order to avoid ambiguities we add the supersaypfif a letter is related to Problem
(QP), and the superscript otherwise.

Consider an arbitrary all-quadratic problem of type (QP), i.e., consider the
problem

min 7 Q% + (d°)Tx
eTQlx+ (d)Tz+c <0 I=1,...,p (QP)
A < b9, 2z e R"
Wherte = (qgj)lgi,jgn € Sn, d eR"” (l =0,... ,p), deR (l =1,... ,p),
A = (@¥%,...,a?)T € R™™ andb? e RR™. Since we assumed that

P? = {z € R" : A%z < b?} is a polytope we know that there exists a hyper-
rectangleR® = {z ¢ R" : [9 <z < L9} with [?, L9 ¢ IR" satisfying

P? c RY,

Let e; € IR""! denote thei-th unit vector { = 1,...,n + 1), and let
Ei; € RMHD*(n+1) he the elementary matrix with enttyat position(i, j) and0
at any other position. The equivalent transformation of Probl@R)(leads to the
following unary problem

min h' z
AYz < Y (UP)
vV <z < LY
n+1
Uz) €Uy, z e RUT)HT
. . T
in the variable: = (211, e 3 R1ny R1,n415222y - -+ 322 041+ 5 Rnny Zn,n—l—l) )

where, fori = 1,... ,n,
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hi,n—H \/§dz s al (2 ntl) — \}—dl (l = 1, .. ,p),

af.ﬁz (i,n+1) — \/_a’lz (=1,....,m),

zn+1 le ngn—}—l \/ﬁLz '

1Y = max{(min{L¥,0})?, (max{I?,0})2} , LY = max{I®I?, LYLY},

1 1)

and forl <i<j <n,
\/_qm,al” \/_q”(l—l . ),agﬂ,ij:()(l:l,...,m),
= \me{l?l?,z%@ L?l?,LQLj?},

— QR 1QrQ 7Q;Q rQrQ
—ﬂmax{lz Ly, LEly  LELY )

The right-hand sidéV of the linear constraints is given by

b=~ (l=1,....p), 00, = b7 (l=1,....m),

and the affine matrix mapping itUP) is defined as follows

U(Z):Uo—i—zn:ziiUii—l— Z ZijUij

i=1 1<i<j<n+1

with UO = En—i—l,n—i—l’ U” = F;; (Z =1,... ,n) andU” = %(EZJ + Eji)
1<i<ji<n+1).

A guadratic function consists of three different terms of variables. There are
lineartermsg;,i = 1,... ,n), pure quadratictermsf,i = 1,... ,n) and bilinear
terms @;z;, 1 < i < j < n). In the formulation of UP) each of these terms is
replaced by a new variable such that all functions involved in the formulation of
(QP) can be transformed to linear functions. The additional unarity condition in
(UP) guarantees that each feasible pointd) coincides with a feasible point of
(QP). For that reason the postulated equivalence between the all-quadratic problem
(QP) and the unary probleryP) holds in the sense of the following theorem.
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THEOREM2.2.1. Let z* be an optimal solution of Problen®QP) and letz*
be an optimal solution of ProblenuP). If we set

22'7”4_1 = \/556: , Zig = (I:)2 (Z = 1, ,n) , 22']' = \/Ex:x; (1 <1 <j < TL) ,
and

T; =

1 :
ﬁzi*,wrl (t=1,...,n),

thenz is a feasible solution of ProblenuP), z is a feasible solution of Problem
(QP) and

(2)TQZ + (d”)Tz = ()T Q%> + (d®)Ta* = hTz = hT2* . (2.2.2)

PROOF Straightforward calculation shows that

*

v = (7)) (@),

and hencd/(z) € U, 1. By the definition ofil” and LY and the fact that* is
contained inR® it follows immediately

v <z < LY,

For thel-th rOWalU of the matrixAY we obtain, forl = 1,... , p,
1<i<j<n i=1 ,j=1
= ( ) Qla:*+(dl)T < =d =07,
and, forl =1,...,m,

U > _ E U ..
Ap+1% = E :ap+l (i,n+1)Zin+1 T Apt1,i5~ij
1<i<5<n

- (a’lQ)Tx* < bQ = bp-|-l1

i.e., z is a feasible solution of ProblenP). Similar direct calculations show that
hTZ — (SC*)TQOQT* + (dO)TSC* ,

and hence, since satisfies the constraints dfP) andz* is an optimal solution of
(UP), we obtain

h/TZ* S (.Z’*)TQO$*+(dO)TLU*
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Analogously one easily obtains that is feasible for QP) and h7z* =
(2)TQ°z + (d)Tz, which implies that
hTZ* > (zL’*)TQoiE*—I—(dO)TZC*. .

REMARK 2.2.1. As mentioned in Remark 2.1.1, Problem (UP) can also be
interpreted as a special semidefinite program. Using the semidefinite programming
notations a short formulation of the previous theorem is available along the lines
given, e.g., in [AM93, PRW95, VB96, FK97]. In order to avoid the introduction
of these semidefinite programming notations we decided to use the presented more
technical version of the equivalence result.

Example. We conclude this section with a simple example. Consider the
one-dimensional all-quadratic problem
min 22 +
—2°+1 <0 (QPE)
x€[-2,2].

The feasible regiod@ of (QPE) is given by the two disjoint intervals-2, —1]
and|1, 2], and the optimal solutiom* is —1 (see Figure 2.1(a)) with optimal value
0. Using the described transformation we obtain the following unary problem

min 217 + \%212
—z11 < —1
0<21<4

—2V2 < 215 < 2V2

00 10 0 —
(0 1)+211<0 O)+Z12< 1 ‘6§> € U .
V2
The optimal value of (UPE) is aldband is attained at the unique solution point
z* = (1, —+/2)T belonging to the feasible regidi” of (UPE) given by
FU = {zeR?:1< 21 <4, —2V2< 2150 <2V2, 2%, = 2211}

(see the two disjoint arcs in Figure 2.1(b)). We will use Problem (UPE) throughout
this chapter in order to illustrate the proposed solution methods.

(UPE)

Note that in the following sections we consider only unary problems. There-
fore, the superscridf is not necessary any more.
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FIGURE 2.1. Feasible regions of (QPE) and (UPE)

b
L
1 1, & 1 Xo-----°
211 + %212 = -1
FQ
(a) (QPE) (b) (UPE)

2.3. Preliminaries and Ramana’s Approach

The following results taken from [Rv93] are needed for the new cutting
plane algorithms discussed in the subsequent sections. Even though the knowl-
edge of Ramana’s outer approximation scheme, in particular the knowledge of the
cutting planes introduced by Ramana, is not necessary for developing these new ap-
proaches we repeat his algorithm in this section. There are at least two reasons for
doing that. First of all, the overcome of the theoretical deficiency of the unknown
convergence of Ramana’s algorithm was the main motivation for developing new
algorithms for solving (UP). Another reason is that the combination of the cuts
defined by Ramana with our methods results — from a numerical point of view — in
a more efficient solution scheme for unary problems, as we will see in Sections 2.7
and 2.8.

In this and the following sections we assume that the dimensicasdd of
(UP) are not smaller thal. The simple example (UPE) in the previous section
shows that even the transformation of a one-dimensional (QP) leads to a (UP) with
these dimensions.

The following first result characterizes unary matrices by means of their eigen-
values.
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LEMMA 2.3.1. LetU € S,,, and let\;(U) (: = 1, ... ,n) be the eigenvalues
of U indexed in increasing order. Then the following assertions are equivalent:

(i) U € Up;

(i) NU) =0,1=1,...,n—1;
(iiiy M(U) > 0 and A, 1(U) < 0;
(iv) M(U) > 0 and t(U) < A\, (U).

PROOFE The above equivalences follow readily from the well-known facts
that a matrixU € IR™*" is unary if and only if it is positive semidefinite and
rank(U) = 1, and that, for each real x n matrix A, there holdstr(A) =
S Ai(A) (see, e.g., [LIR64, §13)). |

The second lemma describes now a relation between the eigenvalues of the
sum of symmetric matrices and the sum of the eigenvalues of these matrices.

LEMMA 2.3.2. LetE, F' € S, with eigenvalues;(E), \;(F) (i=1,... ,n)

be indexed in the same order as above. Then, for éae{ 1, ... ,n}, there holds
M(E) +Me(F) < M(E+F) < M(EB) + Ma(F) (2.3.1)
PROOF. See, e.g., [HJ85]. |

This result is due to Hermann Weyl. Therefore, we will denote the inequal-
ities (2.3.1) adlVeyl’'s inequalities. Using the result of the last lemma a relation
between the eigenvalues of the affine matrix mappifig and the eigenvalues of
the matriced/? (i = 0, ... ,n) forming U (-) was derived in [RM93].

COROLLARY 2.3.3. LetU : R? — S, be an affine matrix mapping defined
asin(2.1.1). Then, for every nonnegative ]Ri andk € {1,... ,n}, there holds

d
A(U(y) < Ae(U°) + ) yida(UY)

=1

and

d
A(U(y) = MU + )y (U,

=1

where all eigenvalues;(-) (: = 1, ... ,n) are indexed in ascending order.
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PROOF. The results follow by successive application of Weyl's inequalities
(Lemma 2.3.2) and the fact that, for edé¢he S,,, u > 0andi € {1,... ,n}, there
holds\; (/JU) = /L)\@(U) |

Consider now the LP-relaxation
min ALz

UPL
Az < b ( )

of (UP), which arises from (UP) by omitting the unary conditiofx) € U,,. Given
a vertex optimal solutior of (UPL) and the affine matrix mapping defined in
(2.1.1),\(U(2)) = 0and\,_1(U(2)) = 0 implies thatz is an optimal solution
of (UP) because of Lemma 2.3.1. Otherwise, one must havE (z)) < 0 or
M—1(U(Z)) > 0 (or both). In this case, however, Corollary 2.3.3 allows one
to construct an additional linear constraitit) < 0 which, when added to the
constraints of (UPL), is violated bybut satisfied by all feasible solutions of (UP).
Since z is a vertex solution of a linear program it is known thais the
unique solution of a nonsingular x d system of linear equations binding at
which — following the standard terminology in simplex algorithms — will be called
a nonsingular basic system corresponding t@. Simplex-type algorithms pro-
vide such a system automatically. In order to derive the linear cuts introduced in
[RAMO93] let Bz < r be the corresponding nonsingular basic systenzfsatis-
fying Bz = r. By the definition of the corresponding nonsingular basic system
we know that each point € P = {z € IR? : Az < b} is contained in the cone
C :={z € R?: Bz < r} (C is the smallest of such cones containiRgand
uniquely determined whenis a non-degenerate vertexBj. Choose an arbitrary
pointz € P and set

y == r—Bz.

The pointy is a nonnegative element B?, and for the affine matrix mappirig(-)
at the point: we obtain

d
Uz) = U(@—B—ly) = U(Z)JrZyi (U°—UB e)), (23.2)

=z

wheree; € IR? denotes again theth unit vector { = 1, ... ,d). The right-hand
side of (2.3.2) is an affine matrix mapping with the form given in (2.1.1). Therefore,
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Corollary 2.3.3 is applicable, and we obtain

d
Mc1(U(2)) 2 A1 (U(2) + Dy (U° = U(B ™ ey))
and =

MUR) < MUEN)+Y . v MU -UBe)) .

It follows that, for each point € P with U(z) € U, the cut
d
> (r=Bz)i\ (U= U(B ') + Au-1(U(2) < 0 (2.3.3)
=1
is valid. However, for the point with \,_, (U (z)) > 0, (2.3.3) is violated.
An analogous result is true for the linear constraint
d
D (Bz—1)i A (U= U(B 'e;)) — M(U(2) < 0. (2.3.4)
=1
Adding these cuts to the linear constraints descrildthge obtain a better outer
approximation of the feasible region of (UP) and we can calculate a new, maybe
better, vertex solution of this new LP-relaxation of (UP). Continuing in this way,
a polyhedral outer approximation (or cutting plane) approach is obtained which,
in each iteration, requires only solving linear programs and eigenvalue calcula-
tions. Based on the above arguments, Ramamav[83] proposed the following
approach.

ALGORITHM 2.1 (Ramana’s Algorithm for Solving (UP)).

Initialization
P? — {zeR%: Az < b}, STOP— Falsg k — 0

While STOP =False Do

If P* =( Then
STOP— True (PN{ze R*:U(z) e Uy,} = 0)
Else

Solve the linear optimization problemin, . p» h’ 2 to obtain a vertex
solutionz* and a corresponding nonsingular basic sysi#im < r*
satisfyingB* 2% = r*,
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Compute the eigenvalues bf(z*) indexed in increasing order.
If A (U(2*)) > 0AND \,_1(U(z¥)) <0 Then
STOP«— True (z* is an optimal solution of (UP))
Else
If \,_1(U(2%)) > 0 Then
(ab)F — -\ (UO — U((Bk)_lei)) ,i=1,....,d
(BYF = =Aa-1(U(2Y))
P¥ — PFn{zeR?: ((a")")TB*2 < ((a")*)TB*zF 4 (B1)F}
EndIf
If A\1(U(2%)) < 0Then
(@®)f =X, (U =U((B*)e;)) ,i=1,...,d
(B2)F = M(U(="))
P — P n{zeR?: (a®)*)TB*2 < ((a®)F)TB*2F + (32)F}
EndIf
Pkl PE ke k41
EndIf
EndIf
EndWhile

Example. Consider again Problem (UPE). The first vertex solutifris ob-
viously given by(1, —21/2)T (see Figure 2.1(b)). The corresponding nonsingular

basic system is
-1 0 211 < —1
0 -1 212 o 2\/§ '

For the eigenvalues @f (-) at 2" we obtain
MUEY) = A (U°) = 1.
The linear cut (2.3.4) is hence defined by

—211 — \%212 <0,

and for the new outer approximatidft of the feasible region of (UPE) it follows
Pl = {Z € ]R2 1 < z11 <14, —2\/5 < 219 < 2\/5, —Z11 — %212 < O} (See
Figure 2.2).
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FIGURE 2.2. Ramana’s cut for (UPE)

212

11

If Algorithm 2.1 stops after a finite number of iterations with a paifit re-
spectively by detecting the emptinessrf, then it is obvious in view of the pre-
vious considerations that® is an optimal solution of (UP), respectively that the
feasible region of (UP) is empty. Up to now it is an open question, whether Algo-
rithm 2.1 is convergentin the sense that each accumulation poafthe sequence
{z"} e satisfiesz* € {z € R? : Az < b,U(2) € U,}. Since the sequences
{((a")*)T B*}rew (4 = 1,2) might fail to be bounded, it does not seem that the

convergence of Algorithm 2.1 can be guaranteed. For a related convergence theory

of cutting plane algorithms in global optimization we refer to [HB.6

REMARK 2.3.1. By applying another cutting plane for the case that the small-
est eigenvalue of/(z*) is smaller tharD, Ramana was able to derive at least a
partial convergence result. Let* be a normalized eigenvector 6f(z*) corre-
sponding to the smallest eigenvalue of this matrix. The linear cut

d
(w™)T Z UMW) 2 + (w)TUWE > 0 (2.3.5)
=1
is applicable, since there holds*)TU (z*)w* = X\ (U(z*)) < 0, and, for each
z € R? with U(z) € U, it follows (w*)TU(z)w* > 0. Note that each matrix

U € U, must be positive semidefinite. If in Algorithm 2.1 the cut (2.3.5) is used
instead of (2.3.4) and if the casg_(U(z*)) > 0 occurs only a finite number of
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times, then itis provable (see pfr1 93, pages 93f]) that this algorithm is convergent
in the required sense.

It is the aim of the subsequent sections to overcome the above theoretical defi-
ciency of Algorithm 2.1 by developing other in each case convergent outer approx-
imation approaches for solving (UP).

2.4. Valid Cuts for Convergent Outer Approximation Algorithms

A first step towards convergent outer approximation algorithms for solving
(UP) consists in requiring that in the affine matrix mapping (2.1.1)

d
U:R' =S, 10 U()=U"+> U,

=1
the matriced/* (i = 1,...,d) form an orthonormal system (ONS) with respect
to the inner product (2.1.2). This is not a real restriction for the generality of the
considered problems of type (UP). Each unary problem of this type is equivalent
to another unary problem which fulfills this additional condition. This is the result
of the following lemma.

LEMMA 2.4.1. Let an arbitrary unary problem
min h'z
Az < b (UP1)
U(z) cU,,zecR?
with h € RY, A € R™*?andU : R? — S, U(z) = U° + %, 2,07 be
given. Then there exist a dimensidr< d, vectorshy € IR, hy € RY™?, matrices

A; e R™4, Ay € R™ (9 and an ONJU?,i = 1, ... ,d} with respect to the
inner producte defined in (2.1.2) such that the optimization problem

min hix + hiy

Alx—l—Agy <b
d . upP2
U(x):UOJeriUZeL{n ( )

1=1
recR, y e R

is equivalent to (UP1).



34 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

PrRoOOF Determine a maximal linearly independent subset
{U%,j=1,...,d} c {Ui=1,...,d}

(so that the two linear spaces generated by(therespectively thé/¢ have equal
dimension). Assume, for ease, that there hdlds. .. ,is} = {1,...,d}. The
matricesU’ (j € {d + 1,...,d}) are contained in the linear space generated by
the matriced/ (i = 1, ... ,d). Therefore, there exists, for eaghe {1,... ,d—d},

a vector)’ € IR? with

SetL = (\,... 2% 4) ¢ R™(@=9  Use now the Gram-Schmidt procedure
(see, e.g., [GVL89, Chapter 5]) in order to generate fldii,s = 1,...,d} a
corresponding ONSU*,i = 1,... ,d}. Let, fori € {1,... ,d}, i’ € R? be the
unique vector satisfying

d
Ut = Zﬂ;Uj.
j=1

Since the function which maps tié’ onto theU7 (j = 1,...,d) is a homeo-
morphism we know that the matrix/ = (u*,...,u?) € R s regular. Let
z = (2,27 with z € R andz € IR?"“ be an arbitrary element dR“. Let,
furthermore, the matrid € IR™*“ be given by4d = (A4, A) with A € R™*% and
A e R™*(4=9 andthe vectoh € IR? be given byh = (1, h)T € R (@~ Set

r = M(Z+Lz2) , y =2

A, = AM™Y Ay, = A— AL
and
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d d
) = 04 a0 3 50 = 00h S (5e 3 ) o
=1

i=d+1 j=d+1

:UO+Z Z,u}zqu ZZJA] Ul = Ulx).

j=d+1

. -

:(M(Z-f—Lé))L =x;

Since the matrix\/ is regular the previous calculations demonstrate a one-to-one
relation between the feasible points of (UP1) and (UP2). This shows the equiva-
lence of both problems. |

Even though Problem (UP2) has a more general form than Problem (UP) we
will develop the following theory and solution methods only for unary problems of
type (UP). This is motivated on the one hand by the fact that the transformation
presented in Section 2.2, which links the all-quadratic problems of type (QP) to
equivalent problems of type (UP), yields an ONB*,1 < i < j < n+ 1} in
(2.2.1). Sinceitis the purpose of this research study to develop solution methods for
(QP) it is, therefore, sufficient to consider the more restricted form (UP) of unary
problems instead of (UP2). On the other hand, the following theory and solution
methods can be extended by slight changes to problems of type (UP2). However,
this leads to increasing technical effort, what we would like to avoid.

The following lemma shows the postulated fact that the matrigés
(1 <i<j<n+1)definedin (2.2.1) form an ONS with respect to the inner
product given by (2.1.2).

LEMMA 2.4.2. Let E;; = ejel € RWTDX(HD) (G5 — 9 0 4 1) be
given as in Section 2.2. Then the matnces

U% = E; ,i=1,...,n
UY = S5(Eij+Ep) ,1<i<j<n+l

form an ONS with respect to the inner prodeatefined in (2.1.2).

PROOFE This result can be verified by straightforward calculations. B
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With the orthonormal property of the sgt/*,i = 1, ... ,d} we are now able
to derive a relation between the Euclidean distance of two peirtsc IR¢ and
the distancebetween the two corresponding matriéés:) andU(z). In order to
measure thealistancebetween two matrices we use a suitable matrix norm. Let
|A|lF = VAe A (A € S,) denote the norm induced by the inner product (2.1.2)
— the so-calledrrobenius-norm.

LEMMA 2.4.3. Let{U*,i =1,...,d} C S, form an ONS with respect to the
inner producte defined in (2.1.2). Then, for eaehz € IR?, there holds

d

1> (z=2Ulr = |z~ 22 (2.4.1)

1=1

PROOF By the orthonormality of U%,i = 1, ... ,d} we know that, for each
i,5 € {1,...,d}, there holds

R o 1 ,ifi=j
AVE 341 - 7 7 )
tr (U U) = Ul = {0 , otherwise

Thus, for each, z € RY, it follows

d d d
I Z(Z -2 U'|% = tr ((Z(z - 2,00 (> (= - Z)z'Ui)>
i=1 A i=1

. (z—2)i(z — 2), tr ((Ui)TUj)

2,

&
Il

(2 =27 = l=—2l3.

1 |

-

2

The combination of (2.4.1) with Weyl's inequalities (2.3.1) allows us to prove
that for arbitrary points;, z € IR? the distance between the eigenvalue®/¢f)
andU (z) is at least as big as the Euclidean distance between these points. With this
result of the following theorem we will develop a valid cut for a convergent outer
approximation algorithm.

THEOREM?2.4.4. Let{U% i =1,...,d} C S, form an ONS with respect to
the inner produce defined in (2.1.2), and léf : RY — S,, be an affine matrix
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mapping of the form

d
2= Ux) = U0+ )l
1=1
with U? € S,,. Assume that the eigenvalues of the matrices involved are indexed in
an increasing order. Then, for eachz € IRY, there holds

Mot (U(2)) = At (U(Z)) = ||z — 2|12 (2.4.2)
and
MU(2) < MUE) +z— 2|2 (2.4.3)

PROOFE Since the Frobenius norm is an upper bound for the spectral radius
p(S) = max{|\|, A eigenvalue o5} (S € S,,) (see, e.g., [EIR64]), one obtains
by means of Lemma 2.3.2

A1(U(2) = M1(U(z—2)+U(2) - U°) = )\n_l(i(z—z)iU"+U(2))
d 1=1
> A-1(U(2 ))+)\1(§(2—Z) )

d
> A1 (U(2)) — || Z(z = 2iU'lF = Aa-1(U(2) = ||z — 2|2 -
Similarly, inequality (2.4.3) foIIows from

MU() = MU 2) + U(E) U9 = M(E (- 20" + U(2))

= >\1(U(5))+|\i(2—5)iUi|\F = MUZ)) + [z - 22
_

REMARK 2.4.1. The result of Theorem 2.4.4 can also be derived by a combi-
nation of Lemma 2.4.3 and the Hoffman-Wielandt inequality given in [HW53].
Indeed, letA, B € S,, be two arbitrary matrices with eigenvalues,... ,a,
andgy,..., 3, indexed in increasing order. The Hoffman-Wielandt inequality in
[HW53] says that there is a permutation {1,... ,n} — {1,... ,n} satisfying

> i = Ba* < A= Bl%. (2.4.4)

=1
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If we denote bylI the set of all permutations dfl, ... ,n}, then (2.4.4) is equiva-
lent to

i = Bao)? < |1A—-B|%.
min ;\az Brpl? < 1A~ B

Seta = (ai,...,a,)T and3 = (B1, ..., B,)T. It can be proven by an induction
with respect to the dimensionthat there holds

n
_ T
IT{lgﬁ( . 1Oézﬂw(z') = a f.
1=

Using this fact we obtain

n n
min Y i = Bep)* = llall3 + 1813 - 2 max > B
1=1 1=1

mell 4
= Jla—2l3.
and in view of (2.4.4) it follows, for eache {1,... ,n},
la; = Bi| < |A=BllF. (2.4.5)

If we apply this relation to the situation of Theorem 2.4.4, the use of Lemma 2.4.3
yields the inequalities (2.4.2) and (2.4.3).

As in the description of Ramana’s cuts introduced in the previous section, let
z € IR be an optimal solution of an LP-relaxation of (UP) satisfylitg) ¢ U4,,.
In view of Lemma 2.3.1(iii) we know that

€(z) = max{\,—1(U(2)),—\(U(2))}

must be greater thal From Theorem 2.4.4 it follows that each pointc IR?
contained in a ball (with respect to the Euclidean norm), which has a radius equal
to ¢(Z) and is centered at cannot be feasible for (UP). Therefore, we see that

0.(2) = €(Z)— ||z —Z|]s < 0 (2.4.6)

is a valid cut, i.e., we knowi;(z) > 0, and, for each: € IR? with U(z) € U,
there holdgz(z) < 0.

Example. In the situation of Problem (UPE) we know that= (1, —2/2)7
is an optimal solution of an LP-relaxation of this problem with) = 1 (see page
31). In view of the above arguments it follows that each point contained in the
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FIGURE 2.3. First quadratic cut for (UPE)

circle C centered at with radiusl (see Figure 2.3) is not feasible for (UPE).

If we replace in Ramana’s Algorithm 2.1 the linear cuts used there by
¢, (z) < 0, then we obtain a convergent outer approximation algorithm for solving
(UP), as the following theorem shows.

THEOREM2.4.5. Let {z*},ev be a sequence of points in the polytope
P ={ze R?: Az < b} satisfying, for eaclt, i € IN with k < 1,

0. (2") < 0. (2.4.7)
Then every accumulation point of {2*} e satisfies/ (2*) € U,,.

PROOF Let z* be an accumulation point of the sequereé} e and let
{z*4} v be a subsequence convergingto From (2.4.7) it follows that, for each
q € IN, we know that

kg (qu"'l) < 0.

Sincel|zFa+t — zFa |y — 0 (¢ — o0), this relation implies — in view of (2.4.6) and
because ofnax{\, _1(U(z%)), —A\1(U(z%))} > 0 (¢ € IN) — that there holds

max {\,—1(U(z")), =\ (U("))} — 0 (¢ — o0).
From this ensues
MU((Y) = A1 (U(z7) = 0
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by the continuity of the eigenvalue functionals, \,,_1 : S, — IR. This is equiv-
alent toU (z*) € U,, because of Lemma 2.3.1 and completes the proof. W

We have now a convergent outer approximation approach for solving (UP).
However, the possible cut is nonlinear, in particular reverse convex, such that an
algorithm using this cut directly induces difficult subproblems. In the next three
sections we will discuss ways to overcome this practical difficulty.

2.5. Basic ldea for Convergent Implementable Algorithms

In order to apply the results of the previous section we assume in this and in
the subsequent sections that the matrigés i = 1,...,d} defining the matrix
mapping in (UP) form an orthonormal system with respect to the inner preduct
defined in (2.1.2). We assume furthermore that the polytope{z ¢ RY: Az <
b} is not empty, what can be tested by the first phase of the Simplex-Algorithm.

Let P be the feasible set of an arbitrary LP-relaxation of (UP). If a point
z € P satisfyingU(z) ¢ U, is given, then we have seen in Section 2.4 that it
is possible to cut an Euclidean norm ball centered at with radiuse(z) =
max{\,_1(U(%)), -1 (U(2))} out of the polytopeP without affecting the unar-
ity.

LetQ: = {z e R?: 72 < &,i=1,...,1} be apolyhedronf € R,
¢; € R,i=1,... 1) with the properties

PNQ: ¢ PNB; (2.5.1)
and, foreach € {1,... [},
d(z,H(q;,¢i)) = pe(z) (2.5.2)

whered(z, H(g;, ¢;)) denotes the Euclidean distance of the hyperplg, ¢;) =

{z € R%: ¢z = ¢} to the pointz, andp € (0,1] is a positive real number. In
view of (2.5.1) we see thap; can be cut out of the polytope without eliminat-

ing a feasible point of (UP). Actually, the sétN @ is an inner approximation
polytope of the part of3; belonging toP and contains no element &flying out-

side the ballB;. Property (2.5.2) guarantees, furthermore, that each point located
within P\ @Q: has a distance greater tha#(z) to the pointz. If it is possible to
construct such a polyhedron for each infeasible pagititen we are able to develop

a convergent algorithm for solving (UP). How this can be done is the content of the
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present section. In the next section we will propose three different possibilities for
constructing appropriate polyhedra.

Assume now that for each poisitbelonging to a polytop# C P and satis-
fying U(z) ¢ U,, a polyhedrony; with Properties (2.5.1) and (2.5.2) is known.
Of course we cannot cut the s@t out of P in one step. The closure @} \ Qz
IS not necessarily a polytope and, thus, an algorithm doing this would induce diffi-
cult subproblems, as it is the case by using the quadratic cut directly. However, in
contrast to the Euclidean norm b&lk the polyhedror); is described by a finite
number of linear constraints. If we constrietew polytopes?; (i = 1,...,1) by
adding one of the constraints describiflg to the constraints describing, then
we know that the union of th&,’s (i = 1, ... ,[) contains no point of the interior
of Q, but all feasible elements d?. Applying this strategy the algorithm is as
follows.

ALGORITHM 2.2 (Basic Convergent Algorithm for Solving (UP)).
Initialization
Choosep € (0,1] andl € IN, and setP® «— {z € R¢ : Az < b}.
Solve the linear optimization problem (LRjin,c po h' 2z, and letz® be an
optimal solution with optimal valug po = h72°.
10— ppo, P — {PO}, STOP— False k — 0

While STOP =False Do
Compute the eigenvalues &f(2*) indexed in increasing order.
If A (U(2%)) > 0AND M\,_1(U(2*)) < 0 Then (SC1)
STOP«— True (z* is an optimal solution of (UP))
Else
€(2*) — max{ A1 (U(2")), =M1 (U(2*))}
Construct a polyhedro@”® = {z e R?: (¢"*)T2<cF,i=1,...,1}

satisfying

PFnQF c PPn{zeR?: ||z — 2F|]s < e(2F)} (PR1)
and, foreach € {1,...,l},

(=, H (g} of)) = M=ol > pe(2"), (PR2)

PF— PFn{zecR®: (¢")T2 > cF}

2

If PF =0 Then
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Solve the LPmin, . px h' 2, and letz} be an optimal solution
with optimal value,ul;k = hT 2k,
P—PU{PF}
EndIf
EndFor
P —P\{P*}
If P=0 Then (SC2)
STOP— True (P°N{z e R*:U(z) €U,} = 0)
Else
pFt — minpep pp
ChooseP**! ¢ P andz**! € P! with pf+! = ppress = AT 2L,
EndIf
EndIf
k—k+1
EndWhile

REMARK 2.5.1.

(a) Itis known that the Euclidean distané€s, H) of an arbitrary hyperplane
H={zeR?: ¢"z=¢} (g € R? c € R) to apointz € IR? is given by

¢z — ¢

lqll2

(b) The choice op € (0,1] and! € IN depends on the the used polyhedra, as
we will see in the next section.

(c) Algorithm 2.2 is not a pure outer approximation scheme — in contrast to
Algorithm 2.1. In each iteration we combine a better outer approximation
of the feasible region of (UP) with a subdivision of this feasible set. Notice
that — from a numerical point of view — this subdivision process can lead
to excessive storage requirements, since in each iteration we eliminate only
one polytope from the collectioR, but we add up téd new sets.

d(z,H) = (2.5.3)

Example. In order to illustrate Algorithm 2.2 let us consider again Problem
(UPE). The initialization polytopeP® is given by the set{z ¢ R?

1 < 211 < 4, -2v2 < 25 < 2V/2} and the first optimal solution is® =

(1, -2v2)T with ¢(z°) = 1 andu® = —1. Since the squar® with edge-length
V2 and centered at® is contained in the circl€ with radius1 (compare with
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Figure 2.3), we can usk as the necessary polytog¥. Thus, the first subdivision
of the feasible region of (UPE) leads to the polytopes

P) = P'n{zeR?: 2, >1+0.5V2}
P = PPn{ze€R?:2,<1-05V2} =10
P = P'n{zeR?: 215 > —1.5V2}
P? = POn{zeR?: 25, < -25V2} =0
(see Figure 2.4). We obtain the new solutiafis= (1 + 0.5v/2, —2v/2)T with
FIGURE 2.4. First iteration of Algorithm 2.2 applied for (UPE)

211

objective function value-1 + 0.5v/2 and 2§ = (1, —1.5v/2)T with value —0.5.
Hence, the new polytope for iteratiaris P! = PY with u! = —0.5.

In order to guarantee the correctness of Algorithm 2.2 we first prove that in
iterationk € IN each feasible point of Problem (UP) is contained in at least one of
the polytopes belonging to the current collectidn

LEMMA 2.5.1. Let P be the collection of polytopes at iteratidgn € IN of
Algorithm 2.2 and denote by = {z € IR? : Az < b, U(z) € U,,} the feasible set
of (UP). Then there holds

UJPoF. (2.5.4)



44 CONVERGENT OUTER APPROXIMATION ALGORITHMS FORSOLVING UNARY PROBLEMS

PROOF We show this result by an induction with respect to the iteration
counterk.
Fork = 0, there hold$? = {P°} with P° = {z € R¢ : Az < b}, and hence
(2.5.4) is fulfilled. Assume that (2.5.4) holds at the beginning of iteratioifhen
it suffices to show that
l
P > FnpP~. (2.5.5)
=1

Let 2 be an element of’ N P*. From Theorem 2.4.4 we know that
A—1(U(2) = Xt (U(ZR)) = |12 = 28|12
and
MUZ) < MUER)+112- 252

Since z is a feasible point of (UP), Lemma 2.3.1 tells us that there holds
M—1(U(2)) = A1 (U(2)) = 0, and hence

12— 2"2 > max{A,—1(U(z")), =M (U ("))} = e(2¥) . (2.5.6)
The polytopesPF (i = 1,. .. ,1) are constructed such that

l
UPZ.’“ = PP\{zeR*: (¢"HTz<cr,i=1,... 1} = PF,

=1
and regarding Property (PR1) of the polyhedé@nwe know, furthermore, that
PF o> PPn{zeRY: ||z — 2%y > e(z¥)} .

The point? is an element ofP*. Therefore, we obtain in view of (2.5.6) that
l
ze PPnfzeR: z- 2. > ez} c | JPF,
=1
which proves (2.5.5). |

If Algorithm 2.2 stops withP = (), it follows immediately by (2.5.4) that the
feasible region of (UP) is empty. Moreover, Relation (2.5.4) implies tfia at
each iterationk € IN a lower bound for the optimal value of (UP), i.e., for each
k € IN, there holds

uk < LréighTz. (2.5.7)
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Therefore, we know that, if Algorithm 2.2 terminates with a paifitthenz* is an
optimal solution of Problem (UP). Indeed, in view of the stopping criterion (SC1)
the pointz* must be feasible for (UP) (see Lemma 2.3.1) and with (2.5.7) we obtain
uk = plk < mi;l Tz < hTk, (2.5.8)
ze

which shows the optimality of”.

For the case that Algorithm 2.2 does not stop after a finite number of iterations,
the following theorem guarantees the convergence of our approach in the required
sense.

THEOREM2.5.2. If Algorithm 2.2 generates an infinite point sequence
{zF} e, then each accumulation point of this sequence is an optimal solu-
tion of Problem (UP).

PROOF Let z* be an accumulation point of the sequereé} e and let
{2*},en be a subsequence converging:to By passing to a subsequence, if
necessary, we can assume that the corresponding sequehdg of polytopes
Is decreasing, i.e., for eaghe IN, there holds

Pkavr  pka (2.5.9)

and, moreover, thaP*«+1 has been generated by adding constraints to the set of
inequalities describing*«. In view of Relation (2.5.7) it suffices to show thatis
a feasible point of (UP), i.ez* € F (see also Relation (2.5.8)). Because of (2.5.9)
we know that, for each € IN, there is an index € {1,... 1} with
Pkat1 ¢ Pkan{z e R?: (qfq)Tz > qu} :
Using Property (PR2) of the hyperplanes describing the polyh@lra(g € IN)
we see that, for eache IN,
|2Fatt — 2Ra||y > pe(zFa) > 0. (2.5.10)
With the definition ofe(z%¢) (¢ € IN) and the continuity of the eigenvalue func-
tionals it follows
0 < max{A—1(U(zF)), —M(U(2"))} < Slleha—zhar|,
| | Ll (g—00)
0 < max{A,—1(U(z*)) , =\ (U(z*)) } < %H 2¥— z* |2 = 0.
This implies in view of Lemma 2.3.1 the feasibility of. H
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REMARK 2.5.2. As the previous considerations show, it is not necessary that
in the formulation of Algorithm 2.2 the numbérc IN and the positive real value
p are chosen independent of the iteration couhtefs long as there is a number
L € N with [* < L (k € IN) and a constant > 0 with p* > ¢ (k € IN) the
correctness of this solution method for (UP) can be proven.

Under the assumption that appropriate polyhe@fa(k € IN) can be con-
structed we have now a convergent algorithm with linear subproblems for solving
unary problems of type (UP). In order to obtain implementable algorithms we still
have to specify, how such polyhedra can be determined. In the next section we
present three possibilities for the choice of such sets.

2.6. Appropriate Polyhedra for Algorithm 2.2

Let z*¥ (k € IN) be the current point at iteratiok of Algorithm 2.2 with
e(z%) = max{\,_1(U(zF)), = 1 (U(z¥))} > 0, and letB,« be the corresponding
Euclidean norm ball with radiug 2*) centered at*. There exists of course an infi-
nite number of polyhedr@* ¢ IR? satisfying the required properties sifc (0, 1]
and/ € IN are chosen accordingly. In order to obtain an efficient algorithm such
polyhedra should satisfy some criteria apart from the necessary properties (PR1)
and (PR2). First of all these sets should be easy to construct. Moreover, such a
polyhedron should have as few describing hyperplanes as possible in order to re-
duce the storage requirements (see Remark 2.5.1(c)). And, a third criterion is, that
the intersection of this polyhedron with the eliminable ball should have the biggest
possible volume. Unfortunately, these criteria are conflictive. For example, the
less hyperplanes we use to describe the polyhedra the less volume of the resulting
intersection sets we can expect.

The first type of polyhedra, which we present in this section, is a hypercube.
These sets are really easy to construct and are a relative good choice with respect
to the third criterion. However, they do not pay so much attention to our second
criterion. Therefore, we propose furthermore two possible polyhedra which base
ond-simplices and are described by oy 1 respectivelyl hyperplanes, instead
of the 2d hyperplanes in the case of the hypercubes. The first simplex, which we
propose in Subsection 2.6.2, is also easy to construct. In order to obtain a better set
with respect to the volume criterion we modify this simplex in Subsection 2.6.3.
However, the construction of this modifidesimplex will need more effort.
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2.6.1. Hypercubes.Using the fact that, for eache IR, there holds
d d
I213 = X 1=1* < > lelk = dll=l%, (2.6.1)
=1 =1

we immediately see, that tlfe,-norm ball centered at* with radiuse%) IS con-

tained in the Euclidean norm ball with radieis*). This/..-norm ball is a hyper-
cube centered at* with edge-lengti2 6\;2) and can be described by

RF = {zeR¥: (¢") T2 < cFi=1,...,2d} (2.6.2)
where, fori =1, ... ,d,
(T2 =2 and c; =z + =~

and,fori=d+1,...,2d,

()" 2= —zi—a and cl=—z 4+ e(jﬁ) .

The hypercube&® (k € IN) fulfill Property (PR1) (see (2.6.1)) and in view of the
definition of the hyperplaned (¢¥,c) (i = 1,... ,2d; k € IN) we know

(@)2* —cf] 1

d<zk7H(qfaC§)) - - E(Zk) .
[P Vd
Choosing = 2d andp = ﬁ in the initialization of Algorithm 2.2 the hypercube

R" is an appropriate choice for the necessary polyhe@o(k < IN). If we apply
Algorithm 2.2 using these hypercubes for solving our example problem, then the
first iteration of this approach looks like it is described on page 43 (see, in particular,
Figure 2.4).

REMARK 2.6.1. If the hypercube&” are used in Algorithm 2.2 for)”
(k € IN), the number of inequalities describing a polytdpe P can be bounded
by m + 2d. Note that the normalg’ (i = 1,...,2d; k € IN) of the constraints
describingR” do not depend on the iteration counter, and, thus, only the right-hand
sidesc? (i = 1,... ,2d; k € IN) of the constraints change.

The hypercube®” (k € IN) are really easy to construct and fulfill thus the
postulated first criterion. However, the numierof generated new polytopes in
each iteration of the algorithm is already rather large. In order to reduce this number
we develop now an inner approximation polytope for the bgll, which can be
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described byl + 1 hyperplanes. This choice is hence better — regarding our second
criterion.

2.6.2. Regulard-Simplices. A d-simplex is the set among altdimensional
polytopes, which can be described by the least number of linear constraints. We
present now a-simplex contained in the Euclidean norm b&ll., whose vertices
lie on the boundary of this ball. It is known that among@&iimplices contained
in such a ball the so-callaggular simplices, i.e., the simplices where the distance
between each pair of vertices is equal, are the largest ones with respect to the vol-
ume (see [BE69] for a proof). In view of the third criterion we choose, therefore,

a regulard-simplex contained i3« .

In order to simplify the presentation we start with the description of a regular
d-simplex centered at the origin and with vertices on the boundary of the unit ball
B = {z € R?: ||z||» < 1}. This simplex can later be easily transformed to the
requiredd-simplex lying in the relevant bal .

Assume, at first, that a reguldrsimplex S = [vo, ... ,v4] centered at the
origin and with all its vertices on the boundary Bfis given. Then it is known
from the literature that the edge-length®fi.e., the Euclidean distance between
each pair of vertices, is given by

2(d+1)

d
(see, e.g., [BM29, GKL95]). Moreover, it is elementary to show that=
ﬁ Z?:o v;, I.e., the origin is the barycenter 8f and that the radius of the largest
Euclidean ball, which can be inscribed inigis

0,5 €0,... d}withi # j (2.6.3)

|vi —vjll2 =

r = -. (2.6.4)

The number- is also the distance of each facet®fo the origin. Furthermore,
we can use the fact that, for eaghe {0, ... ,d}, the vertexv; is orthogonal to
the facetS; = [vo, ... ,vj_1,vj41,... ,v4] Of S, and hence the hyperplan&s;,
generated bys; can be described by

Hg, = {z¢ R : o7 (v; — 2) =0} (2.6.5)

J

with an arbitrary, but fixed indexe {0,... ,d}\ {j}.
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These are known results about the properties of a regusamplex centered
at the origin and with all its vertices on the boundary of the unit Balllo the au-
thor's knowledge there is, unfortunately, no explicit construction of such a simplex
in the literature — except of [HR98]. In order to derive an implementable algorithm
we need an explicit formulation of the hyperplanes describing such a simplex and,
thus, in view of (2.6.5) we need an explicit formulation of its vertices. This will be
done in the following. For reasons which will become evident later in this section
we construct a regularsimplex withr € IN. Set

vo = aoer ,
v = \/G2;€r—; — ]é1MGT_<j_1) ,i=1,...,r—1, (2.6.6)
=~ — SV
where
ap = 1,
a; = { ai—1/(r — 131)2 ’?“:Odd vi=1,...,2(r—1), (2.6.7)
Ai—o — Aj_1 , If 7 even
ande; € IR" is thei-th unit vector. The-simplexS = [vg, ... ,v.], which is gen-

erated by these vertices, is a regular simplex with the edge-length (2.6.3), and all its
vertices belong to the boundary of the unit b&lic IR". This will be the result of
Theorem 2.6.2. At first, however, a technical lemma is needed in order to establish
this theorem.

LEMMA 2.6.1. Leta; (i € {0,...,2(r —1)}) be defined as in (2.6.7). Then,
foreachi =1,...,r — 1, there holds

(2.6.8)

PROOFE We prove this result by an induction with respeci.tdhe assertion
Is obviously correct foi = 0. Assume that it holds far= j — 1 with j > 1. Then
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it follows by definition ofa; (I € {0,...,2(r —1)})

r—g+1 r—j+1( )
— Q9 = ———— (A9 — Ao._
T’—j 27 T—j 27—2 27—1
r—j+1 agj—2

_ —7:?——<a%—2_(r—j%-n2>

T T (1
r—g+2 r+1
= —— A9_ _= ,
r—g+1 2=2 r
which is the required result far= j. |

With the technical result of Lemma 2.6.1 the postulated properties of the sim-
plex generated by the vertices defined in (2.6.6) can now be shown.

THEOREM2.6.2. LetS = v, ... ,v,] be ther-simplex with the vertices;
(: =0,...,r)constructed as in (2.6.6). Then the following assertions are true.
(i) Each vertex ofS belongs to the boundary of thedimensional unit ball
B={zecR":|z]2 <1},i.e., foreach € {0,...,r}, there holds
[vil2 = 1.

(i) The distance between each pair of vertices is equal. Moreover, for each
i,7 €40,...,r}withi #£ j, there holds

loi —vjll2 = /2

(compare with (2.6.3)).

PROOF In view of the definition ofe; for I € {0,...,2(r — 1)} even we
obtain, for eachi € {0,... ,r — 1},
ao;, = 1-— Zagj_l . (269)
j=1
Hence, for eachi € {0,... ,r — 1}, it follows
lill3 = azi + Y azj—1 = 1.
j=1

Using the fact that,- andwv,._; have by definition the same distance to the origin,
assertion (i) is proven.
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Lemma 2.6.1 yields

r—(r—1)+1 2(r+1)
r—(r—1) G2(r-1) = T

and by using additionally (2.6.9) we obtain, forj € {0,... ,r} withi < 5 and

1< r—1,

H'Ur—l_vr”g = 4a2(r—1) = 2

J 2
lvi —v5]l5 = a2; + Y. au—1+ (Vaz + /azit1)
l i+2

= 1—Za2l 1+ Z as|— 1+(\/a27,+\/a/21-|—1)
=1 l=i+2

141

= 1- Za2l 1+ a2 + agir1 + 24/a2i\/a2i+1
1
— 2@21 + 2«/@2“ / (7" Z)Q 20,27; + 2a2i’l“ —

_ o7 i+ 1 0 — +1) |
r—1 r
which shows assertion (ii) and completes the proof. |

As a direct consequence of the previous theorem, we obtain that the inner
product of each pair of vertices of the simplg€x= [vg, ... ,v,] IS equal—%.

COROLLARY 2.6.3. Under the assumptions of Theorem 2.6.2 there holds, for
eachi,j € {0,... ,r} withi # j,

vlv;, = —1. (2.6.10)

T

PROOF, From result (i) of Theorem 2.6.2 we know that, for each
i,7 € {0,...,r}with i # j, there holds

2L = lo; — (I3 = Nlwill3 + [l ll5 — 207 v; -

Using assertion (i) of this theorem we obtain
2l = 220wy,

which implies (2.6.10). |
In view of the previous results the construction (2.6.6) wita: d yields the

needed explicit formulation of a regulérsimplexS = [v, . .. , v4] centered at the
origin, whose vertices lie on the boundary of the unit ball. Assume now that we are
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again in the situation of Algorithm 2.2 and that a paifitce P = {z ¢ IR? : Az <
b} is given satisfyind/ (2*) ¢ U,,, i.e.,
e(z") = max{\,_1(U("), =\ (U(")} > 0.
It could be verified by straightforward calculations that the polyhedron
Sk = {zG]Rd:—v;‘Fzg@—v?zk,izo,...,d} (2.6.11)
with v; (i = 0,...,d) defined as in (2.6.6) is a reguldssimplex centered at*
(compare with (2.6.5)). The vertices 8f aree(z*)v; + 2% (i = 0,... ,d), which

lie on the boundary of the ba}. .. For the Euclidean distance of the paifitto the
hyperplanes describing® we obtain regarding (2.5.3), for eacke {0,... ,d},

(")
d
(compare with (2.6.4)). Thus, choosihg= d + 1 andp = é in the initialization

of Algorithm 2.2, the regulag-simplicesS* are also an appropriate choice for the
polyhedraQ” (k € IN) needed in this approach.

d(zk, H(—v;, G(Zk) — fUZTz"’)) —

(2.6.12)

REMARK 2.6.2. If the regulat-simplices defined in (2.6.11) are used in Al-
gorithm 2.2 forQ* (k € IN), the number of inequalities describing a polytope
P € P can be bounded by: + d + 1. As in the case of the hypercubes (see Re-
mark 2.6.1), the normalg’ = —v; (i = 0,... ,d; k € IN) do not depend on the
iteration countek.

Example. If we choose in Algorithm 2.2 this reguldrsimplex for subdivid-
ing the feasible region of Problem (UPE), then we obtain in the first iteration the
following polytopes (see also page 43).

P = PPn{zeR?: —212 > L +2V2} = 0
P) = P'n{zeR?: 1(—V3z11 + 212) > L (1 - V3 - 2v2)}
P) = P'n{zeR”: L(V3z11 + 212) > (1 + V3 - 2V2)}
This situation is illustrated in Figure 2.5. The new solutions are giveaSby-

(1,1 -2v2)" with optimal value—> — 1 andzg = (1 + —=, —2v/2)" with value

\/% — 1. The polytopeP! for iteration1 is hencePy with u! = —0.4226.

The presented-simplex.S* is an inner approximation polytope for the whole
ball B, which can be cut out of the relevant feasible B&t In Section 2.5 we
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FIGURE 2.5. Firstiteration of Algorithm 2.2 with a regular sim-
plex applied for (UPE)

212

only require that the intersection of the polyhedé@hwith P* is an inner approxi-
mation of the intersection d?* with the ballB... Therefore, by constructing a set
based on anothérsimplex, which contains a bigger partBf N B, x, i.e., a bigger
part of the set which can really be eliminated, we obtain — taking our third criterion
for appropriate polyhedr@®” (k € IN) into account — a better choice. Note, in
particular, that all points oP* belonging toB.» must lie in a half-ball ofB3, .

2.6.3. A Better Polyhedron Based on a Modified/-Simplex. The regular
d-simplexS* defined in (2.6.11) does not depend on the current polyitperhe
construction of these sets only use the peihaind the corresponding valaé:*).
In the following we present a polyhedron derived frona-gimplex, which also
recognize the bearing of the polytop¥ with respect to the point*. For this
aim we need, as in Ramana’s approach (see Section 2.3);*tiet vertex of the
current polytopeP”. This is always satisfied, if we use the Simplex-Algorithm for
solving the linear subproblems in Algorithm 2.2.

Let 2% be a vertex of”* (k € IN) and letB*z < r*, with B* = (b%,... ,b8)T
regulard x d matrix, be the nonsingular basic system correspondia§ {oompare
with Section 2.3, in particular page 29). Let, furthermore,

C* = {zeR%: B*2 <+¥}
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be the cone defined by this system. Each ofdtextremal directions? ¢ R?
(i =1,...,d) of C* is a nontrivial solution of the system

MYTwrf =0  j=1,...,i—1,i+1,...,d

B Twk < 0.

2

Let, fori € {1,...,d}, the vectorw? ¢ IR? denote the intersection point of the
ray

{zEIRd:z:szrﬂwf,BZO}
with the boundary of the bal_x, i.e.,

wf = 2F 4 €(2") H;U;M
(see Figure 2.6). Let, furthermore,
HY = H(a*b*) = {z e R?: (a")T2 = bk} (2.6.13)

with o* € RY, b* € IR be the uniquely determined hyperplane containing each of
these intersection points? (i = 1,... ,d) and satisfyinga*)? 2% > b*. SinceP*

is a subset of* and in view of the quadratic cut (2.4.6) we know that no feasible
point of (UP) belongs to the set

HY (a0 = {z e R*: (a*)T2 > b*}
(see again Figure 2.6). This means that the linear constraint

FIGURE 2.6. The hyperplan&? in the case of Problem (UPE)

Azlz wg

\ | I i T 211
VZTN I

H*(a% b?)
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(a®)Tz < VP (2.6.14)
is a valid cut for (UP).

REMARK 2.6.3. The cut (2.6.14) could be used in order to derive an outer
approximation method for solving (UP), as we did in Section 2.3 with the cuts
introduced by Ramana (see Algorithm 2.1). However, since the definitiafi of
(k € IN) depends on the current nonsingular basic sygkém < r* corresponding
to z*, such an algorithm can — similar to Ramana’s original approach — fail to
converge. Nevertheless, as we will see in Section 2.7, each known valid cut can be
used for accelerating the convergence of our solution scheme for (UP).

If we take ad-simplex.S*, which is the convex hull of the intersection point
a® of theray{z € R? : z = z¥ — Ba*, 3 > 0} with the boundary of3,. and a
regular ¢ — 1)-simplex contained in the intersection B with the ballB.«, then
we obtainS* ¢ B, N{z € R?: (a*)Tz < b*} (S* is contained in the shaded re-
gion in Figure 2.6). The polyhedrap® described by thé hyperplanes, which are
induced by just the facets ¢f* containinga”, obviously fulfills Property (PR1).
And, moreover, we can expect that the Euclidean distance of the hyperplanes de-
scribingQ* to the pointz* is bigger than the distance of the facets of the regular
d-simplex introduced in the previous subsection (see (2.6.11)). The two possible
choices ofQ* in Algorithm 2.2 proposed until now are fully contained in the ball
B.x. The polyhedrorQ*, which we present below, does not have this property.
Only the intersection of)* with the current polytopé®” will be contained in this
ball. Therefore, we can hope, that a bigger parfPéfis cut out of this set by
applying the polyhedro®* instead ofS* or maybe even instead &f*.

As mentioned before, the construction of the new polyhedybiis based on
a d-simplex. Let us first describe the construction of simplex. In order to
simplify the presentation we assume again fat is the unit ballB and thatH*
is a hyperplane parallel tpz € R? : z; = 0}, i.e., H* = H = {z ¢ R" :
—el'z = —§}, whered € [0, 1) denotes the Euclidean distanceféfto the origin.
After the derivation of the required-simplex for this situation we describe, how
this "standard simplex can be transformed to the general cas&of and H*
defined as in (2.6.13).

The intersection ofd with the unit ball is a (d-1)-dimensional sphere with
radiuse = /1 — 62 and centered afe;. Letvg,...,vq—1 be the vertices of a
regular ¢ — 1)-simplex constructed as in (2.6.6). Assume that these vertices are
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imbedded in the spadB® by adding one dimension. Set now, foe 0,... ,d—1,

U; = €v; + dey
and

Vd ‘— €4.

It follows immediately that the vertices; (i = 1,...d — 1) are contained in
the hyperplanegd. From Theorem 2.6.2 and the construction of the points
(:=0,...d) we see that

[vill2 =1 ,ie{l,...,d},

17 — 0ill2 = &/ 7% i,j€{0,...,d—1}withi 7,

|0; — Ballz = V1—-062+(1—-0)2 ,ie{0,...,d—1}.

In order to use the simpleg = [y, ... , 4] for the construction of an ap-
propriate polyhedro®” (k € IN) for Algorithm 2.2, we have to derive, for each
i € {0,...,d—1}, arepresentation of the hyperpladés generated by the facets

Si = [0y, Vim1,Vix1,- - ,Vd]

of S. Note thatH is the hyperplane induced by the facgt The following lemma
delivers this representation.

LEMMA 2.6.4. Letvg, ... ,v4_1 € IR? be the vertices of a regularl(— 1)-
simplex defined as in (2.6.6). Set, for eaeh{0,...,d — 1},
“ T
V; = U 1 (¥
with
T = ”11__(;52 > 1. (2.6.15)

Then, for eachi € {0,... ,d — 1}, the hyperpland?z, generated by the face&t;
of thed-simplexS can be described by

Hg = {zeR: %]z =10]v4}. (2.6.16)

PROOF Since, for each € {0,... ,d — 1}, we know

d—1
Hg, = {z€R%:2=10,4+ Z#%’(@j—@d%% € R4},
=0,
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it suffices to show that; is orthogonal to each directidn; —v4) (j =0, ... ,d—1;
j # 1) of Hg. and, thus, orthogonal tdl 5. itself. I.e., we have to prove, for each
7€{0,...,d—1}\{i},

~

ol (v, —v4) = 0. (2.6.17)

2

Choose an arbitrary, but fixed indgx {0,...,d — 1} \ {i}. Applying Corollary
2.6.3 and the fact that, for ea¢he {0,...,d — 1}, thed-th component of; is
zero we obtain

T
’lA);-T(@J* — @d) = (1)7; — %led) (@Uj + deq — ed)
€

= € viv; +(0—1)vieq — L elv; +% eleg
—— ——~ ——
d—1
_ T(1-9)
_dil + == 0,
which shows (2.6.17) and finishes the proof. |

The polyhedron, which we derive from the simplgxwill be determined by
the d hyperplanes described in the last lemma. By construction we know that this
polyhedron fulfills Property (PR1). In order to guarantee that this polyhedron also
satisfies Property (PR2) we need the Euclidean distance of the hyperplanes
(i = 0,...,d — 1) to the pointz*, i.e., in the considered situation to the origin.
Moreover, we have postulated that the polyhedron, which we develop in this sub-
section, cuts a bigger part out of the unit kalthan the regulad-simplexS derived
in Subsection 2.6.2. This would be satisfied, if the distance of the hyperpignes
(:=0,...,d—1)is bigger thanclj (compare with (2.6.4)).

THEOREM2.6.5. Let Hg (i = 0,...,d — 1) be the hyperplanes defined in
Lemma 2.6.4. Then, for ea¢ke {0, ... ,d — 1}, the Euclidean distancé(0, Hg, )
of these hyperplanes to the origin is

T 1
40, Hs,) = Ja—ipio  d

(2.6.18)

with 7 given as in (2.6.15).

PROOE From
72 _(d— 1)2 + 72

1. 2 _— _—
HUzH2 1+ (d—1)2 (d—1)2
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we obtain by using (2.5.3), for eaéke {0,... ,d — 1},

o1 v d—1
a0, Hg) = vl T s

loille ~ d—1 /d—1)2+72 Jd-1)2+72
The functiono : IR — 1R, o(7) =

\/ﬁﬁ IS monotonously decreasingliiR .
and, additionally, there holdg(1) > %. Therefore, it follows thap(7) is bigger

7
than% for eachr > 1, which shows in view of (2.6.15) the right-hand side of Re-

lation (2.6.18). |

In view of the previous result we know that the polyhedron
Q= {zeR: o]z < 5}

cuts a bigger part out of the unit ball than the regulad-simplex introduced in
the previous subsection. Note thidtv, coincides with—-= (1 =0,... ,d —1).
The construction of) and.S, respectively, depends on the hyperpldhe There-
fore, we cannot transforrfi to the interesting situation dB.. and H* by simply
multiplying the relevant values with(z*), as it was the case for the previous two
choices of the polyhedrof”. We will need more effort.

Let{yF,...,y% |} be anorthonormal basis of the linear subspéée- { ~*}.
Such a basis could be developed by applying the Gram-Schmidt method or an-
other orthonormalization procedure (see, again, [GVL89]) to thd ®&t— w*,

i = 2,...,d}, which forms by construction a basis &f* — {z*} (see page 54).
Let

AF = (y’f, ,yg_l,—ak)

be thed x d matrix with the columng?, ... 4% | and—ad*. If a* is normalized,

it is obvious that this matrix is orthogonal, i.e., there hqld$)? A* = E, where

E denotes thel-dimensional identity matrix. In view of this property we see that
the transformation

TF R - R? & TH2) = e(zF)AFz+ 2F
yields, for anyz, 2 € R?,
IT5(2) = 2%lla = e(zF)llzll2 and  [[T"(z) = T*(2)[la = e(z")|lz = 22

The affine functiodl™* maps the unit balB and the hyperplan& = {z € R? :
—el'z = —¢§} to the current balB,» and the current hyperpladé®. Applying the
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inverse functionT*)~! we can hence transform the situation of the current itera-
tion k to the just examinedtandardsituation. In order to construct the simpléx
in thestandardsituation we need the Euclidean distance of the resulting hyperplane

H = {zeR*:T*z2) e H*} = {z e R*: (a")TT"(2) = b*}
to the origin. This is given by

ENT Jk bk‘
P G 2.6.19
) ( )

(compare with (2.5.3) and note th@t*)? A* = —e,). Transforming the simplex
S = [vo, ... , 4] Of thestandardsituation to the current situation in iteratiérwe

obtain with
S = [T*(%o),...,T"(vq)]
ad-simplex contained in the set
B, N{zeR*: ("2 <bF}.

It can be verified by straightforward calculations that the hyperplanes induced
by the facetsSF (i = 0,...,d — 1) of the simplexS* containing the point
a* = z* — e(z¥)a* are given by

T
HS']? = {ZE]Rd: (Ak (dfled_vi)> (Z_Zk) = d:ﬁ%}

K2

with # = Y22CD% and withwy, ... ,v,_1 defined as in (2.6.6) for = d — 1.
Moreover, it follows that, for each € {0,... ,d — 1}, the Euclidean distance of
these hyperplanes to the poittis

Tk:

d(zF, Haw) = e(2F 2.6.20
G ) = ) s (2.6.20)
1
> ¢(2F .
= €l=) V(d—-1)2+1
- . . 1 . . ., . . - .
Choosingl = d andp = JanT in the initialization of Algorithm 2.2 the

polyhedra

_ T € Zk Tk
QF = {zeR": (Ak (dT—_kled - Uz)) (2 —2") < (d—)l ’
i=0,...,d—1} (2.6.21)
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are the third possible choice for the s€Xs (k € IN) needed in this approach.

Example.  Consider once again Problem (UPE). The nonsingular basic

system corresponding t& = (1, —2v/2)7 is given by B° = ( _01 _01 ) and

r0 = (2?/15) (see page 31). For the hyperplaki€ we obtain
H® = {Zemzi—%zn—%zu = 2—\/5}.

The pointa® is (% +1, —%)T, and the distancé® of H° to the pointz° is given

by \/% Thus, we have® = 1 + /2 and using the matrix® = \/% ( _11 } ) the

subdivision of P° leads to the two polytopes
P10 = POQ{ZE]];{d : (1+\/§)211+212 > 2}
on = Poﬂ{ZEIRd2211+(1+\/§)212 > —2—\/5}
(see Figure 2.7). The new solutions ate= (2, —2+v/2)7 with optimal value)

FIGURE 2.7. Subdivision ofP° with the polyhedrorQ® in Al-
gorithm 2.2 applied for Problem (UPE)

212

£ !___._.:

C1pp

211

- 50
L..|P2

andz9 = (1,1 —2v/2)7 with value% — 1. The polytopeP! for the next iteration

of Algorithm 2.2 is therefore”) with ' = —0.2929.
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Among the presented possibilities for the construction of the polyh@dra
(k € IN) for Algorithm 2.2 the last one leads to the least number of new polytopes
in each iteration. However, the construction of these sets is, on the other hand,
the most expensive one. Moreover, in contrast to the other two possibilities (see
Remark 2.6.1 and 2.6.2), the number of the constraints describing an elément
of the collectionP cannot be bounded. Note that the normals of the linear con-
straints determining)” (k¢ € IN) depend on the iteration countér Therefore,
even though the last approach leads to deeper cuts, at least in comparison to the
regulard-simplex introduced in Subsection 2.6.2, it is not definitely clear, which
approach leads to a more efficient algorithm for solving unary problems of type
(UP). Before discussing the numerical performance of these three possibilities we
propose in the next section a still convergent variant of Algorithm 2.2, which does
not need a subdivision of the current polytape (k € IN) in each iteration.

2.7. A Variant of Algorithm 2.2

Throughout the previous sections we proposed four possible valid linear cuts
(see (2.3.3), (2.3.4), (2.3.5) and (2.6.14)) for the considered unary problem. For
an algorithm using only these cuts the convergence cannot be guaranteed. Nev-
ertheless, the use of any valid cut can accelerate the convergence of Algorithm
2.2. If we use in Algorithm 2.2 for the definition of the subdivision polytop¥s
(:=1,...,1) also some of these cuts, then the resulting approach is of course still
convergent. And, moreover, we can hope that this method needs less iterations for
solving (UP). For example, in Problem (UPE) the additional use of cut (2.3.5) leads
to a termination of Algorithm 2.2 after one step.

For the convergence of Algorithm 2.2 it is essential that for a decreasing se-
quence{ P*},cv of polytopes we know that the corresponding point sequence
{2F} e satisfies

|25 = 2|2 > pe(F) . (2.7.1)

The use of the subdivision process guarantees this property (see the necessary Prop-
erty (PR2) of the hyperplanes describing the polyhéfia As long as this relation
holds also ifP**! results fromP* by adding some other cuts, the convergence can
be ensured even without the subdivisionfdf.
The following algorithm uses this consideration. As long as a relation similar
to (2.7.1) holds by adding only valid cuts we do not subdivide the curre®’set
If this relation fails, we enforce (2.7.1) by splittirigf*.
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ALGORITHM 2.3 (Another Convergent Algorithm for Solving (UP)).

Initialization
Choosep € (0,1] andl € IN, and setP? «— {z € R% : Az < b}.

Solve the linear optimization problem (LB)in. po h' 2, and letz° be an

optimal solution with optimal valug po = h7 2°.
Vpo «— {2°}, zpo « 20,
p? — ppo, P — {PY}, STOP+ Falsg k «— 0

While STOP =False Do
Compute the eigenvalues bf(z*) indexed in increasing order.
If A (U(2%)) > 0AND \,_1(U(z¥)) <0 Then
STOP«— True (z* is an optimal solution of (UP))
Else
e(2") « max {A,—1(U(z")), =M (U ("))}

Determine affine functiong : R - R (i = 1,... ,¢" € IN) satisfying

¢;(2*) > 0 and, for eachr € P* with U(z) € U, £;(z) <0
PF— PPA{zeR:1;(2)<0,i=1,...,¢"}

If P =1( Then
P — P \ {Pk}
Else

Solve the LPmin, . p+ h7 z and letz* be an optimal solution.

If min {||z* — 2| — pe(2)} < 0 Then
ZGVPk

Chooses € Vpr satisfying||2F — 2|2 — pe(2) < 0.
Construct a polyhedro@”* = {z ¢ R : (¢*)T2<cF,i=1,...

satisfying
PFNnQFc PPn{zeR: ||z — 2|2 < e(2)}
and, foreach € {1,... ,l},

(2, H(gf, b)) = Meeil > pe(2).
For i =1 To [ Do l
PF— PFn{zecR®: (¢¥)T2 > cF}
Vpr = Vpe \ {2}, zpr < 2p
If PF£¢ Then
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Solve the LPmin, . px k' 2, and letz¥ be an optimal solution
with optimal valueu;k = hT 2k
P—PuU{PH
EndIf
EndFor
P — P\ {P*}
Else
Vpr «— Vpr U {Zk}, Zpk z*, Upk < hTzk
EndlIf
EndIf
If P =10 Then (SC2)
STOP— True (P°N{ze R*:U(z) eU,} = 0)
Else
pF ! — minpep pp
ChooseP**! € P andz**1 € PF+1 with p*+! = pprsr = RT 2R,
EndIf
EndIf
k—k+1
EndWhile

REMARK 2.7.1.

(@) If A1 (U(z%)) is smaller thar®, we can use the cuts (2.3.4) and (2.3.5) intro-
duced by Ramana. KX, _;(U(z*)) is greater thaf, the cut (2.3.3) fulfills
the valid cut property (VCP), and in both cases the new cut (2.6.14) pre-
sented in the previous section is usable.

(b) If additional cuts satisfying (VCP) are used, then the number of inequalities
describing a seP € P cannot be bounded anymore. This does not depend
on the used polyhed@” (k € IN) (compare with Remarks 2.6.1 and 2.6.2).

(c) Ifthe setVpx is empty, then the subdivision criterion (SDC) is not fulfilled.
By convention, there holdsiin, .y f(z) = co.

(d) The valueg(z) = max{A,—1(U(2)), —A1(U(2))} (see (SDC)) have been
calculated for each element B+ (k € IN) at an earlier stage of the algo-
rithm.

(e) The Algorithm 2.3 does not coincide with Algorithm 3 presented in [HR98].
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If Algorithm 2.3 terminates after a finite number of iterations either by detect-
ing the emptiness of the feasible region of (UP) or by yielding an optimal solution
z* of this problem, then the correctness of these results follows by the same argu-
mentation as in the case of Algorithm 2.2. The result of Lemma 2.5.1 is obviously
true also for this approach. Thus, we know that, for each IN, 1* is a lower
bound for the optimal value of Problem (UP) (compare with (2.5.7)).

In order to guarantee the convergence of Algorithm 2.3 without a subdivision
of P* in each iteratiork € IN we have introduced the new séfs. (k € IN) and
the pointszpr (k € IN). The subdivision criterion (SDC) shows that only such
pointsz* € P* are added to the s&l.«, which fulfill, for eachz € Vpr,

|2 — 2|2 > pe(z) . (2.7.2)

There holds furthermore that in each iteration either a point is addeégd:t@r one
point is eliminated from this set and that the eliminationzoE Vp. leads to a
subdivision of P*. In the elimination case it follows, moreover, that each point
contained in a polytop®& < P — P be the collection of the relevant polytopes in
an iterationk > k —, which is a subset aP* must have a distance greater than
pe(2) to the pointz, i.e., fulfills (2.7.2) forz. These special properties of the set
Vpr enable us to prove the convergence of Algorithm 2.3. However, we will not
show the convergence of Algorithm 2.3 in the sense of Theorem 2.5.2. We prove
that each accumulation poiat of the sequencézp: } e, Which is a special
subsequence dfz*} <, leads to a unary matri/ (z*) and is hence optimal for
(UP).

For this purpose we first have to show that the elements of the sequence
{zpr } ke change infinitely often.

LEMMA 2.7.1. Assume that Algorithm 2.3 generates an infinite sequence
{P*} e of polytopes. Le{ P}, be a subsequence §*} e with the
properties that, for eacly ¢ IN, P*«+1 is a subset ofP*s and, moreover, that
PFa+1 is generated by adding linear inequalities to the list of constraints describ-
ing P*s. Denote byl = {q € IN : z,4,, # zpr, } the set of all indiceg € IN,
wherez .k, is different from its successor in the sequefegr, },ew. Then the
following assertions are true.

(i) The setl contains an infinite number of elements, i|é|,= oc.
(i) Foreachq € I, there holds

|‘2qu+1 — Zpkg|l2 = pe(zpry) (2.7.3)
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PROOR Assume, first, that the decreasing sequejieé: } .. has an addi-
tional property. Let, for each € IN, P*s+1 be adirect childof P*4, i.e., assume
that, for eacly € IN, there holds

qu+1 = quﬂ{ZE]Rd:fz‘(Z)§07i217---7qkq} (274)
or
Pratt = Pran{zeR?: 4(2) <0,i=1,...,q"%}

(2.7.5)
N{zeR?: (qfq)Tz > qu} ;

wheret; : R* - IR (i = 1,...,¢") are affine functions satisfying (VCP) with
respect taz*« andj is an element of 1,... ,{}. In view of the definition of Algo-
rithm 2.3 we know that the point,x,,, is only different toz ., , if (2.7.4) holds.
In order to prove assertion (i) assume, by contradiction, ff@ntains only a
finite number of elements, i.e., there is an ingdgx IN such that, for each > ¢,

ZPk:q — ZszqO .

It follows that P*s+1 results fromP*« (¢ > qo) by adding valid cuts and executing
a subdivision (see (2.7.5)). Then we obtain, for eachq,

‘Vpkq+1‘ = [Vpra| = 1.

SinceVpr, (¢ € IN) contains only a finite number of points, this is a contradiction
and proves (i), in particular, it shows thats not empty.

Choose next an arbitrary, but fixed indgx I. It follows thatP*«+1 is given
by (2.7.4), and, moreover, that:,,, = z*« and (SDC) is not fulfilled fog*«. We

prove now that, for each € {0, ... , ¢}, there holds
HZPkr — Zpkq+1 ”2 Z pG(Zpkr) , (2.7.6)
which is a stronger result than (2.7.3). Chopse{0,... ,q}andletr €¢ IN,7 < r

be the index such thatp., = z*7, i.e., zpx, Was set in iteratiork. Each point
used for updating p« is added to the sdtp. and, thus, we havep:, € Vir,, .
We distinguish two cases.

If zpx, is still an element o/ ,x, , then we obtain

0 < min qz- 2y = pe(2)} < |lzpre = 2proia 2 = pe(zpr )

pra

since the subdivision criterion (SDC) is not fulfilled fof«. This shows (2.7.6) in
this case.
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If zpr. is Not an element of ., , then we know that there is an index IN,
T <l < gsuchthatpkr. € Vpr, andzpe, ¢ Vpr,, . Thisimplies that in iteration
k; a polyhedronQ® satisfying (PR1) and (PR2) with respectio= zp:, was
constructed. In view of (PR2) it follows that, for eachke P*+1, there holds

[z = zpr[l2 = pe(zpr.) -

PFa+1 is by assumption a subset Bf+1. Thus, (2.7.6) follows also in this case.

Let now { P*s} v be an arbitrary sequence of polytopes with the properties
given in the formulation of the lemma. In view of (2.7.6) we know that each up-
date ofzx,,, by z* leads to a point, which is different from all, (I < ¢).
Therefore, assertion (i) follows immediately by the facts that the special sequence
considered first in the present proof has this property and{th&t} ;v is a sub-
sequence of such a special sequence. We obtain, furthermore, that (2.7.6) implies
(2.7.3). H

With the results of the previous lemma we are now able to prove the postulated
convergence of Algorithm 2.3.

THEOREM2.7.2. Assume that Algorithm 2.3 does not terminate after a finite
number of iterations. Then there holds that each accumulation pgoimdf the
sequencé zpr e IS an optimal solution of Problem (UP).

PROOF Let z* be an accumulation point of the sequereg: } e and let
{zprq }qew e @ subsequence converging:to By passing to a subsequence, if
necessary, we can assume that the corresponding sequehde v of polytopes
is decreasing and, moreover, tiilt-+! is generated by adding linear constraints to
the list of constraints describing*s (¢ € IN). In view of Lemma 2.7.1(i) we can,
in addition, assume that each element of the sequgnee },c is different from
its successor, i.e., there holds, for egch IN,

Pkar1 < pka
and
< pkgt1 7& Z pkq -
From Relation (2.7.3) (Lemma 2.7.1(ii)) we obtain, for egch IN,
l2press = 2prallz > pe(zpry) -

Using the definition ot(z 5+, ) (¢ € IN) and the continuity of the eigenvalue func-
tionals this relation implies, as in the proof of Theorem 2.5.2, the feasibility of
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for (UP). Furthermore, for eache IN, we know that

hTszq < hlke = WUpky = pke < milg W'z < BTz~
zE
wherefF" denotes the feasible region of(UP). This shows the optimality oNote
thatz«, is the optimal solution ofnin, . 5 hT 2 for a polytopeP > P*.  ®

At first glance this convergence result is weaker than the one obtained for Al-
gorithm 2.2 (see Theorem 2.5.2). We only prove the convergence of a subsequence
of {z*}1ew. However, a direct consequence of Lemma 2.7.1 is that at the begin-
ning of an infinite number of iterations we have the situation that the current point
2% coincides with the pointp.. In view of Theorem 2.7.2 this implies that the
values|\1 (U(2%))| and|\,_1 (U (z%))| (k € IN) become arbitrarily small. Thus,
Algorithm 2.3 is also well defined.

We cannot expect that either Algorithm 2.2 or Algorithm 2.3 stop with an
optimal solution of Problem (UP) after a finite number of iterations. In order to
obtain finite algorithms we have to be satisfied wHapproximate solutions of this
problem, i.e., with points € P satisfying

max {\_1(U(2)), ~\(U(2))} < e (2.7.7)

for a given tolerance > 0. If we replace the stopping criterion (SC1) in Algorithm
2.2 and in Algorithm 2.3 by

If A1 (U(2%)) > —e AND \,_1(U(2%)) < e Then, (2.7.8)

then we obtain by considering Theorem 2.5.2, respectively by taking the previous
considerations into account, in both cases a finite approach. From this point of
view, both convergence results — Theorem 2.5.2 as well as Theorem 2.7.2 — have a
comparable quality.

We finish the discussion of solution methods for unary problems of type (UP)
with some numerical results. In the next section we examine, in particular, the nu-
merical applicability of the presented algorithms for solving all-quadratic problems
of type (QP), since this is the main scope of this dissertation.

2.8. Computational Results

Algorithm 2.3 was encoded in C++ with management of the colleckoof
relevant polytopes by so-called AVL-trees. The linear subproblems were solved by
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using the Simplex-Algorithm base@PLEX-5.0code. After solving the first LP-
relaxation of (UP) in the initialization phase of Algorithm 2.3 each new subproblem
results from a previous one by adding some new constraints or by changing some
right-hand sides. For that reason we solved only the initial problem by applying the
primal Simplex-Algorithm. The solution of each subsequent subproblem was de-
termined with the dual Simplex-Algorithm, which is supported by @LEX-5.0

code. This strategy reduced the running-time for solving the subproblems. How-
ever, on the other hand, we needed more storage, since all necessary information
about the current solution, like the dual variables, the slacks and so on, had to be
stored for each polytopE € P. Otherwise, we would not be able to start the dual
version of the Simplex-Algorithm without additional effort.

Apart from the solution of linear optimization problems, other classical prob-
lems can occur in Algorithm 2.3. First of all, we have to calculate eigenvalues of
different matrices. For the construction of the cuts introduced by Ramana we have
to determine the inverse of a matrix (see Section 2.3). In order to obtain a repre-
sentation of the polyhed@” (k € IN) (see Subsection 2.6.3) we need solutions
of linear equations and we need an orthonormal basis describing the linear space
H* — {z*}. In the implementation of the algorithm all these problems were solved
by applying appropriate routines from théAG C-library.

With respect to the choice of possible linear constraints satisfying the valid cut
property (VCP) and in view of the three types of polyhe@’a(k € IN) proposed
In Section 2.6 there is a large number of implementable variants of Algorithm 2.3.
Before discussing the numerical performance of some selected variants we present
a slight modification of the subdivision process, which can lead to a substantial
improvement of the numerical performance of our approach.

2.8.1. A Slight Modification of the Subdivision ProcessIn the subdivision
process in Algorithm 2.3 we construct each new polytBpdi = 1,... ,1; k € IN)
by adding one of the constraints describ{f to the list of constraints describing
P*. Independent of the choice of the polyhed@f this strategy can lead to
overlapping regions, i.e., there can hold

int P NintPF #

forsomei, j € {1,...,l} (seethe Figures 2.4, 2.5and 2.7). This is not reasonable,
since parts of the feasible region of (UP) are examined more than once by using this
strategy. For the correctness of Algorithm 2.3 and Algorithm 2.2, respectively, it
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is sufficient, if the new polytope®® (i = 1,...,l) form a partition of the set
Pi\{zeR*: (¢")Tz<cF,i=1,...,1},ie., if there holds

l
UPF = PP\{zeR: (¢))T2<c,i=1,...,1} D P"\B..

1=1
and, foreach, j € {1,... 1} with i # j,
int P NintPf = 0 (2.8.1)

(see Definition 1.2.1). Property (2.8.1) can be achieved by a slight modification of
the definition of the polytopeB}. If we set, for each indexe {1,... 1},

PkHPkﬂ{zERd:(qf)Tzch,(qf)ngc’;,jzl,...,i—l},

(3

then we obtain that the union of the sé&t§ (i = 1, ... ,[) is the same set as by only
adding the constrainfy*)? z > c¥. And, moreover, these sets fulfill the additional
property (2.8.1) (see Figure 2.8). In Remark 2.6.1 and Remark 2.6.2 we pointed out
that the normals of the hyperplanes describing the hyperdabasd the regulad-
simplicesS*, respectively, do not depend on the iteration couhtdrhus, if one of
these two sets is used in Algorithm 2.3 for the polyhedpénthe subdivision of”

leads only to a change of the right-hand sides of some constraints. Therefore, the
proposed modification is — from a numerical point of view — not expensive and does
not lead to new storage requirements. It does not really matter whether one right-
hand side is changed or up2d. In the case of the third presented polyhedron this
new subdivision strategy leads to growing storage requirements and is numerically
more expensive, since the number of constraints describing a polytopeP is
growing faster. However, in each case we can expect that the elimination of the
overlapping parts results in a more efficient approach for solving (UP).

We applied Algorithm 2.2, i.e., Algorithm 2.3 without additional cuts, for solv-
ing our example problem, where we used the subdivision process with and without
the modification. If we used the hyperculi®sor the polyhedrod)* based on the
modifiedd-simplex, then in both cases the algorithm needed the same number of it-
erations and the same number of linear subproblems had to be solved. For these two
cases the modification led only to a slight increase in the running-time, especially
in the case of)*. Note that by adding more than one constraint in an iteration the
effort for solving the resulting linear subproblems increases faster than by adding
only one constraint. Table 2.1 shows the effort for solving (UPE) with these two
choices of the polyhedro@”. The execution of Algorithm 2.2 was terminated,
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FIGURE 2.8. Modification of the subdivision process applied for (UPE)

iPY

(a) Hypercube R° (compare (b) Regular 2-simplex S°
with Figure 2.4) (compare with Figure 2.5)

T
211

—. 0
=2

(c) Better polyhedronQ® (compare
with Figure 2.7)

if the e-approximate stopping criterion (2.7.8) with= 10~* was satisfied. The
fourth column of this table showing the maximal number of polytopes, which had
to be stored at an iteration of Algorithm 2.2 in the g&tillustrates the storage

requirements of the different approaches.
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TABLE 2.1. Effort for solving (UPE) with Algorithm 2.2

Polyhedron®* Number of Numberof Maximal number Tinde’
iterations solved LP’s ofelementsin  (in sec.)

RF 27 71 28 0.18 (0.18)

QF 16 33 17 0.17 (0.18)

%run on aSUN SPARC 20norkstation
brunning-time for Algorithm 2.2 with modification is given in brackets

That the modification of the subdivision process in Algorithm 2.2 does not
result in an improvement, if we use the hypercubeor the polyhedror)*, de-
pends on the special structure of Problem (UPE). An examination of the iterations
of Algorithm 2.2 without the modification shows that each optimal solutibof
a linear subproblem does not belong to a part of the current poly@pevhich
could be eliminated at an earlier stage of the method by applying the modification.
Therefore, as well with as without the modification, the same work has to be done
in order to solve Problem (UPE).

If we apply the regulad-simplexS*, the numerical performance depends sig-
nificantly on the subdivision strategy used in Algorithm 2.2, as it is displayed in
Table 2.2. In view of the first iteration of Algorithm 2.2 with the polyhedron

TABLE 2.2. Effort for solving (UPE) by applying*

Subdivision Number of Number of Maximal number Time

strategy iterations solved LP’s of elementdin (in sec.)
no modification 1708 5125 1709 16.09
modification 68 183 47 0.56

2run on aSUN SPARC 20w~orkstation

S* this result is not surprising. In Figure 2.5 we see that the optimal solution
z* = (1,—+/2)T belongs to the two non-empty polytop2$ and P{. Therefore,

we know that Algorithm 2.2 without the modified subdivision strategy must gener-
ate at least two sequences of polytopé¥«} ., one starting withPY and one
starting withP, such that the corresponding point sequedegs, },cwv converge

to z*. If we apply the modification;* is contained in only one polytope (see Figure
2.8(b)).
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Taking the large performance difference of Algorithm 2.2 with and without
the modification in the above case into account, we can expect that on average the
modification of the subdivision strategy results in an improvement of the numeri-
cal performance. The extra work we have to do, especially in the ca3é,afan
lead to a substantial reduction of the number of iterations and, hence, of the total
time for solving unary problems. For that reason we examine in the next subsec-
tion the numerical performance only of variants of Algorithm 2.3, which apply the
described modification of the subdivision strategy.

2.8.2. Applicability to All-Quadratic Problems. In the following we dis-
cuss the numerical applicability of Algorithm 2.3 to all-quadratic problems of type
(QP). We saw in Section 2.2 that for each problem of type (QP) there is an equiv-
alent unary problem of type (UP), and, thus, we can solve arbitrary all-quadratic
problems by applying the approaches presented so far. We tried to solve the unary
problems, which result from the previously described transformation (see Section
2.2) of the all-quadratic problems belonging to our randomly generated test set (see
Section 1.5).

At the end of Section 2.7 we pointed out that we have to be satisfied with
e-approximate solutions in order to obtain a finite algorithm. &#approximate
stopping criterion (2.7.8) is usable for arbitrary unary problems. However, if we
apply this stopping criterion, we know nothing about the quality of the determined
solutionz*, in particular, we do not know how far away from the optimal value lies
the calculated valug® = h7z*. If we solve the transformations of all-quadratic
problems, we are able to formulate a stopping criterion such that this quality of
the determined solution with respect to the original quadratic problem can be es-
timated. Before discussing the numerical performance of our approaches, we pro-
pose first this special stopping criterion.

Assume that an all-quadratic problem of type (QP), i.e., a problem with the
form

min 27 Q% + (d°)Tx
2P Qx4+ (d)Tz 4+ <0 l=1,...,p
A9z < b9 (QP)
9 <x<L¢
r € R"
IS given.
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Let, furthermore,
min ht 2
AV < WY
vV <z < LY
n+1 n
Uz) € Upsr , ze RUT)T

(UP)

be the equivalent unary problem resulting from the transformatiorQ#¥) (de-
scribed in Section 2.2. The superscriptand( respectively are used in the same
way as in Section 2.2, and the dimensions of all involved matrices and vectors are
the same as there (see, in particular, pages 23f.).

Set
) 1 1
d := min{ =1,...,p}e, (2.8.2)
[2ll2 " flafll2
wheree is a given tolerance greater thapanda? (I = 1,... ,p) denotes thé-th

row of the matrixAY. Let z* (k € IN) be the current point at the beginning of
iterationk of Algorithm 2.3. Determine an-dimensional point* by setting

TP = sz (2.8.3)

(compare with the definition af in Theorem 2.2.1). I1£* is feasible for UP), then
we know by the same arguments as in the proof of Theorem 2.2.%/thatist be
feasible for QP). Determine, furthermore, d & (”‘QH) + n)-dimensional point
2% indexed in the same mannerzi‘”sby setting

1n—{—1 = \/_xz y Rig (CE?)2 (7’:17 7”)7

(2.8.4)
2y, :\/_xf:c"f (1<i<j<n)

(compare with the definition of in Theorem 2.2.1). Ifc* is feasible for QP),
we know (see again the proof of Theorem 2.2.1) tais feasible for UP), and,
moreover, that the points® and 2* coincide. If we replace the-approximate
stopping criterion (2.7.8) by the following

If |2¥ — 2¥|| < & Then (2.8.5)

with ¢ defined as in (2.8.2), then we obtain a solution method for all-quadratic
problems, which detects in finite time either the emptiness of the feasible region
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of (QP), or delivers a point* such that the corresponding poirft defined as in
(2.8.3) has the properties

(T Qa + (d)Tah + ¢ < e [=1,...,p
A9x < ¥ (2.8.6)
9 <z <L@.

If this pointz* is additionally feasible for@P), it even follows, that the calculated
valueu* and the optimal value ofgP) have a distance not bigger than

Indeed, by replacing the stopping criterion (2.7.8) with (2.8.5) the resulting
algorithm is, first of all, still well defined. In view of Theorem 2.7.2 we know
that each accumulation point of the sequencézp: } e is a feasible point for
(UP). Thus2* defined as in (2.8.4) is equal td. As mentioned at the end of the
previous section we know, furthermore, that in an infinite number of iterations there
holds that the points® andz . coincide. Therefore, we achieve that the Euclidean
distance betweeg® andz* becomes arbitrarily small, i.e, (2.8.5) will be fulfilled
after a finite number of iterations.

If Algorithm 2.2 or Algorithm 2.3 detects the emptiness of the feasible region
of (UP), then the emptiness of the feasible set@®P) follows by the equivalence
between both problems. If one of these algorithms terminates with a gossit-
isfying (2.8.5), it is clear that” defined as in (2.8.3) fulfills the linear constraints
of (QP). This follows by the construction of?, bV, [V and LY. Moreover, by
the special definition of* we achieve, as in the proof of Theorem 2.2.1, that there
holds

(*)TQl* + (@) Tak + ¢ = (P)T2F -V  1=1,...,p (2.8.7)
and
("7 Q%% + (d*) Tk = nTzk. (2.8.8)
The relation (2.8.7) and the feasibility of with respect to the linear constraints of
(UP) imply, for each € {1,... ,p},
(¢9)7 Q" + (d")Ta* + ¢! < (o )T (2F = 2%) < laf|2ll2" = 22 < €.

Hence,z"* fulfills (2.8.6). If ¥ is additionally feasible for@P), it follows with
(2.8.8)

BT — ()T Qh — (d)Ta*| < [hflafl=* — 22 < e
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and

hTZk _ /Jk < Iélll:,% hTZ < hT,ék — ($k)TQO$k + (dO)Txk ’
whereFY denotes the feasible region &J®). This means that® is e-optimal for
Problem QP). With the foregoing considerations we have shown that the stopping
criterion (2.8.5) is a more reasonable criterion than (2.7.8), when we solve all-
quadratic problems of type (QP) via unary problems. If we use (2.8.5), then we
know something about the quality of the calculated paihtwith respect to the
quadratic problem, which we would like to solve.

REMARK 2.8.1. The point* (k € IN) defined as in (2.8.4) leads to a unary
matrix U (2%). Therefore, we know taking Lemma 2.3.1 and Theorem 2.4.4 into
account that there holds

max {A-1(U(2")), =M (U ()} < [l2% = 282 .

This shows that with respect to the definitiondofve need, in comparison with
the stopping criterion (2.7.8), a higher accuracy for the vayes (U(z*)) and
A1 (U(2%)) in order to satisfy (2.8.5).

Our main motivation for considering unary problems were the results of Ra-
mana’s dissertation [RM93, Chapter 7], in particular, his really promising pre-
liminary numerical results. He solved with Algorithm 2.1 large unary problems
with acceptable running-times. However, the affine functibn R? — S,
which he used, had a simple structure. By applying Algorithm 2.1 for solving
unary problems, which result from the transformation of all-quadratic problems
and which, thus, have a complex affine function, this pure outer approximation ap-
proach showed a really bad performance in our computational tests. Even small
unary problems resulting fror@-dimensional quadratic problems could not be
solved in acceptable times. Moreover, this approach induced numerical problems.
In many test problems the algorithm seemed to stick in a point away from an
e-approximate solution. Since the hyperplanes used in this scheme becafta¢ too
the algorithm made small progress and the numerical problems increased. Note
that tooflat hyperplanes can lead to ill-conditioned matrid&’s such that we can
obtain increasing numerical errors, if we do not invest additional effort.

Even though an algorithm based only on the cuts introduced by Ramana showed
a bad performance, his linear constraints can be used in Algorithm 2.3 in order to
accelerate the convergence of this approach. The fact that the use of additional cuts
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in Algorithm 2.3 led to a more efficient solution method for unary problems, was
the first result of our numerical tests. We compared different combinations of the
four valid cuts presented in this chapter. The new cut (2.6.14) did not accelerate
the convergence of Algorithm 2.3 in the most cases, when we used the cuts (2.3.3)
and (2.3.5). The cut (2.3.5) was mostly better than (2.3.4). Consequently, the most
efficient combination of the possible four cuts in our numerical tests was the cut
(2.3.3) for the cas@,,_1 (U(z*)) > 0 and (2.3.5) for\, (U (2*)) < 0.

In the following we compare the numerical performance of Algorithm 2.3 ap-
plying these two cuts with the numerical performance of Algorithm 2.2, i.e., of
Algorithm 2.3 without any additional valid cut. In both approaches we used the hy-
percubesk” developed in Subsection 2.6.1 for subdividing thef2&tif necessary.

The execution of the algorithms was terminated, if the appropriate stopping crite-
rion (2.8.5) was satisfied with defined as in (2.8.2) for a prespecified tolerance

e > 0. Remember that the all-quadratic problems belonging to our test set have
always a non-empty feasible region (see Section 1.5). In order to avoid excessive
storage requirements, and, thus, also in order to avoid excessive running-times we
restricted the maximal number of polytopEs which had to be stored at an iter-
ation in the collectiorP. In the case of Algorithm 2.2 this maximal number was
100, 000. Since the storage requirements increase, when additional cuts are used,
we reduced this number &, 000 in the case of Algorithm 2.3.

TABLE 2.3. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.1

Algorithm  NuP  ANuLP MNuLP ATime MTime ACol MCol

p=1

2.2 42 142,377 52,224 103.5 38.7 24,853 18,499

2.3 50 26,914 1,304 96.9 2.63 2,931 404
p=2

2.2 42 148,956 66,168 123.9 51.7 24,708 18,901

2.3 50 14,015 497.5 51.9 1.08 1,235 145
p=3

2.2 42 98,574 95,566 83.9 79.1 23,724 19,034

2.3 50 4,787 746.5 12.2 1.54 789 199.5
p=4

2.2 41 121,551 72,285 102.8 61.1 25,688 17,744

2.3 50 7,423 1,398 19.5 2.96 1,038 294
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Table 2.3 and Table 2.4 display the numerical effort, which the two described
approaches needed in order to solveifhé-dimensional unary problems resulting
from the transformation of ou2-dimensional quadratic test problems. We use
the abbreviations NuP for the number of test problems, which could be solved
by the two methods within the given storage capacities. ANULP is used for the
average number of linear problems, which had to be solved during the execution of
each algorithm. ATime stands for the average running-time in seconds, and in the
column ACol we display the average maximal number of elements, which had to
be stored in the collectio®. The three columns with MNuULP, MTime and MCol
show the corresponding values of the medians. Note that in the calculation of the
average values and of the medians we considered only the problems, which could
be solved within the given storage capacities. All numerical test discussed here,
were run on &SUN ULTRA 60workstation.

TABLE 2.4. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.01

Algorithm  NuP  ANuLP MNuLP ATime MTime ACol MCol

p=1
2.2 34 225,822 108,570 157.2 86.4 34,896 34,749
2.3 49 56,341 2,841 197.5 6.6 5,555 768
p=2
2.2 36 173,958 138,446 143.5 109.8 34,656 34,607
2.3 49 14,699 1,007 49.0 2.11 1,473 260
p =
2.2 32 204,578 163,942 175.2 139.3 40,597 40,361
2.3 50 11,920 1,752 35.2 3.51 1,954 4015
p=4
2.2 30 150,128 126,474 131.1 1104 32,695 32,762
2.3 50 17,351 2,725 53.8 6.10 2,505 532

It is obvious that Algorithm 2.3 with the additional cuts is the more efficient
approach for determiningapproximate solutions for our test problems. In almost
all cases this approach was significantly faster and, moreover, with this algorithm
we were able to solve the most problems within the given storage capacities. Algo-
rithm 2.2 did not terminate with a solution in one third of the test problems, if an
accuracy ok = 0.01 was required. In both approaches there is a great difference
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between the average values and the medians. This makes clear — even though these
approaches, in particular Algorithm 2.3, showed a rather good performance in at
least50% of the solved test examples (see the medians) — there were some exam-
ples, where we needed a huge effort in order to determine a solution. Thus, our
approach did not show a good performance on average, particularly in comparison
with the simplicial branch-and-bound method for all-quadratic problems, which we
will develop in the next chapter.

An advantage of the presented approach is that the solution effort does not
depend on the number of quadratic constraints, as it will be the case for the
method described in the next chapter. This is due to the fact that the effort for
solving a unary problem does not depend on the number of linear constraints. The
structure of the affine matrix mapping is decisive.

Another interesting result of our numerical tests was that the subdivision pro-
cess used in Algorithm 2.3 had a regularization effect in the following sense. We
have mentioned that Algorithm 2.1 can lead to numerical problems, if the hyper-
planes used there get tdlat. In Algorithm 2.3 we used the same construction
rule for the additional cuts, but the subdivision of the current polytBpewhich
was enforced, if the additional cuts became $ballow avoided such numerical
problems. From this point of view, Algorithm 2.3 was numerically more stable.

We have seen that the additional use of valid cuts in Algorithm 2.3 is reason-
able, since we obtain a significant speedup of our solution method. Our numerical
experience also showed, that on average the additional cuts (2.3.4) and (2.6.14)
only increased the running-time of Algorithm 2.3. It is hence not cogent that each
affine function satisfying (VCP) accelerate the convergence of this approach. An
appropriate combination of valid cuts is decisive. This should be considered, when
new cuts are developed in order to improve the performance of Algorithm 2.3.

We still have to examine, which choice of the polyhed@h leads to the
most efficient algorithm. For this aim we also tried to solve 2hdimensional all-
quadratic test problems using the regulasimplex S* and using the polyhedron
Q". The corresponding results together with the effort of Algorithm 2.3 using
the hypercubegt”* are presented in Table 2.5 and Table 2.6. We use the same
abbreviations as in the foregoing tables. The additional columns ACon and MCon
display the average and the median of the maximal number of linear constraints,
which were needed for describing an elemé&nof P. These facts together with
the columns corresponding to the maximal number of elements contairiéd in
give us more insight into the real storage requirements. The more constraints we
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TABLE 2.5. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.1

QF NuP  ANuLP MNuLP ATime MTime ACol MCol ACon MCon

R 50 26914 1,340 969 263 2,931 404 61 54
Sk 45 37,721 22237 266 9.36 2578 323 151 164
QF 46 27,273 2980 226 1342 3226 643 159 156

RF 50 14,015 497.5 51.9 1.08 1,235 145 54 43.5
Sk 48 12,612 814.5 89.5 3.09 1,034 1475 1326 1135
QF 49 15,421 1,176 133 4.11 1,631 300 146 111

RF 50 4,787 746.5 12.2 1.54 789  199.5 49 50.5
Sk 50 13,622 1530 98.8 5.74 1,343 1935 134 126.5
QF 50 11,756 1,319 80.3 5.28 1,689 299 124 126

RF 50 7,423 1,398 195 2.96 1,038 294 58 56
Sk 49 14,796 1,804 93.8 8.08 1,522 330 154 149
QF 50 14,668 1,915 96.4 8.44 1,963 341 155 161

need for the description of a polytogéthe more storage is used by this set. As
in the runs of Algorithm 2.3 using the hypercubies, we restricted the maximal
number of elements belonging @. By applying S* or Q* we usep = 1 or

1 in the subdivision criterion (SDC). These numbers are smaller

P = Ja—nzt1

than Ld, which is used fop in the case ofR*. Thus, we know that subdivisions

are more rarely enforced and that the number of constraints describing an element
of P and consequently the storage size of such an element can increase faster. For
that reason we restricted the maximal number of polytopé3 ia 20, 000, when

using the regulad-simplex.S* or the polyhedroi)” in Algorithm 2.3.

The numerical results presented in the Tables 2.5 and 2.6 definitely show that
Algorithm 2.3 using the hypercubd®" is more efficient than the same approach
usingS* or Q*, at least with respect to our test problems. This seems to depend on
the fact that by using* a bigger part of the current polytog? can be eliminated.

Note that the volume aR* ¢ IR¢ is given by
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TABLE 2.6. Comparison of the numerical effort for solvidg
dimensional all-quadratic problems with the accuracy 0.01

QF NuP  ANuLP MNuLP ATime MTime ACol MCol ACon MCon
p=1

RF 49 56,341 2,841 1975 6.60 5,555 768 74 71

Sk 40 45,923 2,600 3724 135 2,632 4585 167 1705

QF 40 28,680 3,501 261.6 17.3 3,178 807 174 1745
p=2

RF 49 14,699 1,007 49.0 211 1,473 260 64 55

Sk 48 26,494 2,209 2216 856 2,010 343 168 144

QF 48 25035 2,645 149.8 1094 2,578 491 191 1505
p=3

RF 50 11,920 1,752 35.2 351 1,954 4015 64 62

Sk 48 22,820 2,930 177.2 120 2,441 3935 160 1655

QF 48 18,217 2,088 1359 9.54 2,764 457 163 1735

RF 50 17,351 2,725 53.8 6.10 2,505 532 75 72.5
Sk 47 25,994 3,801 207.7 16.2 2,805 554 192 195
QF a7 22,226 4,382 191.7 25.5 3,114 809 201 213

whereas the volume of the regutasimplexS* is

Vid+1 d+1 ‘ e\ (VAT 1)+
Vst = g e | = (E/g) !

(see, e.g., [GKL9I5]). This implies that the volume$f is smaller than/ (R*)

and, moreover, that’ (S*) is decreasing faster with respect to the dimension
thanV (RF). The advantage of the larger volume ®f seems to be greater than

the disadvantage of the higher number of hyperplanes, which are necessary for
describingRF.

Whether the use of the regular simplgx or the use of the theoretically better
polyhedronQ” (see Theorem 2.6.5) leads to a more efficient approach cannot be
answered definitely. Even though Algorithm 2.3 usipywas always faster on av-
erage — except fgr = 2 ande = 0.1 — a comparison of the corresponding medians
does not show a unique result. The same is true for the number of subproblems,
which had to be solved during the execution of our method. Note that the average
values as well as the medians were calculated with respect to the number of solved
problems. Thus, these values are not directly comparable, when different numbers
of problems were solved. For example, in the case 4 ande = 0.1 (see Table
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2.5) we obtain foiQ* an average number afl, 743 LP’s and an average running-
time of 76.13, considering only thd9 test problems, which were also solved with
Sk,

With respect to the storage requirements we see that Algorithm 2.3 85iisg
a better solution scheme. We needed less polytépaisd we needed additionally
less constraints for describing these sets. Note that by $4imgd the correspond-
ing value forp the subdivision criterion (SDC) is more seldomly satisfied, such that
less splittings ofP”* are necessary. Note, furthermore, that by ug¥ighe number
of constraints determining a polytog®* increases also i* is subdivided. By
using R* and S* this number only grows, when the additional cuts are used (see
Remark 2.6.1 and Remark 2.6.2).

Using S* andQ* the numerical results show again a high difference between
the average values and the medians. The reason is the same as in theR%ase of
In at least50% of the test problems both approaches showed an acceptable per-
formance. However, there were numerical outliers, which destroyed the average
performance of our algorithm. In view of the presented computational results we
have to recognize that the use of the polyhegfadid not have the expected suc-
cess. The extra work for determining a better inner approximation polytope for the
eliminable part ofP* did not result in a substantial improvement of the numerical
performance of Algorithm 2.3. The easiest set, i.e., the hyper®ibshowed the
best numerical results.

Comparing the presented results with the numerical performance of the solu-
tion method for (QP), which we develop in the next chapter, Algorithm 2.3 is —
even withR* — not a good approach for solving all-quadratic problems. For an ac-
curacy ofe = 0.01 and quadratic problems of size= 2 andp = 4 we needed on
average3.8 seconds. This bad performance boosted, if we tried to solve higher di-
mensional problems. In Figure 2.9 the numbers of3damensional all-quadratic
problems are displayed, which could not be solved within the given storage capac-
ities by Algorithm 2.3 using the three discussed possibilitiesfbrand the poor
accuracy = 0.5. The transformed unary problems had the dimenSiofihere-
fore, we reduced the maximal number of polytopes, which could belong to the set
P. When usingR*, we allowed20, 000 elements. In the cases 8f andQ* we
restricted this number td0, 000. The corresponding minimal running-times, i.e.,
the fastest time after which Algorithm 2.3 was terminated since the storage capac-
ity was exceeded, are given in seconds in Table 2.7. Considering this table it is
not reasonable to increase the storage capacities in order to solve more problems.
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FIGURE 2.9. Number of3-dimensional all-quadratic test prob-
lems where Algorithm 2.3 exceeded the given storage capacity

used
Tk polyhedron

Number of quadratic constraints

TABLE 2.7. Minimal running-times of unsolvegidimensional
all-quadratic problems with = 0.5

p=1 p=2 p=3 p=4 p=5 p=6
RF 1259 122.2 139.9 147.2 303.8 433.7
Sk 503.6 473.1 440.4 431.8 549.4 586.9
QF 280.1 3345 301.2 321.7 348.3 4145

A running-time of at leas2 minutes for one of the still unsolvegidimensional
quadratic test problems is indeed not acceptable.

The last computational results demonstrate the, maybe, biggest disadvantage
of the attempt to solve all-quadratic problems of type (QP) via unary problems. The
transformation of the quadratic problems leads tcegplosionof the dimension
of the resulting (UP). Even for &dimensional (QP) we obtain &dimensional
unary problem. If we recognize, furthermore, that the numerical applicability of
general global optimization methods based on cutting planes or on branch-and-
bound techniques is limited to problems in small spaces, it is not surprising that
Algorithm 2.3 is not able to solve all-quadratic problems in dimensions higher than
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3, at least that Algorithm 2.3 is not able to solve such problems with acceptable
effort.

Algorithm 2.3 has still a lot of features, which could be changed. We could try
to develop new valid cuts. We could use other valueg of (SDC) (see Remark
2.5.2) in order to change the number of subdivisions or instead we could look for
other polyhedra. Nevertheless, in view of the previous considerations, it is unlikely
that the solution of all-quadratic problems by using unary problems is a practicable
way. In the next chapter we will see that a direct solution method for all-quadratic
problems can have a significantly better numerical performance.
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CHAPTER 3

A Simplicial Branch-and-Bound Method for Solving
Nonconvex All-Quadratic Problems

In this chapter we will discuss a direct approach for solving nonconvex all-quadratic
problems of type (QP). In the introduction (see Section 1.3) we pointed out that the
most solution approaches for Problem (QP) proposed in the literature were devel-
oped for more general problem classes containing (QP) as a special instance. To the
author’s knowledge there is up to now only one approach considering directly the
general nonconvex all-quadratic problem. This approach presented by Al-Khayyal
et al. [AKLV95] is a rectangular branch-and-bound scheme.

The simplicial branch-and-bound method for solving (QP), which we will in-
troduce and examine throughout the present chapter, use the same basic concepts
as this rectangular scheme. This new solution method shows a significantly bet-
ter computational performance than the indirect scheme presented in the foregoing
chapter. Moreover, this simplicial branch-and-bound algorithm often also outper-
forms the rectangular approach by Al-Khayyal et al.

3.1. Introduction

As in the introduction of this thesis we define (usidty = 0), for each
1 €{0,...,p}andz € R",

¢'(z) == 27 Q'z + (d)Tx + ',

such that (QP) can be written as

0 [=1,...,p (QP)

85
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Apart from the general assumptions for Problem (QP), like the symmetéy of

(Il =0,...,p) and the boundedness of P, we assume in this chapter that, for each
| € {0,...,p}, realn x n matricesC’ and D' are known with the following
properties

C' is positive semidefinite,

D' is negative semidefinite
and
Q' =C'+D'.

If we denote by
p(B) = max{|\|, A eigenvalue oB}

the spectral radiusf a realn x n matrix B, then it is easy to see that := p'E

andD! := Q' —p'E (1 € {0, ... ,p})is a possible choice for these matrices, where

E is then-dimensional identity matrix ang is a real value not smaller thaQ?).

Note that matrix norms like the Frobenius norm (see Section 2.4 0r$4]) are

upper bounds for the spectral radius, and hence we can use such norms for the

calculation ofo’ (I € {0,...,p}). Another possible way in order to obtain matrices
C' and D' with the required properties is the spectral decomposition (see, e.g.,
[JRA93)).

As mentioned before, the simplicial branch-and-bound algorithm to be intro-
duced in this chapter uses the same basic concepts as the rectangular approach
proposed in [AKLV95]. For a given hyperrectangle Al-Khayyal et al. construct
an LP-relaxation of (QP) by applying the known convex envelope [AKF83] of
the two-dimensional bilinear functiomy on a rectangle (for details we refer to
[AKLV95], see also Subsection 1.3.4). The resulting relaxations are linear pro-
grams withn + (p + 1)n variables and.(p + 1)n + p + m constraints.

If an n-simplex is used instead of a hyperrectangle, it is possible to construct
an LP-relaxation of (QP) with respect to this simplex having onlariables and
p—+m+n+ 1 constraints. How this can be done, is described in Section 3.2. Using
this LP-relaxation of (QP) we derive in Section 3.3 a simplicial branch-and-bound
method for solving (QP). This approach has the same theoretical properties as
Al-Khayyal et al.’s rectangular scheme. In Section 3.4 we show that our method
stops after a finite number of steps, if no feasible point exists. For thefcas®
the subsequent convergence theorem guarantees that each accumulation point of
the point sequence generated by our approach is an optimal solution of Problem
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(QP). By accepting approximate solutions for Problem (QP) this convergence result
enables us to ensure finiteness of our simplicial branch-and-bound approach. We
complete the examination of our new method in Section 3.5 by reporting on results
on a computational comparison of our simplicial algorithm with the rectangular
algorithm of Al-Khayyal et al. The content of the present chapter was published in
[RAB98], except the numerical results and the new feature in Subsection 3.5.3.

3.2. A Linear Programming Relaxation over ann-Simplex

LetS = [vo,...,v,] C IR" be ann-simplex with the property that the inter-
section of this simplex with the polytogeof Problem (QP) is not empty. Consider
now the all-quadratic problem (QP) with the additional constraint that each feasible
point belongs ta, i.e., consider the problem

min ¢°(z)
d(x) <0 I=1,...,p (QP)
rePNS.

Denote byiVs then x n matrix with the columns:; — vg) (: = 1,... ,n) and let

B" :={AeRY : >, \; <1} be astandard-simplex. For each € S there
Is a uniquely determined elemekt B™ such thatc can be represented by

r = vg+ WgA. (3.2.1)
Using this substitution fox € S we can rewrite Problem (G as

min (Ws )T Q WeA + (d)T W + 2
(WsNT QWA+ (d)TWsh+cs <0 1=1,....,p
AW < b— Avg
A€ B,

QP

where, forl € {0, ... ,p},
dy = d +2Q, ¢ R"
and

cy =+ v Qo+ (d) vy € R.
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In view of the properties of the matricég andD' (I € {0, ..., p}) we know that,
for eachl € {0, ... ,p}, the functionz : B® — IR

5(\) = (WsN)T QWA + (ds)T We + ¢
can be split into a convex and a concave part
s(N) = WsA)TD'WA + (d5) "W + ck + (WsA)TC'We .

concave omB™ convex onB™

We are interested in an affine functiﬁp : B" —= R (I € {0,...,p}), which
underestimateg,, on then-simplexB™. As in the rectangular branch-and-bound
algorithm in [AKLV95] we use the concept of the convex envelope. It is known
(see Subsection 1.2.4 or [HPT95, Theorem 1.22]) that the convex envelope of
a concave functiog on ann-simplex.S is the uniquely determined affine func-
tion, which coincides in the vertices 6f with g. Therefore, we obtain, for each
1 €{0,...,p}, that the linear functiopl, : B — IR

n

Ps(A) = Y Ai(vi —v0)T D (v — o)

1=1

is the convex envelope of the concave functjdiis \)” D!Ws\ on then-simplex

B™. Using the properties of the convex envelope (see Definition 1.2.3) and the
positive semidefiniteness of the matric€s (I = 0, ... ,p) it follows, for each

A€ B"andl € {0, ... ,p}, that

cjlg()\) = (Ws)\)TDlWS)\ + (dg)TWS)\ + CZS + (Ws)\)TClWS)\

> 0 (N) + (d)TWsA + ¢k + 0 = I5(N) .
|.e., neglecting the convex part @f and underestimating its concave part with the
convex envelope we obtain the required affine functign/ = 0,...,p). Us-

ing these affine underestimating functions we obtain an LP-relaxation of Problem
@)
min £%(\)
(N <0 I=1,...,p (F)g)
AWgA <b— Avg
A € B".
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REMARK 3.2.1. If we do not omit the convex part of the functiogls
(I=0,...,p), then we obtain, for eache {0,... ,p}, with
gs(\) = ¢s(N) + (ds) " WsA+ cg + (WsA) " C' WA
a convex quadratic function, which also underestimagfesn the set3”. The use

of these functions would lead to a convex relaxation of Prob@—ﬁﬁgﬁ. Simplicial
branch-and-bound algorithms using convex relaxations instead of LP-relaxations
will be considered in Chapter 4.

The matrixWy is regular, by construction. Using the resubstitution
A= W§1(33 — )
we see that Problenh__PS) IS equivalent to
min £%(z)
() <0 1=1,...,p (LP%)
rePNS§S,
where, for each € {0, ... ,p}, the functiontl, : R™ — IR

ls(x) = Y (W5t (z —w0)), (vi — vo) " D' (v — vo) + (dis)" (& — vo) +
=1
Is the convex envelope of the concave quadratic function
ql(x)-—-(x-—-UO)T(lex-—-vo).
Note that the convex envelope of the sum of an arbitrary fungtiand an affine

function/ on a convex set’ is justp + ¢, whereyp is the convex envelope gfwith
respect to the seft.

REMARK 3.2.2.

(a) From an implementational point of view the previous resubstitution is not
reasonable. Problenﬁ(’s) is easier to solve, since we do not need to cal-
culate the inverse off’s and the constraints describirgf* are explicitly
given, wherea$' is only described by its vertices. Therefore, in the imple-
mentation of the algorithm presented in Section 3.3 we used Proﬁé%) (
in order to determine a lower bound for the optimal value of {RAProb-
lem (LP°), i.e., a formulation of the LP-relaxation of (QFin the z-space,
is only needed for the subsequent theoretical analysis.
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(b) The LP-relaxation (LP) of (QP°®) is not uniquely determined, since it de-
pends on the numbering of the vertices of theimplex.S. Note that the
function ¢ and the affine underestimating functié (I € {0,...,p})
coincide in the vertex, of S.

(c) Let S = [dg,...,0,] be ann-simplex contained in the:-simplex
S = [vo,...,vn]. Itis a known fact [HPT95, Theorem 1.23] that the
function values of the convex envelope of an arbitrary functiory on the
set S must be greater than or equal to the function values of the convex
envelopepgs of g with respect to the larger sét If there holdsyy = vy,

then, for eacth € {0, ... ,p}, we know that?fé, and/’, are convex envelopes
of the functiong!(z) — (z — vo)¥ C'(z — vo) and thus it follows, for each
x €S,

Ui(z) > ls(x) . (3.2.2)

In this case we know that the optimal value of é.)FPs not smaller than the
optimal value of (LP). If the vertexo, does not coincide withy, Relation
(3.2.2) is no longer guaranteed, and we do not know how the optimal values
of (LP®) and (LF®) are related.

In order to prove the convergence of the simplicial branch-and-bound method
introduced in the next section we will need a relation betweerstheof a given
n-simplex.S and the maximal distance between the functiband the underes-
timating function¢y, (I € {0,...,p}) on this simplex. The subsequent lemma
shows that this maximal distance is bounded from above by a term depending on
the diameter of the simpleX.

LEMMA 3.2.1. Let d%(S) denote the squared diameter of thesimplex
S = [vo,...,vn), i.e.,d*(S) = max{||v; — vj||3 : 4,5 € {0,...,n}}, and let
p(CY) andp(D') be the spectral radius @’ and D', respectivelyl(c {0,... ,p}).
Then, for eacli € {0, ... ,p}, there holds
max |¢'(x) — Cs(z)] < d*(S) (p(C") + p(DY)) . (3.2.3)
PROOF Choose an arbitrary, but fixed indéxe {0,...,p} and an arbi-
trary, but fixed element of S. Then there exists a uniquely determinegde B™
(see (3.2.1)) withy! (z) = ¢5(\*) and/l(x) = ¢5(A\®). In Subsection 1.2.4 we
pointed out that the concave envelope of a convex function am-simplex.S is
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the uniquely defined affine function coinciding with this convex function in the ver-
tices of S. Therefore, we know that the linear functigfy : B” — IR, ¢L()\) =
S Ai(vi—v0)T C(v;—wy) is the concave envelope (/s A\) T C'Wg A on then-
simplexB", and hence there holds thal is an overestimator fqiVs \) T C!Ws A

on the setB™. Using the negative semidefinitenesg¥fit follows

' (@) = Ls(@)] = gs(A") — L5 (A7)
= (WsA")"C'WeA" + (WsA")T D' Wi X* —ls(X*)

\ -

~

<yl (A7) <0
< Z)\f(vi — UO)T(C'l — Dl)(vi — ) .
i=1

The spectral radius is a matrix norm on the sp&geof symmetric reahn x n
matrices. Moreover, this spectral radius norm is compatible with the Euclidean
vector norm. Using these facts we, furthermore, obtain

' (z) = £s(2)] < Y AFflvi —voll2p(C" = DY)l = voll2

1=1

IN

P(S)p(C ~ DY) oA

——
<1

< &) (p(C) + p(D") -

Sincez is an arbitrary element &, Relation (3.2.3) follows readily. |

As a direct consequence of this lemma we know that the maximal distance be-
tweeng' and/s, (I € {0, ... ,p}) tends ta), if the simplexS shrinks to a singleton.
This is not surprising sinc¢ and¢}, coincide by construction at least in the vertex
vo of S (see Remark 3.2.2(b)).

REMARK 3.2.3. Ifthe matrice€ andD! (I = 0, ... , p) were constructed by
a spectral decomposition af)!, then it is possible to prove that, for each
[ € {0,...,p}, there holds

p(C' = D') = p(Q").
In this special case we can replace, for eaeh{0, ... , p}, the right-hand side of
(3.2.3) byd?(S)p(Q)).
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The simplicial branch-and-bound algorithm, which we present in the next sec-
tion, will use the LP-relaxation (LH) of (QP®) in order to calculate a lower bound
for the optimal value of (QP) with respect to a giveisimplexs.

3.3. A Simplicial Branch-and-Bound Algorithm

In the introduction of this thesis (see especially Subsection 1.2.2) we pointed
out that we need a relaxatig#® > F in order to start a branch-and-bound ap-
proach. Of course we would like to start with arsimplexS® > F. Since we as-
sumed thaf’ is a non-empty full-dimensional polytope, we know that there always
exists an-simplexS° O P (see, e.g., [HPT95, pages 145f.] for the construction
of such sets), which we can use as a start relaxatidn af P.

In the previous section we have seen, how it is possible to calculate a lower
boundy(S) for the optimal value of (QP), at least if the feasible region of (QP) is
additionally restricted to an-simplexS. Upper bounds for the optimal value can
be obtained as usual by considering feasible painds F', which were generated,
for example, during the solution of the LP-relaxation f)PThe function value of
¢ at each feasible point ¢ F is obviously an upper bound for the optimal value
of (QP).

Apart from the start relaxatiof® > F and the knowledge of the construction
of lower and upper bounds with respect to the used subdivision sets, we need finally
in order to formulate a branch-and-bound scheme (see again Subsection 1.2.2) a
rule for refining a considered-simplex. We use the so-calléasection, where an
n-simplex.sS is split into two subsimplice§:, So C S by a radial subdivision with
respect to the midpoint of the longest edgeSofas we will see in the formulation
of the algorithm (see also Definition 1.2.2). This subdivision rule was introduced
in [HoR76] for branch-and-bound algorithms based on simplices and will ensure
In connection with the result of Lemma 3.2.1 the convergence of the presented
approach. The following algorithm is formulated according to the guidelines of a
basic branch-and-bound scheme given in [HPT95, Algorithm 3.5].

ALGORITHM 3.1 (Simplicial Branch-and-Bound Algorithm for (QP) ).
Initialization
Determine am-simplexS® = [v, ... ,v2] with S > P.
FLPgo — {z € S'NP:l(x)<0,l=1,...,p}
If F'LPso = () Then
STOP« True (F = ()
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Else
Solve the linear optimization problem (LB)in e rzp,, £%0(2). Letw(S°)
be an optimal solution and(S°) = (%, (w(S)) be the optimal value.
p° — u(S%), P — {S°}

If w(S° € F Then
Q — {w(S)} 0" — ¢®(W(SY)), 5 — w(SY)

Else
Q0,1 « oo
EndIf
STOP«+— False k& +— 0
EndIf
While STOP= False Do
If n* = pu* Then (SC)
STOP« True (z is an optimal solution of (QP))
Else
Determine indices$, i; € {0, ... ,n} satisfying
loh, — ok 13 =, max o} —of|3
and set
Sk =k, ... ,vﬁ)_l,mk,v,ﬁ)Jrl,... , k],
S§ = [vlg, . ,Ufl_l,mk,vflJrl, . ,vfl]

with m* = S (vF +0F ), i.e., splitS* into S} and.S% by bisection.
For =1 To 2 Do
FLPgx —{z e SiynP:l,(x)<0,l=1,...,p}
If FLPg. # 0 Then
Solve the LPninzcrrp,, E%? (). Letw(Sj’:") be an optimal solution

J

andfi(S}) = E?s*;? (w(S})) be the optimal value.
u(S%) — max{u(s"). a(S})) (LBR)
If w(SF) e F Then Q — QU {w(SF)}
P — PU{Sk}
EndlIf
EndFor
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P —P\{S"}
If @ +#( Then
n* !« mingeq ¢° (), chooser; € Q with n*+1 = ¢%(zy)
Else
ket
EndIf
P—P\{Se€P:ulS) >nktt} (PR)
If P #0 Then
pFtt — mingep p(S), chooseS 1 ¢ P with pFt! = p(Sk+1)
Else
If Q+#0 Then
s k1
Else
STOP« True (F = ()
EndIf
EndIf
k—k+1
EndIf
EndWhile

<—T/k

0

REMARK 3.3.1.

(a) We know by construction that(.S) is a lower bound for the minimal value
of ¢° on the setF" N S. n* (k € IN) is constructed such that this value is an
upper bound for® on the whole feasible sét. Therefore, there holds that
a simplexS € P with the property:(S) > n**! cannot contain a feasible
pointz € F satisfyingq"(z) < ¢°(x¢), and hence we can eliminate each
of these simplices in theruning rule(PR).

(b) The pruning rule (PR) can only be successful, if the(@as not empty,
since otherwise we would havg™ = co > u(S) (S € P). Note that it
Is possible that after a finite number of steps Algorithm 3.1 never detects a
feasible point, what means th@tcould always be empty.

(c) If the partitionP is empty after the execution of (PR) andJfis not empty,
then it is obvious that the upper boun®! < oo is also a lower bound for
the optimal value of (QP).
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(d) Because of the formulation of the pruning rule (PR) with''instead of
">"there holds at the beginning of iteratiénfor eachS € P, u(S) < n*
and hence* < n*. This implies that the stopping criterion (SC) can only
be fulfilled in iterationk > 2, if P is empty and?) is not empty at the end
of iterationk — 1.

(e) In view of Remark 3.2.2(c) we do not know whether the optimal value

A(S%) = 9, (w(S%) (k € IN; j = 1,2) of Problem (LP?) is in each
case not smaller than the lower boynd*). However, by setting

p(S7) = max{p(S*), a(sy)}
in the lower bounding rule (LBR) in Algorithm 3.1 we obtain a value, which

is of course also a lower bound for (éﬁ:) (k € IN; 57 = 1,2). Moreover,
these values satisfy, for eaghe IN,

min{ u(SY) , p(93)} > u(S*). (3.3.1)
This guarantees that the sequefigé} . is non-decreasing.

The polytoped’ L Pg are relaxations of the portion of the feasible Baif (QP)
contained in the simpleX. Algorithm 3.1 can stop by detecting the emptiness’of
only, if all considered simpliceS lead to empty relaxation8 L Ps. Thus we know
that F' is really empty in this case, since we start withragimplexS® > F. The
construction ofu* (k¥ € IN) as the minimal value of the lower boungdéS) of all
n-simplicesS € P, which were not pruned till iteratioh — 1, guarantees that this
value is a lower bound for the optimal valueg@fwith respect to the whole feasible
regionF'. If Algorithm 3.1 stops after a finite number of steps with a solutign
we obtain hence

(z5) = 7" = pF < ming’(z) < ¢°(xy),
xEF

showing the optimality ofc ¢ for Problem (QP). It follows that Algorithm 3.1 is
well defined, as long as this approach terminates after a finite number of iterations.
The proof of the correctness of our method in the infinite case is the content of the
next section.

3.4. Convergence

In Algorithm 3.1 we used bisection as a subdivision rule for the current simplex
S* at iterationk € IN. This rule has the property that, for each infinite nested
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sequencég S?},cv of simplices generated by using this rule, there holds
d*(SY) — 0 (¢ — o0) (3.4.1)

(see, e.g., [R76, KEAT8]). This special property of the bisection in connection
with the result of Lemma 3.2.1 enables us to prove that in the infinite case each
accumulation point of the sequenfe(S*)} e generated by Algorithm 3.1 is

an optimal solution of Problem (QP). This will be the result of the Convergence
Theorem 3.4.2. At first, however, we need an additional lemma in order to establish
this convergence result. In this lemma we show that the feasible réga(QP)
cannot be empty, if Algorithm 3.1 does not stop after a finite number of iterations.

LEMMA 3.4.1. Algorithm 3.1 stops after a finite number of iterations, if no
feasible point for Problem (QP) exists, i.e. Fif= (.

PROOF Assume thaf is empty and define the functidn: R” — IR by

F(x) = l:rgle.ljgpql(a:) :

F'is a continuous function and hence attains its minimum over the compaet set
SinceF = {z € P: F(z) < 0} is empty we know that there exists a positive real
valued satisfying

in F'(z) > 6. 4.
rmneljrle(x) > 4 (3.4.2)

Assume now, by contradiction, that Algorithm 3.1 generates an infinite sequence
{S*} e of n-simplices. It follows that there must exist an infinite subsequence
{S*a} e of {S*} e With the properties that, for eaghe IN, there holds

Shat1 < Gha (3.4.3)
and
FLPg, # 0.

In view of Property (3.4.1) of the bisection, we obtain from (3.4.3)
d?(S*) — 0 (@ — 00) . (3.4.4)

Choose a real valugwith
- 1
0<d<d )
max_(p(CT) + (D))

l=1,...,p
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From (3.4.4) we see that there must be an ingex IN such that, for each > qq,
there holds

d?(Sk1) < 4.

Due to Lemma 3.2.1 we hence obtain, for each> ¢o, | € {1,...,p} and
x € FLPgi,,

¢'(z) = ¢'(z) = lgu, (x) + Ly, (2)
<0

< d*(S%) (p(C") + p(D")) < 5 (p(C") +p(D")) < 4.

We know thatF'L Pgr, (¢ > qo) is not empty and, moreover, that each element of
this set belongs t@. Thus, from the previous relation it follows, for eagh> qq
andz € F'LPgx,,

F(z) < 6,

contradicting — in view of (3.4.2) — the emptiness assumptiofor |

If Algorithm 3.1 does not stop after a finite number of iterations, then we know
in view of the previous lemma that the feasible regionf (QP) is not empty and
hence that a finite optimal value of Problem (QP) exists. With this result we are
now able to prove the convergence result mentioned before.

THEOREM 3.4.2. If Algorithm 3.1 generates an infinite sequed&& } e of
simplices, then every accumulation paint of the corresponding point sequence
{w(S*)}ren is an optimal solution of Problem (QP).

PROOF. Due to Lemma 3.4.1 we know that there exists an optimal solution
of Problem (QP) with optimal valug’ (z*). Since the current simple%* (k € IN)
is chosen such that* = ;(S%) holds, and since we know that' (k € IN) is by
construction a lower bound fef (z) (x € F) and, moreover, thafu”*} e is a
non-decreasing sequence (see Remark 3.3.1(e)), there holds that the non-decreasing
sequencd (S¥)} rew is bounded from above hy’ (2*), and hence convergent.

Let w* be an accumulation point dtv(S*)}ren and let{w(S*«)} e be a
subsequence convergingdd. By passing to a further subsequence, if necessary,
we can assume that the corresponding simplex sequeifee ,civ is decreasing.
At first we prove that* is a feasible point of (QP).
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Taking the result of Lemma 3.2.1 into account it follows from (3.4.1), for each
le{l,...,p},

0 < ¢'(W(S™)) = lg, (W(S™))
< d*(S*a) (p(C") + p(D")) — 0 (¢ — o). (3.4.5)
Note that, for eaclh € IN andl € {1, ... ,p}, Egkq Is an underestimating function

for ¢! on the setS*« and thatv(S%«) is an element of*s. Since the functiong'
(l=1,...,p)are continuous we obtain from (3.4.5), for edch {1, ... ,p},

0 >y, (W(S") — ¢'w) (400,

showing the feasibility ofv™, i.e.,w* € F.

Relation (3.4.5) is obviously fulfilled also for the functiog$ and ¢,
(¢ € IN). By continuity of ¢° and the mentioned boundedness{pfS*)} e
it follows

¢"(z*) = p(S*) = Lo, (W(S™)) — ¢°(W*) (g — o). (3.4.6)
This implies with respect to the feasibility of that
¢’(W) < (@) = ming(z) < ¢’(w"),

and hence'(w*) = ¢"(z*), which proves the optimality af*. |

REMARK 3.4.1.

(a) Property (3.4.1) of the bisection is essential for the proof of Lemma 3.4.1
as well as for the proof of the previous convergence theorem. Therefore,
each subdivision rule, which has this property, can be used in Algorithm
3.1 without altering the theoretical properties of this approach. Subdivision
rules satisfying (3.4.1) belong to the class of so-catiglaustivesubdivi-
sion rules (see Definition 4.3.1), which will be considered in more detail in
the next chapter (see, in particular, Section 4.3).

(b) In order to guarantee the convergence of Algorithm 3.1 in the sense of
Theorem 3.4.2 we have not proved that for an infinite decreasing sequence
{S*a} v of simplices there holds

nh—pfe — 0 (qg— o0).
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Therefore, the used bounding procedure in Algorithm 3.1 does not belong to
the class of so-calledonsistenbounding operations (see [HTB86Section

4.2]). Hence the general convergence theory for branch-and-bound methods
proposed, for example, in [HPT95, HTBKIs not applicable. Note that

we are only able to prove the convergence of the sequéntg.c of

lower bounds towards the optimal value of (QP). We do not know, how the
sequencén”} e of upper bounds behave.

Similar to the case of Algorithms 2.2 and 2.3 in the previous chapter we cannot
expect that Algorithm 3.1 detects in a finite number of steps an optimal solution
of Problem (QP). However, for the applicability of a solution method for (QP) in
practice we need a finite approach. The finiteness of Algorithm 3.1 can be achieved,
if we are satisfied with an approximate solution, where approximate solution is
meant in the sense of feasibility as well as of optimality. £ebé > 0 be two
prespecified tolerances. If we add in Algorithm 3.1 each solutip$) of a linear
subproblem satisfying, for eacke {1,... ,p},

¢ (w(S)) < ¢, (3.4.7)
to the set), then we obtain a finite method by replacing the stopping criterion (SC)
with
If n*—u* < e Then STOP— True. (SC)

Indeed, in view of Lemma 3.4.1 we know that Algorithm 3.1 is always finité, if

Is empty. If the feasible region is not empty, then we have seen in the proof of The-
orem 3.4.2 that this method generates a point sequenc#?) } ,c v converging to

an optimal solutionu* of (QP). Since this optimal solution is feasible, we know
by continuity of the quadratic functiong (I € {1,...,p}) that there is an index

go € IN such that, for each > o,

¢ (w(S1) < ¢ l=1,....p.

This means that (S?) (¢ > qo) is added to the s&) and hence used for updating
the upper bounds? (¢ > qp). It follows, for eachy > ¢,

pt = (87 = L (w(S") < ¢°(w(S8))

n? < ¢°(w(8Y) .

This implies — in view of (3.4.6) — that the stopping criteri®@Q) must be satisfied
after a finite number of steps.

and
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REMARK 3.4.2.

(@)

(b)

()

If pointsx € P satisfying (3.4.7) are added to the ggtthen there does

not hold anymore thaj* (k € IN) is an upper bound for the optimal value
of (QP). We only know that* (k € IN) is an upper bound for the function
values ofg” on the set

Fs = {zecP:q¢'(x)<6,1=1,...,p}.

If Algorithm 3.1 using the stopping criterioSC) terminates at iteratiol
with a solutionz; € (), we obtain a point satisfying

d(xrp) <6 I=1,...,p
and
Clap)—p <e o Play)—e < ph.

We do not know anything about the optimality of this point. Note that it is
even possible that there holds= (). We only know thay’(z) — e is a

lower bound for the optimal value of (QP), which is by conventiomn the
empty case. Only in the case thatis additionally feasible, we obtain also

the e-optimality of this point in the sense that the optimal value of (QP) and
¢°(z¢) have a distance not bigger than

The used concept of approximate feasible points and approximate optimal
solutions will be discussed in more detail in the next chapter, where we
examine a generalization of Algorithm 3.1.

We complete the discussion of Algorithm 3.1 with an examination of its numer-
ical performance. In the next section we will demonstrate the better performance
of our simplicial branch-and-bound method in comparison with the performance of
the rectangular method by Al-Khayyal et al. [AKLV95].

3.5. Computational Results

The presented simplicial branch-and-bound Algorithm 3.1 and the rectangular
algorithm of Al-Khayyal et al. were encoded in C++. As in the implementation
of Algorithm 2.3 (see Section 2.8) the partition sets, which had to be stor@d in
were managed by AVL-trees. In order to test and to compare the computational per-
formance of both algorithms we used the set of randomly generated test examples
introduced in Section 1.5. Before presenting the numerical results we give some
notes on the implementation of both methods.
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3.5.1. Implementational Details. The implementation of the rectangular al-
gorithm followed closely the formulation given in [AKLV95]. As a subdivision
rule for a considered hyperrectangté (k € IN) we used the special rule given in
[AKV96], which was also used in the numerical tests in [AKLV95]. In this rule
the hyperrectangl&® = {x ¢ R" : I*¥ < 2 < L*} (I*,L* € IR"™) is subdi-
vided into two hyperrectangle} and R} in the following way. Letw(R*) be a
solution of the LP-relaxation used by Al-Khayyal et al. with respect to the hyper-
rectangleR” (see [AKLV95] for details). Lety € {1,...,n} be an index, where
the following maximum

kY, [k Lk _ k).
i max{w(R"); — 17, L7 —w(R");}
i=1,...,n max{1.0, LF — ¥}
Is attained. Then the new hyperrectangles are given by
5 + Lk

20

2

RYF = {xGRk:lfO <z <

and
k k
li, + L,

2

REMARK 3.5.1. We also testeldisectionin the rectangular algorithm, where
the above inde¥, € {1,...,n} is chosen such that

L —1F = max [LF—1f]

1=1,...,

R = {x € R": <z, < LEY.

holds. The average numerical performance in our computational tests was nearly
the same. Therefore, we restrict the subsequent presentation of the numerical re-
sults to those obtained by using the described special subdivision rule, and not by
using bisection.

The construction of the necessary initial $8t > P, respectivelyR’ > P,
was done according to the following specifications. In the case of the rectangular
algorithm we obtained a hyperrectangi® = {z € IR" : Y < L°} by solving the
2n linear programs

19 .= minz; , LY := maxu, t=1,...,n. (3.5.1)
x€eP reP

In order to construct an initial simple we used one of the possibilities described

in [HPT95, pages 145f.]. Note that the test examples were generated such that the
polytopeP is full-dimensional (see again Section 1.5). bgte IR" be a vertex so-

lution of one of the2n linear problems in (3.5.1). Let, furthermode;, , ... ,a;, }
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be a linear independent subset{af, : i € {1,... ,m}anda’ vy = b;}, i.e., a
subset of the set of constraints describiagwhich are binding aty. If 7 is the
optimal value of

n
max —g CL;-‘F,ZL‘ ,
zeP . J
J=1

then it is provable that

SV = {:(:E]R":ag;:c <by,,j=1,...,n, —Zaz;zc <~}
j=1

is ann-simplex satisfyingsS® > P. In the implementation of Algorithm 3.1 we
needed the vertices ¢f’. These could be obtained by solvinginear equation
systems. From (3.5.1) we had possibilities in order to generate simplicgs >
P. We constructed with each nondegenerate vertex solution of a problemin (3.5.1)
a simplex in the described way and chose among these 2p pmssibilities the
one with the smallest diameter.

The necessary positive semidefinite matriéésand the negative semidefinite
matricesD! with Q' = C' + D! (I = 0, ... ,p) for our simplicial branch-and-
bound method were determined by spectral decomposition. The eigenvalues and
the eigenvectors of each matg¥ (I € {0,...,p}) were calculated by applying
an appropriate routine from thiéAG-library.

In the implementation of Algorithm 3.1 we added the subsequent cheap test in
order to decide whetheér N S = () holds for a givem-simplexS = [vg, ... ,v,]

Jmax erlnmn(vZ —v9)T DY (v; — vo) + (d5)T (v; —vo) + ¢ > 0 (3.5.2)
= NS =190.

By using the fact that a concave function attains its minimum on a polytope in a
vertex of this polytope [HPT95, Theorem 1.19], it is easy to verify that the left-
hand side of (3.5.2) is a lower bound fomx;—;, . , ql(sc) on the simplexS.

In both algorithms we have to solve linear subproblems. Since the LP-relaxa-
tions in Al-Khayyal et al.s approach have a sparse structure we applidDS
5.4 for solving these subproblems. This code is able to exploit sparsity. The LP-
relaxation (__PS) used in Algorithm 3.1 has a dense constraint matrix. Even though
the application of a code exploiting sparse structure for solving the linear subprob-
lems in Algorithm 3.1 leads thus to unnecessary effort, we decided to use also in
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this approach th&/INOS 5.4 code. By doing this we could guarantee that in both
algorithms the linear subproblems were solved with the same linear optimization
algorithm.

REMARK 3.5.2.

(a) We also tested both algorithms using the LP-subroui@éNFF of the
NAG-library. This code is not able to manage sparsity. As it was to be
expected, the running-times of Algorithm 3.1 decreased (see also the nu-
merical results in Subsection 4.6.1), whereas the running-times of the rect-
angular method increased significantly, especially for problems with higher
dimensions and higher number of quadratic constraints.

(b) As noted in Remark 3.2.1 it is possible to construct a convex relaxation of
the restricted Problem (Gf. We implemented a variant of Algorithm 3.1
using these convex relaxations, where the subproblems were solved with the
MINOS 5.4 convex solver. Even though the necessary number of subprob-
lems, which had to be considered, decreased, the running-times increased
so much that the version with linear subproblems was substantially faster.
The MINOS 5.4 convex solver use projected augmented Lagrangian al-
gorithm In the computational results in the next chapter (see again Sub-
section 4.6.1) we will see that the use of convex subproblems can also lead
to decreasing running-times, if another code is used for solving the convex
quadratic relaxations, which is at least for our test problem more efficient.

In both algorithms the branching is stopped, if teéativedifference between
n* andu” (k € IN) is smaller than the tolerance valae- 104, i.e., if there holds

n* —p* < emax{1.0, |n*[} (SO)

(compare with the stopping criterio®C)). Note that the rectangular algorithm

by Al-Khayyal et al. generates sequend@s } .en and {n*}ren with the same
properties as the corresponding sequences in Algorithm 3.1 such that the above
stopping criterion is also applicable in this approach. As mentioned at the end of
the previous section, we have to be satisfied with approximate feasible points in
order to obtain a finite method. In both algorithms each generated point satisfying
(3.4.7) with an accuracy = 10~8 was interpreted as feasible and hence used for
updatingn”® (k € IN). In the application of theV/INOS 5.4 code we chose the
accuracyl0~?.
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3.5.2. Numerical Comparison.Tables 3.1 and 3.2 show some numerical
results for the solved test problems. We use the abbreviation NUR {8r the

TABLE 3.1. All test results fon = 2, 3,4

p NuP AvgNuLP StdLP AvgTime Su StdTime
S<R S R S R S R S R

I
H M
(e0)

472 244 209 20.7 0.27 0.23.84 0.09 0.14
458 293 215 215 0.27 0.32.18 0.10 0.20
778 520 458 23.8 040 0.62.54 0.19 0.28
695 486 351 185 039 0.68.74 0.15 0.25

H bW
[022é) I \V)

I
-
o

1296 569 88.1 322 0.78 0.60.80 050 0.31
163.1 754 2008 558 096 1.12.17 1.0/ 0.86
2158 99.0 199.7 635 130 194.51 112 1.28
1589 839 834 297 095 20217 0.44 0.73
181.0 90.8 101.0 305 119 27234 0.61 1.07
1959 984 938 274 127 4.03.17 057 1.48

B W
o w o

ul
o

I
NS
o1

333.0 104.8 3713 963 219 15D.69 225 1.35
3646 1094 3836 73.2 248 238.96 251 1.61
354.4 129.2 456.2 71.8 238 4.19.69 2.84 2.70
652.5 1952 9735 1723 4.87 8.08.65 6.63 7.48
376.7 1412 2712 498 283 7.52.66 190 3.61
750.5 2015 1,644 1949 6.26 13.@.17 152 12.8
470.3 185.7 3529 94.7 3.83 14.3.89 2.79 8.88
431.6 156.7 406.2 69.2 3.68 14.8.96 3.28 8.16

O~NOURARWNRIOANWNERESI|IANWOWNPRS
S N N N N
O © oG Ay

a1
o

number of problems, where the simplicial algorithm was faster with respect to the
running-time than the rectangular one. Note (see Section 1.5) that theb@ are
test problems for each pair(p) of the dimensiom and the number of quadratic
constraintyp. The abbreviation AvgNuLP is used for the average number of lin-
ear subproblems solved for each test problem with the simplicial Algorithm 3.1
(S) or the rectangular algorithm (R). StdLP stands for the standard deviation of the
number of linear subproblems. In the column AvgTime the average running-times
in seconds are displayed and the column StdTime shows the corresponding val-
ues of the standard deviation. Finally, the abbreviation Su is used for the speedup
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TABLE 3.2. Some testresults far=5,6,7,8

p NuP AvgNuLP StdLP AvgTime  Su StdTime
S<R S R S R S R S R

n

2 25 955.6 1856 1,451 1516 8.32 5980.72 114 5.02
4 40 1,110 2248 1,492 1929 10.6 14.71.38 13.7 14.2
6 48 1,070 267.3 1,103 192.7 10.7 28.®.62 105 225
8 48 1,386 3128 1,430 2465 174 50.&291 212 374
10 50 905.8 250.9 928.3 1235 11.05 52.24.72 101 23.6

2 18 2,623 325.2 2,808 238.1 287 16.0.57 320 127
4 35 5425 3944 14913 3711 582 40.10.69 1473 427
6 40 5421 5054 12,106 558.1 69.6 83.9.20 154.8 101.7
8 a7 4,366 483.0 6,286 329.2 615 115.2.87 822 83.0
10 50 2,680 450.8 3,185 3004 412 161.292 48.3 108.3
12 50 3,649 489.2 3,943 256.3 60.6 219.8.62 639 1224

2 9 11,710 521.0 26,545 4659 469 10.0.23 111.0 941
4 27 13,039 6344 39,539 958.0 55.0 27.M.49 1655 411
6 35 7,233 526.6 9,164 346.0 358 39.3..10 46.1 27.7
8 42 9,901 714.7 12,297 456.4 523 80.3.53 635 553
10 48 9,280 682.7 11,811 393.6 54.0 104593 674 575
12 49 8,902 686.2 11,321 497.8 584 141943 758 99.7
14 49 10,368 688.8 13,496 396.7 73.0 181249 958 107.4

2 15 18,718 766.1 26,154 788.2 895 26.9.30 1220 25.6
4 26 17,465 707.2 33,566 404.1 100.3 45845 197.3 27.8
6 37 20,929 1,053 45,667 1,008 127.3 1100.87 282.4 109.8
8 37 33,094 1,379 59,485 1,345 2258 223099 402.0 218.9
10 44 22,382 1,100 44,348 9015 161.4 236D46 316.5 182.9
12 46 20,920 1,157 24,312 730.5 169.1 3382400 187.0 209.7
14 46 22,618 987.6 40,649 599.8 200.6 372D85 358.6 242.9
16 47 22,023 1,239 28,888 932.4 2140 57/3BD68 284.4 427.5

between the simplicial and the rectangular version, which is the quotient of the av-
erage running-time needed by the rectangular version and the average running-time
needed by Algorithm 3.1. The problems with dimensiof 6 were run on &SUN
SPARCserver 100@orkstation. For problems with dimensianc {7, 8} we used
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SUN ULTRA 60 workstations, which are — with our code — on average at least
times faster.

The numerical results show that fpr> n Algorithm 3.1 was, with respect
to the average running-times, almost always faster than the rectangular algorithm.
Only for couples 4, p) with p < max{1, [§]} the rectangular approach needed
less time in more thaf0% of the test examples. For fixedthe relative perfor-
mance of the simplicial method improved with growjm¢consider the bold-printed
speedup columns in Table 3.1 and Table 3.2). In the case<n Algorithm 3.1
outperformed the rectangular version. It was then upTdimes faster.

FIGURE 3.1. Number of test problems in percent where Algo-
rithm 3.1 is faster than Al-Khayyal et al.’s rectangular approach

Dimension

The simplicial approach had many more linear subproblems to solve in order
to detect an approximate solution of our test problems than the rectangular one.
Moreover, this rate increased with growing dimension. There is at least one reason
for this effect. In the derivation of the LP-reIaxatidrT:{S) of (QP®) in Section 3.2
we neglect the convex information contained in the transformed prolﬁTeF?%)( In
contrast to this Al-Khayyal et al. use all available information in order to generate
their lower bounds. They do not omit anything. Therefore it is not surprising that
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FIGURE 3.2. Speedup
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the lower bounds used in the rectangular algorithm are better than those in our
method. Nevertheless, even though the number of linear subproblems increased,
the reduction in the complexity of each subproblem (smaller dimension and fewer
constraints) led to a decrease in the running-time.

Let us illustrate the presented computational results with two figures. In Fig-
ure 3.1 the number of test problems, where Algorithm 3.1 was faster with respect
to the running-time than the rectangular algorithm, are displayed in percent for all
tested combinations of the dimensiarand the number of quadratic constraints
p. Figure 3.2 shows the corresponding speedup coefficients. Both graphics show
on the one hand that for growing dimension and smaller number of quadratic con-
straints the relative performance of the rectangular algorithm in comparison with
the simplicial approach improved. On the other hand, they emphasize that for a
higher number of quadratic constraintgsX n) the numerical performance of the
simplicial algorithm was much better.

The numerical performance of the method for solving (QP), which we dis-
cussed in the previous chapter, does not depend on the number of quadratic con-
straints. This is not the case for Algorithm 3.1. The computational results show that
the effort for solving an all-quadratic program depends on the dimension as well
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as on the number of quadratic constraints. It is interesting to note that the average
running-time of the simplicial method was by far less sensitive to the number of
quadratic constraints than the running-time of Al-Khayyal et al.'s approach. For
example, in the test problems with dimension= 8 the average running-time of
Algorithm 3.1 grew by a factor of almogt whereas the average running-time of
the rectangular method grew by a factor of almist

In Section 1.5 we described the construction of all-quadratic problems with
dimensiomn € {1,...,8,10}, but we do not present the numerical results for the
ten-dimensional test problems. The reason is that both algorithms do not seem to be
attractive for solving problems of type (QP) with a dense structure and a dimension
higher thar. For such problems they required excessive running-times.

TABLE 3.3. A comparison of the medians of the running-times

p = 1 2 3 4 5 6 7 8 10 12 14 16

S 0.26 026 0.36 0.38
R 0.21 0.34 063 0.71
MSu 079 131 176 1.87

S 063 066 080 089 21.03 1.23
R 058 104 168 211 292 3.80
MSu 093 158 209 237 283 3.01

S 133 159 194 311 250 248 2.99 2.40
R 1.0r 217 386 6.30 6.96 102 127 12.5
MSu 081 136 199 203 279 409 4.26 5.21

S 548 481 6553 631 761 814 945 8.55 9.07
R 258 489 10.7 121 19.6 19.8 31.0 39.1 52.2
MSu 047 102 194 258 243 3.28 457 4.22 5.76

S 10.2 19.7 210 240 228 215 26.7 36.5 24.9 41.9
R 413 116 216 299 466 570 68.6 916 1314 190.0
MSu 040 059 103 125 204 265 257 2.51 5.27 4.53

S 10.2 149 135 117 219 167 215 32.1 29.0 38.3 31.9
R 263 7.76 129 150 326 328 518 61.3 89.8 127.0 153.2
MSu 026 052 096 128 149 197 240 191 3.09 3.31 4.80

S 289 208 276 391 310 425 832 86.7 59.3 120.7 77.1 88.1
R 6.58 19.7 30.7 455 593 794 1143 1510 1815 294.0 297.6 4545
MSu 023 09 111 117 191 187 1.37 1.74 3.06 2.44 3.86 5.16

A look at the standard deviation values in Tables 3.1 and 3.2 shows that the
simplicial algorithm had, unfortunately, a significantly higher variation of the nu-
merical effort. The standard deviation of the running-time is for problems with
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n > 5 almost always higher than the corresponding average value (see Table 3.2).
We even have combinations nfandp, where the standard deviation is more than

3 times larger than the average value. The rectangular algorithm did not have this
property. The standard deviation of running-times is mostly smaller than the aver-
age value. This shows that the rectangular algorithm had a more robust behavior
than the simplicial one in the sense that the effort for solving problems with the
same dimension and the same number of quadratic constraints did not vary so keen.
In spite of that higher variation of the effort for solving all-quadratic problems, Al-
gorithm 3.1 was almost always faster and led on average to a substantial speedup,
at least for problems with higher number of quadratic constraints. If we neglect the
numerical outliers leading to the high standard deviation values, then there holds
that Algorithm 3.1 showed an even better relative performance. In Table 3.3 the
medians of the running-times for all tested combinationsp together with the
median speedup coefficients (MSu) are displayed, where this speedup coefficient is
again the quotient of the median of the running-time for the rectangular algorithm
(R) and the corresponding value for Algorithm 3.1 (S). This table shows that, with
respect to the medians, Algorithm 3.1 was also for higher dimensional problems
andp = 2n about5 times faster than Al-Khayyal et al.’s rectangular approach
(compare with the speedup coefficients in Table 3.2).

3.5.3. A Modification of Algorithm 3.1. We finish the numerical examina-
tion of Algorithm 3.1 by considering a slight modification of this approach. In
Remark 3.2.2(b) we pointed out that the LP-relaxation{L&f (QP°) depends on
the numbering of the vertices &f = [v, ... ,v,], in particular on the choice of
vo. In the numerical tests we described till now, we did not care about the choice
of this vertex. Since we did not apply any rule, it was somehow randomly which
vertex of the considered simpl6§ (k € IN; 7 = 1, 2) was the first one.

In the sequel we will see that a special choice of this vertex can lead to numer-
ical improvements of our approach. There are of course many possible decision
rules for choosingf, which could depend on the function values;8fat the ver-
tices, or on the function values of the+ 1 possible affine underestimating func-
tions, or also on the behavior of the quadratic constrajhté ¢ {1,... ,p}) and
on the behavior of their underestimators. We tested several rules and would like to
present only the one, which showed the best performance in our numerical tests.

Let S = [vo,...,v,] be an arbitrary:-simplex and let, forj € {0,... ,n},
¢%7 . IR™ — TR be the affine underestimating function fdron S constructed with
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respect to the vertex;, i.e.,

@) = Y () e —v) (0= 0) D v =)
i=0,i#j
+ (d+ QQOvj)T (z — ;) + (d°) v, + U]TQOUJ' :
where W7 denotes the reah x n matrix with the columns(v; — v;)
(i € {0,...,n}\ {j}).- Consider the maximal distance of the objective function

q° and the functiorf%y (7 € {0,...,n}) atthe vertices of. It can be verified by
straightforward calculation that there holds

_tnax ¢°(v;) — E%’j(vi)} = max (v; —v))TCOv; —vy) .

Among thesen + 1 possibilities for the functiorf% we choose one, where the

minimum of these maximal distances is attained, i.e., we chgpse{0,... ,n}
satisfying

max (v; —v;,)  C%(v; —vj,) = min [ max (v; —v;)T C°(v; — v;)
1=0,...,n 7=0,...,n [2=0,...,n

In Algorithm 3.1 this means that we interpref, as the first vertex of5, i.e.,
S = [Vjg, V05 ,Vjo—1,Vjo+1,--- ,Un), @nd construct the affine functiort§
(I € {0,...,p}) with respect to this vertex.

This decision rule for the choice of the first vertex&ljf (kelN,j=1,2)led
to an improvement of the numerical performance of our approach. By applying this
rule we could reduce the effort for solving our test problems. In Table 3.4 the pro-
portional reductions of the average number of linear subproblems are displayed for

TABLE 3.4. Proportional reduction of the average number of
LP’s by applying a special selection rule for the first vertéx

992 996 530 6.67

131 18.1 148 109 147 15.0

16.0 21.7 193 219 165 325 168 153

174 216 302 271 281 165 223 233 16.8

234 257 335 349 254 344 254 314 240 26.1

222 378 362 376 372 344 346 322 294 316 312

55,6 28.1 465 241 456 324 352 344 439 423 411 399

oO~NOO A WNI|S
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all combinations of the dimensionand the number of quadratic constraintsx-
amined in our numerical tests. This proportional reduction is calculated according
to

AvgNuLP(A) — AvgNuLP(B)

AvgNuLP(A)

AvgNuLP(A) denotes the average number of linear subproblems needed by Algo-
rithm 3.1 without any rule for the choice of the first vertex. AvgNuLP(B) is the
corresponding value, when the above decision rule was applied. This table shows
that the application of the proposed selection rule was able to reduce the average
number of LP’s by up t&#0%. Since this selection rule is not time-consuming —
from a computational point of view — we obtained almost the same reduction in the
average running-times of Algorithm 3.1.

It is interesting to note that the numerical improvement increased with grow-
ing dimension. A reason for this effect might be that with growing dimension the
number of possibilities for choosing the first vertex increases. For small dimen-
sional problems we have a high probability that the choicefadiccording to our
special rule and the random choicergfcoincide. Hence, we obtain only a slight
difference in the numerical effort. However, for higher dimensional problems this
probability decreases and the positive results in Table 3.4 corroborate that our se-
lection rule for the first vertex was a good choice in the sense that the lower bounds,
which we obtained by applying this rule, were mostly better than the one obtained
without using any rule. Another remarkable result of Table 3.4 is that the numerical
improvement did not depend on the number of quadratic constraints. Nevertheless,
it can be possible that an additional consideration of the quadratic constraints in the
selection rule for the first vertex leads to a further improvement of Algorithm 3.1.

-100% .

The simplicial branch-and-bound method presented in this chapter used bi-
section as a subdivision rule for simplices. In Remark 3.4.1(a) we pointed out
that Property (3.4.1) of this rule is substantial for the convergence of our approach.
Some authors favor another subdivision rule. In this so-callsdbdivisiorrule an
n-simplexS* is subdivided into up ta + 1 subsimplices by using a radial subdi-
vision with respect to the optimal solutianS*) of the current LP-relaxation on
S* (see Definition 1.2.2). One hopes that this point bears some information of the
original problem (QP), and hence one expects that this rule leads to better numer-
ical results. However, this subdivision rule has not Property (3.4.1) such that the
convergence of a simplicial branch-and-bound method, which is based on this rule,
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Is still an open question. In the next chapter we will give an answer to this theo-
retical problem. We will consider a generalization of Algorithm 3.1, which uses
convex subproblems and is able to deal with a more general problem class.



CHAPTER 4

On the Convergence of Simplicial Branch-and-Bound
Methods

In this chapter we are interested in a generalization of the all-quadratic optimization
problem studied in this thesis. We treat problems of the form

min g°(2) + f°()

d@)+fx) <0 I=1,...,p (DCP)
re P,
whereg! : R — IR (I = 0,...,p) are convex functionsf’ : R" — R
(I = 0,...,p) are concave functions, anl = {z € IR" : Az < b} with
A= (a1,...,a,)T € R™*", b € R™ is a non-empty and full-dimensional

polytope. Problems of this form belong to the clasgeeral d.c. problemssince

the objective function and a part of the constraint functions can be written as a
difference of twoconvex functions (see, e.g., [HPT95pY95, HT9&8] for the
framework of d.c. problems). We denote by

F={zeR": Az <b, ¢'(x)+ fl(z)<0,l=1,...,p}
the feasible region of Problem (DCP).

4.1. Introduction

In the following we distinguish three subclasses of (DCP):
(DCPy) ¢° =0, p =0, i.e., minimization of a concave function over a polytope;

(DCP,) ¢ =0( = 1,...,p), i.e., minimization of a d.c. function over a feasible
region described by a polytope and by reverse convex constraints;
(DCPR;) Jl € {1,...,p}: ¢* # 0, i.e., minimization of a d.c. function over a non-

polyhedral set.

113
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It is well-known that the optimal valu¢* of a problem of type (DCB is
attained in at least one vertex #f [HPT95, Theorem 1.19]. Nevertheless, this
problem class was proven to be NP-hard. NP-hardness holds even in very special
cases, such as problems whose objective function is concave quadratic and whose
feasible region is a hypercube (see, e.g., [PS88]).

This class of global optimization problems encompasses a wide variety of ap-
plications. Among them we recall problems wghonomies of scalevhere con-
cave costs arise because of decreasing marginal costsjiaimdum concave cost
flow problemsi.e., flow problems in which the cost functions of the arcs are con-
cave. Moreover, some well-known mathematical problems can be reformulated
as concave optimization problems, for instamteger programmingP S76] and
linear complementarity problen{see, for example, [HPT95, pages 69-70]).

Different approaches to the solution of (DJRvere proposed in the litera-
ture. They can be subdivided in three classes: enumerative methods, successive
approximation methods and branch-and-bound methods. The first two classes of
algorithms are mostly guaranteed to return an optimal solution in finite time by ex-
ploring, in the worst case, all the vertices Bf Branch-and-bound methods can
generally only be guaranteed to be convergent. On the other hand, algorithms from
this class are often efficient in practice.

The class of branch-and-bound methods can be further subdivided in three
subclasses according to the kind of partition sets they employ (see also Subsec-
tions 1.2.2 and 1.2.3)conical algorithms, first introduced in [UY64], rectan-
gular algorithms, first introduced in [FS69], amsimplicial algorithms, first in-
troduced in [FOR76]. For further, more detailed information about theory, al-
gorithms and applications in the field of concave optimization over a polytope
we refer to the quite extensive literature on the subject, including, in particular,
[HOR84, PR86, EN95, HPT95, HT98].

If the objective function of a problem of type (DEHSs linear and there is only
one concave constraint, i.@.= 1, then this problem is eanonical d.c. problem

min ¢’z
f(z) >0 (DCPR,)
re P CR"
with f(z) := —fl(x) (see, e.g., [HPT95] or [FY95] for the definition of the

canonical d.c. problem). It is known that, under mild regularity conditions, the
optimal valuef* of (DCP,) is attained at a point* on an edge ofP satisfying
f(z*) = 0[HPT95, Theorem 4.4] .



4.1. INTRODUCTION 115

The class (DCP) of global optimization problems is not so widely explored
in the literature. The articles on d.c. programming consider mostly the canonical
d.c. problem or a general d.c. problem of the form (RQLPOur differentiation
between (DCP) and (DCR) is theoretically motivated, as we will see in the next
sections. An application of problem class (DZ/s the packing problem(see
Section 1.3 and particularly Chapter 5 for details). Problems with a d.c. objec-
tive function, linear constraints and Boolean variables can also be transformed to
problems of type (DCH (z; € {0,1} & 27 —x; > 0, z; € [0, 1]).

Using the fact that an optimal solution of the canonical d.c. problem is attained
on an edge of the polytopE a special finite solution method for this problem
class was developed in [TT85] (modified in [HPT95]). If the objective function of
(DCP,) is nonlinear or if there is more than one concave constraint then, extending
the ideas used for solving problems of type (QEProblem (DCR) can be solved
by branch-and-bound methods, as we will see in subsequent sections.

The class of d.c. functions defined on a compact convex d&t'os dense in
the set of continuous functions [HPT95, Corollary 4.2]. Furthermore, the set of
d.c. functions is closed with respect to arbitrary linear combinations, finite maxi-
mizations, finite minimizations and multiplications [HPT95, Theorem 4.1]. There-
fore, the class of general d.c. problems encompasses a wide variety of problem
classes and applications. However, finding a representation of a d.c. function as a
difference of two convex functions, which we assume to be given in the formula-
tion of problem type (DCP), is in general a hard, still open problem. For the all-
guadratic problems such a representation is easy to generate as we saw in Chapter
3. They are also known for many interesting function classes. Among the various
applications of d.c. problems of type (D&Rve recall thebridge location problem
(see [HT99]), thegeneral location problertsee, for example, [ILM88]) and the
design centering problef¥ S82, THA88, NS92]. Similar to problems of type
(DCP,) general d.c. problems of type (DgRcan be solved by branch-and-bound
methods. In order to avoid convex subproblems in such approaches, the branch-
and-bound methods are often combined with an outer approximation scheme (see
[HT99] and, in particular, [DY95] and references therein).

In this chapter simplicial branch-and-bound methods for solving all types of
(DCP) are considered. In particular, simplicial algorithms based on the so-called
w-subdivision a special subdivision rule, first introduced iny¥64] for conical
branch-and-bound algorithms and applied for simplicial approaches, for example,
in [HT968], are studied. As long as a so-callexhaustivesubdivision rule is used,
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the convergence of the simplicial branch-and-bound method suggested in the next
section can be ensured. The convergence of this algorithm ussupdivision,

which is not necessarily exhaustive, was an open theoretical question for a long
time. Recently, a similar question was answered for conical branch-and-bound al-
gorithms used for solving (DGFP independently and by different techniques in
[JM98] and [Loc97]. However, to the author’s knowledge, no proof of conver-
gence for simplicial algorithms, which base onlywssubdivisions, has been pub-
lished yet.

In the next section the general scheme of the studied simplicial branch-and-
bound algorithm is given, and in Section 4.3 the convergence of this approach based
on an exhaustive subdivision rule is proved. This convergence result corresponds to
the one obtained in the previous chapter for Algorithm 3.1 (see Theorem 3.4.2). If
we usew-subdivision, then a similar convergence result for the proposed algorithm,
used for solving problems of type (DGR can also be proven. In order to show,
additionally, a convergence result for this approach, applied for problems of type
(DCP,), we need an assumption with respect to the concavefpaftthe objective
function. This assumption is not a restriction, as we will see in Section 4.4. Though
the obtained convergence result for this case will be theoretically weaker than the
one before, — from a practical point of view — all convergence results derived in
this chapter have the same quality. They imply that the proposed approach detects
in finite time either the emptiness &f or an approximate solution of the consid-
ered problem. The proofs of the statements yielding these convergence results for
our approach using-subdivisions are given together in Section 4.4 for both sub-
classes of (DCP). Even though the convergence results are slightly different, their
derivation is non the less connected. The part of the proofs relating to Problem
(DCP,) is equivalent to the convergence proofs in [LRJ.7n Section 4.5 we pro-
pose an example, which shows that the simplicial branch-and-bound method using
w-subdivisions for solving problems of type (D&HRs not necessarily convergent.

We conclude the consideration of the convergence in Section 4.6 with a numerical
comparison of the simplicial branch-and-bound algorithm with different subdivi-
sion rules for solving all-quadratic optimization problems of type (RICh par-
ticular, we suggest in this section a modification of dheubdivision, which leads

to a convergent algorithm also for problems of the general class {pPGPthe last
Section 4.7 a partial answer to the theoretical problem of finiteness of the simplicial
branch-and-bound algorithm with-subdivision, applied for solving problems of
type (DCR), is presented. This finiteness result is also given in [LK97
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4.2. Simplicial Algorithms for (DCP)

In this section we describe a simplicial branch-and-bound algorithm for solv-
ing Problem (DCP). The formulation is a generalization of the one given in Chapter
3 (see Algorithm 3.1). Before giving the exact description we recall some notations,
which will be extensively used in the following.

o Let, forr € IN,r <n,
T

By:i={AeR™:) N=1,X2>0,i=0,...,r}
1=0

be the standarg-simplex inIR" .
e Let S = [vg,...,v,] be ann-simplex andl € {0,...,p}. The affine
functionyl : R™ — TR,

pl(z) = Zk(x)ifl(vi) (4.2.1)

is the convex envelope of’ over S (see, e.g., [HPT95] or Subsection
1.2.4). The vectonn(z) € {\ € R : 3" '\ = 1} denotes the
uniquely determined barycentric coordinates:af IR"™ with respect to the
vertex sef{vo, ... ,v,} Of S, i.e,z =S A(z);v;. Let¢, € R"™ be the
unique solution of the following system of equations

€T (v; —vo) = flwi) — flvo) i=1,...,n.
Then there holds, far € R",

ps(x) = (¢5)" (x —vo) + f'(vo) - (4.2.2)

e LetS = [vy,...,v,] be ann-simplex. For each € {0,...,n}, choose
i(j) € {0,...,n}\ {j} and letz§ € IR" be the unique solution of the
system of linear equations

@) (vi —vyy) =0 i €{0,...,n}\{j,i(5)} (4.2.3.a)
@) (v; —vyy) = —1. (4.2.3.b)

J

Then, withc? := (47 )" v;(;), then-simplexS can be represented by the

system of linear inequalities

@)z < ¢ j=0,...,n. (4.2.4)
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The vector@js is the normal of the facefvo,... ,vj_1,vj41,...,0,]
of S.

In Chapter 3 (see, in particular, Section 3.4) we pointed out that it is neces-
sary to be satisfied with approximate solutions of all-quadratic problems of type
(QP), if we are interested in a finite solution approach. The finiteness of the sim-
plicial branch-and-bound method for Problem (DCP) to be discussed in the present
chapter, can also only be obtained, if approximate feasible respectively optimal so-
lutions are sufficient. Therefore, we introduce the concet pf-feasiblepoints
and of(¢,6,p)-solutionsof Problem (DCP).

DEFINITION 4.2.1. A pointz € IR" is called (d,p)-feasiblefor Problem
(DCP) with real numbers, p > 0, if there holds

a;z—b; < p j=1,...,m (4.2.5.a)
Jd@+ i@ <§ 1=1,...,p. (4.2.5.b)

A pointz € IR" is called an(e,d,p)-solutionfor Problem (DCP) with real numbers
e,0,p > 0, if there holds

and

z 1s (6,p)-feasible (4.2.6.a)
and 0/~ 0/~ : 0 0
§°(@) + f°@) — ¢ < min [¢°@) + f°@)] . (4.2.6.0)

where the right-hand side of (4.2.6.b) is definedasif F' is empty.

For p = 0 we say thate is ad-feasible point, fow = p = 0 z is a feasible
point and fore = § = p = 0 z is an optimal solution of (DCP). Note that for an
(e,6,p)-solutionz € IR" it is not necessary that there holds

¢°(@*) + fOa*) < ¢°(@) + f(2),
wherez* denotes the optimal solution of (DCP),Af ## (). Therefore, Condition
(4.2.6.b) does not guarantee that the objective function valuehafs a distance
smaller tharx to the optimal one (see, in particular, the c&se- (). This distance

depends on the choice éfandp and on the behavior of the objective function of
(DCP) on the set
Fs, ::{xE]R":aJT:U—bj <p,j=1,...,m,
gix)+ fYz)<6,1=1,...,p}.
If, however,z is feasible, themx is e-optimal in the sense of

9°(2) + f2(z) = ¢°(2") = fO(a")| < €.
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In order to formulate the simplicial branch-and-bound method for Problem
(DCP) we need a convex relaxation of (DCP) with respect to a given simplex. Let
S = [vo,...,v,] be ann-simplex. The set

Fs :={xeS: Az <b, g'(x) +p5(x)<0,1=1,...,p} (4.2.7)

Is convex withFs D> F N S. If Fg is non-empty, we know that the optimal
solutiony*(.S) of the convex optimization problem

min g°(z) + ()

v € Fi (DCP%)

is a lower bound for min [°(z) + f°(z)], i.e., (DCP) is a convex relaxation
HAS

of (DCP). In the following we denote by (DCP (i = 1,2, 3) the proposed convex
relaxation of Problem (DCp(z = 1, 2, 3) with respect to the simpleX. Note that
(DCPY) is a linear optimization problem, (DG is a convex optimization prob-
lem with linear constraints and (D&Pis an optimization problem with a convex
objective function as well as convex constraints.

In general, it is not possible to solve exactly the convex optimization problem
(DCP) in finite time. We are only able to assume that a solution method for
(DCP®) is known, which solves the problem in finite time with arbitrary accuracies
€ 0, p > 0. This means, if such a method does not detect the emptindss, o
generates a poiat with the properties

alz—b; <p j=1,...,m, (4.2.8.a)

@HTz—cf <p  i=0,...,n, (4.2.8.b)

and @ +ok@) <6 1=1,...,p (4.2.8.c)
9(@) +¢3(@) —€ < min [¢°(2) + s(@)] = w*(S).  (4284)

According to Definition 4.2.17F is an §, §, p)-solution of Problem (DCP). Note
that it is possible that the used method stops withd,apf-feasible point, even
though the feasible regials is empty. In each case

u(S) = ¢°(7) + p5(7) — € (4.2.9)
is a lower bound fop*(.S), sincep*(.5) is defined asc in the empty case. In the
following we denote bYCONVEXSOLVER, 5 ; (e, 8, p > 0) a solution method for
Problem (DCP), which detects after finite time either the emptinessgfor a
pointz with Properties (4.2.8.a)-(4.2.8.d).
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REMARK 4.2.1.

(a) Since (DCP) is a linear optimization problem we can use the Simplex-
Algorithm as aCONVEXSOLVER o.o.

(b) If the objective function of (DC$) is quadratic with a positive definite
Hessian, then several solution methods exist. For example, this problem is
equivalent to a linear complementarity problem (LCP) and, therefore, there
exists also a&CONVEXSOLVER, 0. For an overview on the relation be-
tween convex quadratic optimization problems and LCP‘s and for solution
methods for LCP‘s we refer to [CPS92].

(c) In Section B.1 &ONVEXSOLVER, 5, , Which bases on the KCG-cutting-
plane-method [CG59, KL60] and needs no additional assumptions on the
involved nonlinear functions beside of their convexity, is presented. For
extensions of this method we refer to [HTT87, HTE)@nd references
therein.

(d) If an (€, J, 0)-solution of Problem (DCP) is required, it is possible to ad-
just an arbitraryCONVEXSOLVER, ; , in such a way that the calculated
pointz € IR" is feasible with respect to the linear constraints. G@N-
VEXSOLVER_ ; - delivers a poinf: ¢ P N .S and the accuracies are chosen
sufficiently small, then we can use the orthogonal projection poiot =
on the polytopeP N S as an §, J, 0)-solution of Problem (DCP). How
this can be done and, in particular, how the accuragi@€sndj have to be
chosen, is described in Section B.2.

For the formulation of the algorithm we assume further that a real number
1 < oo with the property

min [¢°(z) + fO(z)] ,if F#0
o> ¢ e 0 o, (4.2.10)
max 19°(z) + f°(z)] , otherwise
HAS
Is known. If a feasible point € F' is known in advance, then we can use
n:= ¢%x) + f°(z). Otherwise by setting
7 = max [¢§(x) + fO()] | (4.2.11)

wherey? : IR" — IR denotes the concave envelope8fwith respect to an arbi-
trary n-simplexS O P, we get the required value. Note that (4.2.11) is a concave
maximization problem, which can be solved by an arbit@G@ONVEXSOLVER, 5 ;.
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If the accuracy is greater thar, we have to adjust the calculategtimal value
of (4.2.11) withe in order to obtain a real number with Property (4.2.10).

The description of the algorithm follows the guidelines of a basic branch-and-
bound algorithm given in [HPT95, Algorithm 3.5] and is similar to Algorithm 3.1
discussed in Chapter 3.

ALGORITHM 4.1 (Simplicial Branch-and-Bound Algorithm for (DCP) ).

Initialization
Choose real numbetsd, p > 0 and sequences®} rem,, {0% e,
{p*}rem, With €&, 6%, p* > 0 (k € INg) ande®, 6%, p* — 0 (k — o00).
Determine am-simplexS°® = [v§, ... ,v2] with S > P .
Q«— {v? :i=0,...,nwith v? is (J,p)-feasible
If CONVEXSOLVERo 50 » detectsFso = () Then
STOP« True (F = 0)
Else
Letw(S°) be an €2, §°, 5°)-solution of (DCP") and
1(SY) = g%(w(S?)) + ¥% (w(S?)) be the corresponding function value.
p(S°) = p(8%) =&, p° — u(S%), P —{5°%
If w(S°)is (5, p)-feasibleThen Q «— Q U {w(S°)}
If @ # () Then
7’ min [¢°(2) + f(x)]
Chooser; € Q with n° = ¢%(z¢) + fO(xy) .
Else
n —n+e+7 (7> 0arbitrary)
EndIf
STOP«+ False, k0
EndIf

While STOP= False Do
If n* — u*k < eThen (SC)
STOP« True (z is an €, 9, p)-solution of (DCP) )

Else
Choosew”* € SF\{v§,... vk} and set (PSR)

" —{ie{0,...,n}: X > 0with \* € B, , 37" Mo = w* }
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If w” is (5, p)-feasibleThen Q «— Q U {w"}
For j ¢ I* Do
S’~C — vk, ..., fvf 1,w’“,vj+1,... vF] c S*
it CONVEXSOLVER.. 5. 5 do€s not detedfs: = 0 Then

Letw(S¥) be an ¢, 6%, p*)-solution of (DCF$J ) andp(SF) =
9% (w(SH)) + gosk( w(SF)) be the corresponding function value.
p(Sy) — maX{M(S"’) — &,y (LBR)
If w(SY) is (@, p)-feasibleThen Q — Q U {w(SF)}
P —PU{SF}
EndIf
EndFor
P «— P\{S¥}
If Q@ # 0 Then
n* o min [¢°(z) + f(x)]
Chooser; € Q with n**! = ¢%(x4) + fO(xy) .
Else
nk;-l—l
Endlf
P P\{Se€P:ulS)>ntt—¢} (PR)

If P # () Then
’uk—i—l

ChooseS* 1 ¢ P with pF+! = p(SF+1), (SSR)
Else

If @ # 0 Then
IuIH—l - nk—i—l
Else
STOP«— True (F = )
EndlIf
Endlf
k+—k+1
EndIf
EndWhile

<—?’]k

< min u(5)

— €
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REMARK 4.2.2.

(a) P is assumed to be a non-empty full-dimensional polytope. Therefore,
there exists always an-simplex S° with S > P. For the construction
possibilities we refer to [HPT95, pp. 145f].

(b) Since we are in general —as mentioned before — not able to solve the convex
subproblems exactly, we cannot guarantee that there holds

p(S5) = u(S*) =k,

even though we know thaﬁf C S*. In order to generate a non-decreasing
sequence of lower bounds we use the lower bounding rule (LBR).

(c) The deletion of the simplices in the classipalining rule(PR) is the conse-
quence of the fact that(S) is a lower bound ofnin,c pns [¢°(z) + fO(x)]
(see (4.2.9)). IfP is empty after executing this rule agdis not empty, then
it is obvious that)**! — ¢ is a lower bound for the optimal value of (DCP).

(d) Each §, p)-feasible point for (DCP) generated during the solution of the
convex subproblems should be affiliated to the(@ah order to possibly
improve the upper boungt.

(e) The algorithm has to generate at least ane)-feasible point for Problem
(DCP), such that the stopping criterion (SC) can be satisfied. If no feasible
pointis known in advance, it follows immediately from Property (4.2.10) of
71 that, for each simple¥ generated during the execution of the algorithm,
there holds

ps) < =mn"-e—r.

Therefore, without an update gf*! different fromn* the stopping cri-
terion (SC) cannot be fulfilled. Moreover, taking the pruning rule into ac-
count, we know that (SC) can only be satisfied in iterattor 2, if there
holds? = () andQ # () at the end of the previous iteration (compare with
Remark 3.3.1(d)).

(f) Itis possible that Algorithm 4.1 generates and, p)-solution of Problem
(DCP) withe, 6, p > 0, even if F = ().

(g) Since we choose* ¢ {vf,... vk} in the point selection rule (PSR) it is
ensured that there hold§ # (. Note that the used subdivision 8f is a
radial subdivision (see Definition 1.2.2), which forms a partitios bf(see
Definition 1.2.1 and [HPT95, Proposition 3.7]).
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(h) If there holds, for an iteratioh € IN, ¢ > €, § > 6* andp > p* and,
additionally, ifw(Sf) is a vertex of the simple)Sj’? (j € I"), then we
know that this simple)Sj’?’ is fathomed in the pruning rule (PR). Indeed, let
w(S¥) be a vertex of5¥. It follows that the function value of each concave
function f* (I € {0,...,p}) at the pointw(SF) coincides with the func-
tion value of the corresponding convex envelqbs%. The pointw(S]"?)

Is at least {, p)-feasible for Problem (DCﬁC) and, consequently, also
(6, p)-feasible for Problem (DCP), i.eu,(SJ’?) Is used for updating the upper
boundn**1. It follows that

u(sy) > go(w(Sf))w%?(w(Sf))—e > "t —e,
————
=fO(w(s%))

i.e.,S‘;‘.C must be fathomed in the pruning rule (PR).

The construction of.* (k € IN) guarantees that this value is always a lower
bound forg®(x) + f°(x) with respect to the whole feasible regiéh Therefore, it
Is obvious that, when finite, the algorithm will determine eitherai,(p)-solution
(,9,p > 0) of (DCP) or the emptiness af'. How far it is possible to prove
the finiteness of Algorithm 4.1 with, 6, p > 0, respectively the convergence for
e = 0 = p = 0, depends on the choice of the rule to split the current simgfex
The subdivision rule applied in Algorithm 4.1, which is determined by the selection
of the pointw® (see the point selection rule (PSR) in the formulation of Algorithm
4.1), is also a critical one with respect to the efficiency of the presented approach
(see, e.g., [UY91A] or the numerical results in Section 4.6).

There exist two classical subdivision rules. In the so-cdbisdction, which
was first introduced in [®R76] for simplicial algorithmsw” is chosen as the

midpoint of the longest edge of the current simplgx = [vf,... ,vF]. Let
ig,11 € {0,...,n} be two indices corresponding to vertices®fwith the longest
Euclidean distance, i.e.,
lof, =villz =, max lof = of> (4.2.12)
Then we choose
k k
wk: _ Yiy +vi1
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This is the subdivision rule, we chose in the formulation of Algorithm 3.1 (see
Section 3.3).

If we apply the so-called-subdivision (see, e.g., [TY64, HT9&]), then
we subdivide the current simple¥ with respect to the calculated solutiaiiS*)
of the subproblem (Doﬁ). In the classicalb-subdivision rule, as it is described,
e.g., in [HT9@y], the pointw” is chosen as)(S*). Since it is assumed there that
w(S*) is feasible with respect to the relevant simpixand, additionally, feasible
with respect to the original problem, i.e:(S*) € F N S*, itis clear (see Remark
4.2.2(h)) that in this situation there holdS*) € S*\ {v§,... vk},

In the formulation of Algorithm 4.1 we use @ONVEXSOLVER« s 5« With
ek, ok, p¥ > 0 (k € IN). Therefore, in general we cannot expect thas") is
contained inS*, and, in particular, we do not know anything about the feasibility
of w(S*) with respect to the original Problem (DCP). For that reason, we cannot
choosav® = w(S*) in each case and we need, thus, a generalization of the classical
w-subdivision rule. A possible choice af* is the following, which we would like
to call thegeneralizedw-subdivision rule (GWSR):.

Choose\* ¢ {\ € Rt . Z?:o A; = 1} with w(Sk) _ Z?:o S\kvf.
I — {ic{o,...,n}: \F >0}
If |[I¥| =1 Then
wk — 5 (vF +0F)  (i.e., choose a bisection)
Else
Determiney® := %", 7 A%
For : =0 To n Do
If < I* Then
AR i_k
Else
)\7{? — 0
EndIf
EndFor
wh = ST Afuf
EndIf
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Thew-subdivision rule, which is connected to the information returned by the
algorithm inside the selected simplex, seems to be the more natural choice than
bisection, at least for problems of type (DQP On the other hand, while Algo-
rithm 4.1 based on bisections can be proven to be convergent (see Section 4.3), the
same is in general not true for the variant of Algorithm 4.1, which employs only
w-subdivisions, as the counterexample in Section 4.5 shows.

If we solve problems of type (DG, we can choose® = §* = pF = 0
(k € INp) in the initialization of Algorithm 4.1 since (DCP is a linear optimiza-
tion problem, i.e., we can assume that (3¢ B solvable exactly in finite time (see
Remark 4.2.1 (a)). Furthermore, it follows in this situation that (GWSR) coincides
with the classicals-subdivision rule, i.e.w® = w(S*) for anyk € IN. Even for
this case the convergence of the presented approach basedubdivisions was
an open question.

Some mixed approaches for solving problems of type (D@¥Fre proposed
in the literature, in which both bisection andsubdivision are used. These are
the so-called normal algorithms, first introduced and proven to be convergent in
[Tuy918B] for conical algorithms and extended in [HT8Bto simplicial algo-
rithms. These normal algorithms could be further extended in a straightforward
way to a convergent solution method for Problem (DCP) by combining Algorithm
4.1 with the special subdivision strategy used in these approaches.

Nevertheless, as already mentioned in the introduction of this chapter, we will
prove the convergence of the proposed approach only emplayswgdivisions,
applied for solving problems of type (DEP Under some assumptions, which
are particularly fulfilled for all-quadratic problems, we are also able to prove a
slightly weaker convergence result for problems of type (P)CBefore discussing
these convergence results in Section 4.4 we show, first of all, the convergence of
Algorithm 4.1 based on an exhaustive subdivision rule.

4.3. Convergence with Exhaustive Subdivision Rules

If we sete = § = p = 0 in the initialization of Algorithm 4.1 and if we
use an exhaustive subdivision rule, then we are able to prove the convergence of
the approach presented in the previous section. This is the content of this section.
Proving the convergence we obtain finiteness of Algorithm 4.%,f6rp > 0. First
we recall the definition of an exhaustive subdivision rule in a simplicial branch-
and-bound algorithm (see [HPT95, Definition 3.5] and [HEB9Pefinition 4.10]).
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DEFINITION 4.3.1. A nested sequence of simplices{S*}cn,
Sk+1 < Sk (k € IN) is calledexhaustive if S* shrinks to a unique point € IR"™
ask — oo, I.e.,

: ko ko
Jlim % = Ols = {s}. (4.3.1)
Within a simplicial branch-and-bound algorithm, a subdivision rule is called
exhaustive if every nested subsequence of simplices generated throughout the al-
gorithm is exhaustive.

The bisection defined in the previous section is an exhaustive subdivision rule
for simplices (see, e.qg., [PR76, KEA78]), as already pointed out in Chapter 3 (see
Remark 3.4.1(a)). A — still exhaustive — generalization of the classical bisection is
given in [HPT95, FORI7]. In thisgeneralized bisectionu” is chosen as

w = Mf + (1 - M), (k€ N) (4.3.2)

with A\¥ € [c,0.5], ¢ > 0 (k € IN) andig, i; € {0,...,n} defined as in (4.2.12).
If Algorithm 4.1 employs only an exhaustive subdivision rule, the convergence
of the presented solution method for Problem (DCP) can be shown.

THEOREM4.3.1. Assume that = § = p = 0 and that an exhaustive sub-
division rule is used. Then Algorithm 4.1 is convergent in the following sense:
If Algorithm 4.1 generates an infinite sequedd® ), < of simplices, then every
accumulation pointo* of the corresponding point sequenfe(S*)} e is an
optimal solution of Problem (DCP).

PROOF Letw* be an accumulation point of the sequericgS*)} ren and
let {w(S*)},en be a subsequence convergingto Without loss of generality we
assume thafS*«} v is an infinite nested sequence of simplices. S§Ee} e
is generated by an exhaustive subdivision rule there exists agpaifiR™ with

lim Sk = () Sh = {s}. (4.3.3)
q—00 =1

From the calculation af(S*«) (¢ € IN) we know that, for each € IN, there exists
a numberk(q) € IN satisfying

keo1 < k(q) < kg, (4.3.4.a)
afw(S*) —b; < "9 j=1,... m, (4.3.4.b)
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@ ) Tw(Sk) — 5™ < pF@  i=0,... n, (4.3.4.0)
. g (w(S* ) + h, (w(SFa)) < 68D =1, p (4.3.4.d)
g (w(S*2)) + %, (w(S™)) < p(Ske) + @ (4.3.4.€)

(k(q) is the iteration in whichS*« has been generated). Because of the affine
independence Qfgq, e ,vfﬂ we know further that, for eachp € IN, there exists a
uniqueX? € {\ € R"™': 3" A\, = 1} with

w(SF) = 3 M (4.3.5)
1=0
With (4.2.3.a), (4.2.3.b) and (4.3.4.c) we obtain, for eaeh{0,... ,n},
(1735"@‘1 )T ( skq Z)\q ( st’w) _ _)\g < ﬁk(q) .

The sequencép®} e is bounded. Therefore, by passing to a subsequence, if
necessary, we can assume that there holds

AT — X (g — o0)

and, in particular\ € B,,. Because of (4.3.3) each vertex sequeﬁ@"@}qem
(1 =0,...,n) converges ta. It follows that

Fa) = Z)\gqu o 25\1-3 = 5(q — 00). (4.3.6)
i=0

1=0
Now with respect to (4.3.4.b) it follows, fgre {1,... ,m},

aij(Skq) —b; < pr@

l (g—00) |
a? s — b, < 0 ,
and with (4.3.4.d) we obtain, for ea¢ke {1,... ,p},

(S ) + SN flky < §@
=0
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Note thatf! andg' (I € {0,...,p}) are continuous functions (see, e.g.p[& 0,
Theorem 10.1]). Therefore, we know thais a feasible point, i.eF # (). From
the construction ofi*« = u(S*¢) (¢ € IN) it follows that {;/f¢} v is a non-
decreasing sequence (see Remark 4.2.2(b)), which is bounded from above by the
optimal value(f° + ¢°)* < oo of (DCP) and hence convergent to a real valtie

Using (4.3.4.e) we also obtain

PWSH)) + 3 A Owf) < (SR < (f0 4 g0y e
1=0
| l L (g—o0) | | !
P(s) XN ) < w0 < (g0,
1=0
and because of the feasibility sthere holds
g°()+ f2(s) = (f+¢")",

showing the optimality ok. Since the limit of a convergent sequence is unique, it
follows from (4.3.6) that

and we have proven the theorem. |

The following corollary is a direct consequence of the proof of this theorem.

COROLLARY 4.3.2. Assume that = § = p = 0 and that an exhaustive
subdivisionrule is used, then Algorithm 4.1 stops after a finite number of iterations,
if no feasible point exists, i.e., f = (.

REMARK 4.3.1. If an exhaustive subdivision rule is used, it is possible to
avoid nonlinear subproblems (see, for example, [HT99]). et [vg,... , v,]
be ann-simplex andzs € S be an arbitrary point, e.gxs = #1 S oo Vi
Let further, forl € {0,...,p}, &L be a subgradient of at the pointzg, i.e.,
¢k € dg'(z5), wheredg! (zs) denotes the subdifferential gf at the pointrs (see,
e.g., [Roc70, Ho85] or Appendix B for the definition and the framework of sub-
gradients and subdifferentials of convex functions). Then we know that the optimal
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solutionz*(.S) of the linear problem
min (£3)" (z — @s) + ¢"(zs) + ¥5(2)
(5) " (x —29) +g'(xs) + ¢ls(z) <0 I=1,...,p (LDCP9)
rePnNSs

is a lower bound fomin,c pns [¢°(z) + fO(z)]. If we replace in the formulation
of Algorithm 4.1 the convex relaxation (DCPof (DCP) with respect to the sim-
plex S by the linear relaxation (LDCP), then the algorithm is still convergent (see
again [HT99, Theorem 14]). Applying this concept to all-quadratic problems of
type (QP) leads to the lower bounds, which we used in Algorithm 3.1. Note that
(LP®) and (LDCP) coincide, ifzg is chosen asy.

The choice between (DCPand (LDCP) is a question of efficiency. The con-
vex subproblems are in general harder to solve, but provide a better lower bound,
since the objective function as well as the nonlinear constraints are better approx-
imated. If an efficient solution method for (DEPis available, the use of this
method could lead to a faster algorithm than the use of a linear problem solver
for (LDCP®) (see the numerical results in Subsection 4.6.1). Whether an efficient
solver for (DCP) exists, depends on the special structure of this convex subprob-
lem. For convex quadratic subproblems, for example, interior point methods can
be used if some additional assumptions are fulfilled (see, exR9M]).

The previous convergence result for Algorithm 4.1 is not really surprising,
since an exhaustive subdivision rule is assumed. In the next section we prove a
similar convergence result for this method in the case thattsabdivision rule
iIs employed and the approach is used for solving problems of type (Détiel
(DCP,). Recognize that the-subdivision rule is not necessarily exhaustive.

4.4. Convergence with theo-Subdivision Rule

In this section we assume thatC®NVEXSOLVER o0 is known. If we ap-
ply Algorithm 4.1 for solving problems of type (DGR, we can use the Simplex-
Algorithm as mentioned in Remark 4.2.1(a). For general problems of type{DCP
such a solution method does not exist to the author’'s knowledge. However, for
example in the case thaf is a quadratic function and thus (DEPis a convex
quadratic optimization problem with linear constraint§@NVEXSOLVER 0,0 IS
available (see Remark 4.2.1(b)). The existence of such a solution method for the
convex subproblems implies that we cho@ssequences fofé*} rew, {0F ke
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and {p*}rew in the initialization of Algorithm 4.1, i.e.g" = 6 = pF = 0

(k € IN). Furthermore, in view of Remark 4.2.2(h) we know that, for each simplex
Sk = [vf, ... ,vF], the optimal solutionu(S*) of the corresponding convex sub-
problem (DCP") is contained in the set*\ {v%, ... ,v*}. This implies that in the
used generalized-subdivision rule (GWSR) we choose in each iteratiog IN

the pointw® asw(S*).

As a consequence of the use @@NVEXSOLVER 0 We setp = 0, since the
linear constraints describing are also involved in the description of the feasible
set of the subproblems (DECP A second consequence is that we &et 0, if
we apply Algorithm 4.1 for solving problems of type (DQP Indeed, since the
constraints of (DCP) are linear f = 0), they are not relaxed in the formulation
of (DCPY). In this situation we know that each pointS) generated in Algorithm
4.1 for an arbitraryh-simplex.S is feasible for the original Problem (DGR i.e.,
w(S) € F.

We assume further that in the formulation of Problem (B0Re functionf®
is strictly concave, i.e., for any,y € IR" with  # y and\ € (0, 1), there holds

POz + (1 —=Ny) > Af2) + (1 =N %) . (4.4.1)

This is not a restriction. The functioff (z) := f°(z) — o||z||2 with a real value
o > 0 is strictly concave ang®(x) + o||z||3 is still convex. Therefore, we can
solve

min [7°(x) + fO(2)]

with a strictly concave part of the objective function insteadgf [9°(z) + fOx)].

In the following we consider the version of Algorithm 4.1, which employs
only w-subdivisions. In order to obtain the desired convergence results for this
approach, applied for solving problems of type (O¢&nd (DCR), we show that
this method is always finite, if the tolerane@s chosen greater than and in the
case of (DCR), if ¢ is also greater thai This proof of finiteness is based on some
lemmata and corollaries whose statements are presented in the sequel. Even though
the pronounced results will be the same, some proofs are different depending on the
problem class which we would like to solve with Algorithm 4.1. Each proof will
be marked in a non-ambiguous way in order to clarify whether it is true for both
types or only for one. The longer and more technical proofs of some results will be
given in Appendix A.
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The proof of finiteness will be done by contradiction. The results of the follow-
ing lemmata will be proven using an infinite nested sequéiée .y of simplices
with the properties that, for all € IN,

Sk+1is thedirect childof S* = [vf, ... ,vF] , (4.4.2.a)
e, SET = [uf, . ol w(SF),vf g, 0k (1€10,...,n)),
and
= p(S*) < nf —e. (4.4.2.b)

If the algorithm does not stop after a finite number of iterations, then — given the

sequencG[S’“}kelN of simplices which are selected in the simplex selection rule

(SSR) of Algorithm 4.1 — there exists at least one subsequence with the additional

attributes (4.4.2), as it will be shown in the proof of the Finiteness Theorem 4.4.9.
If we consider, fork € IN, ann-simplexS* and its direct childs**+!, then itis

a known fact (see, e.g., [HPT95, Theorem 1.23] or Remark 3.2.2(c)) that, for any

x € S¥*1 there holds

gpfgkﬂ () = gpfgk (z) + 7 (x) [=0,...,p, (4.4.3)
wherer! : IR" — IR (I € {0, ..., p}) denotes a function with nonnegative values.
The following lemma specifies, for eaehc S¥*+! and at least onkc {0, ... ,p},

a lower bound for the function value/(x). This lower bound depends on the
barycentric coordinates af with respect taS**! and on the tolerance respec-
tively 0.

LEMMA 4.4.1. LetS* be the selected simplex in iteratiéne IN of Algorithm
4.1 with S* = [vf, ... ,vF  oF oF 00 0F] (0 € {0,...,n}) and letS* =
(g, ... vF 0%, vF 4, ..., vE] be one of the simplices obtained by subdividing
Sk with respect ta* = w(S*).

Letz be an arbitrary element o™ with the unique representation
1’:)\005++>\ZU*++)\”U§’
with A € B,,. If S* is not fathomed in the pruning rule (PR) of Algorithm 4.1, then
there holds
0. (x) > gpgk (x) +eX; ,ifv*is (0, 0)- feasible,
or (4.4.4)
AN e{l,...,p}: ¢k (z) > ki(z) +0X; , otherwise.
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PROOF FOR(DCP;) AND (DCP;): Using (4.2.1) and the linearity of the

convex envelopepfs,k we know that, for € {0, ... ,p}, there holds
P (@) = 3 Nf]) +Xf (),
J=0,j7#1
and
Por(z) = 2 NfIOF) + Mg (v7) .
§=0,j7#i

If v* is (5, 0)-feasible, this point was used for updating the current upper bgtind
in an earlier iteration. It follows that

W)+ fOwr) =t
SinceS* is not fathomed in the pruning rule (PR) of Algorithm 4.1, there holds

pE= " (") + o (v*) < —e,

and the first conclusion follows immediately.

If v* is not (0, 0)-feasible, then there must exist an index {1, ... , p} with
the property

g' (") + fl(v*) > 4.
However, we know that™* is feasible with respect to the constraints describing

(DCP®), i.e.,
g' (") + Pl (v*) <0,
which proves the second part of (4.4.4). |

With the result (4.4.4) we are now able to show that, given a nested sequence
{S*1 e of simplices and a sufficiently large numhi€rc IN, at least one vertex
of the residual simplices” (k > K) will be fixed. If we apply Algorithm 4.1
for solving problems of type (DGR, then we know that each generated optimal
solutionw(S*) (k € IN) of the linear subproblem (DC?IB) is feasible. Recognize
that aCONVEXSOLVER 0,0 IS assumed to be used. Therefore, it is easy to see
that in this situation at least one vertex of the simpliégk € IN) must be fixed.
Indeed, if all vertices%, ... ,v* of S* have been changed at least once, then they
are all feasible. This means that the current upper bapinchust be lower than
or equal to the minimal value gf° with respect ta)§, ... ,v*. Thus, the function
values of the convex envelop%k on the simplexs* are higher than or equal i
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(compare with (4.2.1)), and the simplé¥ must be fathomed in the pruning rule
(PR) of Algorithm 4.1 (see also the proof of Lemma 4.7.1).

In order to prove that one vertex must be fixed in the case of (p@e need
more technical effort, since(S*) is not necessarilys( 0)-feasible. However, ap-
plying this necessary effort, we obtain a stronger result. We are able to show that
the nested simplex sequence shrinks to a lower-dimensional siriplekereS
is given by the fixed vertices of the residual simplicgs(k > K). In Lemma
4.4.2 this stronger result is formulated and the corresponding proof is presented in
Section A.1. In this proof we do not use the strict concavitybfThus, this proof,
and consequently the following lemma, is also valid in the case of (DCP

LEMMA 4.4.2. Let{S*}, i be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with Properties (4.4.2). Then there exist a nufiberIN
and an integerr with 0 < r < n such that, for eaclt > K, there holds

SP =g, .. v Vg, ok (4.4.5)
whereuy, ... ,v, are fixed vectors, WhileffH, ..., vf (k € N,k > K) change
infinitely often. Moreover, there holds

() 5% = [o,..., 0] = . (4.4.6)
keIN

In order to show that the numbenpf fixed vertices of the residual simplicé$
(k > K) must be greater thah i.e.,r > 1, we first prove that each accumulation
point of the sequencgu(S*)} e is contained in the sef \ {vo, ... ,v,}. This
Is the result of the following lemma. The proof of this lemma, which also does not
depend on the considered problem class, is given in Section A.2.

LEMMA 4.4.3. Let {S*} e be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with Properties (4.4.2). U§tc IN and0 < r < n be
given by Lemma 4.4.2. Denote By= |[vg, ... ,v,] the fixed face of the residual
simplices

S* = Ju,... ,vr,v,]f_l_l,... W (B> K).

n

Then, for each accumulation poiatof the sequencgv(S*)} e, there holds

o€ S\ {vo,... v} (4.4.7)
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This result will also be helpful in the proof of the next Lemma 4.4.5. However,
a direct consequence of the previous result is that at least two vertices of the residual
simplicesS* (k > K) have to be fixed.

COROLLARY 4.4.4. Let {S*} ;i be an infinite nested sequence generated
by Algorithm 4.1 with Properties (4.4.2). Let furth&r € IN and0 < r» < n be
given by Lemma 4.4.2. Then there holds

r>1. (4.4.8)
PRoOOF FOR(DCP;) AND (DCP;): Assume, by contradiction, that there
holdsr =0, i.e.,
S = {Uo} = ﬂ Sk
kelN

The sequencéw(S*)}rew is bounded. Therefore there exists an accumulation
pointa of this sequence. Since the simplex sequet’e v consists of nested,
compact and non-empty sets, it follows

(IJES:{UO}.

This is a contradiction to the result of Lemma 4.4.3, and hence we obtain
r>1. |

REMARK 4.4.1. The result of the previous corollary follows also by the con-
siderations regarding an exhaustive subdivision rule in Section 4.3. Indeed, if we
are in the situation that only one vertex of the simplex sequéféé;> « is fixed,
then it follows by Lemma 4.4.2 that there holds

S = {w} = [)5". (4.4.9)
keIN
This relation is the essential part in the proof of Theorem 4.3.1, which guarantees
the convergence of Algorithm 4.1 for an exhaustive subdivision rule. Therefore, by
the same argumentation as in the corresponding proof (see Section 4.3) we would
obtain finiteness of Algorithm 4.1 far, 6 > 0, if (4.4.9) is satisfied.

In order to prove finiteness of the variant of Algorithm 4.1, which employs only
w-subdivisions, it is not sufficient that each accumulation poiof the sequence
{w(S*)} e is contained in the séty, ... ,v,]\ {vo, ... ,v,.}. Actually, we need
a slightly stronger result. The next lemma signifies that the barycentric coordinates
of w(S*) (k > K) with respect to the not-fixed vertices 8f (k > K) converge
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to 0. The proofs of this lemma, which are different for the considered problem
classes, are given in Section A.3.

LEMMA 4.4.5. Let {S*} e be an infinite nested sequence generated by Al-
gorithm 4.1 with Properties (4.4.2). Léf € IN and1 < r < n be chosen as in
Lemma 4.4.2 and let

w(SF) ="M+ Y Aoy, (4.4.10)
1=0 1=r+1
with \* € B,, andk > K. Then there holds
A= YA — 0 (k- 0). (4.4.11)
1=r+1

It follows immediately from the previous lemma that, for edch> K, the
optimal solutionw(S*) of the linear subproblem (DGP can be represented as
a combination of a point”, contained in the fixed facé = [vo,... ,v,] of the
simplicesS”, and a residual® € IR". This representation is given in the following
corollary. Furthermore, it is shown that the distance between the function values of
¢, atthe pointsu(S*) andz* converges to.

COROLLARY 4.4.6. Let {S*}rcw be an infinite nested sequence generated
by Algorithm 4.1 with Properties (4.4.2), and [&t € IN and1 < r < n be given
by Lemma 4.4~.2. Then there exists a numBer IN with K > K such that,
for eachk > K, there exist a point* € [vo,... ,v,], @ point¢c® € IR™ with
|s*||2 — 0 (k — oo) and a real valuer® with 0¥ — 0 (k — oo) satisfying
w(S*) = 2% +¢* (4.4.12)
and
P (W(S*)) = pgu (2¥) + " . (4.4.13)

PROOF FOR(DCP;) AND (DCP2): In view of Relation (4.4.11) we know
that there exists an integé&f > K such that, for each > K, there holds

AP < 1.
Set, fork > K,

F_NS M
x:zl—/\kvi

1=0
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with \* € B, andA* € IR defined as in (4.4.10) and (4.4.11). Obviously there

holdsz* € [vo, ... ,v,], and we obtain the following representation.gfs”)
k k - k, k k - )‘]’C

For the function value of%, at the pointu(S*) we further get

n T k
P2 (0(5M) = P () + 30 M) AR DT A PO

1=r41 1=0

e

=: ok

Because of the boundedness3f there exist real value§ > 0 andD > 0 such
that, for eachr € S, there holdg|z||» < C and|f°(z)| < D. With Lemma 4.4.5
it follows

n
Il =11 > AoF — AFab|y <20FC -0 (k- o00).
1=r+1
Furthermore, we obtain

r

o =1 D N = AR Y o)l

1=r—+1 1=0
< AFD £ AF ~ N D—0 (k
+ Z 1Ak (k — o0)
1=0
T u

By using all previous results it is now possible to prove that there exists a
numberK > K such that, for eactt > K, we are able to replace the point
¢ € S = [vg,...,v,] in Relation (4.4.12) by a point® € S with the property
that a lower bound fop* = u(S*) depending on’* can be given. This lower
bound is the sum of the function valyé(r*) + %, (r*) of the objective func-

tion of Problem (DCIﬁk) and a residual part depending afi, which converges

to 0 — with respect ta\* — slower than the Euclidean distance between the points
w(S*) andr*. This is the result of the following Lemma 4.4.7 and will be essen-

tial for the proof of finiteness of the version of Algorithm 4.1, which employs only
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w-subdivisions. The proofs of this lemma, which are again different for both prob-
lem classes, are given in Section A.4. The notatign) is used for an arbitrary
function : IR — IR with the property
7(z) — 0 (z—0).
T
LEMMA 4.4.7. Let {S*},cw be an infinite nested simplex sequence gener-
ated by Algorithm 4.1 with Properties (4.4.2). Then there exist a number

K € NN, areal values > 0 and, for eachk > K, a pointr* € [vg,... ,v,]
satisfying
3°(W(S*)) + wgr (W(SF)) > ¢° (") + g (") + oA* +0(A%),  (4.4.14.9)
Pl (TF) < o(AF)  1=1,...,p (4.4.14.b)
and
[w(S*) —7%|l2 = o(AF) (4.4.14.c)

with A¥ (k > K) defined as in (4.4.11).

In order to obtain a contradiction in the proof of the final finiteness result it is
still not sufficient that for eack > K we have got a point* € S = [vg, ... ,v,]
with Properties (4.4.14.a)-(4.4.14.c). Beyond it, we need a pdinE S with
Properties (4.4.14.a) and (4.4.14.c), which is, additionally, feasible with respect to
the convex subproblem (Déﬁ’). Thus, it is necessary to prove the existence of a
point7* satisfying (4.4.14.a), (4.4.14.c) and

FeP , o) <0 I=1,...,p. (4.4.15)

Since the convex envelopegk (=1,...,p, k> K) have, in view of the result
of Lemma 4.4.2, the same function values.®$mdependent of, it follows, for
eachr € S andk > K,

Por(@) = D Nif'(vi)
=0

with A € B, z = Y_._, \;v;. Therefore, Condition (4.4.15) is fulfilled, if* is
contained in the set

F={zePnS: Y _Nifl(v;)<0,l=1,...,p
with \ € B,, z= Z::O/\ivi} .
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Note that in the case of problem class (D¢Eere even hold$ = PN S. The
proof of the next lemma presented in Section A.5 shows that the orthogonal pro-
jection ofr* on the seff” satisfies Conditions (4.4.14.a), (4.4.14.c) and (4.4.15).

LEMMA 4.4.8. Let {S*},c be an infinite nested simplex sequence gener-
ated by Algorithm 4.1 with Properties (4.4.2). LUs§tc IN ando > 0 be given by
Lemma 4.4.7. Then, for eagh> K, there exists a point* € F satisfying

3°(W(S")) + pgr(W(S*)) = ¢°(F") + e (7°) + oA* +0o(A")  (4.4.16.9)

and
lw(S*) = 72 = o(AF) (4.4.16.b)

with A* (k > K) defined as in (4.4.11).

With this last lemma we are now able to prove the postulated finiteness of
Algorithm 4.1.

THEOREM4.4.9. The variant of Algorithm 4.1, which employs onlysub-
divisions, is finite, if BCONVEXSOLVER, o is used and

e in the case of problem class (DERIif e > 0 andd, p = 0, or
e in the case of problem class (DGRif ¢, § > 0, p = 0 and f° is strictly
concave.

PRoOOF FOR(DCP;) AND (DCPR,): Assume, by contradiction, that Algorithm
4.1 does not stop after a finite number of iterations, i.e., the algorithm generates
an infinite sequencéS*},.cv of simplices. Then there exists an infinite nested
subsequencgS* e} ,ev C {S*} ke With Properties (4.4.2). We know — regarding
Lemma 4.4.8 — that there exist a numigee IN, an integell < r < n, a positive
real values and a point sequende} - 5 such that, for each > @, there holds

Sk = [ug,... v, 0l 0k (4.4.17.a)

n

7M€ F C Fogy={zeSnP:¢g,(z)<0,i=1,...,p} (4.4.17.h)
and
9°(w(S%0)) + plx, (w(S™))
> gO(79) + %, (71) + o AP 4 o(AF9)
with A%« defined as in (4.4.11).

(4.4.17.c)
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The pointw(S*«) is the optimal solution of the convex optimization problem

: 0 0
in [9°(x) + pan, (z)] -

Therefore, it follows from the feasibility of? with respect to the sef'cx, (see
(4.4.17.b)) that

9°(w(S*)) + pon, (W(S*)) < g (F) + P, (7) (4.4.18)
and from (4.4.17.c) we obtain, fgr> Q,

9°(F) + @, (77) > g°(7) + ¢, () + oAFs 4 o(A"a) .
This relation is equivalent to

oAPe fo(AF) < 0.
>0
Considering Lemma 4.4.5 we know that the sequeptl },.n converges to

0, if ¢ tends to infinity, and, furthermore, this sequence converges slower than
{o(A*4)} e t0 0. Thus, there must exist a numhgr> @ satisfying

AFe = 0. (4.4.19)
Indeed, ifA*« is always greater tha it follows by definition ofo(A) that
L (g —00)

0 <o+ O < 0,

which is a contradiction.
Relation (4.4.19) is only possible if there holds

w(S*') € [vg,...,v,].

If w(S*') is contained invy, ... ,v,] \ {vo,...,v,.}, Sk'+1 will be generated
by replacing one of the vertices, ... ,v.. However, this contradicts Property
(4.4.17.a) of the simplex sequengg*s } . Thus, there holds

w(S*) € {vo,..., v} (4.4.20.a)
and, additionally,

P, (@(SM)) = flw(S™)  1=0,....p. (4.4.20.b)
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The pointw(S*) € S* N P is feasible with respect to the convex optimization
problem (DCE ). In view of (4.4.20.b) we obtain

flw(S*)) = ¢, (W(S™)) <0 I=1,....,p,

and therefore we know that(S*«') is a (5, 0)-feasible point of Problem (DGP
(i = 1,2). Hence, the point(S*«' ) was used for updating the upper bound, and it
follows

i = p(St) = gO(w(S*)) + ¢, (w(SH))
<t < g%(w(S)) + fO(w(SM))
In view of Relation (4.4.20.b) witth= 0 we obtain

-

contradicting, fore > 0, Property (4.4.2.b) of the simplex sequef&& } ,cv and
completing the proof. |

This finiteness result guarantees the convergence of Algorithm 4.1 only em-
ploying w-subdivisions, applied for solving problems of type (D¢Bnd (DCB).
However, the convergence of Algorithm 4.1 does not hold in the sense of Theorem
4.3.1, i.e., we do not know whether each accumulation poindf the point se-
quence{w(S*)} e is optimal, if Algorithm 4.1 withe = § = p = 0 generates
an infinite sequencéS*}, < of simplices. From Theorem 4.4.9 we obtain for
problem class (DCP that, if e is also chosen &$ then there holds

pt o= pu(s*) — glei};lfo(x) (k — o) (4.4.21)

in the infinite case. Note thdt is assumed to be non-empty and thatS*)} rew

Is by construction non-decreasing. For this problem class we obtain, furthermore,
that each accumulation poimlf‘ of the sequenc{ax’}}kem is optimal for (DCR),
wherez” denotes the best known point at iteratibne IN, i.e.,n* = f°(z}).

Thus, in this case there holds a similar convergence result as in Theorem 4.3.1.

In the case of problems of type (D&Pwe obtain from Theorem 4.4.9 con-
vergence of Algorithm 4.1 only in the following sense. For arbitrary accuracies
€, 6 > 0 we know that this method detects in finite either the emptinegs afan
(¢, 6, 0)-solution of Problem (DCP. This implies that, ifF' # (), we are able to
construct a sequende’ } ;v such that each accumulation point of this sequence
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Is an optimal solution of (DCPH. This can be done by successively applying Algo-
rithm 4.1 with different positive accuracie’, 6% (k € IN) belonging to sequences
{efY e, {6F}rew converging to0. Such an iterative application of Algorithm
4.1 detects in particular the emptinessfoin finite time (compare with Corollary
4.3.2).

REMARK 4.4.2. At first glance the above convergence results for the variant
of Algorithm 4.1, which employs only-subdivisions and is applied for the solu-
tion of problems of type (DCPH and (DCRB), are weaker than the one obtained
in the exhaustive case (Theorem 4.3.1) — especially the result for problem class
(DCPR,). However — from a practical point of view — these different convergence
concepts have the same quality. Note that the stronger convergence of algorithms in
the sense of Theorem 4.3.1 is only needed in order to obtain finiteness of such ap-
proaches, when approximate solutions are sufficient. Hence, both results show that
Algorithm 4.1 with an exhaustive subdivision rule as well as witBubivisions is
finite, if we are satisfied withe( 6, 0)-solutions of Problem (DCH (e, § > 0). This
Is the essential result we need in order to apply this method in practice.

As the counterexample in the next section shows, it is not possible to extend
the presented proof techniques in order to ensure the convergence of Algorithm
4.1 — in the above sense — in the general case. However, a careful checking of
the proofs shows that all results until Lemma 4.4.7 are also provable in the case
of the general problem class (DGP Moreover, using aCONVEXSOLVER_;. 5x o
(k € IN) with non-increasing sequencé&’}.cv and {6*} v converging to)
instead of aCONVEXSOLVERy 0,0 , it is also possible to verify all these results.
However, in this situation it is necessary to change slightly the formulation of some
of these lemmata, where these changes do not alter the essential content of the
results. For example, the result of Lemma 4.4.1 does not hold forieaclN. Itis
only provable that there existga € IN such that Relation (4.4.4) with); instead
of e)\; andg)\i instead of \; is true, for eachk > K.

Before presenting the counterexample we would like to give some ideas in or-
der to understand, why the proofs fail in the general case. It is immediately clear,
that the Finiteness Theorem 4.4.9 cannot be proven ust@N\VEXSOLVER .« s« .

Indeed, without an exact solution of the convex subproblem (‘ﬁf()?Fhe relation
(4.4.18) is not fulfilled, and we are not able to derive the contradiction. This em-
phasizes that the assumption @@NVEXSOLVER oo IS substantial for the proof

of Theorem 4.4.9.
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Apart from the problem that it is not reasonable to assume tiGDMVEX-
SOLVER,0,0 IS available in the case of problems of type (BERhe attempt of
proving the presented finiteness result in this case even fails in the proof of Lemma
4.4.8. We show there (see Appendix A) that the orthogonal projegetiaf »* on
the set

Fi={zePnS: Y _Nf(v)<0,l=1,...,p
with \ € B, , = Z::())\'évi}

has the property#* — r¥||, = o(A¥) and, thus, we can derive that this point sat-
isfies the required conditions of Lemma 4.4.8. We prove this property by using
the Karush-Kuhn-Tucker(KKT)-conditions (see, e.g.0k¥9, FLE87, MAN94])

for the convex optimization problemin, . ||z — r*||3. Since this problem has
only linear constraints we do not need a regularity condition for applying the KKT-
theory. If we try to use the same argumentation in the case of problem clasg)DCP
with continuous differentiable functiong (I € {1, ..., p}), then we need a regu-
larity condition for the convex optimization problemin,, 7, ||z — 7*(|3 with

Fy={zxePnS:g@)+X _Nif(v;)<0,l=1,...,p
with \ € B, , T = Z::O/\ivi} ,

since this problem has also nonlinear convex constraints. In general, we are not able
to assume that such a regularity condition is fulfilled for each possible simpiex

[vo, ... ,v.:]. The counterexample presented in the next section shows a situation
where the KKT-conditions fail.

Even if we would be able to formulate a condition checkable in advance for
problems of type (DCPH ensuring the applicability of the KKT-theory, another
problem occurs. Apart from the application of the KKT-conditions a second es-
sential part in the proof of Lemma 4.4.8 is the existence of a positive real value
7 independent of the iteration counter(see Relation (A.5.16) in Section A.5).
The existence of this value depends on the fact that there is only a finite number
of possible gradients in the formulation of the KKT-conditions for the problems
min, ¢ 7 ||z — r*||3 (k € IN). Formulating these conditions fatin, ¢ 7, ||z — |3
with continuous differentiable functiong (I = 0, ... ,p) we can obtain in each
iteration gradients depending &g’ (7*) (I € {1,...,p}). Therefore, the set of
possible gradients is no longer finite, and the existence of the necessary valoie
Is in general not provable, at least not provable with the used techniques.
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4.5. A Counterexample

In this section we show that the variant of Algorithm 4.1, which employs
only w-subdivisions, can falil, if this approach is used for solving problems of type
(DCPs). Consider the following optimization problem

min f(z)
Pyt <1

glz)+y* < 1 (CE)

with f: R* = R, £ () = —[I() 3
0 ,ifz >0
xz? , otherwise

andP = {(}) e R*: 2> -1, —32+y > -3, —= —y > —3}. The function
f is concave, in particular strictly concave, the nonlinear constraint functions are
obviously convex and® is a full-dimensional, non-empty polytope. Therefore, the

Problem (CE) belongs to the class (DgRnd the feasible region of (CE) is given
by
F={()eP:32°+y*<1,g(z) +y* <1}

(see Figure 4.1). It is easy to see that the funcfi@ittains its unique minimum on
F atthe point(”,) = (?) with optimal valuef* = —4.
)

In the following we apply the variant of Algorithm 4.1, which employs only
w-subdivisions, for solving Problem (CE). We will see that even with 0 and
a CONVEXSOLVER o o this approach generates an infinite sequei®e ey of
simplices with the properties that, for eakcle IN, there holds

w(SH) < -9, (4.5.1.a)
flw(s*)) = -1 (4.5.1.b)

and
(r) ¢ S (4.5.1.0)

Since the functiorf is continuous it follows that each accumulation paintof the
sequencdw(S*)}rew has the function valug(w*) = —1. Thus, we know that
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FIGURE 4.1. The feasible sdt of Problem (CE)
Ay

w* Is not optimal. This shows that this variant of Algorithm 4.1 is not convergent
in the sense of Theorem 4.3.1. Moreover, if the accuragies> 0 are chosen
sufficiently small, we are able to guarantee that there holds

min f(¥) > -5

x€F5, " Y

with F5, = {(Zj) € R® : 22?2 + ¢ < 1+6,9(@) +y> < 1456,
—z < l+4+p,32—-—y < 3 +p,z+y < 3+ p}. This implies that in
Algorithm 4.1 the upper boung”® (k € IN) is always not smaller thaa 5, and
from Property (4.5.1.a) of the lower bound sequence we know that 10, 4)
Algorithm 4.1 does not terminate after a finite number of iterations. Hence, this
approach is also not convergentin the sense of Theorem 4.4.9.

The polytopeP is a2-simplex with the vertices, = (J), v1 = (Z;) and
ve = (7') (see Figure 4.1). Thus, we can chod3as the start-simples®, i.e.,

SO = [vg, v1, v2]. In view of (4.2.2) we obtain for the convex envelapg of f on
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the setSY the following relation
eso(?) = 0-(z=3) + (-2)- (y—0) + (-9) .
o (x =f(vo)
:(CsO) ((y) _UO>
It follows immediately that the optimal solution efin.cr ¢g0(z) is the point
w(S%) = (9) with optimal valuepgo (w(S°)) = —11. Thus we ge’ = —11 and

f(w(S%) = —1, and the simplex? is subdivided — using the-subdivision rule
—in the three simplices

S(l) = [Uo,vl,w(SO)],

SS = [anw(so)avﬂ
and
S5 = [w(S%),v1,v2]

(see Figure 4.2(a)).

FIGURE 4.2. Subdivision of5® with respect tavs(SY)

(@) (b)
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We prove now that the following relations hold

min{u(SY), u(S2)} > —9 (4.5.2)
and
w(Sy) < -9, (4.5.3)
which means that} is chosen as the new simplé’ at the end of iteratior.
Because ofnin{ f(vg), f(v1), f(w(S°)} = min{-9, -5, —1} = —9itis obvious
that, for each: € S7, pg0(2) > —9 and hencg:(S?) > —9. In order to prove

this relation forSY we need more effort. Using again the representation (4.2.2) for
convex envelopes we obtain

gpgg(Z) = —br—Ty+6.
The pointw = (3%°) = 0.5w(5°) + 0.5v; belongs to the edgpy(S°), vo] of
the simplexSy and has the function valugg (w) = —9. The simplexS3 can be

partitioned into two simplices
S9 = [vo,w(S°),w] and 89 = [vo, W, vs]
(see Figure 4.2(b)), with the properties

wgo(z) > =9 vz € SY
and 2

pso(z) < =9 vz e 59 .

Since the simple>€8 does not contain a feasible point of Problem (CE), i.e.,
FnSY = 0 (see again Figure 4.2(b)), we obtgitSy) > —9, which proves
Relation (4.5.2).

Denote now for a poini = () € {(j) e R :2” +y° =1, -1 <2 <0,
0<y<1}CF by

F(w) = {(i) cR?: 2%+ 9y =1, -1 <2 <w,,0<y<w,}

the part of the boundary of the feasible regibrof (CE) which lies between the
points (") and @Z) We verify Relation (4.5.3) by showing that the optimal
solution of min ¢go(z) must be attained at a point € F(w(SY)) with the

z€FNSY
property
©59 (u“)) < —9. (4.5.4)

This will be done by the nextlemma. However, this lemma presents a more general
result, which will also be helpful in the sequel.
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LEMMA 4.5.1. Let w be a point on the par{(}) € R? : 22 4+ 42 =1,
—1 <z <0,0 <y < 1} of the boundary of the feasible regidn of Problem
(CE). LetS(w) be the2-simplex with the vertices), v; = (Z}) andwvs = ()
(see Figure 4.3) and lepg,,) : IR? — IR be the convex envelope pfon the set
S(w) = [w,v1,vs]. Let furtherw be the optimal solution of min g (2).

zEFNS(w)
Then there holds

w € F(w) (4.5.5.a)
and
Psw) (W) < —=9. (4.5.5.b)

FIGURE 4.3. Situationin Lemma4.5.1

PROOR From (4.2.2) we know thaps .., (%) ((*) € IR?) is given by

Yy Y
psw)(y) = 25(x —we) + (=2)(y —wy) — 1
with w = (’*), b = 4 + w, anda = 1 + w,. Consider the set
F = F(W)m{(ﬁ) . _1<T§\/a;:—(|)—b2} .

i —b
Because ofv, > —1 we obtaina > 0 and, thereforevm > —1. It follows

that the set” is not empty and, moreover, there holdlsc S(w) N F' (note that
F(w) C S(w), see Figure 4.3). Showing, for all € I, the relation

Psw)(w) < =9, (4.5.6)
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we will obtain that the minimal value af(,,) on the setS(w) N F' must be lower
than—9. For this aim consider the one-dimensional functign,,) : [-1,0] — IR,

Ps(w)(T) = SDS(w)(\/lT—T)'

There holdspg (., (—1) = —9. Therefore, in order to prove Relation (4.5.6) it is
sufficient to show that the functiopg(,,y is monotonously decreasing along the

line between-1 and W The functiongg ., is obviously differentiable in
each point- € (—1,0), and there holds
0psw)(r) _ b 21
or a /1—72°
Forr ¢ (—1,ﬁ) we know thatl — 72 < 1 — ijbQ = a;be and, thus,
because of < 0 we obtain
2t 27 _ GV \/m 2
VI—7? T Vo a
It follows that, for eachr € (—1 \/W) there holds
a()DS(w)( ) <0
or ’
which shows thatps(,,) is monotonously decreasing ¢n 1, W) and, thus,

there holdspg(,,) (W) < —9, i.e., Relation (4.5.5.b) is fulfilled.

In order to prove Relation (4.5.5.a) assume, by contradiction, that there holds
w ¢ F(w). Because of the structure of the get) S(w) (see the shaded region in
Figure 4.3) we know that, for each poidite (£ N S(w)) \ (F(w) U {w, (,)}),
the line betweem andv, must intersect the sét(w). Because 0p g, (W) < —9
we havew ¢ {w, (')}. Letw be the intersection point dfi, v2] and F'(w). It
follows that there is a real valuee (0, 1) with w = @ + A(v2 — w) and we obtain

. 2% ) )
05wy (W) = @5y (W) + A [ — (=1 =) =2 (4 —dy)
A N—— N—_——
<0, €(—1,00  >0,0,€[—1,1]

< PS5 (w) (W)
contradicting the optimality ofy. H
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With the notation used in the previous lemma there h6fls- S(w(S?)), and
therefore we obtain particularly the postulated result (4.5.4) for the solutis§)

of the optimization problem min . ¢s0(z). This means that there holds
z€FNS;

u(S5) = pso(w(S3)) < -9,

which impliesu! = p(S9) < —9.
In iteration1 the simplexS! = SY is now subdivided with respect to the point
w(S1) € F(w(S?)) in the three subsimplices

S1 = [w(8%),v1,w(S)],

Sy = [w(8%),w(8"), va]
and
S% = [w(Sl),vl,vg].

Because ofnin{ f(w(S°)), f(v1), f(w(S1))} = min{-1,-5,—1} > —9 we ob-
tain 1(S1) > —9 and regarding Lemma 4.5.1 we know that the minimal point of
ps1 on the setr’ N S3 belongs toF'(w(S")), and that there holds(S;) < —9. If
we are able to show that the function value,agf% Is greater than or equal te9

for each feasible point € F' N S5, then we obtain
S? = 83 and p? = u(S)) < —9.

This means that we would be in the same situation as at the end of itebafide
next lemma shows that the relation

min_¢g(z) > —9
z€FNS

is true for eacre-simplex S = [w1,wsa, va] With w1, we € F(Y), and hence, in
particular, forS;.

LEMMA 4.5.2. LetS = [w1, wa, va] be a2-simplex withwy, wo € F(3) and
let o5 : IR? — IR be the convex envelope pbn S. Then there holds

min_pg(z) > —9. (4.5.7)
zeFNS
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FIGURE 4.4. Situationin Lemma4.5.2

PROOF There holdspg(wi) = pg(we) = —1 andyg(ve) = —17. With
w; = 0.5w; + 0.5v5 (i = 1, 2) we obtain, fori = 1, 2,

ps(w;) = =9,
and hence
p5(z) > =9 Vz € [w,wy, w1, Wa] =: C .

In order to show result (4.5.7) it is sufficient to prove that each elemesit\af’ is
infeasible with respect to Problem (CE) (see Figure 4.4).
Letw be an arbitrary element &f \ C, i.e.,

Wy
Wy

By definition of w; (: = 1,2) we obtainw, < —0.5 andw, > 2.0. It follows
immediately;w? +w; > 1,i.e.,w ¢ F. u

w:( ) € [1}2,11_}1,11_}2].

Combining the results of Lemma 4.5.1 and Lemma 4.5.2 and regarding the
considerations above we see that the variant of Algorithm 4.1, which uses only
w-subdivisions, generates an infinite sequett®} . wof simplices with the prop-
erties that, for each € IN, there holds

Sk = [w(Sk_l),vl,vg],
w(S*) € Fw(s* 1)

and . iy
pto= p(S") < 9.
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By definition of F(w(S*~1)) (k € IN) we obtain furthermoré (w(S*)) = —1, and
that the optimal poin(ii) = (7) of Problem (CE) does not belong to the simplex

S*. Consequently, we have shown that Algorithm 4.1 applied for solving Prob-
lem (CE) generates an infinite simplex sequence with Properties (4.5.1.a)-(4.5.1.c).
Note that Algorithm 4.1 generates this simplex sequence independent of the cho-
sen accuracies. Too large valuesepb or p could only lead to a termination of
Algorithm 4.1 after a finite number of iterations. However, it is obvious that these
accuracies can be chosen — greater tharsuch that Algorithm 4.1 makes infin-

itely many steps without fulfilling the stopping criterion, and hence does not solve
Problem (CE).

REMARK 4.5.1. In this situation we see that the simplexn the sense of
Lemma 4.4.2 is thé-simplex(vy, v2]. The unique point € FNSis ('), and the
gradients of the constraints, which describe thefsetS and which are active &,
are linear dependent. Therefore, the KKT-theory is not applicable for the problem

mmﬂé—z@

(CEOP)
zelFNs

for an arbitrary poing € S\ F, i.e., the vecto(z — z) is not an element of the cone
generated by the gradients of the active constraints of Problem (CEGRke®e

the proof of Lemma 4.4.8 in Section A.5). As mentioned at the end of the previous
section this is a situation, where the KKT-theory does not work.

In the next section we will see that it is nevertheless possible to make Algo-
rithm 4.1 convergent for problems of each class, where convergence is meant in
the sense that this approach detects in finite time either the emptiness of the fea-
sible region or an approximate solution. For this aim we will change a little the
generalizedv-subdivision rule (GWSR) by using the result of Lemma 4.4.2.

4.6. Numerical Comparisons

In this section we discuss the numerical performance of Algorithm 4.1. The
proposed simplicial branch-and-bound Algorithm 4.1 was encoded in C++ with
management of partition sets by AVL-trees. In fact, we used a modified version
of the code mentioned in Chapter 3 (see, especially, Section 3.5). In order to test
the computational performance of our algorithm we solved again the randomly
generated set of all-quadratic problems described in Section 1.5.
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We are interested ire(d, p)-solutions of Problem (DCP) withy 6, p > 0. Note
that the test examples were generated in a way, which ensured that the feasible set
Fis not empty. In view of the Convergence Theorem 4.3.1 we know that the variant
of Algorithm 4.1, which employs only bisections, detects such a solution in finite
time. Using the generalizegtsubdivision rule (GWSR) the finiteness of Algorithm
4.1 is no longer guaranteed, at least in the general case. Nevertheless, it is possible
to make this variant of Algorithm 4.1 finite, as we will see later in this section. For
this purpose we will modify (GWSR) by using the result of Lemma 4.4.2.

4.6.1. Comparison of Algorithm 4.1 Based on Bisection with Algorithm
3.1. First of all we would like to compare the computational performances of Al-
gorithm 4.1 employing bisections and of Algorithm 3.1 (see Section 3.3). The used
subproblems are the main difference between Algorithm 3.1 and Algorithm 4.1, if
we apply these approaches for solving all-quadratic problems (QP). Note that we
also use ad, p)-feasibility concept in order to obtain finiteness of Algorithm 3.1
(see the considerations at the end of Section 3.4). In Algorithm 3.1 we obtain lower
bounds by linearizing the original Problem (QP) with respect to the current simplex
(see Section 3.2) and in Algorithm 4.1 we use convex subproblems. Since the con-
vex relaxation of an all-quadratic problem, presented in Section 4.2 for Algorithm
4.1, is of course a better approximation than the linear relaxation proposed in Sec-
tion 3.2 for Algorithm 3.1 (see also Remark 3.2.1), we can expect that Algorithm
4.1 needs less iterations than Algorithm 3.1 in order to solve this problem. How
much the running-times change is not predictable in advance. They can decrease,
but also increase.

We solved all test problems with Algorithm 3.1 using the LP-subroutine
EO4NFFof the NAG-library. Since there is no sparse structure in our linear sub-
problems it is not reasonable to UB#NOS 5.4 as we did in Section 3.5. Note that
this tool is slower than EO4NFF, if both are applied for solving non-sparse prob-
lems (compare with the computational results in Section 3.5 and the reason there to
useMINOS 5.4). As aCONVEXSOLVER_ ; ; in Algorithm 4.1 we used th&lAG-
subroutineE04UCCwith the default value of depending on the machine precision
andd = p = 1075, This routine implements sequential quadratic programming
(SOP) method. In both algorithms we used the accuraeies § = 10—+ and
p = 1075, As in the numerical tests in Section 3.5 we stopped branching in both
algorithms, when theelative difference between”* and.* (k € IN) was smaller
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than the tolerance i.e., if there held
n* —pF < emax{1.0, |n*} (SC)
(compare with page 103).

REMARK 4.6.1. We do not solve Problem (DEPdirectly with the CON-
VEXSOLVER, ;5 , . In order to avoid the calculation of the vectors(see (4.2.3.a)
and (4.2.3.b)){= 0, ... ,n) itis cheaper to affinely transform Problem (DOmPy
usingx = vy + W, wherelWs denotes the regulan(x n)-matrix with columns
(vi—vo) (i =1,...,n)andNisanelementofA e R": > A\, <1, A>0}.

By doing this we do not need the constraiits )’z < ¢ in order to ensure
that the feasible points of Problem (D&Pare contained in the current simplex

S = [vo,...,vy]. Itis sufficient to require that there holds € [0,1]™ and
Sor A < 1 (see the derivation of the LP-relaxation in Section 3.2 and, espe-

cially, the Remarks 3.2.1 and 3.2.2(a)).

Tables 4.1 and 4.2 show some numerical results for the generated test prob-
lems run on &UN SPARCserver 1008orkstation. We use the abbreviations NuP
Co<Li for the number of problems where Algorithm 4.1 with convex subproblems
was faster with respect to the running-time than Algorithm 3.1 with linear subprob-
lems. AvgNuSP is used for the average number of subproblems solved for each
test problem with Algorithm 4.1 (Co) or Algorithm 3.1 (Li). StdSP is used for the
standard deviation of the number of subproblems. AvgTime stands for the aver-
age computing time in seconds necessary for solving a problem and StdTime for
the corresponding standard deviation values. Note that in the numerical tests of
Algorithm 3.1 in Section 3.5 we used higher accuracies for checkintfdasibil-
ity" of generated solutions(S*). Therefore, Algorithm 3.1 had in the numerical
tests in the present chapter on average less linear subproblems to solve than it was
the case in Section 3.5 (see Tables 3.1 and 3.2). The results for Algorithm 3.1
were obtained with the original variant of this approach, which did not apply any
selection rule for the first vertex of a consideregimplex (see Subsection 3.5.3).

The numerical results displayed in Table 4.1 show that for small dimensional
problems ¢ < 4) the decrease of the number of subproblems, which had to be
solved, did not lead to a decrease of the running-time. Algorithm 4.1 with convex
subproblems needed on average the same or slightly more time in order to solve the
test problems than the other one did. However, as we can see in Table 4.2, if more
than twice as much linear subproblems had to be solved, Algorithm 4.1 showed a
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TABLE 4.1. All test results fon = 2, 3,4

p NuP AvgNuSP StdSP AvgTime StdTime
Co<Li Co Li Co Li Co Li Co Li

I
[\]
N
[y

296 420 129 171 0.12 0.11 0.05 0.04
236 382 124 188 0.12 0.13 0.06 0.08
339 555 141 304 0.19 0.16 0.09 0.07
344 50.2 111 234 0.21 0.14 0.08 0.06

)
W o

I
w
=
(o)}

784 1225 522 83.0 043 042 0.29 0.30
80.2 133.0 471 131.7 047 044 032 0.38
101.4 173.0 67.6 1451 068 055 0.45 043
820 1320 434 747 057 042 0.28 0.22
88.3 156.4 484 106.8 0.74 053 0.44 0.33
88.8 1595 445 86.2 0.70 056 0.33 0.33

o © N

=
o

Il
W

14 1726 3044 1458 3164 1.2/ 1.12 1.0/ 1.10
14 179.2 3244 1584 3239 139 135 126 1.38
10 155.3 310.2 1059 3721 128 126 0.86 1.43
18 234.1 536.2 2147 7412 214 224 217 3.13
10 178.4 332.6 110.7 257.7 167 141 112 1.03
10 228.5 6716 2025 1,661 232 347 212 10.10
10 207.2 3823 1416 2929 222 182 153 1.34
4 2046 3729 1541 3782 243 192 185 1.98

oO~NOO O P WNEPIOUOPMAWDNEI3I[PWDNPES
(0¢]

better numerical performance with respect to the running-time than Algorithm 3.1.
With growing dimensions and, in particular, with a growing number of quadratic
constraints the relative difference between the average number of convex subprob-
lems and the average number of linear subproblems increased. For dimensions
higher thann = 6 Algorithm 4.1 solves more tha60% of the 50 test problems
faster than Algorithm 3.1. On average Algorithm 4.1 was always faster for these
test problems. Since the speedup, i.e., the quotient of the average running-time
with linear subproblems and the average running-time with convex subproblems
was mostly less than5, we see that the use of convex subproblems was not a sub-
stantial acceleration of the considered solution process for all-quadratic problems.
However, there was a small acceleration.
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TABLE 4.2. Some test results far= 5,6, 7,8

p NuP AvgNuSP StdSP AvgTime StdTime
Co<Li Co Li Co Li Co Li Co Li

n

2 21 4449 9334 649.1 1432 456 471 590 6.18
4 21 479.0 1,033 6157 1379 591 6.32 7.53 8.07
6 14 488.8 965.7 439.7 9789 708 650 6.37 6.37
8 21 509.1 1,211 4139 1214 845 942 7.05 9.59
10 15 3759 800.8 280.7 7429 7.28 6.61 543 5.90

2 30 1,058 2,546 1,019 2,731 1399 1825 13.00 19.32
4 29 1,632 5,315 2,735 14,899 26.87 4130 47.13 105.8
6 28 1,918 5,184 3,768 12,043 38.29 46.03 73.76 105.0
8 21 1534 4,191 1,885 5984 34.75 41.10 42.36 56.15
10 20 907 2,345 9271 2,509 2449 2541 24.77 26.59
12 31 1,228 3,467 1,349 3,885 37.97 43.82 41.82 45.73

2 32 3,601 11,319 8,416 25,815 63.91 100.2 150.2 230.1
4 40 3,246 12,510 7,069 38,315 72.10 147.7 161.2 375.3
6 34 2,246 7,015 3,001 8,855 56.49 82.07 73.09 1045
8 31 2928 9,236 3,568 11,230 93.75 119.1 115.1 138.5
10 31 2,885 9,038 3,526 12,054 101.2 1275 1145 163.8
12 35 2,768 8,631 3,576 10,830 1118 1375 1496 1754
14 23 3,091 9,969 3,667 13,217 137.2 168.7 163.8 230.8

2 34 6,126 18,002 14,354 25,313 128.2 211.3 280.0 285.6
4 33 5585 17,282 14,449 33,490 154.3 226.7 379.5 4385
6 30 5808 19,474 13,115 43,043 189.3 288.6 396.4 670.1
8 35 9,398 32,306 16,262 57,404 416.6 522.1 747.2 921.8
10 30 4,285 21,935 4,989 43,103 2148 3784 255.1 728.8
12 33 5,102 19,783 5,470 23,321 284.4 3809 3045 432.1
14 25 5419 23,616 8,654 49,231 368.3 493.3 554.7 1,014
16 32 5,749 20,977 6,934 27,565 393.7 503.5 465.6 656.5

Remember that it is possible to improve the performance of Algorithm 3.1 by
introducing a selection rule for the first vertex of a considered simplex, as we did in
Subsection 3.5.3. The convex relaxation used in Algorithm 4.1 is unique and does
particularly not depend on the first vertex, as it is the case for the LP-relaxation



4.6. NUMERICAL COMPARISONS 157

applied in Algorithm 3.1. Hence such a selection rule does not alter the numer-
ical performance of Algorithm 4.1 and, in view of the results in Table 3.4, it is
likely that the use of a selection rule in Algorithm 3.1 reduces the running-time
advantage of Algorithm 4.1. On the other hand, in Algorithm 4.1 we applied a
CONVEXSOLVER, 5 ; , which only uses the differentiability of the convex func-
tions. Maybe another solution method, which exploits the quadratic structure of
(DCP®), can solve the occurring convex subproblems faster (see, exg@96J).
Thus, we can expect that Algorithm 4.1 with convex subproblems is — with respect
to the running-time — a better solution method for all-quadratic optimization prob-
lems than Algorithm 3.1 with linear subproblems, at least for dimensions higher
thann = 4.

Another interesting numerical effect of the use of convex subproblems instead
of linear subproblems is that the standard deviation values are in some cases sig-
nificantly smaller. Note that, especially in Table 4.2, for the numbers of solved
subproblems as well as for the running-times the values of the standard deviation
are very high, when they are compared with the average values. The reason is that,
in particular for growing dimensions, the number of test problems, which needed
substantially more time to be solved than the average, increased, and that the dif-
ference between the effort for solving such numerical outliers and the effort for
solving average problems also grew. These effects were stronger if linear subprob-
lems were used. From this point of view we see that Algorithm 4.1 shows, at least

TABLE 4.3. Comparison of the medians of the running-times of
Algorithm 4.1 based on bisection and of Algorithm 3.1

p=2 p=4 p=6 p=8 p=10 p=12 p=14 p=16

Co 264 353 514 6.06 6.06
Li 293 383 475 4.99 4.96

Co 10.21 1439 1597 21.04 16.51 23.84
Li 14.18 15.12 16.01 19.70 17.04  30.03

Co 27.08 35.69 29.15 55.18 70.46 71.66 78.11
Li 3420 4723 3597 73.75 6433 88.12 72.13

Co 3461 59.79 68.14 1364 1144 179.8 192.0 1911
Li 52.63 98.18 9230 204.9 1335 2159 174.3  234.7
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for the examined test problems, a more stable behavior in the sense that less nu-
merical outliers occur. In view of the existence of numerical outliers we can expect
that a large number of test problems could be solved with less effort than the av-
erage values imply. In Table 4.3 we display the medians of the running-times in
seconds, corresponding to the numerical results of Table 4.2. The presented values
show that at least0% of the test problems could be solved significantly faster than
the average. We also see that the medians of the running-times for Algorithm 4.1
(Co) are not always smaller than the corresponding values for Algorithm 3.1 (Li),
as it is the case for the average values, at least for dimensions higher thah

(see Table 4.2). This corroborates the effect mentioned above that the use of convex
subproblems reduces the occurrence of numerical outliers and the worst case effort,
respectively.

4.6.2. A Convergent Subdivision Rule Based on (GWSR)n the following
we would like to use Algorithm 4.1 with the (GWSR) strategy in order to solve the
same set of test problems. Since — in view of Section 4.5 — we cannot be sure that
the variant of Algorithm 4.1, which employs only the generalizedubdivision
rule, detects in finite time ant,(4, p)-solution, we introduce a modification of
(GWSR) ensuring finiteness of Algorithm 4.1.

For this aim we will exploit the result of Lemma 4.4.2. At the end of Section
4.4 we pointed out that also in the general case (PD@H results until Lemma
4.4.7 are provable for Algorithm 4.1 using@NVEXSOLVER: 5. o (K € IN).
As long as a solution method for the convex subproblems is used, which generates
a pointw(S*) € S*, we know thatw” is chosen as/(S*) in the (GWSR)-rule
(if ¥ < § ande® < ¢, see Remark 4.2.2(h)). In the numerical tests we use a
CONVEXSOLVER, 5 , with arbitrary accuracies d, p > 0. Therefore, there does
not necessarily hold)(S*) € S*, and it is not immediately clear that at least
the results of Lemma 4.4.2 still hold. Nevertheless, if the accuracteandp are
chosen as in the following lemma, then we are able to prove all results until Lemma
4.4.2 for the version of Algorithm 4.1 with (GWSR) also in the general case.

LEMMA 4.6.1. Lete, 8, p > 0 be given. Let.! be a Lipschitz constant gf
(I € {0,...,p}) onthen-simplex

SY = {xEIRni(TJ,ZgO)Tw < cSO—l—p,i:O,...,n}

(see (4.2.2) for the definition of  andc¢S’), let D € IR™ be an upper bound for
|- ]20nS°% = [vy,...,v%], e.9.,D = max;—q,... » ||[v?]|2, and letC! be an upper

>N

geooe
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bound forf! (I € {0,...,p}) on the same set. Fdr ¢ IN denote by
[* = {ic{0,...,n}: \F >0}
with V¥ € (A e R™H S0 (N =1}, w(S*) =37, Aok and set

=0 "1 Y1

2\
wh = Z ’y—;{:vf

€1k
with+* =", 7 Af. If w(S*) is an , 4, p)-solution of (DCPF") with
e < e , 6 < 36
and 5
p < mm{'z m 1=1,...,m, In(CT+ DI I=1,...,p,
€

then there holds

w* is a (24, 2 p)-feasible point for (DCP") (4.6.1.a)
and

g°(W*) + o2 (W) < p(S*) + 3e. (4.6.1.b)

PROOF  In the proof of Theorem 4.3.1 we showed thatwifS*) is an
(¢, 8, p)-solution of (DCP"), then there holds, for eaghe IN andi € {0, ... ,n},

A= —p

Therefore, using the relation

Nk /_\k k Nk
S (R-2) = o=
ielk
we obtain
3 (xc__i) PR =2 < o (462
Because of the definition af* it follows

A _
w(5%) — wklls = | (A’f——k) F 3 Xk

ielk i¢Ik
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<D|> (A’f— —@') > A < 2nDp (4.6.3)

‘eIt igTh (4.6.2)
and, forl € {0, ... ,p},
e (8 — ) = 13 (=28 ety + 30 Akl
ielk ig Ik
< Ct Z ()\k— —Z‘) Z AR < 2nC'p. (4.6.4)
L ig Ik (4.6.2)
From (4.6.3) and (4.6.4) we conclude, foe {1,...,m},
al wh < a; w(Sk)—|—|a —alw(SM| < bi+ p +|ai|22nDp
~ - ~ ——
bt <lasllsllwF—w(SH)]s < <%
< b + %,0 (4.6.5)

and, forl € {1, ... ,p},
g (") + Plou (w¥) < g (W(SF) + e (W(SM) + |g (w(S7)) — g (w")]

~"

SLHlw(S*)—wk||2

6+ 2nDL'5 + 2nC'p
< l A
J +?n(DL +C)€ < 34, (4.6.6)

5
< <

IA A

9

N[

which shows the 15, %p)-feasibility of w* with respect to the feasibility set of

(DCPSk). In order to show (4.6.1.b) we obtain by the same argumentation as in
(4.6.6)

k) + % wh) < (M) + phu(w(Sh) + 2n(DI + C%)p

A\

Su(g’“)Jrg <
< u(S*) +3

]9
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REMARK 4.6.2.

(a) It follows immediately that the situatiod”| = 1 (see (GWSR)) cannot
occur, if¢, § andp are chosen as in the previous lemma. Indégd, = 1

means that
w® = Z—kvi € {v5,...,v, }.
ielk
Regarding (4.6.1.a) and because/f, (vF) = f'(vF) (i € {0,...,n}),
we know that there is a( p)-feasible vertex? € {v%,... vk}, Since

each vertex ob* (k € IN) is used for updating the upper bound in previous
iterations of Algorithm 4.1 and in view of (4.6.1.b), there holds

" < %) + fO(0f) = ¢°(w") + Pl (W)
< p(SY) +ie < 0t - ge,

——

<nk—e

which is a contradiction.

(b) In the quadratic case the Lipschitz constait{l € {0,...,p}) can be
calculated in the following way

L' = max [[Vf'(z)l2,
eV (S9)

whereV (S°) denotes the vertex set 6. For the calculation of.! in the
general case we refer to Section B.2.

(c) Since we have @ONVEXSOLVER, ; ; for arbitrary accuracieg 5,p>0
the necessary upper bour@dsfor the concave functiong (I € {0, ... ,p})
on the setSY can be determined using this solution method.

With the result of Lemma 4.6.1 and using an analogous argumentation as in
the proof of Lemma 4.4.1 the following corollary is easy to verify.

COROLLARY 4.6.2. Assume that, §, p > 0. Let S* be the selected simplex
In iteration k£ € IN of Algorithm 4.1 employing the generalizeesubdivision rule
(GWSR), letvs(S*) be an €, 4, p)-solution of (DCP") with ¢, § and p chosen as
in Lemma 4.6.1, and le§* be one of the simplices obtained by subdividifg
with respect taw”. If S* is not fathomed in the pruning rule (PR) of Algorithm
4.1, then there holds, for eache S* withz = 37" ., Ajvf + \w*, A € By,
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i€{0,...,n},

0% (@) > o (z) + Tehi | ifwhis (4, p)- feasible,

or (4.6.7)
e {l,....p}: @hi(z) > () + 36X , otherwise.
PROOF. As mentioned above, this proof is analogous to the proof of Lemma

4.4.1. Therefore, we would not like to expatiate this proof. However, note that —
regarding Remark 4.6.2(a) — there holds

Ak
k ik k k
w® = E _'kai ¢ {vg,...,u.},

iclk
i.e, |[I*| > 1in (GWSR). Note, furthermore, that” is, in view of Lemma 4.6.1,
alwaysp-feasible with respect to the linear constraints of (DCP). |

The result of this corollary coincides with Lemma 4.4.1, where this lemma was
the essential part in the proof of Lemma 4.4.2. A careful checking of the proofs for
Lemma 4.4.2 (see Appendix A, especially the proof of Lemma A.1) shows that this
resultis also true in the general case of problems of type ¢)@PRhe assumptions
of Corollary 4.6.2 are fulfilled.

COROLLARY 4.6.3. Assume that, 6 and p are chosen greater thamin the
initialization of Algorithm 4.1, and assume thatGONVEXSOLVER, ; , is used
with €, § and p chosen as in Lemma 4.6.1. Lg§*},cv be an infinite nested
sequence of simplices generated by the variant of Algorithm 4.1, which employs
only (GWSR). Assume further that this sequence has the properties that, for each
k € IN, there holds

_ [k k koK k
= [V, VWU, U]

and
w(SF) < nF —e.

Then there exist a numbéf € IN and an integer with 0 < r < n, such that
S* = [u, . .. ,vr,vf+1,... ,uF] Vk > K,

whereuy, ... , v, are fixed vectors, while’ ;... ,v% (k € N,k > K) change
infinitely often. Moreover, there holds

ﬂSk = [vg,...,v] = S.

keS
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If we modify the generalized-subdivision rule in such a way, that in the
result of Corollary 4.6.3 there must hotd= 0, then we can obtain an algorithm,
which delivers in finite time either anm,(0, p)-solution of Problem (DCP) with, 6,

p > 0 or the emptiness af'. The followingmodified generalizedw-subdivision

rule (MGWSR) yields this intention. For this rule we need an additional counter
N (i, S*), which shows how long the vertex (i € {0,...,n}) of S* did not
change.

In the initialization phase of Algorithm 4.1 we set, for eack {0,...,n},
N(i,S% = 0, and in each iteration this counter is adjusted, for each simﬁ}ex

(j € I*¥), in the following way
N(i,S%) = N(i,5) +1 ,ifi€{0,... ,n}\ {j}
N(j,SF) =0
In order to formulate the modified rule we need, additionally, an arbitrary, but fixed

numberN € IN, which has to be chosen in the initialization phase of Algorithm
4.1. The (MGWSR) is now as follows.

Choose\F € {Ae R™": Y " A\ =1} withw(S*) = >0 Aok,
I* — {ie{0,...,n}: >0}
If |I*| =1 Then

wk — % (vfo - Ufl) (SR1)
(i.e., choose a classical bisection, see (4.2.12) for the definitignaofdi)
Else

DetermineN; andi, with Ny = N (i2, S*) = max;e(o.... .y N(i, S¥)
andN; = maX;e{o,... n}\{iz} N(ia Sk)-
If Ny > N Then

wk — % (vfo + vfl) (SR2)
Else

Determiney® := ", 7 A%

wh = e »/;_:Uf (SR3)
EndlIf

EndIf
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THEOREM4.6.4. Assume that, § and p are chosen greater thae in the
initialization of Algorithm 4.1, and assume thatGONVEXSOLVER, ;5 , is used
with €,  andp chosen as in Lemma 4.6.1. Then the variant of Algorithm 4.1, which
employs only (MGWSR), detects for Problem (DCP), in particular for (B)CiR
finite time either the emptiness of the feasible redioor an (e, §, p)-solution.

PROOF. Assume, by contradiction, that Algorithm 4.1 is not finite and let, without
loss of generality{ S*} .y be an infinite nested sequence of simplices generated
by this approach with the property S*) < n* — e (k € IN). In view of Remark
4.6.2(a) we know thaw* must be chosen by the selection rules (SR2) or (SR3). If
there holds

[{k € IN : w" is chosen by (SR2) < oo, (4.6.8)

then we can assume that' (k € IN) is always chosen by (SR3). With respect
to Corollary 4.6.3 we obtain the existence of a numherc IN and an integer
0 <r < nwith

n

Sk = v, ... ,vr,varl,... JuF] Yk > K.
Since eachw” is chosen by (SR3) there holds= 0. Otherwise, we would obtain
min {N(0,S%), N(1,5%)} > N

for k € IN big enough, which would force the selectiomof by (SR2). The fact
thatr is equal to0 together with the second result of Corollary 4.6.3 implies the
exhaustiveness of the seque{c } e, and, because of 6, p > 0, Theorem
4.3.1 yields a contradiction.

Therefore, (4.6.8) cannot be true, i.e., an infinite number of elements of
{S*} e Must be generated by the classical bisection rule. Denoté $Y) :=
max; j—o.... n ||vF —vf |2 the diameter of* and the maximal distance of* to any
vertex of S* by d(w*, S*) := max;—q... ., |[w® — v¥||2. If there exists a constant
valuer € (0, 1) with the property that, for each € IN, there holds

d(w®, S*) < 7d(S%), (4.6.9)

then it is a known fact [HT98, Proposition VII.4] that infinitely many bisections
guarantee the exhaustivenes$ 6f } pcx.

As mentioned before we know, in view of Theorem 4.3.1 and because pf
p > 0, that{ S*},ev cannot shrink to a singleton. Thus, there does not exist a value
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T € (0,1) with property (4.6.9). l.e., there is at least a subsequé¢fée} i of
d(wka, Ska)
W — 1 (q — OO) (4610)

and, for eacly € IN,
w”s is chosen by (SR3) .

Note that{d(S*)} e is a non-increasing sequence, which is, in view of the non-
exhaustiveness dfS*} ., convergent to a real valué > 0, and note, further-
more, that there holds

d(w”, S*) < 3d(S*),

if w” is chosen by bisection (see, e.g., the proof of Proposition 3.14 in [HPT95]).

Since each vertex sequer{aéq}qem (1 €40,...,n})is bounded, we can as-
sume, without loss of generality, that they are convergent to points
(:=0,...,n). Let\? € B, (¢ € IN) be chosen such that

Because of the boundedness{of },c we can further assume, without loss of
generality, that this sequence is also convergentto a vactoB,, and we obtain

whe — SNy =: w. (4.6.11)
1=0
We prove now that, taking (4.6.10) into account, there holds
w € {Ugy...,Un}. (4.6.12)

PROOF OF(4.6.12): Obviously we know that
d(s*) —  max |57 =d (g 00). (4.6.13)

.....

For each; € IN, there is an index(q) € {0, ... ,n} with
d(w"s, S*) = |lw — v |la .
Assume, without loss of generality, thdt)) is always the same index, i.e.,
d(wbe, §F) = |lws — 5|2 (4.6.14)
for eachqg € IN and a fixed’ € {0, ... ,n}.
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Combining (4.6.10), (4.6.11), (4.6.13) and (4.6.14) we obtain

0<d=|w—ovylla = DNV —0yl2
§=0
= 12X @ —0)ll2 < YN log — vl < d.
j=0 j=0 %’
<d
Therefore, we see that,
15X (0 =) |2 = YNl (05 —vg) ]2 = d. (4.6.15)
§=0 j=0

Because ofl > 0 we know that the set

L = {j € {0, ,n}: (’l_)j —’l_)i/) 7é0and/_\j > 0}
is not empty, and, in view of the right-hand side of (4.6.15), for eaghL, there holds
A; = 0. Indeed, ifL is empty, then we obtaid >"_ ;(|5; — i ||2 = 0 contradicting
d > 0. Moreover, if there is an index’ ¢ L with A\;; > 0, then it follows that
> o Nilltg = Burlla < 350 . Ajd < d contradicting (4.6.15). The left-hand
equality in Relation (4.6.15) is only possible if there exists, for eachpairc L, a
scalary;,;; € IR \ {0} with

o i
Uy — Uy = %’jX_Z(Uj —y) -
Furthermore, again in view of the right-hand equation of (4.6.15), we obtain
15 =Tl = N5 —vwll2 = d, (4.6.16)

and, therefore,

Aj
ii= € 1—1,1}.
’Y,J/\' { }

Assume thaty; ;32 = —1. Then there holdés; — 9;/) = (v — ;). This implies
2d = [|2(T; — 0r)ll2 = B — 0 + 00 = Till2 = |5 —05]2 < d,

which contradictsi > 0. It follows, that there is an indeX’ € L such that, for each
j € L, there holds

and we conclude
w = Zj\jﬁj+ Z S\j Vj = Ui ZS‘J = v,

jEL &L~~~ jeL

i.e., (4.6.12) is true. O
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Assume, without loss of generality, that there holds= ©vy. Since the points
wke (¢ € IN) are chosen by (SR3) we know, regarding Lemma 4.6.1, that, for
eachg € IN, whe is (26, 3 p)-feasible for the convex subproblem (DEP). The

point sequence$w”s },n and {qu}qem converge to the same limit poimt,.
Therefore, we obtain by continuity gf andg’ (I € {0,...,p}) (see, e.g., again
[Roc70, Theorem 10.1]) and by using the same representatiefiofg € IN) as
in the proof of (4.6.12), for eache {0, ... ,p},

gl (W) — g'(vg") — 0 (g — o)
and

Pigry (WF) = F1(0g") = P, (wF0) — i, (057) — 0 (g — 00) .
It follows, that there exists @ € IN such that, for each > Q,
e is (6, p)-feasible
and
") + fO(vp") < (k) + P, (whe) + Le. (4.6.17)

Since eachd, p)-feasible vertex of an iteration simple&¢ (k € IN) was used for
updating the upper bound, it follows from Relation (4.6.17) and Relation (4.6.1.b)
of Lemma 4.6.1 that

k k k i
9" (vg") + 2 (vg") < m(S™) +ge <t —ge < g%(vg") + f(wp") — e

which is also a contradiction and completes the proof. |

4.6.3. Comparison of Different Subdivision Strategies Based on (MGWSR).
Theorem 4.6.4 guarantees that Algorithm 4.1 with (MGWSR) delivers in finite time
an (, ¢, p)-solution of our test problems, if the accuracies for the UGBNVEX-
SOLVER, 5 , are chosen sufficiently small. We implemented the modified gen-
eralizedw-subdivision rule and used again thAG-routine EO4UCGC where the
accuracies, ¢ andp were calculated as required in Lemma 4.6.1. With this im-
plementation we solved all test problems. However, in order to avoid excessive
running-time we stopped the calculations, if more tBaa, 000 convex subprob-
lems were solved. The variant of Algorithm 4.1, which uses only bisections, needed
less than this maximal number of convex subproblems for solving any test problem.
The tolerances, 6 andp were the same as in the numerical experiments using bi-
section and folV we chosen.



168 ON THE CONVERGENCE OFSIMPLICIAL BRANCH-AND-BOUND METHODS

In Table 4.4 we compare the numerical performance of Algorithm 4.1 using
(MGWSR) with the performance of Algorithm 4.1 only employing bisections. The
displayed test results for the dimensions= 2 andn = 3 were run onSUN
SPARC 10workstations. The used abbreviations are the same as in Table 4.1 and
4.2. Mw stands for Algorithm 4.1 with (MGWSR) art8i for Algorithm 4.1 using
bisections. Even though Algorithm 4.1 using (MGWSR) was mostly in more than

TABLE 4.4. Comparison of (MGWSR) and bisection

p NuP AvgNuSP StdSP AvgTime StdTime
Mw<Bi Mw Bi Mw Bi Mw  Bi Mw Bi

I
DO

46 16.50 29.64 33.16 1296 0.13 0.23 0.16 0.10
40 1494 23.60 26.08 1240 0.14 0.21 0.17 0.10
43 28.54 33.92 4350 14.12 030 0.34 0.36 0.17
35 86.10 34.40 3669 1093 131 0.36 358 0.13

I
w

43 105.6 78.00 386.3 51.47 104 091 297 0.60
37 78.06 80.16 97.05 47.03 1.05 1.03 1.43 0.66
37 181.7 101.3 5179 6740 276 143 6.35 0.95
25 113.1 82.00 1314 4338 164 120 164 0.59
30 2941 88.20 966.1 4850 394 140 1098 0.72
22 205.4 88.80 3085 4431 452 154 7.17 0.72

OO, WNEI(APWODNPESI

50% of the test examples faster than Algorithm 4.1 using bisections, the average
running-time was only in a few cases lower. Furthermore, the standard deviation
of the number of solved convex subproblems as well as of the running-time was
higher in the case of (MGWSR) and was growing faster. The reason is that Al-
gorithm 4.1 using (MGWSR) was in many test examples slightly faster than the
version of Algorithm 4.1 with bisections, at least for small dimensions, but, in par-
ticular for growing dimensions and a growing number of quadratic constraints, this
approach was in more and more test examples significantly slower than Algorithm
4.1 using bisections. For dimensions higher thas 3 Algorithm 4.1 only em-
ploying (MGWSR) did not solve aB0 test problems for each couple,(p) of the
dimensiomn and the number of quadratic constrainisith less thar200, 000 con-

vex subproblems. As it can be seen in Figure 4.5, the number of not-solved test
problems increased with growing dimensions and a growing number of quadratic
constraints. For example, for dimensian= 8 andp = 16 quadratic constraints
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FIGURE 4.5. Number of test problems where Algorithm 4.1 us-
ing (MGWSR) needed more th&®0, 000 convex subproblems
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Algorithm 4.1 using (MGWSR) needed less thz, 000 convex subproblems for

only 5 test problems. Remember that the same approach, which used only bisec-
tions, solved all test problems with less than this maximal number of calls of the
subroutineE04UCC

Due to this reason we obtain that Algorithm 4.1 with bisections led to a more
robust solution process, whemeore robusis meant in the following sense. The
number of necessary convex subproblems and, thus, the running-time did not vary
so keenly, as it was the case, when (MGWSR) was applied. The effort for detecting
an (, 6, p)-solution of the quadratic test problems was rather predictable. Even
though the variant of Algorithm 4.1, which employs only bisections, was also for
higher dimensions not always the fastest approach, it was a better approach than
the same algorithm using (MGWSR), since it did not show numerical outliers.

Our numerical experiments further showed a regularization effect of the bisec-
tion with respect to the effort for solving the convex subproblems. If the generated
simplices tend to degenerate, i.e., they becomdfitgoas it is possible by using
(MGWSR), then numerical problems, e.g., ill-conditioned constraint matrices, can
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occur and can lead to a substantially growing effort for solving the convex subprob-
lems. If the classical bisection rule is used, then the risk of the occurrence of such
numerical problems is much lower. In our numerical tests such problems did not
appear in connection with the use of the bisection.

In order to make (MGWSR) more robust in the sense mentioned above, we
could reduce the numbéy¥. With N = 2n Algorithm 4.1 using (MGWSR) chose
w® by (SR3) on average iA1.5% of the performed subdivisions (see also Table
4.8 and Table 4.9). If we reduc¥, the number of bisections will increase and
the numerical performance of Algorithm 4.1 using (MGWSR) will approach to
the numerical performance of the variant of this algorithm, which employs only
bisections. Note that, for each nested sequésée <, all simplicesS* (k > N)
must be generated by bisection)Nfis chosen smaller tham — 1.

As mentioned before, there were also for higher dimensions test examples
where the (MGWSR) strategy was the best one. If we simply redicthen we
will obtain a more robust algorithm, but, at the end we have nothing else than an
algorithm using bisections, and it is likely that we loose the not frequent, but really
good results of (MGWSR) for some test examples. Maybe it is possible to develop
a strategy, which is a mixture of the classical bisection rule and (MGWSR), and
which shows a good performance in all cases, i.e., which use (MGWSR), if this
strategy is the fastest one, and bisection, if (MGWSR) does not work.

In the case of problems of type (D@Pwe know thatw(S*) (k € IN) is
always a feasible point, at least ifGONVEXSOLVER oo is used. Therefore, it
Is reasonable to hope that this point is a better choice than the point obtained by
bisection, sinces(S*) is connected to the information returned by the algorithm
inside the selected simpleX*. This is the main reason for the suggestion of the
w-subdivision, e.g., in [HT98]. In the general case of problems of type (DEP
the pointw(S*) is the approximate solution of a subproblem, where the objective
function as well as the constraints are relaxed. Therefore, we cannot hope that
w(S*) has something to do with the solution of the original problemu (%) is
at least {, p)-feasible, then this point is used for updating the upper bound, and
we have more hope that( S*) bears some information about the original problem.
Thus the first mixed strategy we used was the follow(iMg\WSR1)
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If w”* is (6, p)-feasibleThen
Choosew”* by (MGWSR).
Else
Choosew” by bisection.
EndIf

Nk — _
wherew” is defineda$ ",z 2_’“”5 with \¥ € R"*!, ¥ ¢ RandI* c {0,... ,n}
given as in Lemma 4.6.1.

This strategy was much more robust than (MGWSR) alone, but the average
running-times for higher dimensions were still slower than by using only bisections.
In this case2 test problems witm = 7 and 17 problems withn = 8 were not
solved. Therefore, we developed further strategies. In these strategies we try to use
more information about the Problem (DCP).

Denote bym” the middle point of the longest edge $f (k € IN), i.e.,

k k k
m = %(vi0+vi1)’

with i andi; defined as in (4.2.12). Denote, further, forc {0,...,p} and
x € IR", by

Teu(2) = f(z) = ()

the difference between the function values of the concave fung¢tiand its convex
envelope at the point.

In the second mixed strateiMGWSR2) we require now, additionally, that
To. (@) is greater thanrg, (m*). This means that we choose just the point

w € {w® m*} which pushes most the convex envelope. Note that the convex
envelopesp?, (j € I*) coincide atw with f°, whereS* is the simplex result-
J

ing from the subdivision o6* with respect to the point (see the formulation of
Algorithm 4.1).

This strategy showed on average a better running-time performance than
(MGWSR1). However} test problems witm = 7 and8 problem withn = 8
were still not solved with less th&90, 000 convex subproblems.

Therefore, in the third mixed strategy we further intensified the decision crite-
rion for the use of (MGWSR) by considering also the constraints. The pdirg
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chosen only by (MGWSR), if there holds

a® is (8, p)-feasible, (C.1)
Tor (@) > 7 (m") (C.2)

and
le{nla,z.afc’p}Ték(wk) > lE{Hll,E.lj}.(,p}T'lsk(mk). (C.3)

This strategy MGWSR3) is the most robust strategy with respect to all strategies
using (MGWSR) we tested. Only one test problem with dimensioa 8 was

not solved. On the other hand, as we will see later, applying this strategy only
in a few iterations of Algorithm 4.1 the new simplices were generated by using
w* as subdivision point (see Tables 4.8 and 4.9). Thus, this strategy did not show
in all relevant examples, i.e., in just the examples where (MGWSR) is the best
approach, the good performance of (MGWSR) mentioned before. Therefore, in
the last examined mixed strateMGWSR4) we relaxed again the criteria which

had to be fulfilled in order to choose (MGWSR) instead of the bisection rule. The
(8, p)-feasibility of w* is no longer required. The number of iterations, where
(MGWSR) is applied, increased again (see Tables 4.8 and 4.9), but, this strategy
was less robust than (MGWSR3), as we can see in Figure 4.6.

FIGURE 4.6. Number of test problems where Algorithm 4.1 us-
ing (MGWSR4) needed more tha00, 000 convex subproblems
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Table 4.5 gives an overview of the different subdivision strategies we tested
and of the criteria which have to be fulfilled such that either (MGWSR) or the
classical bisection is used.
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TABLE 4.5. Different strategies and the used subdivision rules

USED SUBDIVISION RULE
STRATEGY (MGWSR) Bisection
Bisection never always
(MGWSR) always never
(MGWSR1) if (C.1) is satisfied otherwise
(MGWSR2) if (C.1) and (C.2) are satisfied otherwise
(MGWSR3) | if(C.1), (C.2) and (C.3) are satisfied otherwise
(MGWSR4) if (C.2) and (C.3) are satisfied otherwise

We also tested strategies requiring thigo)-feasibility of m* before analyzing
the criterions (C.2) and (C.3). Our numerical tests showed that the feasibility of
m”* was nearly never fulfilled and, thus, by requiring this feasibility we obtained a
strategy which almost coincided with (MGWSR) or (MGWSR1).

With each of the presented six strategies we tried to solve all test problems.
Because of the high number of test exampke9(0 for each strategy) we used
several workstations, as it can be seen in Table 4.7. In order to make the running-
times comparable all problems with the same dimension and the same number of
guadratic constraints were calculated on the same machine.

In Tables 4.6 and 4.7 the average running-times in seconds are displayed for
some of the solved test problems. Note that in the calculation of the average
running-times we considered only the problems, which were solved by considering
less thar200, 000 convex subproblems. Therefore, the corresponding number of
solved problems is given in brackets next to the average running-time. The columns
with respect to the bisection strategy are not comparable with the corresponding
columns of Table 4.1 or Table 4.2, respectively, since other workstations were used
for the calculations.

The third mixed strategy (MGWSR3) shows with respect to the running-time
the best numerical performance among all strategies involving (MGWSR). In some
cases this strategy was even faster than bisection. However, none of the strate-
gies usingv-subdivision beats the numerical performance of the bisection strategy.
Thus, and with respect to the possible numerical problems by using a strategy with
(MGWSR) mentioned before, the bisection seems to be the best choice, at least for
the tested set of all-quadratic optimization problems.
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TABLE 4.6. Comparison of the average running-time in sec-
onds for all strategies and= 2, 3, 4

p Bisecton (MGWSR) (MGWSR1l) (MGWSR2) (MGWSR3) (MGWSR4)
n = 2%

1 0.22(50) 0.13 (50) 0.13 (50) 0.16 (50) 0.18 (50) 0.18 (50)
2 0.21 (50) 0.14 (50) 0.14 (50) 0.15 (50) 0.18 (50) 0.18 (50)
3 0.34 (50) 0.30 (50) 0.30 (50) 0.34 (50) 0.32 (50) 0.31 (50)
4 0.36 (50) 1.31 (50) 0.60 (50) 0.55 (50) 0.34 (50) 0.34 (50)
n = 37

1 0.91(50) 1.04 (50) 0.62 (50) 0.65 (50) 0.71 (50) 0.72 (50)
2 1.03(50) 1.05 (50) 1.00 (50) 0.86 (50) 0.93 (50) 0.92 (50)
3 1.43(50) 2.76 (50) 1.51 (50) 1.39 (50) 1.25 (50) 1.36 (50)
4 1.20 (50) 1.64 (50) 1.54 (50) 1.37 (50) 1.10 (50) 1.10 (50)
5 1.40 (50) 3.94 (50) 1.74 (50) 1.55 (50) 1.31 (50) 1.41 (50)
6

n

1

2

3

4

5

6

7

8

1.54 (50) 4.52(50)  2.47 (50) 1.86 (50) 1.46 (50) 1.54 (50)
— 4o
1.94 (50) 2.53(50)  1.53 (50) 1.51 (50) 1.59 (50) 1.69 (50)
2.26 (50) 2.89(49)  2.10 (50) 1.79 (50) 1.86 (50) 2.51 (50)
210 (50) 13.5(50)  2.12 (50) 1.98 (50) 1.96 (50) 2.76 (50)
3.62(50) 19.8(49)  3.90 (50) 3.75 (50) 3.42 (50) 3.70 (50)
2.78(50) 15.6(50)  3.16 (50) 2.99 (50) 2.65 (50) 2.83 (50)
3.97 (50) 36.7(48)  4.85(50) 4.48 (50) 3.80 (50) 4.06 (50)
3.79(50) 28.3(48)  4.92(50) 4.54 (50) 3.70 (50) 3.99 (50)
3.95(50) 13.3(45)  5.39(50) 4.83 (50) 3.84 (50) 4.03 (50)

2run onSUN SPARC 10workstations

We conclude the numerical comparisons by a consideration of the average
number of w-subdivisions used by the different strategies (MGWSR),
(MGWSR1)-(MGWSR4), i.e., we consider the number of subdivisions, wirére
was chosen by (SR3) and not by bisection. Tables 4.8 and 4.9 show the aver-
age number ofu-subdivisions for some test results in percent. Note that also for
the calculation of these average numbers we considered only the problems, which
were solved with less thaz00, 000 convex subproblems. For that reason, the cor-
responding numbers of solved test problems are given again in brackets (compare
with Tables 4.6 and 4.7). As it was to be expected, the numbersafbdivisions
was reduced, if a stronger criterion for the choice of (MGWSR) was applied. Fur-
thermore, it is not surprising that for strategies using at least criterion (C.1), i.e.,
for  MGWSR1), (MGWSR2) and (MGWSR3), the average proportional part of
w-subdivisions decreased, if the number of nonlinear constraints increased. The
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TABLE 4.7. Comparison of the average running-times in
seconds for all strategies and= 5,6,7,8

p Bisecton (MGWSR) (MGWSR1) (MGWSR2) (MGWSR3) (MGWSR4)
n =5°

2 6.14 (50) 23.98 (46) 7.80 (50) 6.29 (50) 5.42 (50) 8.56 (50)
4 8.11 (50) 148.2 (49) 11.17 (50) 9.56 (50) 7.86 (50) 18.36 (50)

6 9.66 (50) 152.9 (44) 11.19 (50) 11.06 (50) 9.18 (50) 12.27 (50)

8 11.91 (50) 275.5(45) 15.06 (50) 14.42 (50) 11.45 (50) 12.66 (50)
10 9.61(50) 385.3(46) 12.64 (50) 11.84 (50) 9.19 (50) 10.19 (50)
n==~06

2¢  14.27 (50) 175.4 (49) 99.29 (50) 30.42 (50) 11.70 (50) 21.92 (50)
4¢  27.21(50) 293.1 (41) 34.47 (50) 28.37 (50) 25.84 (50) 35.60 (50)
6¢ 37.10(50) 403.8(36) 46.37 (50) 43.33 (50) 36.96 (50) 83.81 (50)
8¢ 59.42(50) 1530 (35) 73.45 (50) 72.13 (50) 57.96 (50) 68.60 (50)
10° 32.40(50) 824.9 (38) 50.89 (50) 44.79 (50) 32.30 (50) 41.74 (50)
12 51.83(50) 2391 (30) 73.73 (50) 71.18 (50) 49.67 (50) 66.19 (50)
n="7¢%

2 24.97 (50) 109.8 (41) 55.20 (49) 21.19 (48) 31.17 (50) 48.23 (49)

4 29.86 (50) 251.8(34) 58.50 (49) 32.11 (49) 30.98 (50) 41.02 (47)

6 23.05(50) 382.1(33) 31.55 (50) 29.47 (50) 22.59 (50) 29.51 (48)

8 36.92 (50) 396.4 (28) 43.86 (50) 41.27 (50) 35.95 (50) 66.27 (49)
10 41.16 (50) 973.1(19) 48.07 (50) 46.09 (50) 40.04 (50) 60.06 (49)
12 44.21 (50) 784.3 (19) 52.07 (50) 51.23 (50) 43.06 (50) 53.53 (50)
14 52.46 (50) 688.2(19) 60.58 (50) 60.13 (50) 51.46 (50) 75.98 (50)
n —

2¢  127.7 (50) 506.3 (34) 339.4 (47) 158.0 (49) 124.9 (50) 263.5 (49)
4¢  149.5(50) 756.2 (23) 303.2 (50) 201.6 (49) 153.2 (50) 309.9 (50)
6¢ 184.4(50) 2115 (22) 313.3 (50) 234.5 (50) 199.2 (50) 239.0 (49)
8¢ 391.7 (50) 750.9 (15) 627.7 (50) 620.3 (50) 388.3 (50) 523.3 (48)
10¢ 226.8(50) 3169 (11) 265.3 (50) 357.0 (50) 219.4 (50) 326.5 (50)
12¢ 118.2(50) 1080 (10) 138.7 (50) 134.2 (50) 114.5 (50) 299.9 (50)
14¢  134.7 (50) 1641 (12) 166.1 (50) 164.0 (50) 131.4 (50) 141.3 (48)
16 164.4 (50) 2106 (5) 217.2 (50) 215.2 (50) 167.2 (50) 207.8 (49)

%run onSUN SPARC 10workstations
brun onSUN SPARC 20wnorkstations
¢run onSUN SPARCserver 100@orkstations
drun onSUN ULTRA 60 workstations

same is also true for strategy (MGWSR4), as we can see in the last columns of
Table 4.8 and Table 4.9. However, using this strategy the variation of the propor-
tional part with respect to a fixed dimension was not so high as for the other mixed
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TABLE 4.8. Comparison of the average proportional part of sub-
divisions, whereuv” is chosen by (SR3), far = 2, 3, 4

p (MGWSR) (MGWSR1l) (MGWSR2) (MGWSR3) (MGWSR4)
n =2

1 97.46 (50) 27.04 (50) 7.88 (50) 3.98 (50) 5.19 (50)
2 93.44 (50) 18.27 (50) 7.36 (50) 2.91 (50) 5.04 (50)
3 95.75(50) 14.99 (50) 4.20 (50) 1.21 (50) 2.75 (50)
4 98.49 (50) 11.60 (50) 4.49 (50) 0.590 (50) 2.57 (50)
n=3

1 95.24 (50) 24.53 (50) 7.70 (50) 3.10 (50) 5.83 (50)
2 93.87(50) 10.06 (50) 4.01 (50) 1.14 (50) 5.68 (50)
3 95.57 (50) 9.08 (50) 4.53 (50) 1.41 (50) 5.51 (50)
4 91.71 (50) 4.63 (50) 2.01 (50) 0.298 (50) 2.45 (50)
5 93.66 (50) 4.26 (50) 1.40 (50) 0.227 (50) 2.89 (50)
6 92.56 (50) 4.29 (50) 1.92 (50) 0.088 (50) 2.60 (50)
n=4

1 95.44 (50) 23.58 (50) 5.76 (50) 5.47 (50) 9.85 (50)
2 95.09 (49) 19.85 (50) 5.18 (50) 2.25 (50) 5.33 (50)
3 94.44 (50) 4.62 (50) 2.77 (50) 2.40 (50) 6.92 (50)
4 94.67 (49) 3.60 (50) 1.85 (50) 0.303 (50) 4.79 (50)
5 93.14 (49) 1.76 (50) 0.831 (50) 0.155 (50) 3.97 (50)
6 94.65 (48) 3.44 (50) 1.62 (50) 0.170 (50) 4.39 (50)
7 92.83(48) 2.55 (50) 0.746 (50) 0.186 (50) 3.13 (50)
8 94.68 (45) 1.95 (50) 0.532 (50) — (50) 3.65 (50)

strategies. This shows that the feasibility criterion (C.1) is a strong one, at least for
a high number of quadratic constraints.

Our numerical tests showed further that there are, in particular for higher
number of nonlinear constraints > n), a lot of test examples where the three
criterions are rarely satisfied together. Using (MGWSR3) there are many exam-
ples where only bisections were used for subdivision. This is demonstrated by the
small numbers in the corresponding columns of Tables 4.8 and 4.9. For the pairs
(n,p) € {(4,8),(5,10)} we even had a situation where for solving &l test
problems with Algorithm 4.1 using (MGWSR3) a simplex was never generated by
choosing the point* according to the rule (SR3), i.e., in this situation the strategy
(MGWSRS3) led to the same iterations as the bisection strategy.
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TABLE 4.9. Comparison of the average proportional part of sub-
divisions, wherev” is chosen by (SR3), fot = 5,6, 7,8

p (MGWSR) (MGWSR1l) (MGWSR2) (MGWSR3) (MGWSR4)
n=3>5

2 90.50 (46) 20.84 (50) 5.70 (50) 3.57 (50) 8.02 (50)
4 91.71 (49) 7.86 (50) 3.05 (50) 1.02 (50) 4.91 (50)

6 92.62 (44) 1.61 (50) 0.583 (50) 0.138 (50) 5.08 (50)
8 88.95 (45) 0.868 (50) 0.423 (50) 0.0844 (50) 4.02 (50)
10 89.60 (46) 1.21 (50) 0.253 (50) — (50) 3.71 (50)

n==~6

2 94.05 (49) 69.38 (50) 4.48 (50) 3.21 (50) 18.21 (50)
4 91.29 (41) 9.75 (50) 2.95 (50) 0.583 (50) 5.52 (50)

6 78.99 (36) 4.46 (50) 1.58 (50) 0.302 (50) 5.46 (50)

8 87.23(35) 1.37 (50) 2.03 (50) 0.229 (50) 4.78 (50)

10 80.53(38) 3.61 (50) 0.413 (50) 0.0388 (50) 3.63 (50)
12 83.40(30) 0.864 (50) 0.402 (50) 0.042 (50) 3.99 (50)
n==17

2 99.17 (41) 49.50 (49) 9.03 (48) 7.32 (50) 12.53 (49)
4  75.30 (34) 2.29 (49) 2.47 (49) 1.35 (50) 10.36 (47)
6 89.65(33) 56.19 (50) 8.89 (50) 1.12 (50) 7.02 (48)

8 93.56 (28) 1.07 (50) 0.421 (50) 0.0283 (50) 7.08 (49)
10 91.96 (19) 1.24 (50) 0.185 (50) 0.0717 (50) 7.02 (49)
12 87.96 (19) 0.175 (50) 0.107 (50) 0.0028 (50) 2.71 (50)
14 94.06 (19) 0.345 (50) 0.108 (50) 0.0076 (50) 3.72 (50)
n=3~8

2 88.22(34) 31.94 (47) 8.02 (49) 4.03 (50) 11.66 (49)
4 71.34(23) 18.42 (50) 6.49 (49) 2.20 (50) 8.68 (50)

6 85.04 (22) 7.36 (50) 2.39 (50) 0.537 (50) 6.92 (49)

8 99.77 (15) 3.40 (50) 2.69 (50) 0.759 (50) 6.07 (48)

10 92.81(11) 0.977 (50) 0.111 (50) 0.0536 (50) 5.77 (50)
12 86.51(10) 0.383 (50) 0.253 (50) 0.0367 (50) 2.35 (50)
14 94.62 (12) 0.185 (50) 0.065 (50) 0.0022 (50) 6.20 (48)
16 86.25(5) 0.0533(50) 0.0198 (50) 0.0026 (50) 5.65 (49)

Finally, we have to note that all these suggested strategies did not manage our
aim to develop a mixed strategy, which is the best one in all cases. Maybe it is
possible to develop such a strategy by using other problem information than the
information we used. The existence of such a strategy is still an open question.
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4.7. A Finiteness Result

We conclude the chapter about the convergence of simplicial branch-and-bound
algorithms based ow-subdivisions with a partial answer to the theoretical prob-
lem of the finiteness of Algorithm 4.1, even with= § = p = 0. In this section
we consider problems of type (DR i.e., concave minimization problems over
polytopes. In Section 4.4 we showed that the variant of Algorithm 4.1, which em-
ploys only w-subdivisions, applied for problems of this type is convergent, if a
CONVEXSOLVER( 00 is available. Remember that in this situation there holds in
the generalized-subdivision rule (GWSR) always* = w(S*). As we will see
in this section it is even possible to prove the finiteness of this approach, if two
additional assumptions are fulfilled.

Some finite simplicial branch-and-bound algorithms for solving problems of
type (DCR) were proposed in the literature (see, e.g.EfiB5, TB85, BS94,
NAsS96]). In some cases finiteness was obtained by combining the simplicial ap-
proach with some other tools. For instance, ireNB5] finiteness is yielded by the
introduction of a neighbor generation mechanism. In some other cases finiteness
was obtained by using different subdivision rules: instead of subdividing the se-
lected simplex with respect to one of its points, as we did in Algorithm 4.1 (see,
especially, the point selection rule (PSR) and the following lines in the formulation
of this approach in Section 4.2), the selected simplex is subdivided by other tech-
niques. One of such different subdivision techniques is describedAas98] and
the corresponding algorithm is proven to be finite. On the other hand, the number
of new simplices generated at each iteration by this technique may be extremely
high, while by subdividing with respect to a point of the simplex, i.e., by applying
a radial subdivision, this number is bounded from above by1.

To the author’s knowledge, no proof of finiteness for the basic simplicial branch-
and-bound Algorithm 4.1 applied for solving problems of type (RCIRas been
given apart from [LR9&]. Some simplicial branch-and-bound algorithms can
even be proven to be infinite. For instance, for Algorithm 4.1 with bisections it
Is possible to construct counterexamples showing that the algorithm, though con-
vergent, is not finite. In some other cases finiteness is still an open question.

As mentioned before, we need two additional assumptions in order to prove
the finiteness of the version of Algorithm 4.1, which usesubdivisions (with
e =0 = p = 0) and is applied for solving problems of type (DQPThe first of
these assumptions is a mild one and can always be enforced, as it will be shown in
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the sequel. The second assumption is a strong one and cannot be guaranteed all the
time. However, as we will see, this assumption is easy to check and holds in some
special cases.

The assumptions are as follows.

(A.1) The function value of the concave objective functigh in a vertex of
the start-simplexs® = [v], ... ,v2], which does not belong to the poly-
tope P, is smaller than the optimal valug of f° over P, i.e., for each
i €{0,...,n}withv) ¢ P, there holds

fovd) < fr. (A.1)

(A.2) Each vertex of the start-simples¢, which does not belong to the polytope
P, violates one and only one of the constraints descrilsinge., for each
i € {0,...,n}witho? ¢ P, there is exactly one indeii) € {1,... ,m}
satisfying

ajinvi > b . (A.2)

REMARK 4.7.1.

(a) The assumption (A.1) can be enforced for any start-simglexo P by
considering the concave function

o) == f°) + M min {O,j min (b; — a]Tx)}’ r € IR™

=1,...,m
with - <0
0) _ 1
Moo= max fo(w) = i )T+0 |
iefo,...,n} \ [ min (b —ajv})|
U? ¢ P j=1,....m

which has the same optimal value and optimal solutiong®asver the
polytopeP. Therefore, this assumption is not a substantial restriction. Re-
member thag(SY) denotes the optimal value of the initial linear problem
(DCP;").

(b) The assumption (A.2) depends only on the start-simgfeand it is a strong
one. Given am-simplexS? it is easy to check whethei satisfies (A.2).
However, we cannot assume that for an arbitrary polyi®pleere exists an
n-simplexS° > P which fulfills this assumption. Nevertheless, there are
some well-known instances, where it is possible to construct such simplices.
If P is a hypercube, for example, then a start-sim@#&x> P satisfying
(A.2) exists (compare, e.g., the construction of start polytopes in [HPT95,
pp. 145f]).
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Apart from these two assumptions we assume again, as in Section 4.4, that a
CONVEXSOLVERq o0 like the Simplex-Method is used for solving the linear sub-
problems (DCP). If the start-simplexS® and the concave objective functigi
satisfy (A.1) and (A.2), then it can be shown that Algorithm 4.1 only employing
w-subdivisions, applied for solving problems of type (D¢Rwill stop after a fi-
nite number of iterations, even with= § = p = 0. This is the result of the final
Finiteness Theorem 4.7.3. At first, however, two additional lemmata are needed to
establish this theorem.

The following lemma is equivalent to the first part of Lemma 4.4.2. Since there
we used, § > 0 in order to prove Lemma 4.4.2 for problems of type (Qfé&nd
(DCPR,), it is necessary to give another proof, which is valid in the case of (DCP
also fore = 9 = 0.

LEMMA 4.7.1. Let{S*} e be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with the properties that, for edch IN, there holds

Sk+1 — [057 e 7?)5_1,(4)(5%), Uf—i—h ce ,Uk] (471&)

n

and
P (W(S*) = u(s*) < 7* (4.7.1.b)

(compare with Properties (4.4.2.a) and (4.4.2.b)). Then there exist a number
K € IN and an integerr with 0 < r < n such that, for eactk > K, there
holds

S* = [vo,... ,Ur,varl,... LUk, (4.7.2)
whereuvy, ... , v, are fixed vectors, while?,,... ,v* (k > K) change infinitely
often. Moreover, for eache {0,... ,r}, there holds

v ¢ P = v = ). (4.7.3)

PROOFE As we pointed out before Lemma 4.4.2, result (4.7.2) is a direct
consequence of the feasibility of each generated poist*). Note that in the
considered case (DGPthe feasible region of each subproblem is a subsdt of
and that we use @ONVEXSOLVER,0.0.

Indeed, assume, by contradiction, that in the infinite nested seq{i8fi¢e- v
all the vertices of the simpliceS* = [v§, ... ,vF] change infinitely often. Choose
anumberX € IN such that each vertex 6 has changed at least once, i.e.,

vf_{#v? Vi e {0,...,n}.
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Because of (4.7.1.a) it follows that, for eache {0,...,n}, there is an index
k(i) € IN, k(i) < K satisfying
vE = w(sFD) e P = F. (4.7.4)

Each feasible point(S*) (k € IN) is used for updating the upper bound. There-
fore, we know that, for eache {0, ... ,n}, there holds

) = 9k,

)

and, thus, we obtain, for eaahc S¥,
Por () = Z)\ifo(vf_() > ZAMR = g (4.7.5)
i=0 i=0

with A € B, andz = Y )\w{%_ Combining (4.7.1.b) and (4.7.5) it follows for
w(SK) e §K
" < e (w(s5) < o,
which is a contradiction and proves result (4.7.2).

Since each new vertex belongs(see (4.7.4)) Relation (4.7.3) is follows
readily. |

In order to obtain a contradiction in the proof of the final finiteness result we
prove in the next lemma that, given an infinite nested sequéféeé;n with
Properties (4.7.1), there is a numbiér € IN such that the infinitely changing
verticesv of the residual simplice$S’“}k>K have a special property, if (A.1) and
(A.2) are satisfied. We are able to show that such a vertaxst be contained in
the intersection of all hyperplanes, which are described by just the constraints of
P, which are violated by at least one of the fixed vertice$$ff}, . .

LEMMA 4.7.2. Let {S*},cv be an infinite sequence of simplices with Prop-
erties (4.7.1). Let furtherS® be a start-simplex in Algorithm 4.1 and
f%: IR™ — IR be a concave function satisfying Assumptions (A.1) and (A.2), and
et K ¢ Nand0 < r < n be given by Lemma 4.7.1, i.e§* =
[vo, .-+ svm 0P 1, ... ,0F] (k > K). Then there exists a numb&f € IN such
that, for eachi € {0,...,r} with v; ¢ P, there holds, for allk > K and
le{r+1,...,n},

aliyvl = bia (4.7.6)
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wherej(i) € {1,... ,m} denotes — with respect to (A.2) — the unique constraint of
P violated by, .

PROOF Choose an arbitrary, but fixed index < {0,...,r} with
vy ¢ P. From (4.7.3) we know that;  is a vertex ofS°, and regarding (A.1)
and the structure of the convex envelope we obtainkfor K,

Pl (i) = fOolvr) < f*. (4.7.7)

Theorem 4.4.9 implies that the variant of Algorithm 4.1, which employs only
w-subdivisions and is applied for solving problems of type (R convergent
in the sense that for the sequer{gd& S*)} e We obtain

p(s*) — f+ (k=)

(compare with (4.4.21)). Moreover, we know that, for e&ach IN,

p(s*) < fr.
Since (4.7.7) is fulfilled for each indexe {0,... ,r} with v; ¢ P we hence know
that there is a numbét € IN, K > K such that, for each > K,
n(S*) > max fOv;) . (4.7.8)

1€{0,...,r},v;¢ P

Choose a numbek ¢ IN, K > K such that, for eachk > K and
l€{r+1,...,n}, there exists anindei(l) € IN, K < k(I) < k with

of = w(SkD)
Assume now, by contradiction, that Relation (4.7.6) is not true’fare., there is
anindex’ € {r+1,... ,n} and anumbek’ > K satisfying
alnvl < bigr) . (4.7.9)

This means that);’ is not active in the unique constraint Bfviolated byv; . Note
thatvl; must be feasible.

Let v be the intersection point of the line segment between the two points
.w(S’“/(l )) = v} andv; with the hyperplandl := {z ¢ R" : alin® = bin},
ie.,

(7} = WS v ]nH c SF)
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Sincev; violates only the constrainf| ,, = < b;(;/) andw(5* (")) does not violate

any constraint, it follows that is contained inS* (') 0 P, and, furthermore, by
using (4.7.9), that there exists\ae (0, 1) satisfying

7= My + (1= Nw (S
Therefore, we obtain

gpgk’(lﬂ(@) = )‘SO%W(V)(U@") +(1—=X) Spgk'u/)(W(Sk/(l/)))
%,-_/ (-

-

— £9(vs) (M AD)

and from (4.7.8) it follows that
@%k'(z')(@) < @gk/(z/)(w(sk ( ))) ,

which contradicts the minimality af(S* ()) with respecttes* ‘) npP.  ®

With this result the postulated finiteness of Algorithm 4.1 can now be shown.

THEOREM4.7.3. Assume that = § = p = 0 and that aCONVEXSOL-
VERy.0,0 is used. Assume further that the start-simp$¥xs chosen and the con-
cave objective functiorf® : IR — IR is given in a way such that Assumptions
(A.1) and (A.2) are satisfied. Then the version of Algorithm 4.1, which employs
only w-subdivisions, will stop after a finite number of iterations, if it is applied for
solving a problem of type (DGPF.

PROOE Assume, by contradiction, that this version of Algorithm 4.1 does
not stop after a finite number of iterations, i.e., the algorithm generates an infinite
sequencd S¥} . of simplices. Then there exists an infinite nested subsequence
{S%a} e € {S*}rew with Properties (4.7.1). Choosg e IN as in Lemma 4.7.2
and0 < r < n as in Lemma 4.7.1 and let, for eagh> ), a vector\? € B,, be
given with

w(Sk) = Zr:)\gvi—k z": )\gqu.
i=0

1=r+1

\V
O

Set, forg
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We prove first that, for each > Q, there holds
g1 €(0,1). (4.7.10)

It is obvious that3? belongs to[0, 1]. If ﬁq is not different from0 for an index
¢' > Q, we obtainu(Sk) = S AT 07 and>>" | AY = 1. This implies
because of the feasibility fo (i = r+1,...,n) (see the choice of) in the
proof of Lemma 4.7.2) that

- / k.
p(Ska) = oy (w(Sk)) = Y AL (v ) = nhe, (4.7.11)
1=r+1 \ETD/

contradicting (4.7.1.b). If there hold’ = 1, thenwe have)(S*« ) € [vg, . .. , v,].
By the same argumentation as in the proof of Theorem 4.4.9 we obtain that this is
either a contradiction to the proper§if« = [vg, ... ,vr,vfil, . ,vfﬁ] (g > Q)
of the simplex sequencgs”} v or to Property (4.7.1.b). Therefore, we know
that (4.7.10) is fulfilled for any > Q.

Now choose an arbitrary, but fixed> @. By using (4.7.10) we are able to
represeni(S*«) in the following way

n

w(S*) = g1 — <ZA%Z) (1-p7) 1_15q ( > Agqu> . (4.7.12)

i=r+1

e

~"”

‘1 e—npyd
1

=w =
: w2

such that we obtain
p(SF) = %, (W(S*)) = BIp%, (w]) + (1 — BY) P, (i) .

By the same argumentation as in (4.7.11) it follows t{a%l;q wd) > nk and,
therefore, with Property (4.7.1.b) we know that

P, (w]) <t < ol (W)
This implies thatp%kq is strictly monotonously decreasing on the line betweén
andw{. In view of (4.7.10) there hold&{ # w(S*<), and it follows

Sogkq (w(lz) < @gkq (w(Skq)) :
Sincew(S*«) is the optimal solution ofnin,, ¢ grg g %, (), it follows
w{ ¢ P=F.
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Letj’ € {1,...,m} be the index of a constraint definirgviolated bywy. Then
this constraint must be violated by one of the infeasible vertices of the fixed face
[vo,...,v.] of Sk and it follows by Lemma 4.7.2 that, for each
le{r+1,...,n},there holds
a?:vlkq = by
and, thus,
ag:wg = bj/ and agjw‘f > bj/. (4.7.13)

In view of (4.7.12) we know that(S*«) is an element of the open line segment
LS :={zx eR": 3\ e (0,1)withz = Awi + (1 — Nw]} between the points
w{ andwi. However, using (4.7.13) we obtain, for eacke LS,

x & P
contradicting the feasibility af (S*«) and completing the proof. u

The proofs for obtaining this finiteness result use substantially the feasibility
of each generated solutian(S*) (k € IN), i.e.,

w(S*) € P = F.

This feasibility property ofu(S¥) is only given for the problem class (DGPas

long as BCONVEXSOLVERy o0 is used. Inthe case of problems of type (BfWe

do not have this property of(S*) (k € IN), and, therefore, the proof techniques
suggested here cannot be extended to more general problem classes. Note that it is
not necessary that Algorithm 4.1 applied for solving problems of type {)GP

(DCP;) detects in finite time a feasible point. In order to overcome this difficulty we
just introduced the, p)-feasibility concept in Section 4.2 (see Definition 4.2.1).
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CHAPTER 5

Packing Equal Circles in a Square

In the previous three chapters we developed some approaches applicable for the
solution of arbitrary nonconvex all-quadratic problems of type (QP). As mentioned
in Section 1.1, the problem of packing equal circles with maximum radius into a
square, which we would like to call in the following theacking problemis an
application of this class of global optimization problems. In the first section of the
present chapter we will see that there is a one-to-one relation between solutions
of the packing problem and solutions of Problem (PP) given on page 5. Problem
(PP) is hence an equivalent formulation of the packing problem as an all-quadratic
program and could be solved — at least theoretically — with one of the methods
developed so far.

However, Problem (PP) is &f + 1)-dimensional program Witlﬁg) concave
quadratic constraints, whends the number of circles which we would like to pack
into the square. For reasons becoming evident in Section 5.1 we are interested in
solutions of the packing problem for more th2zihcircles. Therefore, we have to
solve Problem (PP) with, > 20. In the numerical tests done for the approaches
for solving (QP) discussed so far (see particularly Subsection 3.5.2) we recognized
that these general methods are not able to solve all-quadratic problems with dimen-
sions higher than 10, at least that they are not able to solve such problems with
acceptable computational effort. Consequently, it is not surprising that these meth-
ods developed for general problems of type (QP) fail to solve Problem (PP). They
are not able to determine approximate solutions of (PP) — for the required sizes of
the dimension and the number of quadratic constraints — with acceptable effort.

Exploiting the structure of the packing problem, respectively of Problem (PP),
we are non the less able to derive a new global solution method based on a rect-
angular branch-and-bound scheme, which can determine approximate solutions of
the packing problem for more th&o0 circles. The description of this new solution
method is the main content of the present chapter.

187
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5.1. Introduction

The packing problem is a widely explored problem in the field of optimization.
One tries to find the maximum radiusof n equal and non-overlapping circles
located within the unit square. This problem can be formulated as

max r
S(xs,r) CU i=1,...,n (CPP)
S(xi,r)NS(xj,r)=0 1<i<j<mn
where, for each € {1,... ,n}, S(z;,r) := {x € R? : ||z — x4]|2 < 7} denotes
the open sphere with centey ¢ IR? and radius-, andU := [0, 1]> denotes the
unit square.

As we will see below, the circle packing problem (CPP) is equivalent to the
problem of scattering points into the unit square such that the minimum pairwise
distanced becomes as large as possible. This point scattering problem is given by

max d
x; e U 1=1,...,n.

In Problem (PSP) one considers only the centers of the circles. In contrast to
Problem (CPP) it is allowed that a center-paint(i € {1,...,n}) belongs to the
boundary ofU, i.e., the constraint§(x;,r) C U (i = 1,... ,n) are neglected. In
(PSP) we only require that (i € {1,... ,n})is containedir/. The second group
of constraints in (CPP) is obviously equivalent to the constraints ||z; — x||3
(1 <17 < j < n)in the formulation of (PSP). Even though Problem (CPP) and
Problem (PSP) are not equivalent at first glance, there is still a one-to-one relation
between the optimal solutions of both problems. It can be seen that there holds

wy_ d(n)
) = S )

(see, for examplefGPWM91]), where*(n) is the optimal radius of the packing
problem (CPP) withe circles andd*(n) is the optimal minimal distance for the
scattering ofn points. Solving (PSP) one obtains the centers @ircles, which

form an optimal solution of (CPP) on a slightly larger square. Indeed, one solves
(CPP) on a square with edge-lengthd* (n) (see Figure 5.1). Note that a variation

of the edge-length of the square in the packing problem does not alter the packing

(5.1.1)
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of an optimal combination of circles. Such a variation leads only to a scaling of a
solution of (CPP).

FIGURE5.1. Solutions fon = 3

(a) Problem (CPP) (b) Problem (PSP)

Problem (PSP) is obviously equivalent to

max t
t— |z —z;)3<0 1<i<j<n (PP)
x;, €U r1=1,...,n,

which is just the formulation of the packing problem as an all-quadratic problem
mentioned in Section 1.1. The optimal valti¢n) of (PP) is equal to the squared
optimal distancel* (n) of (PSP).

According to the intention of this thesis we will consider the all-quadratic for-
mulation (PP) of the circle packing problem (CPP) throughout this chapter. We say
thatz* = (z71,...,25)" with 2} = (2} ,23)" € U is an optimal solution of

i2

Problem (PP) with optimal valug, if there holds

) = = min o} - a3

Any pointz = (z1,... ,%,)T € U™ satisfying

* . : - 2 <
t(n) - min 7 —Zll; < e
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will be called ane-optimal solution, where > 0 is some prespecified tolerance
possibly depending on the numbebf points.

As an interpretation for this problem, we can thinkaf, ... , z, as the po-
sitions of "objects" which interfere with each other. The interference is inversely
proportional to the minimum distance between the objects. Therefore, the solution
of (PP) is an arrangement of the objects such that the interference is reduced to a
minimum. For instanceg, ... ,x, may be positions of radio stations, which we
want to place in such a way that the interferences between them are reduced to a
minimum.

Problem (PP) has received a great deal of attention in the last years. In spite of
its apparent simplicity, it turns out to be a quite difficult one. Papers about it can be
divided into two categories. The first category contains papers in which proofs of
optimality of packings for some valuesofare given. Optimal solutions for < 9
were already found in the sixties by geometric arguments. The eases, ... ,5
are easy; the solution for = 6 was given by Graham; the cases= 7,8 were
solved in [SM65] and the cage= 9 in [SCH65]. Optimal solutions were geomet-
rically derived also for bigger values af Optimal solutions fon, = 14, 16, 25, 36
are proposed in [VAN83, WENB7A, WK87, WEN878B]. In [DGPW90] a com-
puter proof for the cases = 10 — 13 is suggested, while iID[GPWM91] the
computer proof of optimality is extended to the cases 14 — 20. To the author’s
knowledge no proof of optimality for > 20 has ever been given in the literature.

The second category includes papers in which improvements with respect to
the best known solutions for > 20 are presented — without giving any proof of
optimality. Good packings for up to 27 and for a few values greater than 27 are
givenin [GoL70]. In[MFP95] the formulation (PP) for the circle packing problem
Is employed and good packings far < 30 are calculated using a stochastical
approach.

It seems to be obvious that the following implication

n=~k = d*(n)= b , (5.1.2)
k—1
Is true. However, Relation (5.1.2) is only fulfilled f@r < £ < 6. Indeed, in
[NO97], where good packings far < 50 are given, a packing fof9 is presented
with a bigger minimum pairwise distance thén In [GL96] good packings for
n < 52 and for a few other values greater than 52 are proposed. In particular, for
n = 21, 28, 34, 40, 43, 45, 47 the presented results are better than those in [NO97].
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For a short overview about the circle packing problem with respect to squares
and to other related objects like circles, triangles or hemispheres we refer also to
[STE9S].

Since the optimal solutions of Problem (PP) for uR@points are reported
to be known, we are interested in solutions of (PP) with- 20. As mentioned
before, the optimization approaches for all-quadratic problems discussed so far in
this thesis are not able to solve Problem (PP) with a dimension highed #heamd
with more than(22°) concave quadratic constraints. With the rectangular branch-
and-bound method by Al-Khayyal et al. [AKLV95] as well as with our simplicial
approach (see Chapter 3) we were only able to solve Problem (PP) with less than
10 points. Therefore, we developed a new rectangular branch-and-bound approach,
which is theoretically able to solve Problem (PP) in each dimension and which
showed a good performance with upppoints.

Before formulating the algorithm in Section 5.3 we study in Section 5.2 some
theoretical properties of optimal solutions of Problem (PP). We state the intuitive
fact that there exists at least one optimal solution such that as many points as pos-
sible belong to the boundary of the unit squéreln Subsection 5.2.1 it is shown
that there exists an optimal solution of Problem (PP) with a special behavior at each
vertex of the unit squar&. Another result describing the behavior of at least one
optimal solution along each edge Bfis discussed in Subsection 5.2.2. In Sec-
tion 5.3 a rectangular branch-and-bound algorithm for solving (PP) is proposed.
Even though we do not expatiate the details of our algorithm in this section, we
are able to prove the convergence of this approach under some restrictions. In the
following three Sections 5.4 - 5.6 we describe the details of our method. The cal-
culation of the critical upper bounds is developed in Section 5.4. Exploiting the
special structure of Problem (PP) we are able to derive in Section 5.5 a special
splitting strategy for the relevant hyperrectangles: U™, which shows a better
performance for this problem than the well-known bisection (for the definition of
the bisection see, e.g., page 101). Using the theoretical results derived in Section
5.2 and an idea mentioned inGPWM91] we develop strategies for reducing the
size of the relevant hyperrectangles in Section 5.6. These strategies enabled us to
further improve the performance of our approach. In Section 5.7 we present prelim-
inary computational results. In particular, we give approximately optimal solutions
for n = 21 — 24,26,27. We finish this chapter with a discussion of some fur-
ther improvements of the introduced method, which enable us to solve even larger
problems. In particular, we present in Section 5.8740& 32 a solution, which
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constitutes an improvement of the best solution known so far. Apart from these
improvements of our method and the numerical results for morexXhaoints the
presented results are also given in [LRO& R98B].

5.2. Theoretical Results

We start the treatment of (PP) by a theoretical examination of this problem.
One would intuitively expect that as many as possible memijefisc {1,... ,n})
of an optimal solution:* € U™ of Problem (PP) lie on or near to the boundary of
U, since we try to maximize the minimum squared distahbetween any two
points. In the following two subsections we derive some properties, which have
to be fulfilled by at least one optimal solution of Problem (PP). These properties
corroborates the intuitive fact mentioned above and will later be useful in order
to improve the numerical performance of our new rectangular branch-and-bound
method introduced in Section 5.3.

5.2.1. Properties of an Optimal Solution at each Vertex As the known op-
timal solution for the case = 6 shows (see [SM65] or Figure 5.5), we cannot
expect that each vertex éf belongs to an optimal solution of (PP). However we
are able to derive the existence of an optimal solution with a special property at each
vertexv of U. Either this vertex is a member of the solutian* = (27, ... ,2%)7

n

itself or there exist two points}, =% (i,j € {1,...,n}), which lie on the two
boundary lines oV forming the vertex» and which have exactly the optimal dis-
tanced*(n), i.e.,d*(n) = ||z} — x7%[|2. This will be the result of Theorem 5.2.3
and the subsequent corollary.

In order to prove this theorem we need to show the existence of an opti-
mal solution of (PP) with another special property. We need an optimal solution
r* = (z%,...,25)T € U™ such that each membet of z* (i € {1,...,n})
belonging to the convex hulty, ... , 2] of the pointsey, . .. , 7 belongs even to
the boundary ot/. The existence of such a solution is ensured by the next lemma.
In the following corollary we prove, moreover, that there is an optimal solution of

Problem (PP) such that the set, ... , =] touches each boundary line Gt

LEMMA 5.2.1. There exists an optimal solutiof?, ... ,z%)" € IR*" of
Problem (PP) with the property

zr e o(xt,...,28]) = xF €U =9([0,1]%), (P1)
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I.e., each membet; of the optimal solutior* belonging to the boundary of the
convex hull of the pointsy, ...,z belongs to the boundary of the unit squére

PROOF Let (z1,...,z,)T € IR*" be an optimal solution of (PP) with op-
timal valuet*(n). Denote byCO the convex hull of the pointsy, ... ,z,, i.e.,
CO = [x1,...,x,]. If solutionx does not have Property (P1), then there exists a
memberz; € 0CO satisfyingz; ¢ 0U. Consider the normal con€(z;) of set
CO at pointz; (see [Roc70] for the general definition of a normal cone), i.e.,

Clz))={yeR?:y=u; +d,d (x; —x;) <0,5€{1,...,n}\ {i}}

(compare with Figure 5.2).

FIGURE 5.2. Normal cones

The setC(z;) has the following properties. These properties can be found in
[Roc70]. For completeness we present a detailed proof.

(A). Clai)\ {zi} # 0
The convex hullC'O is a polytope, which can be described by a finite set
of facets. Let, foreachi € I, the set”! := {y € R* : (f))Ty = (f})"a:}
denote a facet of”’O through the pointr; with the propertyCO C
{y e R*: (f)Ty < (f)"x;}, wherel' is an index set satisfying*| < 2.
Choose a vectat € IR?, which is a convex combination of the normﬂs

(j € I'), i.e., choose\ € IR'f' with Y. ;: A; = 1 and set

d =Y Nfi #0

jer
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Then, foreacly € {1,... ,n}\ {z‘} there holds

alTa:j—:z:Z Z)\ : i —xi)) <0.
Jert :
e€CO
<0

Hence we obtain; + d € C(z;) \ {z;}.

(B). CONC(x;) = {xi}
Choose an arbitrary, but fixed € CO N C(x;). There exists a vector
A€ R} with 377 A\ = Tandx = 37, \jz;. Because ok € C(x;)
we obtain, for each € {1,... ,n} \ {i},

0o > :c—:ciTay—azi
> ( )" () — ;)
=d

T mn
= (Zl)‘j(xj - 372)) Z)‘J |z — zill5 -
j= =1

N— —
>0, if 1£]

7=1

It follows that)\; = 1 and thuse = z;.

©). yeClai) = lly—=z;l3 =" (n), j{1,... ,n}\{i}
Choose an arbitrary, but fixagde C(z;). Foreachj € {1,... ,n}\ {i},
there holds

ly —=;llz = lloi — 25 +dl2

= @i — x5 + 2d" (i — 25) + ||d]|3
~ ~ N

>0 >0
> i — ;3 > t*(n).

Choosing a pointl € IR? with 0 # d € C(z;) — {x;}, which exists because of
(A), we obtain that, for each € IR, the pointz; + A\d is an element o€’ (x;).
Since by assumption; does not belong to the boundaryl@f there holds

Ai=max{\>0:2; +AMdcU} > 0.

Settingz} := z;-+\d we obtain an element of the boundary af Taking Properties
(B) and (C) of the normal coneC(x;) into account it follows that

(1,..., @i 1,25, Ti11,... ,2,)T isalso an optimal solution of Problem (PP) and,
moreoverg; € 0[x1,... ,Ti—1,X}, Tit1,- .- ,Ty] N OU. Repeating the argumen-
tation presented in this proof we obtain a solutfeh, . .. , z*)T of (PP) satisfying

Property (P1). H
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As mentioned before, in order to prove the existence of an optimal solution
of Problem (PP) with the claimed special behavior at each verték @fe need a
solutionz* of (PP) with Property (P1) and, additionally, satisfying that the convex
hull of the membersy, ...z} of * touches each boundary line 6f. If an
optimal solution of (PP) is given, it is easy to see that an altering of this solution
— using the same ideas as in the previous proof — leads to an optimal solution of
(PP) with the required attributes.

COROLLARY 5.2.2. There exists an optimal solutiga?, ... ,z%)” ¢ IR*"
of Problem (PP) with Property (P1) and, additionally, with the property that, for
each:; € {1,2} andj € {0, 1}, there holds

(%, ... ,z5nel # 0, (P2)
Wheree{ ={z € U : x; = j} is a boundary line of the unit squaté. This means
that the convex hulket, ... , x%] of the sef{«z7, ...,z } touches each edge of the
unit squarel.
PROOFE Let(z1,...,x,)T € U™ be an optimal solution of (PP) with optimal
valuet* (n) fulfilling Property (P1). If the convex hull of the sét+, ... ,x, } does
not touch an edge of U, then we choose one of the membeyrgi € {1,... ,n}),

which are closest te. Moving x; towards this edge in the direction perpendicu-
lar to e we obtain a point:; € e. This direction belongs to the normal cone of
the set[xq, ... ,x,] at pointz;. Hence, it follows by an analogous argumenta-
tion as in the proof of Lemma 5.2.1 that the minimum pairwise squared distance
of 2 = (x1,... , i1, 25, ®it1,...7,) 7 is still equal tot*(n). Consequentlyy

Is also an optimal solution of (PP) satisfying Property (P1) and, additionally, the
convex hull of the members aftouches:. u

Using optimal solutions of Problem (PP) satisfying Properties (P1) and (P2)
we are now able to derive the existence of optimal solutions with a special behavior
at each vertex of the unit square, as the following theorem shows.

THEOREM5.2.3. There exists an optimal solutiqa?, ... ,z%)” € IR*" of
Problem (PP) with optimal value¢*(n) such that, for each vertex of the unit
squarel, i.e.,v = (1) € {(7),(}), (;), (1)}, one and only one of the following

V2

statements is true
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(7) Jie{l,...,n}withv =2z, (P3a)

(47) di,je€{l,... ,n}withz] =v;, 25 = vy

g 1 * |12 ]2* (PSb)
and, forl € {i,j}, [|[v — z} |5 < t*(n) .

This means that either the vertextself belongs to the optimal solution or there

exist two membets;, 7 of this solution lying on the boundary lines@fforming

the vertexv, which have a squared distanced@maller than the optimal one.

PrROOF Forn < 5 the known optimal solutions (see Figure 5.3) have Prop-
erty (P3). Therefore, we can assume that there hoelds 5 and, in particular,
t*(n) < 1.0.

FIGURE 5.3. Known solutionsfon =2,...,5
1 1 — 1 lg-
0 10 10 10
t*(2) = 2 t*(3) = 8—/48 t*(4) =1 t*(5) = 3
Let (z1,...,z,)T € U™ be an optimal solution of (PP) with optimal value

t*(n) satisfying Properties (P1) and (P2). Choose an arbitrary, but fixed weatex
U and define (using:= t*(n))

S*(v,t) == {ye R?*: v —y3 <t}
and

S%(v,t) = S*(v,t)N{x1,...,zn}.

The setS?(v,t) contains all members dfry, ... ,z,)", which have a squared
distance smaller thanto the vertexv. Depending on the cardinality of the set
S2(v,t) we distinguish four cases.

Case 1|5%(v,t)] =0

For eachi € {1,...,n}, there holdglv — z;||3 > t. Setting

x] = v
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and, fori € {2,... ,n},

Ty =
we obtain an optimal solution of Problem (PP), which fulfills (P3a) at vertend

not (P3b).

Case 2|5?(v,t)| =1

Without loss of generality assume that is the only element o62(v,1), i.e.,
S2(v,t) = {z1}. For eachi € {2,...,n}, there holds|v — z;||3 > t. Using

the same definition fat* € U™ as in the previous case we obtain again an optimal
solution with the same properties as before.

Case 3|5?(v,t)| = 2

We will show in this case that only (P3b) is true — not (P3a). We prove this for the
vertexv = (). The argumentation for the other vertices is analogousSEet, t)

be given by{z;,z;} withi,j € {1,... ,n}, i« # j. Regarding the definition of
S2(v, t) it follows that there holds

v {zi,z;}. (5.2.1)

Hence Property (P3a) is not fulfilled. 4f andz; belong to the boundary d@f, it
Is easy to see that (P3b) is satisfied. Indeed, since there hetd$.0 we know
thatx; andz; must lie on the boundary lines forming the vertexMoreover, with
respect to the definition &2 (v, t) and because dfr; — z;||3 > ¢ they cannot both
belong to the same edge Gt

We prove now that; andz; must always belong to the boundary@f As-
sume, by contradiction, that does not belong to an edge of the unit square, i.e.,
x; ¢ OU. The optimal solution(z1, ... ,z,)T has Property (P1) such that there
also holds

with CO = [z1,... ,z,]. The setCO is a polytope and we know thatdoes not
belong to this set. It follows that there exists a face€@? which separates and

x;. Each facet o0 is a line connecting two elements pf,, ... , z,, } belonging

to the boundary of”O and hence — taking (P1) into account — belonging to the
boundary ofU. Since the pointz1, ... ,z,)’ € IR*" fulfills by assumption Prop-
erty (P2), there must exist two elementg, z; € {z1,... ,Ti—1,Tit1,... ,Tn}
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satisfying
T, =0 , xk, >0
x, >0, x, =
and
Liq n L, > 1’
Tl Ty

(5.2.2)

l.e., z; lies on the right-hand side of the facet@t) formed by the points; and

x; (compare with Figure 5.4).

FIGURE 5.4. \ertex situation

U

Tk

Ly

Vit

Because oflzy, — z;||3 > t and||z; — x;]|3 > t we obtain

x4 (T, —w3,)° >t and (@, —3,)° +ap, >t

Moreover, in view ofr; € S?(v,t) we know that

;U?l + J;fQ <t.
Combining (5.2.3) and (5.2.4) it follows that
(5’7k2 - xi2)2 > m’Lzz ) (:Eh - xi1)2 > ZC?l
and hence
%ku 2 xig y %xll 2 m’il .
From this relation we obtain
Xy, Lo 2 2

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)
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contradicting (5.2.2) and, therefore, contradicting the assumptighoU. Anal-
ogously, it can be proven that must belong t@U.

Hence we have seen that in Case 3 the solution. .. , z,,)T must fulfill
Property (P3Db) itself and cannot satisfy (P3a).
Case 4|5%(v,t)| > 3
It follows from the argumentation in the previous case that any point of the set
S2(v,t) is contained in the boundary of the unit square. Therefore, at least two
points must belong to the same edge. However, this is not possible since they
would have a squared distance smaller thafhus Case 4 cannotoccur. B

In the introduction of this subsection we claimed that there is an optimal so-
lution of Problem (PP) satisfying (P3) and the additional property that there holds
|lxr — xj”% = t*(n) in the case of (P3b). In order to strengthen Property (P3b) in
this sense we will need some technical effort.

COROLLARY 5.2.4. There exists an optimal solutign?, ... ,z*)T of Prob-
lem (PP) with optimal value*(n) satisfying Properties (P1)-(P3) and, addition-
ally, fulfilling

|} — a3lI3 = t*(n) (*)
in the case of (P3b).

PROOF. Let (z1,...,z,)T € IR*" be an optimal solution of (PP) with Prop-
erties (P1)-(P3). Let further be a vertex of the unit squaté such that (P3b) is
fulfilled, i.e.,

S%(v,t) = {x;,x;} C OU.

As in Case 3 of the proof of the previous Theorem 5.2.3 we assume thahe
origin. Furthermore, without loss of generality, we can assume that

Tj, = T, = 0.

If the squared distance betweepandzx; is equal tot*(n), then we know that
Property (*) is fulfilled at vertex.. Otherwise there must hold

H:z:z—acjﬂg > t*(n) =: t.

In this case it is possible to move one of the pointsr z; towards the origin such
that (*) is fulfilled and the distance to all other points(l € {1,... ,n} \ {i,j})
is still big enough. This will be proven in the sequel.
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In order to derive this result we need at first a more technical statement.
Foranyl € {1,...,n}\ {4, 7}, there holds
Ty, > Xqy, OF T, > T, . (5.2.7)

PROOF OF(5.2.7): Assume that (5.2.7) is not true, i.e.,

A e{l,... ,n}\{ij}withz, <z; andx;, < zj, .
From||z; — ;|3 > t and||z; — 2:||2 > ¢ we obtain
(xiy —x1y)° + a7, >t (5.2.8.a)
o, + (T —1y)? >t (5.2.8.b)
and hence
t < :c?l —2xi, Ty, +:cl21 + 517122 < :17?1 — acl21 + xl22 (5.2.9.a)
<—2g2
L1
2 2 2 2 2 2
t < ), +xj, 22,71, x, < 1, +T5, — T, . (5.2.9.b)
<—2z2

<—2a7
Adding (5.2.9.a) to (5.2.9.b) and using the fact tHat, z;} C S*((),t) it
follows

2t < x?l—l—:c?2 < 2t,
which is a contradiction. Therefore, (5.2.7) must be true. O

If there holdsx;, < z;,, it is possible to move:; towards the origin in order to
satisfy (*). Indeed, set;(¢) := (3“10_6) for e > 0. It is provable that, for any
e € (0,z;,)andl € {1,... ,n}\ {i, 7}, there holds

t < Jlo— zi()|E = (21, — i, + €)% + 23, . (5.2.10)
This relation shows that it is possible to mavgtowards the origin — altering the
first coordinater;, — without decreasing too much the squared distance between
the moved point;(e) andz; (I € {1,...,n}\ {i,7}).
PROOF OF(5.2.10): Choose an arbitrary, but fixed index {1, ... ,n} \ {7, j}.
In order to show (5.2.10) we have to distinguish two cases.

Caselz;, <z
It follows immediately that
Ty, —xi, +e€>x, —xy, > 0.
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This implies
2 2 2 2 2
(1, — @i, +€)° + a1, > (1, —x4y) + 21, = |lzs —x1|]3 > ¢
Case 2x;, > zi,
From (5.2.7) we obtain that;, > x;,. Therefore, we can conclude
2 2 2 2
t < oz —wmillz = @y +aj, —2w0,35, +ai,
N——
<—2z2
- J2
2 2 2
< Ly, — Tjg +xl2

~—
>z

SN

-
2 2 2 2
S :Cll _x'il +ajl2 S 'rlg .
——
<0

It follows

(xh_xil +6)2+xl22 > $l22 > t. O
If we chooser € (0, z;,) satisfying||z;(€) — z;||3 = ¢, we obtain from (5.2.10)
that (z1,... ,2i_1,2:(€), Tix1,... ,2,)T is also an optimal solution of Problem
(PP) fulfilling (P1)-(P3) and, additionally, fulfilling (*) at vertex

In order to mover; towards the origin we assumed that there haids< z;,.
If this is not true, it is possible to move; — altering the second coordinate, —
towards the origin in an analogous way, such that in each case we obtain an optimal
solution of (PP) with all required attributes at vertex

Forn < 9 it follows from the known solutions (see Figure 5.3 and Figure 5.5)
that solutions of Problem (PP) exist, which fulfill the stronger Property (*) at each

FIGURE 5.5. Known solutionsfon =6,....,9
1y . 1 . 1y 1 .
. :
. ' - ‘ .. « o R o ------- R

R }

0 10 . 10 0 ¢

*(7
t*(6) = 13 PO — 743 t*(8) =2 — /3 t*(9) = 1
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vertexv of U with Property (P3b). Hence, we have to verify the existence of such
points only forn > 10. This implies that there holds= t*(n) < 0.25 and thus

S2(v,t) N S*(w,t) = 0 (5.2.11)

for two different vertices andw of the unit square. Therefore, we can apply the
argumentation used above in order to guarantee that (*) is fulfilled at each vertex
of U, which has Property (P3b). Property (5.2.11) implies that the points we would
like to move in order to enforce (*) must be different for different vertice$/of
|
In the following we denote by Property (P3) this stronger version.

5.2.2. Properties of an Optimal Solution along each Edgelf we consider
the behavior of an optimal solution on the boundary lines of the unit squanes
cannot expect that two consecutive points have exactly the optimal distance (com-
pare, e.g., the optimal solutions far= 6 orn = 7, see [SM65] or Figure 5.5).
We are only able to verify the existence of an optimal solution with the property
that this distance is smaller than two times the optimal one. This is the result of the
following theorem. At first, however, one additional lemma is needed in order to
establish this statement.

LEMMA 5.2.5. Let (z1,... ,z,)" € IR*" be an optimal solution of Problem
(PP) with optimal valuet*(n). Assume further that there exist indices
i,j €{1,...,n}andl € {1, 2} satisfying

|zi —z;]|5 > 4t*(n) and =, = =z, € {0,1}, (5.2.12)
and, moreover, that there does not exist an infleg {1,... ,n} \ {i,j} with
zy € [x;, x;]. Then there holds

intUN{xy,...,xn} # 0. (5.2.13)

This means, if two consecutive poimtsandz; lying on the same boundary line of
the unit squard/ have a distance not smaller than two times the optimal distance
\/t*(n), then there exists a membey, of this optimal solution belonging to the
interior of U.

PROOF  The pointsz; andz; belong by Assumption (5.2.12) to the same
edge ofU. Hence there holds

|l — 513 < 1

and consequently regarding the left part of (5.2.12) we kitfdgw) < 0.25.
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We prove Relation (5.2.13) by contradiction. Assume that there does not exist
a member of the optimal solution belonging to the interiol/of With respect to
the value oft* (n) we distinguish again two cases.

Case 1t*(n) = 0.25
From the first part of (5.2.12) it follows thdtz; — x;||2 = 1 and thus these points
are vertices ot/. It can be seen that in this situatiancannot be greater than
Indeed, it is not possible to place more points on the boundary lin€ssoich that
the squared distance is not smaller tlia2b. However, forn < 7 solutions with
larger minimum distances are known [SM65] (see also Figures 5.3 and 5.5). Con-
sequently, the feasible poifit1, ... ,z,)? is not optimal for (PP), contradicting
the assumption.
Case 2t :=t*(n) < 0.25
In this case it is possible to explicitly construct a paint (z1,... ,z,)T with a
bigger minimum squared distance than

Assume, without loss of generality, that there halds n andj = 1 and that
the members; (¢ = 1,...,n) are numbered in such a way that ; is a direct
neighbor ofx; (compare with Figure 5.6). Denote, fore {1,... ,n — 1}, by

FIGURE 5.6. Numbering

xn—3 ®

]
Tn—-29 L3
ITn—10 ® To

d; i+1 the 1-norm distance between the two consecutive peingdz; .1, i.e.,
diiv1 = |2 — zipalls > |z — @il > VE. (5.2.14.a)
Denote, furthermore, by, ; the according distance betweep andz, i.e.,

dn,l = Hxn—lel > Hxn—lez > 2\/72. (5214b)
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Since the total length of the boundary linedbfs 4 it follows that there holds
n—1

Z diit1+dny = 4.

=1

Therefore, from (5.2.14.a) and (5.2.14.b) we obtain

(n+ 1)Vt < 4. (5.2.15)

Set
4
0= n+05 vi.
From Relation (5.2.15) we see that
0 <o

and because of > 8 (compare with Case 1) we know that

6 <05—t.
In the sequel we construct now a solutioes= (71, ... ,Z,)” of Problem (PP) with

a minimum pairwise distance &ft + §. In order to do this we will place one point
at the center ot/ and the remaining{ — 1) points will be placed at the boundary
of the unit square. Let us first interpret the edge&/ads one connected line, i.e.,
as the interval0, 4], where each integer in this interval coincides with a vertex of
U. 0 and4 coincide with the same vertex, namely the origin. We construct now
a sequence ofn( — 1) real numbers lying inside this interval in such a way that
two successive numbers have a distance equgtte §, if no integer lies between
them, and a distance equaly®(+/t + §) otherwise. This is sufficient in order to
obtain a solution of Problem (PP) with a minimum distance in the Euclidean norm
not smaller than/t + §, as required.

The needed sequence of real numbers is defined as follows

1 = 0.0

and, fori € {2,... ,n — 1},
_ Ti1+ (VE+0) if | Zio1] = [T + (VE+ )]
T { Fi1+V2(V/t+0) ,otherwise.

In order to verify that this sequence has the claimed properties it is sufficient to
show thatz,, 1 lies in the interval0, 4] and, additionally, that,,_; has a distance
not smaller than/t + § to 4 (and hence to the origin). If we look for the biggest
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guantityk € IN of numbers constructed by the foregoing prescription, which be-
long to the interval0, 4 — (v/t + 4)], then we have to solve the problem

max k

(k—4)(Vt+06)+3vV2(Vt+6) < 4— (Vi +6)
ke IN

Note that there are three integers inside the intgfual]. Hence there are at most
three pairs(z;, #;11) (i € {1,...,k — 1}) with a distance of/2(v/t + §). The
remaining(k — 4) distances are by construction equal(gt + 6). From the
properties ofd it is easy to verify that we obtaih* = n — 1, wherek”* is the
optimal solution of the previous problem.

With this sequence of real numbers we are now able to construct the required
feasible pointz € U™ with the claimed minimal pairwise distance. Set, for
i=1,...,n—1,

(7;,0.0)T ,if0.0<7; <1.0
) (1.0,7; — 1.0)T Jf1.0< 3 <2.0
T (10— (7 —2.0),LO)T ,if 2.0 < # < 3.0

(0.0,1.0 — (z; — 3.0))T" , otherwise.

Adding z,, := (0.5,0.5)T we obtain obviously a feasible point for (PP). Straight-
forward calculation shows that this point has a larger minimum squared distance
than(zy,... ,z,)T. This contradicts the optimality ofry,... ,z,)T and com-
pletes the proof. H

If two consecutive points of an optimal solution of Problem (PP) lying on the
same edge aoff have a distance bigger than or equal to two times the optimal one,
the previous lemma guarantees that there always exists a member of this optimal
solution belonging to the interior of the unit squéfeln the proof of the next theo-
rem we show that it is possible to move one of these interior points to the boundary
of U without decreasing the minimum distance. This leads to the existence of an
optimal solution of Problem (PP) with the claimed property at each boundary line
of the unit squaré/.
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THEOREM5.2.6. There exists an optimal solutign?, ... , )T of Problem
(PP) with the following property:

If there existindices, j € {1,... ,n} withi # jandanindex € {1,2} withz} =

z;, € {0,1} and, furthermore, there does not exist an inflex {1,... ,n}\ {i,j}
with z € [z}, 2], then there holds

oy —3l3 < 4t*(n) . (P4)
l.e., two consecutive members(of, ... ,2%)? belonging to the same edge of the

unit square have a distance smaller than two times the optimal one.

PROOF. Let (z1,...,z,)T € IR*" be an optimal solution of Problem (PP)
with optimal valuet := t*(n). Assume that there exist two consecutive members
of this optimal solution with a distance not smaller than two times the optimal one.
This means that there existindiceg € {1,... ,n}, i # jandanindex € {1,2}
satisfying

|z — ;3 > 4t (5.2.16.a)

and
ri, = xj, €{0,1}, (5.2.16.b)
and there does not exist an indexc {1,... ,n} \ {4, j} such that;, belongs to

[z;, z;]. As long as there are two consecutive points with Properties (5.2.16.a) and
(5.2.16.b), Lemma 5.2.5 yields that there exists a memberof . . , z,,)? located
within the interior ofU. In order to prove the existence of an optimal solution with
Property (P4) it is hence sufficient to show that we are able to move one of these
interior points to the boundary &f without decreasing the minimum distance.
Without loss of generality, we assume= 1, j = 2,1 = 2, x1, = 22, = 0.0
andz;, < xa,,i.e.,x; andxz, lie on the edge = {y € R? : 0.0 < y; < 1.0,
yo = 0.0} and there holdsy, > z;, + 2v/1.

Denote by
A = {xl S {37 . 7n}7$i1 S L1, Or'rll Z 3721}
the set of all members ¢k, . .. ,a:n)T different fromz, andzs with the property

that the first coordinate does not belong to the open intémal z2, ). Itis easy to
verify that, for each\ € [z1, + v/, 22, — V1] andz € A, there holds

lz = (I3 > t. (5.2.17)

Depending on the structure of sétwe distinguish two cases.
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Case 1{x3,...,z,} \ A=10
Set

T, + T2,

Ty = and z3, := 0.0.

From (5.2.17) we obtain, for eaéhe {4,... ,n},
o5 —@nllz > t.

Moreover, fori € {1,2}, there holds alsdz% — x;||3 > t. Therefore, the point
(w1, 72,25, 24, ... ,2,)7 is another optimal solution of (PP) with the property that
the number of members belonging to the boundary/ o increased by one — in
comparison with(z1, ... ,z,)T.

Case 2{x3,...,xp} \A#D

Choose an indeke {3, ... ,n} such that there holds

x, = min{ys|y € {xs3,...,z,} \ A}. (5.2.18)

Construct a new point; € IR? belonging to[z1, z2] according to the following
rule

Zy, ’ if L1, + \/Z S Ty, S 2, — \/E
xf =1 a1, +VE S if o, <a, +VE and zj, := 0.0 .
T, —+/t , otherwise

Fori € {1,2} there holds obviouslffz} — x;||2 > t. In order to finish the proof
we have to show that the poinf has a squared distance not smaller thémany
member of(zy, ... ,z,)T belonging to the set

A= {3, o0 \ (AU {1}) .
Choose an arbitrary, but fixed elementof A. Depending on the definition of
zy, itis necessary to distinguish three subcases.
Case 2.1:1571 = Ty,
From (5.2.18) we know that, > z;,. It follows
ka - ZL‘;H% = (xkl - xl1)2 + Q?iz
> (xkl - C’3l1)2 + (ku - SU[2)2
= |lop —z3 > ¢
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Case 2.2z} =1, + /1
The following assertions are true

x1, < xk, (compare with Relation (5.2.18)) (5.2.19.a)
i, — 21, < V't (definition ofz} ) (5.2.19.b)
x1, < xy, (Sincezr; ¢ A) (5.2.19.¢)
t < llar — o3 = (2r, —21,)° + (Th, — 31,)° (5.2.19.d)
t <||lw — 1|3 = (w1, —21,)* + a:l22 : (5.2.19.e€)

Using these statements we can conclude for the squared distance between
x; andzy,
ok — a7l = (wry — 21, — V)? + i,
(zr, — x1,) + 21y, — 21, — VI + [(Thy — 71,) + 71,
- (mlﬁ - xl1)2 + Q(xkl - xl1)('rl1 — 21y — \/E)
+ (:Ell - xll)z - 2\/1_;(1‘[1 - xll) +1
+ (:E/@ - 11312)2 + 2$12 (xlw - $l2) —Hvlzg
————
>0, (5.2.19.a)
> (wh, — 21,)° + (Thy, — 21,)? + [l — 213 +1
~———
>t, (5.2.19.e)
+ 2(w/ﬁ - $11)<$11 — L1, — \/E) + 2<I11 - xl1)\/g
> 2t + (x, — 1,)” + (Thy — 715)°
+ Q(xkl - xll)(xll — 21y — \/1_5) + 2(5811 - xll)\/g
= C

We need that” is not smaller thart. In order to prove this we have to
distinguish two further subcases.

Case 2.2.4x, — x;, </t
In this situation we obtain

C =2t + |z — @iz +2[(zn, —21,) (21, — 21, = V) +(21, — 21,) VY

A

~"

<Vi <0, (5.2.19.b)
2 2t + ||./L'k; - wl”% + 2\/E [xll - 'r]-l - \/E—{_ xll - xll]

NS g
~"

NG
= ||lzx — x5 > t (see (5.2.19.d)).
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Case 2.2.2x, —x1, >/t
It follows
C =2+ (zg, — 21,)* + (Thy — 21,)°
————
>0
+ 2[(37161 - xll)(xll —T1 — \/E) + (mll - .73[1) \/z ]
—— S~~~
<0, (5.2.19.c) <(Tg; —T1,)
> 2t + (xlﬁ - xl1)2 - 2\/5(5”@1 - xll)
— (:Ckl _xll _\/E)Q—i_t 2 t.

>0
Hence we obtain in Case 2.2 that, — 273 > t.

Case 2.3z =z, — /1
By analogous calculations as in Case 2.2 it is possible to conclude

ok — 27 lI5 > ¢ .

We showed that, for each indéxc {1,... ,n} \ {l}, there holds

lof —zillz > ¢t

Therefore, the pointzy, ... , -1, z}, z141,... ,@,)T is also an optimal solution
of Problem (PP) with the same additional property as the new solution constructed
in Case 1. |

The results of Theorem 5.2.3 in connection with Corollary 5.2.4 and the result
of Theorem 5.2.6 are independent from each other. Combining both we know that
there exists an optimal solutigny, . .. , 2*)7 of Problem (PP) fulfilling Properties
(P1)-(P4). In particular, as we will see in Section 5.5, Property (P4) and the strong
version of Property (P3) give us a powerful tool in order to reduce the dimension
of subproblems in a rectangular branch-and-bound algorithm.

5.3. The Algorithm

After the derivation of the theoretical results in the previous section giving us
more insight into the structure of possible solutions of Problem (PP) we present
now an algorithm for solving (PP). As in the solution approaches for (QP) devel-
oped in Chapters 3 and 4 we use a branch-and-bound scheme (see also Subsection
1.2.2). In Chapter 3 we saw that the use of simplices as subdivision sets can lead
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to a faster solution approach than the application of hyperrectangles, in particular,
if we try to solve all-quadratic problems with a large number of constraints. Even
though Problem (PP) has — in comparison with the dimension — a large number
of constraints we prefer in the following algorithm hyperrectangles as subdivision
sets. Using this type of sets the required initial hyperrectangle (see again Subsec-
tion 1.2.2) is immediately given by ™. Moreover, the strategies, which we will
develop in subsequent sections in order to improve the numerical performance of
our solution scheme for (PP), need hyperrectangles.

In the present section we describe the basic algorithm without expatiating the
details. These are discussed in the following sections. The presented algorithm
guarantees to detect for a prespecified toleraned) ane-optimal solution for the
point scattering problem in finite time. Some preliminary notes about the conver-
gence of our approach are given at the end of this section.

Denote byf : R*" — IR

- - 2
flz) = min flz; — ;]
the minimum pairwise squared distance of the members= (x;,,z;,)7
(i € {1,...,n}) of a2n-dimensional point: = (z1,...,z,)" € IR*". Using
this notation Problem (PP) can be written as

max f(x)

PP
xeU". (PP)

Assume that a point € U™ is known with f(z) > 0. We can generate such
a pointz by using a local optimizer alone or in combination with a stochastical
approach like a multi-start algorithm (see, e.g., [BR95] for an introduction to sto-
chastic methods for global optimization). However, it is not necessaryzthat
a local optimal point for Problem (PP). Therefore, it is also sufficient to simply
constructt € U™ geometrically.

Assume further that an upper boundor the optimal valueg*(n) of Problem
(PP) is given. If the optimal valug (n — 1) for Problem (PP) witl — 1 points or
an upper bound far (n — 1) is known, we can choose this value farOtherwise
it is possible to set := 2.0 since, for anyc € U™, there hold$) < f(x) < 2.

Similar to Algorithm 3.1 and Algorithm 4.1 the formulation of the algorithm
for Problem (PP) follows nearly the guidelines of a basic branch-and-bound scheme
given in [HPT95, Algorithm 3.5]. Note that the following algorithm has special
adaptations to Problem (PP). In particular, we do not insist that the union of all
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partition sets forms the full set (see (5.3.1) below). Since the details of the following
approach will be expatiated later in this chapter, we use another type of description
than before.

ALGORITHM 5.1 (Rectangular Branch-and-Bound Algorithm for (PP)).

Initialization
Choose a real number> 0.
Set, fori € {1,...,n}, R} «— [0,1] x [0,1] =: [19,L?] x [19,LY ],

R — RYx ...x RY c R*, R® — {R"},

2’ 2, n° — f(2°), Q {2}, p® — i, pro — p°, k0.

Loop
Step I: (Stopping criteriomn
If there holdsu” — n* < ¢, thenSTOP.
z* := z¥ is ane-optimal solution of Problem (PP), i.e.,
t*(n) —n* = t*(n) - f(z") <e
Step Il
Choose the smallestindgxc {1, ... ,n} satisfying

max{Ls — 15 L% — 15} =

max{max{Lk —lfl,Lk —lk} i=1,...,n} .
Step lll:  (Subdivision strategie$
Construct € IN two-dimensional rectangles’*, . .. , R¥* with equal size
fulfilling, foreach: = 1,... .1,
k; k
RN c R

and, foreach <i < p </,
intRE NintR* = 0.

Step IV: (Size reduction strategiey
If possible, reduce, for eaahe {1,... [}, the size of the hyper-
rectangles

ki _ pk k ki k k
R™ =Ry x...X Rj_{ X R" X Rj | X ... xRy,

i.e., construct hyperrectangl&s: ¢ R*:.
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Step V: (Upper bounds)
For p=1 To [ Do

If RF» = Then
HRkp < —O0
Else

Construct an upper bound;, for the optimization problem
max t
t— || — ;]33 <0 1<i<j<n
(z1,...,2p)" € R*»

nkgtguk_

(SP)

Use each poing € R*» found during the calculation ¢fzx, in order
to update the lower bound, i.e.,

n* — max{n®, f(y)}
Q — QU{y}.

EndIf
EndFor
Step VI:
Adjust the seR* of relevant subdivision sets by setting

RF — (RF\RFYU{R" :pe{1,... 1} with ups, > 1"} .

Step VII: (Pruning rule
R — {ReR":pur >n*}
Step VIII:
Update the lower and the upper bound by setting

nk—{—l - nk

b1 max{up : R € RFF1Y Jif RFFL £ ()
H — k+1 i
n , otherwise

Choose a new nod&**! of the partition tree satisfying prs1 = pF+1.
Select a point**+1 € Q with f(z*t1) = pF+l k — k + 1.
Go to Step I.
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REMARK 5.3.1. Problem (PP) is a maximization problem. Therefore, we
have changed in contrast to the previous algorithms the meaning of the Greek sym-
bolsn andy. In Algorithm 5.1n denotes a lower bound apds an upper bound.

As mentioned before, the formulation of Algorithm 5.1 follows nearly the
guidelines of a general branch-and-bound scheme given in [HPT95]. There are
two main ways in order to adapt this general algorithm to a special problem or
problem class. First of all it is necessary to decide how the bounds should be con-
structed. For the lower bound$ (k € IN) we use the most common and simple
idea, which we also used in Algorithm 3.1 and Algorithm 4.1 for the bouyids
The lower bound is updated each time the algorithm generates a new poiRt"
belonging to the feasible region of (PP) with a function vafge) bigger than the
current boundy*.

In the construction of the upper boupg: with respect to a given hyperrect-
angle R we invest more effort. Similar to the solution approaches for (QP) we
calculate this bound by solving an LP-relaxation of Problem (PP) with the addi-
tional constraintt,z) € [n*, u*] x R (see Subproblem (SP) in Step V). By in-
terpreting Problem (SP) as an all-quadratic problem or as a polynomial problem
we could choose the LP-relaxations proposed in [AKLV95] or [ST92] (see also
Section 1.3). However, doing this we do not stay abreast of the special structure of
(SP). Note that each quadratic constraint depends only on the four varigples
zi,, x;, andx;,. Exploiting this structure we are able to construct a better linear
approximation of the feasible region of Problem (SP) than by using one of these
general approaches. In Section 5.4 our method for calculating upper bounds for
this special problem is discussed.

The second step of adapting a general branch-and-bound scheme is to deter-
mine in which way we subdivide the current subdivision set. In Algorithm 3.1 and
Algorithm 4.1 we used radial subdivisions of the appliedimplices (see Defi-
nition 1.2.2), which result in a partition (Definition 1.2.1) of the subdivided set.
The hyperrectangl&® used in Algorithm 5.1 is the Cartesian product-ofwo-
dimensional rectangleB (i € {1,...,n}). We partitionR* by splitting one of
these rectangleR”. In Step Il we decide which rectangl®? (i € {1,...,n})
we would like to subdivide and in Step Ill we use a strategy to genératdN
rectangular subsets &f. How we do this is described in Section 5.5. Our strategy
Is similar to the well-known bisection approach (see, e.g., page 101). However, in
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contrast to this strategy we divide® in each iteration with respect to two dimen-
sions and not only regarding one dimension. Furthermore, exploiting the structure
of Problem (PP) we are able to eliminate a lot of possible partition sets in advance
even without computing upper bounds. Therefore — at the end of Step Il — the sets
RF ... RM do not form a partition oR*. The property

l l
i ki _
UJRrRF =R « |[JR)=R! (5.3.1)

IS not necessarily satisfied (compare with the required properties in Step Ill).

In branch-and-bound algorithms derived for general problem classes it is usu-
ally not possible to manipulate the current subdivision®etpart from its split-
ting. In Algorithm 3.1 and Algorithm 4.1 we do not know how to manipulate further
then-simpliceSSJ’? resulting from the partition of the current s&t, since in gen-
eral no additional information about the structure of Problem (QP) is available. If a
branch-and-bound scheme is developed for a special problem instance, as it is the
case for Algorithm 5.1, then exploiting the structure of this instance could enable us
to derive manipulation strategies for the sets resulting after the subdivision step. In
fact, in the case of Problem (PP) we can reduce under some circumstances the size
of the relevant hyperrectanglé&¥: using the theoretical results derived in Section
5.2 and the knowledge of the current best known vafies mentioned in Step IV
of the algorithm. The resultingize reduction strategiesare presented in Section
5.6.

Before expatiating the details of the suggested algorithm in the following sec-
tions let us first give some notes on the convergence of this approach. We would
like to formulate three conditions, which have to be satisfied by the upper bounds
(Step V) and by the subdivision set manipulation strategies, i.e., by the subdivision
strategies and the size reduction strategies (Step Il and Step V). Using these con-
ditions we are able to prove the convergence of our method.

The conditions are as follows.

(C1) The subdivision strategy is exhaustive, i.e., for each infinite sequence of
hyperrectangle$ R} <y satisfying R**! ¢ RF for eachk € IN, there
exists a point € U™ with

: ko ko_
= (R =00
keN

(compare with Definition 4.3.1).
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(C2) If an infinite nested sequence of hyperrectan{es} ..y with the prop-
ertylimy .., R* = {s} c U™ is given, then there holds

klim pre = f(s).

(C3) The subdivision strategies and the size reduction strategiesm@sestentn
the following sense. LeP* C U™ be the union of the relevant subdivision
sets in Step | in iteratiod € IN, i.e., P¥ = (Jp.r« R. Then there holds
that P¥ U Q contains an optimal solution of Problem (PP), i.e.,

(P*UQ)NSOL(n) # 0

whereSOL(n) denotes the set of optimal solution of Problem (PP) with
scattering points.

Condition (C1) for the subdivision strategy and Condition (C2) for the up-
per bounds are often used in order to prove the convergence of branch-and-bound
schemes for general problem classes (see, e.g., [HPT95, Section 3.7]). Note that in
the convergence proof for Algorithm 3.1 (see Section 3.4) and in the convergence
proof for Algorithm 4.1 in the exhaustive case (see Section 4.3) we have just veri-
fied these conditions. In both algorithms we had the property that the sets resulting
from the subdivision of the currentsimplex form a partition o65* and that these
sets are not further manipulated. Therefore, these two conditions were sufficient
for the convergence of these approaches.

As mentioned before, the subdivision strategy used in Step IIl of Algorithm
5.1 does not lead to a partition, since Relation (5.3.1) is not necessarily satisfied.
Moreover, we are able to reduce the size of the hyperrectaRjles. . , R* with
our size reduction strategies in Step IV. Therefore, in order to prove the correct-
ness of Algorithm 5.1 in the sense that this method detectsaotimal solution
of Problem (PP), it is not sufficient that Condition (C1) and Condition (C2) are
fulfilled. In Section 5.5 and in Section 5.6 we will see that using our subdivision
set manipulation strategies we may lose optimal solutions, i.e., we cut away parts
of the feasible region of Problem (PP) containing optimal solutions without detect-
ing them. However, as long as the strategies applied in our method guarantee that
there still exist at least one optimal solution in the part of the feasible area of (PP),
which is not eliminated by the set manipulation strategies, we are able to prove the
correctness of Algorithm 5.1. If Algorithm 5.1 fulfills Condition (C3), it is ensured
that not all optimal solutions are eliminated without detecting them.
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Under the assumption that the required conditions are satisfied by the strategies
used in Algorithm 5.1 we are able to show that our method detects in finite time
an e-optimal solution of Problem (PP), & is chosen greater than This will
be a direct consequence of the following convergence theorem, which proves the
correctness of Algorithm 5.1 for the case- 0.

THEOREMb5.3.1. Assume that = 0 and that Algorithm 5.1 fulfills Condi-
tions (C1), (C2) and (C3). Then the following assertions are true:

(i) If Algorithm 5.1 stops after a finite number of iterations wijth= ;.*, then

it follows thatz* is an optimal solution of Problem (PP) with optimal value

n".

(i) If Algorithm 5.1 generates an infinite point sequeleé} e, then there
holds that each accumulation point of this sequence is an optimal solu-

tion of Problem (PP) with optimal valug(x*).

PROOFE Denote, fork € IN, by P* the part ofU" still to be analyzed in
Step | of iteratiork, i.e.,

L= Urert R -
From the description of the algorithm it follows immediately that, for &ny IN,
k k
=7n" < 3.
f(@")=n _xelfg%@f(x) max{ m)a%t meagf( z) } (5.3.2)

A/—/
:nk

with F* = {(t,z) € R x PP witht — ||z; — 2;||3<0,1<i < j <n},and

< uk . 5.3.3
Jnax flz) < p (5.3.3)
Since Condition (C3) is satisfied for eakhe IN, there holds
= t* . 534
 ax (x) (n) (5.3.4)

Combining (5.3.2), (5.3.3) and (5.3.4) we obtain the first result (i).

In order to prove (ii) we can use the general convergence theory proposed
in [HPT95, Section 3.7]. Because of Property (C3) our algorithm has the same
essential properties as the general branch-and-bound scheme used in [HPT95, Al-
gorithm 3.5]. Note that we are interested in detecting global solution of Prob-
lem (PP). Therefore, assertion (ii) follows immediately from [HPT95, Theorem



5.3. THE ALGORITHM 217

3.8], if for each infinite nested subsequerdde® } v of the generated sequence
{R*} v of 2n-dimensional hyperrectangles, there holds

Tim [pe, 5] = 0. (5.3.5)

Let { R*},cn be a subsequence §f2*} e satisfying R*a+1 C RF« for each
g € IN. From Condition (C1) we know that in this situation there exists a point
s € U™ with

lim R = {s}. (5.3.6)

q—00
Algorithm 5.1 generates, for eaghe IN, a pointy*« € R*« satisfying
flyFa) < nfa.

Note thatin Step V at least one point belongind?® (¢ € IN) is used for updating
the lower bound*«. From (5.3.6) we obtain hence

lim f(y*) = f(s) < lim 5 . (5.3.7)
q—o0 q—0o0
Condition (C2) implies that
lIm ppe, = f(s). (5.3.8)
q—00
Using (5.3.7) and (5.3.8) Property (5.3.5) follows readily. |

REMARK 5.3.2. In the convergence proofs for Algorithm 3.1 and Algorithm
4.1 in the exhaustive case it was not possible to use the general convergence theory
givenin [HPT95, Section 3.7] (see Remark 3.4.1(b)). In both approaches we do not
necessarily generate feasible points for each considered subdivision set. Therefore,
we do not know how the sequen¢e”}.c behaves. Since in Algorithm 5.1
we consider the formulation of Problem (PP) given on page 210 we can use each
point belonging to the current hyperrectangle in order to update the lower bound
n* (k € IN). This guarantees that the sequefgk} e converges to the optimal
valuet*(n) in the infinite case.

As a consequence of the convergence result presented above it is immediately
clear that, for eacla > 0, Algorithm 5.1 generates aszoptimal solutionz® in
finite time. In the following sections we describe the details of the calculation
of the upper bounds and the details of the diverse subdivision set manipulation
strategies, which we used in our implementation of Algorithm 5.1. In order to
guarantee a correct functioning of the suggested approach we will have to show at
the respective places that the postulated conditions are fulfilled.
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5.4. Upper Bounds

In this section we describe the calculation of an upper bound for the optimiza-
tion problem

max t
t— xi—:c-zgo 1<i<j3<n
o~ sl <0 <)
r; € R; 1=1,....n
n<t<u,

where, fori € {1, ,n}, R, = [li17Li1] X [ligaLiQ] (0 < lij < Lij < 1,

j € {1,2}) is a two-dimensional rectangle, and> 0 andu < 4 are real numbers.
This problem coincides with Subproblem (SP) in the description of Algorithm 5.1
in the previous section.

We calculate an upper bound of (SP’) by solving an LP-relaxation of this prob-
lem. In order to obtain such a relaxation we need for any concave quadratic con-
straint

t—fzi —;ll3 <0
(1 <1 < j < n)apiecewise affine convex functidn; : IR x R? x R* - R
with the property
{(t,zi2)" € n,u] X Ri x Ry t— ||la — a3 < 0} (5.4.1)
C{(t, i, ;)" € [0, p] X Ry X Ry + hyj(t, s my) <0},

In order to simplify the presentation we ignore at first the indicgsand consider
one concave quadratic constraint

g(t,x,y) == t—llz —yll3 < 0,
where(t, z,y)T is restricted to the sét), u] x R, x R, with

Rx = [la:laLazl] X [lwzaLﬂm]
and
Ry = [ly,, Ly,] X [lys, Lys,] -

In order to construct a piecewise affine convex functisuch that
F = {(t,x,y)" €[np] x B x By : t = [lz —yl3 <0}

(5.4.2)
c{(t,z,y)" € [n,pu] x Ry ¥ Ry, : h(t,z,y) <0},
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let us examine the quadratic partgf.e., consider the function: IR? x R? — IR
given by

g, y) = llz—ylz = (21 —y1)* + (22 — y2)°
over the4-dimensional rectangl® := R, x R,. Substitutingv for the term
(r1 — y1) andw for (z2 — y2) We can interpreg as a two-dimensional function
§:IR? — IR with

g(v,w) == v +w?.

According to the feasible region afandy the new variables are restricted as fol-
lows
ly = ly, — Ly, <v< Ly — 1, = L,

< 1
—1 < ly:i= lyy — Ly, <w < Ly, — 1y, =1 Ly 1.

IN A

If a piecewise affine functioh : IR? — IR with the properties

o his concave, i.e., the minimum of a finite number of affine functions,
e there holds, forany”) € R := [l,, Ly] X [lw, Lw],

A {Zu Jif (v, w) > p

MU G iy < gy <p (5:4:3)

IS given, we obtain by setting
h(ta x, y) =t— B(ajl — Y1, T2 — y2)

a functionh fulfilling (5.4.2). Note that if there is a poirit, z, )T € [n, u] x Ry x
R, with g(z,y) > pandg(t,z,y) < 0, then — regarding (5.4.3) — there holds
h(x1 —y1,x2 —y2) > pand hencé(t, z,y) < 0. Note further that there does not
exist a point(t, z,y)T € [n, u] x Ry X R, with g(x,y) < nandg(t,z,y) < 0.

In the next part of this section we describe the construction of a piecewise
affine concave function with Property (5.4.3) in detail. Denote by

v =12)- (1) () (2 = enmnn

the set of vertices of the two-dimensional rectan@land assume, without loss of
generality, that there holds
g(v1) = maxg(z) . (5.4.4)
zER
Note that a convex function always attains its maximum over a polyfope a
vertex of P [HPT95, Theorem 1.19].
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If an affine functiory : IR* — TR, £(z) = a” z + b coinciding in three vertices
of R with the function values of is given, it follows by straightforward calculation
that/ also coincides witlg in the fourth vertex, i.e., for eache {1, ... ,4}, there
holds

l(v;) = g(vi) . (5.4.5)

PROOF OF(5.4.5): If, fori € {1, 2,3}, there hold¥(v;) = g(v;), we obtain
L(v1) = aily + azly +b= 24+12 = g(v1)
l(v2) = a1Ly +azly +b= L2 +12, = §(ve)
l(v3) = a1Lly +asly +b= L2+ L = g(vs) ,
and therefore

g(va) = Uy + Lu, = £(v1) — £(v2) + £(v3)

= aily + a2Ly + b = £(v4) -

REMARK 5.4.1. The functiorf is the concave envelope gfon the rectangle
[v1, v2,v3,v4] (SE€ Subsection 1.2.4). Note that the concave envelope of a separable
functionf : R"” — R, f(z) = >, fi(z;) on arectangleR = {x € R" :
li <z < L;,i=1,...,n}is the sum of the concave envelopes of each part
fi :IR — R of f ontheintervall;, L;] (i = 1,... ,n) [HT968B, Theorem IV.8].

Because of Relation (5.4.5) it is obvious that the affine funcfian over-
estimating function foy on the whole rectangl&, and especially that fulfills
(5.4.3). Hence the simplest way in order to obtain the required funatisto take
the function/ itself. However, in some circumstances it is possible to "improve"
this overestimator, where "improve" is meant in the sense of a concave approxima-
tion of g with respect to the feasible regidny which has function values smaller
than or equal td. Considering the structure @&f we recognize that it is not neces-
sary to overestimatg on the whole rectangl&, as we do by choosing We only
need a concave overestimator for the function

min{ u , g(v,w) } (5.4.6)

on the set’R N {(”) € R? : g(v,w) > n} (see Figure 5.7 and compare with
Property (5.4.3)). Note that all poin{§)) € R with a function valuej(v, w)
lower thann (see the bottom of the functiopin Figure 5.7) are infeasible, i.e.,

Fn{(’) e R*: j(v,w) <n}=0.
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FIGURE 5.7. The relevant function
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g(Ua w) - min{,ua maX{g(”? w)? 77} }
with (v, w)? € [0,1] x [-1,1]

Depending on the function values ®fn the vertices of? C [—1,1] x [-1,1]
we distinguish four main cases.

Case1g(v;) <n,i€{l,...,4} (see Figure 5.8)

Sinceg is a convex function it follows immediately that, for eagh w)” € R,
there holdsj(v, w) < n. This impliesF' = (). In this case it is not necessary to
construct a functioh because we do not need an upper bound for Problem (SP’).

Case 2g(v;) > p,i€{1,...,4} (see Figure 5.9(a))
Since, for any(v, w)” € R, there holds

min{ po, max{g(v, w),n} } < p,

we obtain by setting = 1 a constant function with Property (5.4.3). This function
IS a better approximation gf with respect to the feasible regidnthan the affine
function/. Moreover, there is no possibility to further improvevithout losing the



222 RACKING EQUAL CIRCLES IN A SQUARE

FIGURES.8. Case 1

The dotted cir-
cle displays the
contourline for
g(v,w) =nand
the solid circle
for g(v, w) = p.

1 ................................ 1 ................................
U3
A RN
f f 7
/ vl %
V2 :
_-1 ------------------------------ '1 _-1------------------------------'1
(a) Case 2 (b) Case 3

concavity.

Case 3n < g(v;) < p,i€e{l,...,4} (see Figure 5.9(b))
In this situation the previously defined affine functiors the pest approximation
of g fulfilling (5.4.3). As in Case 2 it is not possible to improke= ¢ and preserve
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simultaneously the concavity &f
Case 4di,j € {1,...,4} with (§(v;) > pandg(v;) < p) (see Figure 5.10(a))

or (g(v;) < mandg(v;) > n) (see Figure 5.10(b))
In this situation the affine functiohis not the best concave approximatiorgafith

FIGURES5.10. Case 4

Property (5.4.3). Using a piecewise affine function we are able to imgtoles
possible that up to three verticesof R have a function valug(v;) bigger than
1 or that up to three vertices have a function value smaller thabepending on
the number of vertices ak with a function value bigger or smaller thanor ,
respectively, there are hence 12 possible subcases (see Table 5.1).

To depict the rather simple ideas in order to obtain a better approximation
of § we describe the construction of the functibrfor Subcase.0n1 in detail
(compare with Figure 5.11). Let andwvg be the intersection points of the level
curve{(v,w) € [-1,1]x[-1,1] : g(v,w) = n} with the boundary of the rectangle
R and assume at first that there holds

Vs € I'ehnt(['UQ,Ufi]) (547)
v € relint([vg,v4]) B
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TABLE 5.1. Possible subcases

Subcase| [{i € {1,...,4}: g(vi) > p}| | [{i € {1,...,4} : g(vi) < n}|
uonl 0 1
wOn?2 0 2
pwon3 0 3
pln0 1 0
plnl 1 1
uln2 1 2
uln3 1 3
1210 2 0
u2nl 2 1
U2n2 2 2
w310 3 0
u3nl 3 1

(for the definition of the relative interior (relint) of a set we refer ta[¢¥ 0]). The

points belonging to the triangle formed by, v5; andvg — except the points; and

ve themselves — (see the shaded region in Figure 5.11) are not feasible. Therefore,
it is not necessary to overestimdgten this region. If we kink the affine functiah

along the line between, andv, and pull down the part lying oveps, v4, vs, ve]

FIGURE5.11. Case:0nl
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as much as possible, we improve the approximatiof over the feasible region
F.

Let us explain this strategy now in a more technical way. d.dte the affine
function, which coincides with the functioi at the vertices;, vo anduy, i.e.,
¢; = (. Let further/s; be the affine function, which coincides at the pointsv,
andvs with g and, analogously;s be the affine function coinciding with at the
pointsv,, v4 andvg. The affine functiongs; and/y, are by construction equal
along the line joining the points, andv,. This line splits the two-dimensional real
spacelR? into two halfspaces, where the points andvg belong to the same of
these halfspaces. Therefore, one of the following relations have to be satisfied

l1(ve) = l22(ve) = G(ve) (5.4.8.a)
or

622(1}5) 2 621(1]5) = g(’U5) . (548b)

If (5.4.8.a) is fquiIIed,A we §e122 := fo91. Otherwise we choosé, := /o5. Itis
immediately clear thatt; : R — IR given by

hi(v) :=min{l; (v), l2(v)}

) (w) S if v € [v1,v2, v4]
| aw) L ifv € [vg,v4, v5]

IS a piecewise affine concave function satisfying Property (5.4.3).

Assume now, without loss of generality, that (5.4.8.a) is true, i.e., we choose
/5 = V91. We are able to improvfel further by kinking/, along the line betweeny
andvs and now pulling down the part ovér,, vs, vg]. Let /s be the affine function
coinciding withg at the pointay, vs andvg. It follows by the same arguments as
before thati : R — IR

~

h(v) :=min{h(v), £3(v)}
(

l1(v) L if v € [y, v9,v4]
=< lo(v) ,if v € [vg, vy, v5]
l3(v) ,ifv € [vs, vy, v5]

Is also a piecewise affine function fulfilling (5.4.3). This function has the additional
property that, for each € [vs, vg, v3], there holds

h(v) < 7. (5.4.9)
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If Assumption (5.4.7) is not true, we can simplify the definition/oés de-
scribed in the following cases:

Case 1 v5 = v9 anduvg € relint([vs, v4])
h(v) := min{l;(v), l22(v)} ,v € R
Case 2 vg = v4 andvs € relint([ve, v3])
h(v) := min{l; (v), l21(v)} ,v € R
Case 3vs = vy andvg = vy
h(v):=t1(v) ,veER
In the described manner we are able to construct the required furicfmmCase

£:0n1 by a minimum of up to three affine functions. The construction df the
remaining eleven cases (see again Table 5.1) follows the same ideas.

REMARK 5.4.2. Note that there is one difference in the argumentation, if we
construct the functioi for the cases where at least one verteXdfas a function
value bigger than, i.e., if there holdg)(vi) > u (see (5.4.4)). Let us consider
Caseu1n0 in order to explain this difference. Denote tByanduvg the intersection
points of the level curvg (v, w) € [—1,1] x [-1,1] : g(v,w) = p} with the
boundary of the rectanglg (see Figure 5.12) and let be the triangle formed by
the pointsvy, v5 andvg. According to the described ideas we pull down twice the

FIGURE 5.12. u1n0

U4 .U3

affine function? over the triangle\. In Caseu0n1 this operation was allowed since
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all elements of the shaded triangle in Figure 5.11 were infeasible. In contrast to this
in the present case the points belonging\tare feasible (see the shaded region in
Figure 5.12). However, the elements Af have function values with respect to

g bigger than or equal tp. Regarding the structure of the feasible regiort is
hence not necessary to overestinigta the triangleA (compare with (5.4.6)). Itis
sufficient if the function is bigger than or equal ta on this set. The application

of the described ideas leads obviously to a funcfior minimum of up to three
affine functions — fulfilling, for eaclh € A,

h(v) =2 p

(compare with Relation (5.4.9)). Therefore, in the cases With) > u the con-
cave overestimating functioi for the functiong on the setF’ can be constructed
using the same ideas as described in GéBsd.

Table 5.2 shows the maximum number of affine functions needed for the con-
struction off in each subcase. These maximum numbers coincide with the number

TABLE 5.2. Maximum number of affine functions

Subcase| maximum numbern Subcase| maximum number
p0nl 3 pln3 2
10n2 2 1210 2
10n3 1 ©2nl 3
uln0 3 w2n2 2
plnl 4 13m0 1
pln2 3 u3nl 2

of triangles we use in order to partition the regiorfhfwhereg has function values
not smaller tham and not greater than. The choice of this triangle partition de-
pends on the function values §in the relevant corner points, as we have described
in detail for the construction df in Casey0n1.

Consider now again the optimization problem (SP’). In the described way we
are able to build for each pait,(j) (1 < i < j < n) the required piecewise affine
functionh;; : R x IR? x IR? — IR satisfying Condition (5.4.1), which is needed
in order to obtain an upper bound for Problem (SP’). It follows immediately that
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the solutionu g of the optimization problem

max ¢

hij(t,z;,x;) <0 1<i<ji<n

’ ’ , (LSP’)
r; € R; 1=1,...,n

n<t<u,

delivers such an upper bound for the optimal value of (SP’). Note that (LSP’) can
be formulated as a linear program, sirige is a maximum of a finite number of
affine functions.

In Section 5.3 we pointed out that it is necessary for a correct functioning of
Algorithm 5.1 that the described upper boundssatisfy Condition (C2). This is
ensured by the following lemma.

LEMMA 5.4.1. Let {RF = R} x ... x RF},cv be an infinite sequence of
2n-dimensional hyperrectangles wifd! ¢ U™ and R* > R¥*+! for eachk € IN.

Assume further that there exists a point (s1,... ,s,)? € U™ satisfying
Jim RF = {s} (5.4.10)

Then there holds

. . . . a2
Jm pge = fls) = min_ s —sl3 - (5.4.11)

PROOE Let,forl <i < j <n, E{}k : IR? — IR be the affine functiod with
respect to the rectanglég’ andRé?, i.e., foreach € {1,... ,4} there holds

k, iiRF iiRF iiRF i RF
LY (07 ) = TP+ (0 = Iy I3, (5.4.12)

ijRF
wherev”™ is a vertex of the rectangl®; — Ry = [I} — L% Ly — %] x

if — L% L¥ —1*]. According to the construction df we know that, for each

1<i<j<n,z € R} z; € Rfandt € [n*, "], there holds

hZR-k t,x;, x; Zt—ﬁﬁk Tiy — Tjyy XLj, — Xj
i ( ]) ]k( 1 J1 2 32) (5413)
:t—gﬁ (CIJZ'—ij) .

From (5.4.10) and (5.4.12) it follows immediately, for edchk< ¢ < 7 < n and
le{l,...,4}, that

k., iiRF
Y = lsi—sllE (k= o0). (5.4.14)
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Since, for each < i < j < n andk € IN, the affine functiorﬂf}k attains its
maximum over the rectangl@} — R’ in a vertex of this set, i.e.,

max Eﬁk(w) — _max4€£k(U;ij), (5.4.15)

we obtain — taking (5.4.10) and (5.4.14) into account — that the following relation
Is satisfied, for each < i < j < n,

max (v —x;) —  si—sillf (k—o00). (5.4.16)

The points is an element of each hyperrectangle (¢ € IN). Hence, we know
that f(s) is bounded from above byr+ (k € IN). Regarding (5.4.13) and (5.4.16)
we can conclude

f(s) < ppr = . max t < . max t
r € RF r € RF
t e n®,pu
k
< _max t = max min 07 (zi — xj)
t— gﬁ (C(,’l — :Ej) S 0 TER 1§z<]§n
x € RF
. k
< min max Eﬁ. (x; —x;5) ,
1<i<g<n x; € RF
3
T; € RI;
L (k— o0)
lIsi — s5l13
L (k—o0)
f(s)
which proves Relation (5.4.11). |

Considering the structure of Problem (PP), respectively of Subproblem (SP),
we were able to construct upper bounds, which can expect to be better than those
obtained by a general approach for all-quadratic programs (see, e.g., [AKLV95,
ST92]). In the subsequent two sections we will see that the examination of the
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structure of (PP) can also be exploited for the subdivision of the current hyperrect-
angleR*. Doing this we will be able to substantially reduce the effort for solving
Problem (PP) with Algorithm 5.1. However, we have to keep in mind that the
subdivision set manipulation strategies introduced in Sections 5.5 and 5.6 fulfill
Condition (C1) and Condition (C3).

5.5. Subdivision Strategies

Let R* = RY x ... x RF be the current hyperrectangle considered in iteration
k € IN of Algorithm 5.1. As pointed out in the description of our approach (see
Section 5.3) we choose in Step Il an index {1,...,n} such that the rectangle
R =[1% LY | x [I% , L’ | has the longest edge-length among all rectangles form-
ing R¥. In Step Il of Algorithm 5.1 we subdivide this rectangle in order to obtain
a subdivision of the hyperrectang®¥. However, until now we did not say how we
do that.

In the present section we describe the strategy applied for splitting the chosen
rectangIeRg? into a finite number of subrectangles. In order to simplify the pre-
sentation we ignore the iteration countein the following. We start this section
with a description of the basic strategy leading to a partitio® af After this we
discuss some special features of our subdivision strategy. Exploiting the structure

of Problem (PP) they enable us to avoid redundant computations.

5.5.1. Basic Strategy.If the two-dimensional rectangle; coincides with the
unit squarel/, we construct a partition aR?; (see Definition 1.2.1) consisting of
the four squares

U = [0.0,0.5] x [0.0,0.5]
Us = [0.5,1.0] x [0.0,0.5]
Us = [0.0,0.5] x [0.5,1.0]
Uy =10.5,1.0] x [0.5,1.0].
(see Figure 5.13(a)). Note that in Algorithm 5.1 the rectangjeis initialized

(5.5.1)

with U = [0,1]%. In the next level, i.e., ifR, is equal to one of the squares
Ui, Us, Us or Uy, we obtain a refined partition by constructing squared;
(I € {1,...,m?}) with equal size and edge-lengf}. The choice of the integer

m with m > 2 depends on the value of the first lower bouptd> 0 determined
by the first best known solution for (PP) (see the initialization phase of Algorithm
5.1). This choice shall assure that the squared diamefér @fc {1,... ,m?})is
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FIGURE 5.13. Basic subdivision strategy

1.0 0.5
Us Uy
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smaller tham® (see Figure 5.13(b)). For that reason we choasas the solution
of the optimization problem

min m

(le_lj1>2 + (Lj2_1j2)2 < n()
meIN,m> 2

Selectingm in this way we know that at most one membgrof an optimal solu-
tion (z7,...,2%)T € U™ of Problem (PP) can belong to one of these squéjes

(e {l,...,m2)).

REMARK 5.5.1. In our numerical tests it was sufficient to choose- 2 for
n < 13 andm = 3 forn < 27.

In deeper levels, i.e., iR; has a maximal edge-length smaller than or equal
to 9m—5 we subdivideR?; again into four rectangles with equal size by bisecting the
edges of this rectangle.

REMARK 5.5.2. As we will see in Section 5.6, it is possible tligtshrinks
to an interval, i.e., to a one-dimensional rectangle. In these cases we simply split
R; by halving this interval.

The reason for choosing a partition consisting of more than four squares in the
second level has a heuristical nature. Our numerical tests showed that this strategy
— in connection with the following special features and the possible reductions of
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the size of relevant rectangles discussed in Section 5.6 — has a much better running-
time performance than the simpler strategy, whiyds always divided into four
squares.

For the implementation of the following special features it is essential that at
least in the first level we use squares as partition sets instead of two-dimensional
rectangles with different edge-length, as it is doneo@&PWM91].

5.5.2. Special FeaturesBecause of the special structure of Problem (PP)
there are many optimal solutions differing only by the numbering of their mem-
bers or differing by a rotation or a reflection.

Consider the case = 6. An optimal solution of Problem (PP) is given by

()= (]) - () - (})
() () -

(see Figure 5.14(a)). Setting, for eack {1,...,5}, Z; := x;41 andZg :=

(5.5.2)

FIGURE 5.14. Same solutions with different numbering

Ts5 T6 x4 Ts5
le PN le @
LE> EY L E Y
0 T T3 0 Zg T2
(a) Numbering 1 (b) Numbering 2

we obtain the "same" optimal solution (see Figure 5.14(b)). The membeisan
optimal solution are permutable. However, for the solution of the point scattering
problem it is sufficient if we detect one of theskoptimal solutions. Hence, we
need a subdivision strategy, which guaranteesigue numbering.
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In order to illustrate the problem of possible rotations and reflections consider
again the case = 6. There ares possible symmetric arrangements of an optimal

solution(zy, ... ,x,)T € U™ in the unit squaré/. For the optimal solution given
FIGURE 5.15. Solutions differing by rotation
x x Ly
Toe 2
. xo :“I4 ‘ ] ‘
N . ‘:‘.xz
5 . ~~‘x’£)3’1
0 T I'g 1 0 1
(a) 0° rotation (b) 90° rotation
I3 I I Is
1 P ® le ®
T4® o) . N
‘ T3¢ . 9Lg
o - L X4 -
0 e % 0 1
(c) 180° rotation (d) 270° rotation

in (5.5.2) (see Figure 5.15(a)), there are three possible rotations (Figures 5.15(b)-
5.15(d)) and four reflections (Figures 5.16(a)-5.16(d)). For Algorithm 5.1 it would
be sufficient, if only one of these possibilities is considered. Therefore, we need
also a strategy, which avoids that Algorithm 5.1 looks for more than one of these
symmetric solutions. Note that these reflections and rotations are the results of
orthogonal transformations, which do not change the Euclidean distances between
the members of a point € U™.



234

RACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.16. Solutions differing by reflection
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REMARK 5.5.3. The arrangements displayed in Figure 5.15 and in Figure
5.16 differ only by the numbering of the members of the solufien ... ,z,)?
(compare, e.g., Figures 5.15(a) and 5.16(b)). Consequently, one could assume that
a unique numberingstrategy also reduces the number of possible symmetric ar-
rangements, and it would be thus not necessary to consider all displayed cases in
a symmetry avoiding strategy. However, the fact that the reflections lead only
to a different numbering in comparison with the rotations depends on the special
structure of the considered solution fore= 6. This solution is symmetric itself. If
an optimal solution for Problem (PP) is not symmetric, as it is for example the case
forn = 10 (see Figure 5.17), then there exdstompletely different arrangements.
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FIGURE5.17. A solution of Problem (PP) faor = 10
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In the following we would like to sketch how we obtain the required unique
numbering and how we try to avoid the appearance of symmetric solutions. We
stress that the elimination of redundant solutions is crucial for the efficiency of
Algorithm 5.1 (see also Remark 5.6.1 in the next section). The algorithm necessar-
ily refines the branch-and-bound tree near all optimal solutions that have not been
identified as "simple modifications" of each other. Thus the amount of time saved
by eliminatingk — 1 of k£ solutions is nearly a factor @f.

Unique Numbering. In order to describe the simple idea of this special strat-
egy let us assume that a hyperrectangle

R=Ry x---x R,

is given such that, for eache {1,...,n}, the rectangle?; is subdivided twice,
l.e., R; is the result of a subdivision of one of the four squdrg& = 1, ... ,4) (see
(5.5.1)). Taking the basic strategy into account it follows that, for each rectangle
R; (i € {1,...,n}), there exists a unique squalle C U with edge Iengthor'n—5
satisfyingR; C U,. If we identify each of thetm? possible square§ with a
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unique numbeno(U) and require that, forany=1,... ,n — 1, there holds

TLO(UfL) < HO(UH_l) ) (5.5.3)
then we are able to guarantee a unique numbering of the rectangles forming the
hyperrectangle.

Let us illustrate this approach with an example. Consider again the:case
and assume that is chosen a&. In this situation there aré6 possible squares
U. Numbering these possibilities as shown in Figure 5.18 and requiring that (5.5.3)

FIGURE 5.18. Unigue numbering

1

11| 12| 15 | 16

9 10 | 13 | 14

3 4 7 | 8

1 2 5 6
0 1

is true, we see that solutiondisplayed in Figure 5.14(b) is not possible. Indeed,
z is a member of the hyperrectangie= R; x --- x Rg given in Figure 5.19(b)
with the propertyno(Us) < no(Uy). This violates Condition (5.5.3). On the other

FIGURE 5.19. Different numberings

1 1 1

e m | B B | s

2

(a) Possible (b) Impossible (c) Possible

hand, a numbering of solutionas in Figure 5.14(a) is allowed, since this pointis
contained in the hyperrectanglie= R; x --- x Rg shown in Figure 5.19(a).
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As mentioned before, this strategy guarantees a unique numbering of the rect-
anglesR; forming the considered hyperrectandte Unfortunately, this strategy
IS not able to ensure a unique numbering of an optimal solution, i.e., Algorithm
5.1 using this strategy can still look for several solutions of Problem (PP) differing
only by the numbering of their members. Indeed, with respect to the basic strat-
egy we know that each squaleresulting from the second partition 6f contains
at most one member of an optimal solution. However, if a member of an optimal
solution belongs to the boundary of such a squarthis set is not unique, as it is
the case for; = (%%%) orz; = (12) in our present example. In such a situation
our strategy does not guarantee a unlque numberlng of the optimal solution. The
numbering of the hyperrectangie= R; x - - - x Rg given in Figure 5.19(c) fulfills
also Property (5.5.3). Hence, Algorithm 5.1 — even using this unique numbering
strategy — has to detect an optimal solution in hyperrectaRglEigure 5.19(a))
as well as in hyperrectangle (Figure 5.19(c)). Nevertheless, this special feature
strongly reduces the necessary effort for solving Problem (PP). Note that we elim-
inate till the second partitioning level — 1 of n! possible hyperrectangles.

Symmetry Avoiding Strategy. Let

R ={R=R; x---x R, CU",
Ri:[lllv ] [lmv 12] cU,i=1,. }

be the set of all possibln-dimensional hyperrectangles. The symmetries result-
ing from the relevant rotations and reflections (see again Figure 5.15 and Figure
5.16) can be interpreted as an equivalence relatiam the sefR.

R is the result of one of the three possih
R,QeR:R~ (@ <= rotations ofQQ or the result of one of the
four possible reflections @

e

174

The equivalence relation- divides R into equivalence classeR, (v € I,
I index set), i.e.,

R, CR,Yeel
R~Q,VR,QeR,,tel
R.NR. =0,Vi,s €l,t#k
UerR.=R .
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Obviously, it is sufficient for a correct functioning of Algorithm 5.1 if this
method considers only one member of the equivalence cldsseshich are rele-
vant during the execution of our approach. We developed a strategy able to decide
whether a given hyperrectangle= R, x --- x R, in a node of the branch-and-
bound tree is &pecialrepresentative of an equivalence class or not. Let us shortly
sketch the basic ideas of this strategy.

Assume at first that we are in a situation such that the current hyperrectangle
R is given as the Cartesian product of the squéke§ € {1,... ,4}) (see (5.5.1)),
l.e., each membeR; of R has been subdivided once. If the previously described
unique numbering strategy is applied, then we know that there are three integers
19,13 € {1, e, 1} (Zl <9 < 7,3) Satisfying

Ri=U i=1,...,i1—1,
Ri=Us i=iq,...,i0—1,

Ri =Us i=ig,...,i5—1
and

Ri:U4 i:ig,...,n.
Note that the unique numbering strategy can also be applied for hyperrectangles
with this structure, even though we described the ideas of this method under the

assumption that each member of the considered hyperrectangle is subdivided twice.
Denote by

Cli=i1—-1,C2:=i9—141 , C3:=1i3—1y , C4d:=n—+1—13

the number of member®; (j € {1,...,n}) of R, which are equal tdJ;

(e € {1,...,4}). In order to avoid that Algorithm 5.1 considers more than one
representative of the equivalence class of the/sebntaining the hyperrectangle
R we require that these counterd, C2, C'3 andC4 fulfill special ordering con-
ditions.

Ordering conditions for the first level
C1 > max{C1,C2,C3} (OC1)
C2 > C3 (OC2)
If C1 = C2Then(C3 > C4 (OC3)
If C1 = C3ThenC2 > C4 (0OC4)
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If a hyperrectangle? = R; x ... x R,, does not fulfill (OC1), it is possible to
rotate the rectangles forming this set such that (OC1) is satisfied. Condition (OC2)
can be reached by a reflection along the Ijif§), (})] and Condition (OC3) is
yielded by a reflection alonfy(%"), (°;%)]. If Condition (OC4) is not satisfied we
can reflect the members &falong the ling[(,), (,'s)] and obtain an element of
the same equivalence class fulfilling this condition. Note that all Conditions (OC1)-
(OC4) are satisfiable simultaneously. The examination of the reflection along the
line [(;), (})] in the first level does not lead to another ordering condition. We
could only require”'1 > C4. However, this is fulfilled regarding Condition (OC1)
and thus unnecessary.

Let us illustrate these conditions for the case: 6. As mentioned before, we
would like to avoid that Algorithm 5.1 tries to determine the solutions displayed
in Figures 5.15(b)-5.15(d). In order to detect these solutions Algorithm 5.1 has to

generate the hyperrectangles
R = Uy xUy x Uy x Uy x Ug x Uy,
R? = Ul x Uy xUg x Uz x Uy x Uy,
R2 = Uy xUs xUs xUs x Uy x Uy,
RY = Ul xU; xUy x U3z x Uz x Uy,
R® = U x Uy x Uy x Us x Uz x Uy
and
RS = Uy xUy xUy xUs x Uy x Uy .

(see Figure 5.20). Only the hyperrectangig’sand R® satisfy (OC1)-(OC4) si-

multaneously. Indeed??, R? andR® violate (OC1) andz* does not fulfill (OC?2).

Hence, Algorithm 5.1 eliminates these four sets from further considerations. This

means that only one-third of the hyperrectangles containing optimal solutions have

to be analyzed further. However, because of the special structure of the solution

for n = 6 —z9 andx4 does not belong to a unique squaie(i € {1,...,4}) -

the remaining hyperrectangl& andR° still contain the four possible symmetric

arrangements aof. The solutions given in Figures 5.15(a) and 5.15(c) ligkih

and all solutions are located withiR°. For that reason we have to examine the

symmetry structure of the relevant hyperrectangles also in the second level.
Assume now that the current hyperrectangles given by the Cartesian prod-

uct of n rectangles with edge-lengl%%, l.e., each member ok is subdivided
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FIGURE 5.20. Hyperrectangles containing an optimal solution

1 1 1
C3=1C4=1 C3=1C4=2 C3=2C4=2
Cl=21C2=2 Cl=1C2=2 Cil=1C2=1
0 1 0 1 0 1
(a) R! (b) R? (c) R®
1 1 1
C3=2/C4=1 C3=2/C4=1 C3=1C4=2
Cil=2C2=1 Cl=1C2=2 Clil=2C2=1
0 1 0 1 0 1
(d) R* (e) R® (f) R®

twice. According to the choice oin we know that each rectangl&;

(z € {1,...,n}) forming R contains at most one member of an optimal solution
of Problem (PP) and hence the rectanglgs(i € {1,...,n} must be different
from each other. Moreover, we know this a child of a hyperrectangi, which

has satisfied all conditions in the first level and we know which type of symmetry
are still possible, i.e., with respect to which type of symmetrRigwariant. For
example, in the case = 6 there holds that foz! and hence for all its children
only the reflection along the linf(°.”), (%)] can be considered. The other pos-
sible hyperrectangl&S is invariant with respect ta80° rotations as well as with
respect to reflections alor{d?), (;)] and along(}), (;)]-

In order to avoid that Algorithm 5.1 examines more than one representative of
the equivalence classes containing hyperrectangles with the described structure we
assign to each squaté (i € {1,...,4}) a number, as we did in the first level.
However, this number is not a pure integer anymore. We use binary representations
of integer values with a length ef2. An element of then?-dimensional binary
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vector corresponds to one of the? possible subsquares obtained by partitioning
U; (i € {1,...,4}) according to the basic strategy. Such an element is skt to
If the corresponding square is a memberhfand0 otherwise. Consider the case
m = 2. We have4 possible subsquares of edge-lengtds for each squaré/;

(¢ € {1,...,4}). In order to examine rotation symmetries we define the vectors
C1,02,03,C4 € {0,1}* as shown in Figure 5.21. As in the first level we require

FIGURE 5.21. Numbering o€”1, C2, C3, C'4 for rotation sym-
metries andn = 2
1

C3:| C33|C4, | C44

C32| C34| C44] C43

Clg| C1,y| C24] C2,

C1;| Cl1| C23| C2;

that the integers given by the binary vectars, C2, C'3 andC'4 fulfill special or-
dering conditions — lik&’'1l > max{C2, C3, C4} (compare with Condition (OC1)

for the first level). Note that the numbering of the vectors is chosen such that they
are invariant with respect to the rotations. The same has to be done, if we examine
possible reflections. In these cases we choosenfee 2 the numberings given

in Figures 5.22(a)-5.22(d). The resulting integers are also checked, whether they
fulfill special ordering conditions.

It is essential to note that in the cases where more than one type of symmetry
can be examined we have to pay attention that the applied conditions are consistent.
Recognize that in contrast to the first level the integers used here for checking the
ordering conditions can vary for different symmetries. This means that we have to
guarantee that all conditions, which we require, can be fulfilled simultaneously by
at least one element of each relevant equivalence clags ©his problem leads to
a distinction of many cases in order to formulate these conditions. Therefore, we
abandon an explicit formulation of the used conditions in the present work.



242 RACKING EQUAL CIRCLES IN A SQUARE

FIGURE 5.22. Numbering ofC1,C2,C3,C4 for reflection
symmetries aneh = 2

|
1 ! 1
C3, C3s| C45| C44 C3, C3,| C45| C4,
C3, C3,| c4, C4, C34 C3.4| C4.l C4,
Cl4 C1,| c2, C24 C14 C1,| C2, C2,
C14 C1,| C24 C2; C1, C1,| C24 C2,
0 1 0
|
(@ along| (°). (°)] (b) along | (o) (o15) ]
AN C45| C44 C34| C3- L’
s | 44 Cay C33 C34| -7
C1g Cl1, C24 C2,
C14 Cl, C24 C2,
0 N
(c)along [ (). (5)] (d) along [ (), (1)]

REMARK 5.5.4.

(a) If m is different from2, as it is the case for numerically interesting num-
bers of points (see Remark 5.5.1), we have to adjust the numbering of the
m?-dimensional binary vectos1, C2, C3 andC4 according to the previ-
ous ideas. Moreover, theonsistenbrdering conditions, which we require
to be fulfilled, have also to be adapted in these cases.
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(b) If the considered hyperrectangle is a child of a set invariant with respect to
reflections along the ling(}), ()] oralong[(y), (;)], itis also possible to
formulate additional conditions considering the subsquar&s ahdU; or
of U; andUy, respectively, which are not crossed by the reflection line (see
the not-numbered subsquares in Figure 5.22(c) or in Figure 5.22(d)).

Let us finally illustrate the described symmetry avoiding strategy in the second
level for our example: = 6. The hyperrectangleB'! and R'? given in Figure
5.23 are children of:! and hence possible during the execution of Algorithm 5.1.

FIGURE 5.23. Possible children di! forn =6

Zl= ==
=Z = Z =
Z = =Z =
0 1 0 1
(a) R (b) R12

As we have pointed out before, the hyperrectangleis only invariant with re-
spect to reflections along the li€’;”), (%°)]. According to the numbering of the
4-dimensional binary vectors given in Figure 5.22(a) we obtain:

C1 = (1,0,0,1)T C1 = (0,1,1,0)T
Rl c2 = (0,1,1,0) Ri2- C2 = (1,0,0,1)7
C3 = (1,0,0,0)T C3 = (0,0,1,0)7
C4 = (0,0,1,0)7 C4 = (1,0,0,0)7

If we use the condition
Cl1 > CO2,

we see thaf!! satisfies this condition an'? violates it. Hence?'? is eliminated
from further considerations and we obtain that the optimal solution given in Figure
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5.15(c), which was still contained iR!, is with respect to the children of this
hyperrectangle no longer possible.

The hyperrectangl&° , which fulfills also the ordering conditions in the first
level, can lead to the four hyperrectangles given in Figure 5.24 containing the four

FIGURE 5.24. Possible children a&° for n = 6

1 1 1 1
o I — ] o —
o — — ] —
- - — — —
s R — — o = —
0 1 0 1 0 1 0 1
(a) R61 (b) RS2 (C) R63 (d) R64

possible arrangements of the optimal solutions shown in Figure 5.15. We know
that R® is invariant with respect ta80° rotations. Using the numbering of the
binary vectorsC'1, C2, C'3 andC4 given in Figure 5.21 and requiringl > C4

— as we did in the first level — we obtain th&t? and R%* violates this condition.

If we consider the reflection along the lif€)), (})] and require agaif'2 > C3
(compare with (OC2)), wher€2 andC3 are now numbered as in Figure 5.22(d), it
follows thatR! does not fulfill this condition. Thus using our ordering conditions,
only the hyperrectanglg°? remains.

Applying the described symmetry avoiding strategy in the second level it fol-
lows again that two-third of the hyperrectangles containing symmetric solutions are
eliminated from further considerations. Unfortunately, there are still two symmet-
ric solutions (see Figure 5.15(a) and Figure 5.15(b)), which have to be detected by
Algorithm 5.1, sinceR'! and R®? fulfill all ordering conditions and contain both
arrangements af. The reason for this fact is again the special structure of the
solutionz for n = 6 given in (5.5.2). As in the first level, there are two different
equivalence classes &, whose members contain symmetric arrangements of

Hence our symmetry avoiding strategy is not able to fully avoid that Algorithm
5.1 has to detect different symmetric solutions. We can only guarantee that Algo-
rithm 5.1 does not look for optimal solutions in more than one representative of an
equivalence class g2. This is the best we can obtain and — as it was the case for
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the unique numbering strategy — we have seen in our example that the use of the
suggested symmetry avoiding strategy reduces significantly the effort for solving
Problem (PP) with Algorithm 5.1.

If a hyperrectangler fulfilling all required conditions in the second level is
still invariant with respect to some types of symmetry, we could examine these
symmetries also in deeper levels. However, our numerical experience showed that
this effort does not lead to an improvement of the numerical performance of Algo-
rithm 5.1 — at least as long as the size reduction strategies introduced in the next
section are used.

Besides these two special features, which do not depend on the current upper
and lower bounds, we also use a third idea in order to reduce the effort for solv-
ing Problem (PP). This idea exploits explicitly the knowledge of the current best
known valuer,.

Using the Current Lower Bound 7). If we assume that forthe cases< [ < n
upper bounds(7) for the optimal solution valug (/) are known, then it is possible
to further reduce the number of subdivision sg&ts- R; x --- x R,,, which are
relevant during the execution of Algorithm 5.1. Note that the presented approach
can deliver the necessary upper bounds.

For a given hyperrectangle = R; x --- x R, C U?™ and for2 <[ < n, let

Ry = {Ri:ieywithI c {1,...,n},|I| =1}

be the set of all subsets 6R;,7 = 1, ... ,n} with cardinalityl. Choose, fof < n,
a set() € R; and let

Q = [l1,L1] x [l2, Lo]

be the smallest rectangle containing all element®ofSince there holdg(l) >
t*(1) it is obvious that the maximal minimum pairwise squared distanégoints
lying inside a square with edge lengths not greater thap(1)d>.

If there holds

p(l)(max{L; — 11, Ly — 12})? < 7, (5.5.4)

it is not possible that points lie inside? with a minimum squared distance bigger
than or equal te). Thus it is not necessary to consid@rfurther, sinceR cannot
contain a point: € IR*" with a better distance behavior than the current best known
point.
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Let us illustrate this method with an example. Consider again theicasé
and assume that the current rectanfjle- R; x --- x Rg has the structure given
in Figure 5.25. We know thgi(4) = 1 = t*(4). Hence we can derive that the

FIGURE 5.25. Eliminable case

BB Q
7 B

maximal minimum pairwise squared distance of four points lying inside the square

Q = [0.5, 1.0] X [0.25, 075] = RoUR3UR5 U Rg

is equal t00.25 = (4)0.5%. If a current best known valug greater thar).25 is
given, we are able to eliminat® from the set of relevant hyperrectangles without
losing an optimal solution of Problem (PP).

REMARK 5.5.5.
(a) In Algorithm 5.1 (see Section 5.3) we use the subdivision strategies de-

(b)

scribed so far in the following way. At first we partition the current rec-
tangleR; in 4 or m? rectanglesk;, - - - , R (I € {4, m?}) with equal size
following the basic strategy. After this we use the special featuresin order to
test whether it is possible to eliminate some of the resulting hyperrectangles

R' = Ry x--- X Rj_1 ><R§ X Rjp1 X+ X Ry ,i=1,... ,l_.

In this way we obtainl (0 < [ < 1) hyperrectangles, which have to be
analyzed further.

Note that in the execution of Algorithm 5.1 it is not necessary that all two-
dimensional rectangles forming the hyperrectafgjleave equal size, since

we splitin each iteration only one pagt;. For simplicity of presentation we
have assumed in the description of the subdivision strategies in the present
section that all rectangle,, ... , R,, forming the current hyperrectangle
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have equal size (compare with the previous figures). In the implementa-
tion of Algorithm 5.1 we took the possibility of different sizes into account.

It is possible to adapt all subdivision strategies mentioned before to the
examination of hyperrectangles consisting of members without equal size.
However, doing this we have to pay attention to the fact that the strategies
used in our algorithm can interfere with each other. For instance, the con-
ditions for the symmetry avoiding strategies have to recognize the unique
numbering strategy. Therefore, we have to ensure that all conditions, which
we require to be satisfied, work simultaneously.

In the description of Algorithm 5.1 in Section 5.3 we postulate that the subdivi-
sion strategies fulfill Conditions (C1) and (C3). Since our basic strategy generates
more and smaller subsets Bfthan the bisection strategy would do, it follows im-
mediately that our subdivision strategy is exhaustive, i.e., satisfies (C1). Note that
the bisection of hyperrectangles is exhaustive.

In the discussion of the special features we have seen that we lose optimal
solutions applying our strategies. Nevertheless, it is possible to implement these
strategies such that we never lose all solutions. Therefore, our subdivision strate-
gies are also consistent in the sense of Condition (C3).

The described special features reduce the effort for solving Problem (PP) by
avoiding possible, but redundant partition sets in advance. Only the last idea takes
advantage of the information generated by the algorithm itself. Exploiting these
information in a stronger way it is possible to reduce the size of the hyperrectangles,
which are not eliminated from consideration by these subdivision strategies. How
we realize this is the content of the next section.

5.6. Size Reduction Strategies

LetR = Ry x...xR, C IR?" be ahyperrectangle in an iteration of Algorithm
5.1withR; = [li17Li1] X [l@'Q,LZé] cU (Z € {1, ... ,n}), and |et17 >0 andu <2
respectively be the currentlower and upper bound. Assume that this hyperrectangle
belongs to the sets remaining after the execution of the subdivision strategies in
Step lll. Note that we ignore the iteration index(i € {1,...,l}, kK € IN)in order
to reduce the number of necessary indices, as we did in the previous section.

In the formulation of Algorithm 5.1 (see, especially, Step 1V) we claimed that
Is can be possible to diminish the size of the hyperrectaiRgldn the present
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section we describe the strategy, which can lead to such a reduction of the size of
the setR.

In the derivation of the theoretical results in Section 5.2 we saw that for Prob-
lem (PP) there always exist optimal solutions satisfying special properties. In par-
ticular, we know that there is an optimal solutioh = (z7,... ,2%)? € U™ with
optimal valuet*(n) fulfilling the properties

(P3): either a vertex of the unit squaré/ is a member of* itself, or there

exist two members of* lying on the edge-lines di/ forming the vertex
v, which have exactly the optimal distance (Theorem 5.2.3 and Corollary
5.2.4), and
(P4): two consecutive members of belonging to the same edge Gfhave
a distance smaller than two times the optimal one (Theorem 5.2.6).

It is sufficient, if Algorithm 5.1 looks only for optimal solutions satisfying
these properties. This means that we can interpret each poitU™, which
does not have these attributes, as an infeasible point for (PP). Doing this we can
further reduce the number of possible optimal solutions of Problem (PP), as it was
the case by applying the special features of the subdivision strategy developed in
the previous section. Indeed, consider the case 7. One optimal solution is
displayed in Figure 5.26(a). The point is not unique. We can choose each point

FIGURE 5.26. Solutionsfon =7

¥T3 : .ex3

x]

51

in the shaded region without changing the minimum pairwise distance. However,
only the solution shown in Figure 5.26(b) fulfills Property (P3).
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REMARK 5.6.1. Global optimization approaches, in particular branch-and-
bound methods, generally have problems if many global optimal solutions exist.
For example, branch-and-bound methods often have to strongly refine the subdivi-
sion sets in a neighborhood of an optimal solution in order to reduce the distance
between the upper and lower bounds until the required tolerance is reached. There-
fore, it is not surprising that the effort for solving a problem increases significantly
if the number of global optimal solutions grows. On the other hand, we are satis-
fied if the solution method detects oglbal solution. Consequently, each strategy
reducing the number of possible solutions of a problem can improve the numerical
performance of a global optimization approach. However, such strategies cannot
be derived in general. Nevertheless, exploiting the structure of special problem in-
stances we can expect to obtain ssofution elimination strategiedNote that the
uniqgue numbering strategy as well as the symmetry avoiding strategy introduced in
the previous section and the strategies enforcing the satisfaction of Property (P3)
and of Property (P4) discussed in the sequel can be interpreted as such solution
elimination strategies.

In the subsequent two subsections we will see, how it is possible to enforce that
a solution of Problem (PP) detected by Algorithm 5.1 has the required attributes
and how this enforcement leads to a reduction of the sizR.ofJsing Property
(P3) we derive the so-callezbrner ruleswhich can result in a shrinkage of some
rectanglesk; (i € {1,...,n})—forming the hyperrectanglg — to an interval or
even to a single point. Exploiting Property (P4) we obtain the so-caltk rules
In Subsection 5.6.2 we will see that the application of these rules can also reduce
some rectangles to intervals. Hence the enforcement of Properties (P3) and (P4)
lead to a reduction of the size &through a reduction of the dimension of this set.
We complete the size reduction strategies with a third strategy reducing the
volume of the hyperrectanglR. This strategy does not base on the properties of
an optimal solution mentioned above. As the last special feature of our subdivision
strategies, it uses the knowledge of the current best known yalMe will see that
the use of this knowledge enables us to eliminate parfg efhich cannot contain
a pointz € U™ with a larger minimum pairwise distance than the best known so
far.

5.6.1. Corner Rules.If we analyze the behavior of the given subdivision set
R =Ry x...x R, inthe neighborhood

S(,p) = {zeU:|lz—v|3<p}
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of the vertexv of the unit squaré/, then we recognize that there exist some situa-
tions allowing us to reduce the dimension of selected rectandtes
(e € {1,...,n}). Remember that is an upper bound for the optimal valtrgn)
of Problem (PP).
Indeed, lety € IR? be an arbitrary vertex of the unit squareand denote by
e1 ande, the edge-lines o/ forming this vertex, i.e., fof € {1,2}, there holds
e; ={x €U :x; =v;}. Denote now by

S(v,pu) = {R; i€ {l,... ,n}with R, NS(v,u) #0
and3l € {1, 2} satisfyingR; Ne; # 0}

the set of all two-dimensional rectangl®s (i € {1,...,n}) forming the hyper-
rectangleR, which have a non-empty intersection witiv, 1) and which, addi-
tionally, touch the edge-line, or the edge-line, or both. Depending on the car-
dinality of S(v, 1) we distinguish four cases (compafév, ;1) with S(v, t) used in
the proof of Theorem 5.2.3 in Section 5.2).

Case 1|S(v,p)| =0

Sincey is an upper bound for the optimal solutiot{n) of Problem (PP), it follows
immediately that there does not exist a patrt R fulfilling Property (P3) at ver-
texv. Hence, it is not necessary to analyzdurther, i.e.,R can be pruned. Note
that we interpret each pointe U™ without Properties (P3) and (P4) as infeasible,

and with respect to this interpretation we know that in this c&ssontains only
infeasible points.

Case 2 |S(v, )| =1

Assume, without loss of generality, that there hoftis, ;1) = {R1}. If v ¢ Ry

(see Figure 5.27(a)), it follows by the same argumentation as in Case R that
eliminable. Otherwise (see Figure 5.27(b)) we know that only points
r = (r1,...,2,)T € R with z; = v fulfill Property (P3). Note that (P3b) is
not satisfiable in this case. Thus, we do not lose all optimal solutions of Problem
(PP), if we set

R:R1 XRQX...XRn
with
Ry = {v} = [v1,11] X [v2, 2],

l.e., if we shrinkR; to a single point.
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FIGURE 5.27. Corner rules (Case 2)

|€2 |62
|
R, v R, v
Ry Ry
v R, €1 v Ll €
o -t
—VE NG
(a) Eliminable case (b) Adjustable case

Case 3|S(v, )| = 2

Assume again, without loss of generality, th¥t, ) is equal to{ Ry, R,}. De-
pending on the location af with respect tak; and R, we have to distinguish two
further subcases.

Case 3.1v ¢ Ry U Ry

Itis clear that at vertex Property (P3a) cannot be satisfied by an element
x of R. If Ry and R, touch the same edge-lire (i € {1,2}) (see Figure
5.28(a)), we are able to eliminaig since in this situation (P3b) is also not

possible. Otherwise (see Figure 5.28(b)) we are able to replaeed 12
by intervals. Setting

Rl =R N (61 U 62)
and
RQ =Ry N (61 U 62)

we do not lose any point € R fulfilling Property (P3b). Note thaR,
and R, touches eithet; or e,, but not both.

Case 3.2v € Ry UR>

In this case it is possible that there exist points R fulfilling (P3a) and
pointsx € R such that (P3b) is true at vertex In general there is no
way to reduce the dimension of both rectanglesaand R, as we did in the
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FIGURE 5.28. Corner rules (Case 3.1)

(&) €2
|

(a) Eliminable case (b) Adjustable case

previous subcase. Howeverpibelongs to one and only one of the rectan-
glesR; or R, (see Figure 5.29), we can shrink the rectangle containing
to an interval. Assume that there holds R; \ R. (see Figure 5.29(a)).
The hyperrectangl®; x Ry x ... x R, with

B = RinNe ,ifR2ﬂ€1:®
r= RiNey ,if RoNey =10

contains any point € R satisfying (P3) at vertex.

FIGURE 5.29. Corner rules (Case 3.2)

(a) Adjustable case (b) Adjustable case
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If there holds, additionallyR; C {x € U : |z —v||3 < n} (see Figure
5.29(b)), we can also redud®; to an intervalR, by intersectingk, with
the touched edge-ling or e;. Note that in this situation it is not possible
thatv is a member of an optimal solutionbelonging toR. Thus, only
Property (P3b) can be satisfied.

Case 4|S(v, )| >3

If one and only one of the rectangl&s belonging t0§(v, ©) touchese; or e, we

are in a comparable situation as in Case 3.2. We are able to shrink this rectangle
to an intervalR; (see Figures 5.30(a) and 5.30(b)). In situations where at least two
rectangles touch each edge-liagande,; (see Figures 5.30(c) and 5.30(d)), we

FIGURE 5.30. Corner rules (Case 4)

|€2 I€2
| |
U U
R;
\ i
) Rj Qk e Rj Rk
UV *=——= - v —— --- €1
Vi Vi
(a) Adjustable case (b) Adjustable case
| |
U U
B, |
R R
v szl __.e v le __ e
NG i
(c) Not adjustable case (d) Not adjustable case




254 RACKING EQUAL CIRCLES IN A SQUARE

do not reduce the dimension of a rectangliee S(v, ). If v does not belong

to the hyperrectangl®, as it is shown in Figure 5.30(d), only Property (P3b) can
be fulfilled. Therefore, it could be possible to shrink some rectangles to intervals.
Since it is not immediately clear which one we have to choose, we decided to do
nothing in such a situation. Our numerical experience showed, moreover, that this
situation almost never occurs.

5.6.2. Edge RulesWe are interested in optimal solutions = (z7%, ... ,2%)7
satisfying (P3) and (P4). For such points itis obvious that there does not exist a seg-
ment of a boundary line ofU with length greater than or equal to
2,/pt > 24/t*(n), which does not contain a membef (k € {1,...,n}) of
x*. Using this fact we are able to reduce the dimension of more rectafiyles
(z € {1,...,n}) forming R than by using the previously described corner rules
alone.

In order to explain the strategy applied in our approach leé an arbitrary

boundary line olU, i.e.,
e € {el :ie{1,2},j€{0,1}}

with e/ = {z € U : x; = j}. Furthermore let, for two different poinisw € e,
e(n) = [v,w] be aline segment af and assume that this segment has a length of
2./ i.e.,||v — wl||3 = 4p. Denote by

L(e,u) = {R;:ie{l,...,n}andR; Ne(u) #0}
the set of all rectangleB; (i € {1,... ,n}) touchinge(u).

o If there holdsL(e, 1) = 0, it follows that R contains no point fulfilling
Property (P4). Hence, as in Case 1 in Subsection 5.6.1, it is not necessary to analyze
R further, i.e.,R can be pruned.

e In the cases where more than one rectam®ldi € {1,...,n}) touches
e(p), i.e.,L(e, 1) > 1 (see Figure 5.31(a)), it is not possible to reduce the size of a
rectangleR; € L(e, 1) without running the risk of losing all optimal solutions.

e If there holds

(e, )] =1,

we can shrink the unique rectangk, touchinge(u), i.e., R;, Ne(u) # 0, to an
interval (see Figure 5.31(b)). Indeed, as mentioned before, we know that any point
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FIGURE 5.31. Edge rules

| | | |
v | v
R | [m R [% R
€ b ﬁf&} ¢ S
(a) Not adjustable case (b) Adjustable case

x € R fulfilling (P3) and (P4) has to satisfy the relation
z;, € Ri; Ne(w).

Therefore, any element of the hyperrectangl&, which we are interested in, be-
longs alsoto the se®; x ... x R;,_1 X Riy X Riy11 X ... X Ry, with

Ri, = Ri,Ne(u).

These edge rules leads to a chang&abnly if i(e, 1) contains less tha
elements. With respect to the basic subdivision strategy it is hence not surprising
that the edge rules can be applied more rarely than the corner rules. Nevertheless,
this strategy improves the numerical performance of Algorithm 5.1. Note that the
edge rules are not relevant as long as the current upper hoisnabt smaller than
0.25.

The corner as well as the edge rules use the current upper hoimdon-
nection with Property (P3) and Property (P4) in order to diminish the size of the
considered hyperrectangievia a reduction of its dimension. In the next subsec-
tion we will see how it is possible to further reduce the sizé&ddy exploiting the
knowledge of the best known valuei.e., of the current lower bound.

5.6.3. Volume Reduction.The third size reduction strategy used in Step IV
of Algorithm 5.1 is similar to an approach presentedbiGPWM91]. In contrast
to the corner and the edge rules we do not diminish the size of the current hyper-
rectangleR by reducing the dimension of some rectanglgs(i € {1,...,n})
forming R. In this method we reduce the volume of several rectanjdsy con-
structing smaller rectangld®; C R; still containing all feasible points of Subprob-
lem (SP) considered in Step V of Algorithm 5.1, i.e., we design rectardgjles U



256 RACKING EQUAL CIRCLES IN A SQUARE

(e € {1,...,n}) with the properties

Ri CR i=1,...,n (5.6.1.a)
and

F C ppul xRy x...x R, (5.6.1.b)

whereF = {(t,z) € [, u] x Ry X ... X Ry : t —||Jz; —x;||3 < 0,1 <i < j <n}
denotes the feasible region of (SP).

We compare the rectanglés (: € {1,... ,n}) pairwise and try to cut away a
part of the infeasible areas &f; while preserving the structure of a rectangle. The
infeasible area oR?; with respect toF' is characterized by the fact that, for each
elementz; of such an area, there does exist an ingdex {1,... ,n} \ {i} such
that each element a®; has a squared distance g smaller tham;. In order to
explain our volume reduction strategy in a general way let;fore {1,... ,n}
with ¢ # j, two polytopesP C R; and@ C R; be given by their vertex sets, i.e.,

P = [v1,...,0mp],
Q = [wl,...,wmQ].

Assume that the vertex lists d¢f and(@) are ordered in such a way that,; and
w;+1 IS a direct neighbor ob; andw;, respectively (see Figure 5.32). Assume

FIGURE 5.32. Vertex numbering af

Vg
Us
U1

Uy

U3

(%)

further thatP x () is a superset of the projection 6fon R; x R;. We are interested
in the set

F = {(z,y) e PxQ: |z —yllz>n},
since the projection of on R; x R; is a subset of". Denote by
C:=(Pn{zeR?: max{|lz—y|?:9y€Q} <)

=max{||lz—w;|3:i=1,... , mq}=:fq(x)
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the set of all pointsx € P with a maximal squared distance to each poinfin
smaller tham, i.e., C' is part of the infeasible area ¢f mentioned above. Obvi-
ously, there holds

Fc (P\C)xQ.

This means that we can cut aw&yfrom P without eliminating a feasible point of
(SP). C is a convex set. I is not empty, then we do not know whether\ C
is still a polytope. However, we would like to preserve the linear structure. of
Therefore, we look for the smallest polytopesatisfying

P\C c PcC P.

In the sequel we describe the construction of this polytBpéssume that”
Is not empty and denote by

C, = {Ul,...’UmP}ﬂC

the set of all vertices oP belonging toC'. Depending on the structure 6f, we
distinguish three cases.

e If there holdsC, = 0, it follows that we have to také# for P itself (see
Figure 5.33), i.e., if no vertex of P has a maximum squared distance to all vertices

FIGURES5.33. P=P

of (2 smaller tham, then we are not able to reduce the sizé’ofithout losing the
convexity of P.
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e If there holdsC, = {v1,... , v, }, it follows immediatelyP \ C' = ) and
we can eliminaté?. Note that in this situation the feasible regibrof Subproblem
(SP) is empty.

e If C, is a non-empty real subset éb4, ... ,v,,, }, we can adjusP in the
following way. Assume that there exists an index {1,... ,mp — 1} with
Cy = {v1,..., 0.}, (5.6.2)

l.e., all verticesv of P satisfying fo(v) < n are neighboring. Since, for each
j€{1,...,r}, there holds

fo(vj) = max{fly; —will3:i=1,... ,mq} < n,

it follows that there exist a unique poinf on the facet ofP defined by the neigh-
boring verticesv,,,, andwv; with a maximal squared distance to the polyt@pe
equal ton, i.e., fo(v1) = n. Note that by construction there holdls(v1) < n and
fo(vmy) > n. Leto, be the corresponding point with respect to the facet defined
by v, andv,;; (see Figure 5.34(a)). The functiofy is a maximum of convex

FIGURE5.34. P # P
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functions and hence convex itself. It follows that, for ang [0y, vy, ... , v, 0y,
there holds

fo(z) <7
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and thus
[01,v1,... ,0.,0,] C clC.

P is a two-dimensional polytope and, therefore, we obtain
P\C CP := [01,00,Vr41,. - ,Ump] # P

(compare Figure 5.34(b)). If Assumption (5.6.2) is not fulfilled, we adjash
the same way by analyzing each subseCpfconsisting of a sequence of direct
neighboring vertices.

With this general framework we are now able to describe the volume reduction
strategy in a more detailed manner. We use the following iterative process.

INITIALIZATION
Set, fori € {1,... ,n}, P, — R;, i.e.,
Po= () (52), (50, (7o)
LOOP
For:=1To n Do
For j =1To n Do

If 7 # ¢ Then
CompareP; andP; and construcP; in the described way.
P, — P,
If P, =) Then STOP(F is empty)
EndIf
EndFor
EndFor

After the execution of this process we know either thais empty, i.e., we can
eliminateR from further considerations, or we obtainwo-dimensional polytopes
P; given by the list of their vertices. In this situation it is easy to generate, for each
indexi € {1, ... ,n}, the smallest rectangle; containing the polytop®&;. Setting

R =R x...xR,
we obtain a hyperrectangle, which is a subset of: and, additionally, has the
property

F C [np xR



260 RACKING EQUAL CIRCLES IN A SQUARE

(compare with the required Properties (5.6.1.a) and (5.6.1.b)).

The reason for going back to rectangles(i € {1,... ,n}) instead of using
the better approximation of the feasible regibrby the polytopes’; has differ-
ent aspects. First of all, since the number of vertices describing the polfope
(¢ € {1,...,n}) can grow, a strategy using all information given Bycould ex-
tremely increase the storage requirements in an implementation of Algorithm 5.1.
A second reason is that our numerical experience for Algorithm 5.1 showed that
we do not have a gain using the polytop@sinstead of the rectangleg; in the
calculation of the upper bounds for Subproblem (SP). This seems to depend on
the construction of the LP-relaxation for Problem (SP), which is needed in order to
calculate upper bounds, as it is described in Section 5.4.

At this place we would like to pay some attention to a special effect, which
could happen during the execution of the presented iterative process and which we
would like to call thewave effect Let us illustrate this effect with an example. Fig-
ure 5.35(a) shows the possible adjustment of rectaRgl& we compareP; with

FIGURE5.35. The wave effect

/\Pg Pg

(b)
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P,. However, if we adjust firsP, usingP;, we are able to cut away a larger part of

Ps, asitis displayed in Figure 5.35(b). This effect justifies the substantial effort in
executing our volume reduction strategy. Note that there&te- 1) comparisons
between polytopes, and furthermore that the number of vertices describing a poly-
tope P; can grow and hence the effort for calculating the adjustments. Taking this
effect into account it seems, moreover, possible that a repetition of the loop-phase
of the iterative process is able to further reduce the size of the relevant hyperrect-
angle. As we will see in Section 5.7 considering some computational results, there
Is a trade-off — in the repetition of the volume reduction strategy — between the ad-
vantages of a better size reduction and the disadvantage of a growing running-time
needed for doing this.

REMARK 5.6.2. The presented size reduction strategies, i.e, the corner and
the edge rules and the volume reduction, have two effects on the performance of
Algorithm 5.1. On the one hand, they reduce the size of the linear part of the
feasible regior¥’ of the current Subproblem (SP). Hence, they abate the effort for
solving (SP). Note that the LP-relaxation of (SP) tends to be better if the relevant
hyperrectangld? gets smaller (see Section 5.4).

On the other hand, they work like@uningrule (see Step VII of Algorithm
5.1 for the classical pruning rule in branch-and-bound methods). We can cut away
many possible subdivision sets, since Algorithm 5.1 using our strategies recognize
that in these sets there do not exist points satisfying (P3) and (P4) and with a mini-
mum pairwise squared distance not smaller than

As mentioned before it is possible that the use of the corner and the edge rules
eliminates optimal solutions of Problem (PP) from further considerations without
detecting them. However, we never throw away all solutions by using these ideas.
Therefore, the presented size reduction strategies are consistent in the sense of
Condition (C3) (see Section 5.3). If we are careful in the implementation of our
approach, especially if we pay attention to the possible interactions between our
diverse subdivision set manipulation strategies (see Remark 5.5.5(b)), we are able
to satisfy Condition (C1) and Condition (C3) required in Section 5.3. This en-
sures a correct functioning and particularly the convergence of Algorithm 5.1 (see
Theorem 5.3.1 and, additionally, Lemma 5.4.1).
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5.7. Computational Results

The description of Algorithm 5.1 is now complete. The missing details in the
formulation of this approach (Step Ill - Step V) in Section 5.3 were described in
the foregoing three sections. We derived several strategies exploiting the special
structure of Problem (PP) for the calculation of the upper bounds (see Section 5.4)
as well as for the splitting (Section 5.5) and the adjustment (Section 5.6) of the
subdivision sets considered in this approach. This was necessary in order to obtain
an efficient method for solving (PP) since general approaches fail to determine
approximate solutions of this problem, as we pointed out in the introduction of this
chapter. Even though we will introduce a modified basic partitioning strategy and
some further improvements of Algorithm 5.1 in the next section, we would like to
present first some computational results, which were obtained with Algorithm 5.1
using the strategies developed so far. These results correspond to the numerical
tests reported in [LR 9.

As we did with all algorithms discussed in this thesis until now, Algorithm
5.1 was encoded in C++ with management of subdivision sets by AVL-trees. The
occurring linear problems in Step V were solved witWOS 5.4 (see also Algo-
rithm 3.1). Note that the LP-relaxation of Subproblem (SP) has a sparse structure
and thatMINOS 5.4 is able to exploit sparsity. With this implementation of Al-
gorithm 5.1 we solved Problem (PP) with < 27 points. The tolerance was
chosen ag0~°. Using aSUN ULTRA 60workstation we were able to determine
approximate solutions for each of these problems within less than two and a half
hours.

In order to obtain these good running-time results we applied additional ideas,
which are more heuristically motivated. Before discussing the numerical results in
detail we would like to give some notes on these ideas.

¢ In the description of the iterative process for the volume reduction strategy
In Section 5.6 we pointed out the existence of the so-called wave effect.
Regarding this effect it seems to be reasonable to repeat the loop-phase of
the iterative process in order to reduce the size of the relevant hyperrectan-
gle as much as possible. However, we have to remember that this process
could be expensive with respect to the running-time. Our numerical tests
showed that it is efficient to repeat the process once, i.e., the advantage of
a bigger size reduction outbalances the disadvantage of a growing running-
time needed for doing this. If we repeat the process again, the disadvantage
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outbalances the advantage. Therefore, we decided to use the size reduction
strategies in the following way. For each hyperrectarigfieremaining af-

ter Step Il (see the description of Algorithm 5.1 in Section 5.3), we apply
at first the volume reduction strategy, where we repeat the iterative process
once. After this we use the corner and the edge rules in order to diminish
the dimension of the resulting hyperrectangks. If the dimension re-
duction is successful, we apply the volume reduction process again — now
without a repetition. It might be possible to choose an implementation of
the volume reduction strategy that is less time-consuming than the one we
used. This could allow more than one repetition of the iterative process
without increasing the running-time.

An interesting aspect in our numerical tests was that the combination of
the dimension reduction strategies, i.e., the corner and edge rules, with the
volume reduction strategy led to an extraordinary better running-time per-
formance than the use of one of these strategies alone. There are at least two
reasons for this improvement. First of all, single points or intervals, which
can be the result of the corner and the edge rules, lead in general to a larger
reduction of the size of neighboring rectangles. Hence — via the wave effect
— they have an impact on the size of the whole hyperrectangle. On the other
hand, smaller rectangles forming the relevant hyperrectangle can result in a
successful dimension reduction at an earlier stage of the algorithm. There-
fore, the volume reduction strategy and the dimension reduction strategies
are not independent from each other, rather they interact.

Our numerical tests showed, furthermore, that we need most of the time
for solving the linear subproblems in Step V in order to calculate the upper
bounds. Moreover, we observed that in many cases there holds
[prky = ligk, i.€., the upper bound with respect ¥ is equal to the up-

per bound of its direct child*». For that reason we developed a criterion

in order to decide whether is seems to be useless to calculate a new upper
bound forR*» by solving a linear program instead of taking the old bound
[rx, OF not. This criterion is as follows.

Let RF» = R’f” X ...x Rl cur (p € {1,...,1}) be the hyperrect-
angle examined in Step V. An upper bound for Problem (SP) with respect
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to this set is obviously given by

_ . 2
e = min max o — a3, (5.7.0)
1<i<yi<n z; € pr
Tj € R?p

(see the proof of Lemma 5.4.1). Recognize that this value can be calculated
by considering the vertices d{fp (e € {1,...,n}). We have to decide
whether it is useful to obtain a bound,, by solving the linear program

max t
hij(t,ilfi,ilfj)go 1§Z<]§TL
K . (LSPY)
x; € R;” 1=1,...,n

n* <t < min{p®, g, }

(see Section 5.4 for the construction’nf depending oerp andRﬁ”’p), or
whether we should simply s@tyx, = min{u”, fipek, }.

If we are able to construct a feasible poiatz) € [n*, u*] x R*» for
Problem (LSP’) combining the vertices of the two-dimensional rectangles
pr (: = 1,...,n), we do not solve (LSP’). In this situation it is very
likely that we have to analyzB*» further in a later iteration, i.eR*» will
not be pruned — at least as long as the lower bogfis not improved.
Therefore, it seems to be useless to calculate an upper boudtffdoy
solving (LSP’), since we have to solve this LP-relaxation with respect to the
relevant subsets at*» in later iterations. The use of this criterion reduced
significantly the running-time of Algorithm 5.1. Applying this criterion we
needed less time for solving the linear subproblems than for executing the
subdivision set manipulation strategies.

Note that in our implementation of this criterion we obtain the value
[ gk, Without additional effort. For that reason, we exploited the knowl-
edge of this value throughout the verification of the described criterion, i.e.,
we checked whether it seems to be possible to improve the possibly better
upper boundnin{ ¥, fi 5+, } instead of considering only”.

In the description of Algorithm 5.1 in Section 5.3 we assumed that a point
T € U™ with f(Z) = mini<;<j<, ||Z; — Z;]|3 > 0is given. We use this point
in order to initialize the lower boungf (see the initialization phase of Algorithm



5.7. COMPUTATIONAL RESULTS 265

5.1). Since the choice of the integerin the basic part of our subdivision strategies
depends on the valug’ (see Subsection 5.5.1), the number of subdivision sets,
which have to be analyzed during the execution of Algorithm 5.1, is very sensitive
to changes in this value. In several papers (see, e.g., [MFP95, GL96, NO97])
good solutions for the point scattering problem are given. Therefore, we decided
to choose the best known solution for Problem (PP) as starting poihtve were

not able to reproduce the coordinateszdfom a paper, we used a simple multi-
start algorithm developed by Prof. Fabio Schoen at the University of Florence in
order to generate good solutions (for the framework of stochastical approaches in
global optimization we refer again to [BR95]). Because of this choiceibivas
sufficient to setn = 3 for n < 27.

Another consequence of this choice was that Algorithm 5.1 did not substan-
tially improve the known solutions. The slight improvements displayed in Table
5.3 seem to be rounding differences — for the case 12 we did not start with
an optimal solution and, therefore, we had a larger improvement. In Table 5.3

TABLE 5.3. Improvements

770

10

*

n

*

i

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0.177399
0.158568
0.146713
0.134021
0.121739
0.116329
0.111111
0.0937256
0.0902758
0.0838326
0.0821442
0.0738791
0.0717971
0.0669872
0.0646835
0.0625

0.0569574
0.055625

0.25
0.17743
0.15857
0.15112
0.13403
0.12174
0.11634
0.11111
0.09425
0.09061
0.08385
0.08219
0.08219
0.07189
0.07189

0.067
0.0625
0.0625

0.177468
0.158568
0.151111
0.134021
0.121742
0.116336
0.111111
0.0937279
0.0902778
0.0838326
0.0821462
0.0738791
0.0717971
0.0669872
0.0646853
0.0625

0.056989
0.055625

0.177477
0.158568
0.151121
0.134031
0.121743
0.116338
0.111121
0.0937379
0.0902876
0.0838419
0.0821548
0.0738891
0.0718059
0.0669952
0.0646950
0.0625096
0.056999
0.055648

1.8e-6
0.0
3.16e-5
0.0
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we usen” and u° for the first lower respectively upper bound, which was set in
the initialization phase of Algorithm 5.1. The columns and x* show the last
lower and upper bound fulfilling the stopping criterion (Step I). The last column
displays the improvements made by Algorithm 5.1. Note tfat the minimum
pairwise squared distance of the memberg: = 1,... ,n) of the best solution

v* = (z7,...,25)T € U™, which was determined by Algorithm 5.1. Note, more-
over, that even though the values displayed in colurnare slight improvements

of the initial lower bounds, they are not better than those given in [MFP95].

Even though we did not calculate better points, the main advantage of Al-
gorithm 5.1 is that this method can guarantee dioptimality of the determined
solutions, which was not known at least for= 21 — 24, 26, 27. Hence, as it
Is done in pGPW90,0GPWM91], our method can be used as a computer aided
proof for the optimality of detected solutions.

REMARK 5.7.1. We have to note that the current implementation of Algo-
rithm 5.1 cannot be used unreserved as a computer aided proof. The main intention
of our current implementation of this method was to show that it is possible to solve
Problem (PP) with more thatt points and acceptable computational effort. In the
sequel we will see that we were able to determine approximate solutions of a global
optimization problem in dimensiosb and with351 concave quadratic constraints
within less than one hour. However, if we would like to use Algorithm 5.1 for a
computer aided proof, we have to pay more attention to calculation errors resulting
from the machine precision.

We examined this problem in our volume reduction strategy, which might be
the most sensitive part of our approach with respect to such errors. It is possible to
adjust the implementation of the iterative process such that we can guarantee that
no pointz € U™ with a minimum squared distance larger thg@nis eliminated
because of calculation errors. In order to ensure that we neves-lgsiimal points
because of such errors, we have to examine each step of our implementation. This
means that in order to obtain@mputer aided proof implementatictill a lot
of work has to be done. Moreover, the proof of the numerical correctness of the
resulting implementation is behind the scope of this thesis. Therefore and in view
of the main intention of our implementation mentioned above, we did not invest this
effort for the numerical results reported here. Only the adjustment of the volume
reduction strategy was applied.
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In Table 5.4 we show the effort for solving Problem (PP) witk {10, ... ,27}
points. We use the abbreviation IT for the number of iterations. The column TT
displays the total CPU-time in seconds necessary for determining the approximate
solutions. NLP stands for the number of linear subproblems of type (LSP’), which
had to be solved during the execution of Algorithm 5.1, and TLP shows the running-
time needed for the solution of these linear program&thOS 5.4 The abbre-
viation NR is used for the number of hyperrectangles remaining after Step lll, i.e.,
this is the number of hyperrectangles, which had to be analyzed by the size reduc-
tion strategies. It it interesting to note that these numbers are mostly smaller than
two times the number of iterations. This means, that even though we had in each
iteration! € {4, m?} possible partition sets, there remained on average only two
hyperrectangles after the application of the special features of our subdivision strat-
egy. In the last column MNPS we report the maximal number of subdivision sets,
which had to be stored in an iteratiéne IN in the setR*. These numbers give us
some insight into the storage requirements of our approach.

TABLE 5.4. Numerical effort

n IT 1T NLP TLP NR MNPS
10 | 1,008 2.50 144 0.57 2,997 195
11 792 2.58 162 0.90 2,100 125
12| 1,351 7.19 416 3.07 3,415 266
13| 2,379 8.26 272 2.45 6,548 332
14 | 8,457 43.8 1,766 18.9 20,456 1,445
15| 1,851 9.47 359 4.56 3,809 251

16 | 24,127 | 99.6 1,016 13.5 54,492 3,950
17 | 38,890 297 10,268 144 80,897 6,230
18 | 22,429 218 6,545 103 45,727 4,576
19 | 66,122 548 12,003 247 131,763 | 10,032
20 | 22,200 252 6,065 135 43,032 2,343
21| 240,210 2,269 | 35,630 920 472,716 | 42,977
22 | 55,005 516 6,838 203 103,903 8,776
23 | 153,884 2,500 | 38,417 1,377 268,598 | 20,873
24 | 194,497 2,956 | 38,475 1,484 | 335,547 | 25411
25| 109,798| 1,759 | 20,063 868 184,419 | 14,644
26 | 669,450| 8,941 | 48,114 2,284 | 1,038,174, 86,950
27| 250,102 3,172 | 13,830 730 364,026 | 31,918
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REMARK 5.7.2.

(a) In the next section we will see that a slight change of the selection rule for
the current hyperrectangl®” can significantly reduce the storage require-
ments.

(b) We use nearly optimal solution as starting points of our approach. There-
fore, we do not substantially improve the lower bountigk € IN) during
the execution of Algorithm 5.1. This means that the standard pruning rule in
Step VII of our method is not very successful. Recognize that the main task
of the classical pruning rule is to cut away branches of the tree consisting
of all possible subdivision sets. Hence, with respect to our good starting
points we know that we have to examine almost the whole tree. Regard-
ing this fact we can also usedepth-first-search-strategyApplying such
a strategy we will examine also the whole tree, but we are able to bound
the storage requirements. We have to store at most the maximal length of
one branch of the tree. Such a strategy was used in order to calculate an
e-optimal solution for Problem (PP) with > 27, as we will see also in the
next section.

In Figures 5.36-5.38 we present, finally, the arrangements of the calculated
e-optimal solutions fon = 21 — 24, 26, 27 together with their coordinates. These
can be used for further research on this topic (see Remark 5.7.1). The highly sym-

FIGURE 5.36. Solution fom = 21

x1 = (0.5176,0.7384) x5 = (0.0000, 0.6805)
x3 = (0.0000,0.1349) x4 = (0.4702, 0.4077)
x5 = (0.2354,0.8165)  wg = (0.2354, 0.5446)
@7 = (0.7077,1.0000) x5 = (0.7062, 0.5426)

(0.4821,0.1154)  x1q
(0.8539, 0.7708)  x19
x13 = (1.0000, 0.5416) =14 = (0.4359, 1.0000)
z15 = (0.9768,0.2708) 16 = (0.7050, 0.7050)
x17 = (1.0000, 0.0000) w15 = (0.7282, 0.0000)
x19 = (1.0000, 1.0000) w99 = (0.2348, 0.2718)
x21 = (0.2360, 0.0000)

(0.0000, 0.4087)

T11 (0.0001, 0.9996)

8
©
| | R

metric structure for the solution of the prime numBaiis interesting to note.
According to the best known solutions for the point scattering problem with

more tham7 points we have to choose the integeras4 in the second level of

our basic subdivision strategy. This leads to a substantial increase of the possible
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FIGURE 5.37. Solutions fon = 22, 23,24

z1 = (0.0000, 0.1960)

z3 = (1.0000, 0.4641)
x5 = (0.0000, 1.0000)
z7 = (0.4507, 0.0000)
zg = (0.2984, 0.2417)
x11 = (0.4640, 0.4639)
z13 = (0.8660, 0.8660)
z15 = (0.2320, 0.5980)
x17 = (0.4641, 0.7320)

x19 = (0.7320, 0.7320)

x91 = (0.7320, 1.0000)

@1 = (0.5000, 1.0000)

x5 = (0.7500, 0.0670)
x5 = (0.7500, 0.5670)
x7 = (0.5000, 0.5000)
zg = (1.0000, 0.5000)
x11 = (0.0000, 0.5000)
x13 = (0.0000, 1.0000)
z15 = (0.5670, 0.7500)
z17 = (0.2500, 0.4330)
z19 = (0.2500, 0.9330)

x21 = (1.0000, 0.0000)
x93 = (0.7500, 0.9330)

x1 = (0.0000, 0.0000)

x3 = (1.0000, 0.4913)
x5 = (0.4913, 0.0000)
@7 = (0.0000, 1.0000)
zg = (0.0658, 0.2457)
x11 = (0.2457,0.4255)
x13 = (0.7457, 0.0000)
x15 = (0.9342, 0.2457)
x17 = (0.0000, 0.7457)
z19 = (0.4913,0.7457)

w91 = (0.7457,0.7457)
x93 = (0.7457,1.0000)

xo = (1.0000, 0.0000)
x4 = (0.1827, 0.0000)
zg = (0.4641, 1.0000)
xg = (0.7320, 0.0000)
z10 = (0.0000, 0.4640)
z12 = (0.5913, 0.2281)
x14 = (0.7320, 0.4641)
x16 = (0.0000, 0.7320)
z18 = (0.2320, 0.8660)
x99 = (1.0000, 0.7320)
x99 = (1.0000, 1.0000)

x5 = (0.0670, 0.7500)
x4 = (0.3170, 0.6830)
zg = (0.4330, 0.2500)
xg = (1.0000, 1.0000)
z19 = (0.9330, 0.7500)
z12 = (0.0670, 0.2500)
z14 = (0.6830, 0.3170)
z16 = (0.0000, 0.0000)
z15 = (0.9330, 0.2500)
z20 = (0.5000, 0.0000)
x99 = (0.2500, 0.0670)

zo = (0.0000, 0.4913)
x4 = (1.0000, 0.0000)
zg = (0.4913, 1.0000)
xzg = (0.2457,0.0658)
z10 = (0.4255,0.2457)
x12 = (0.4913, 0.4913)
x14 = (0.6798,0.2457)
z16 = (0.7457,0.4913)
z18 = (0.2457,0.2457)
xo0 = (0.2457,0.9342)
oo = (1.0000, 07457)
x94 = (1.0000, 1.0000)
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FIGURE 5.38. Solutions fon = 26, 27

(b)yn =27

z1 = (0.0000, 0.8073)
x5 = (1.0000, 0.1644)
x5 = (0.8269, 0.0000)
x7 = (0.0000, 0.0000)
zg = (0.2067, 0.1195)

x11 = (0.4134, 0.2388)
x13 = (0.6201,0.1194)
x15 = (0.5865, 0.4032)
z17 = (0.1727, 0.6425)
x19 = (0.3797,0.7613)
x91 = (0.7932,0.5225)
x93 = (1.0000, 0.6419)
x5 = (0.0000, 0.4776)
x1 = (0.0000, 0.0000)
x3 = (1.0000, 0.8750)
x5 = (0.0000, 0.7500)
@7 = (1.0000, 0.3750)
xg = (0.0000, 0.2500)
x11 = (0.8000, 0.0000)
x13 = (0.4000, 1.0000)
x15 = (0.4000, 0.2500)
z17 = (0.4000, 0.5000)
x19 = (0.8000, 0.2500)
x21 = (0.2000, 0.6250)
x23 = (0.2000, 0.8750)

x5 = (0.8000, 0.5000)
xo7 = (0.6000, 0.8750)

x5 = (1.0000, 0.8807)
x4 = (0.7932, 1.0000)
xg = (0.4134, 0.0000)
xg = (0.3797, 1.0000)
x10 = (0.0000, 0.2388)

x12 = (0.2067, 0.3582)
x14 = (0.7933, 0.2838)
z16 = (1.0000, 0.4032)
x1s = (0.3798, 0.5226)
x20 = (0.5865, 0.6419)
w9 = (0.7932,0.7613)
w04 = (0.5864, 0.8806)
zo6 = (0.1409, 1.0000)
x5 = (0.0000, 1.0000)
x4 = (1.0000, 0.1250)
xg = (0.0000, 0.5000)
zg = (1.0000, 0.6250)
z10 = (0.8000, 1.0000)
x12 = (0.4000, 0.0000)
@14 = (0.2000, 0.1250)
z16 = (0.2000, 0.3750)
z18 = (0.6000, 0.1250)
w20 = (0.6000, 0.3750)
x99 = (0.4000, 0.7500)
w94 = (0.6000, 0.6250)

z96 = (0.8000, 0.7500)

partition sets and also to an explosion of the running-times. We were not able to
solve Problem (PP) with > 27 and the current version of Algorithm 5.1 within
several days.

5.8. Improvements of Algorithm 5.1

tions of Problem (PP) with more th&T points.

We complete the consideration of the packing problem with the description
of some further improvements of Algorithm 5.1. Applying these new ideas we
could significantly reduce the computational effort for solving Problem (PP) with
n € {14, ... ,27} points. Moreover, we were able to determine approximate solu-
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At first we discuss a slightly modified basic subdivision strategy. The applica-
tion of this new method results in a reduction of the effort for solving (PP) in all
respects, i.e., with respect to the iteration number, the running-time as well as the
storage requirement. After this we will shortly describe a new criterion in order
to decide whether we should calculate a new upper bound by solving a linear pro-
gram or whether we should take the old one. We will see that this strategy further
reduced substantially the running-times for solving Problem (PP)mwih27.

5.8.1. Another Basic Partitioning Strategy. As in the description of the old
strategy in Subsection 5.5.1, 1Bt C U (5 € {1,... ,n}) be the rectangle chosen
in Step Il of Algorithm 5.1. We pointed out that, taking the symmetry avoiding
strategies into account, it is essential that in the first level, i.&; €oincides with
the unit squaré/, we use a partition of?; consisting of squares with equal size.
Therefore, we did not change the basic strategy in the first level.

However, in the second level, i.e., B; is equal to one of the squarés

(¢ € {1,...,n}) (see (5.5.1)), it is no longer necessary that we use squares with
equal size. We only have to ensure that the partition of each square
(1 € {1,...,4})is invariant with respect to the relevant types of symmetry. Hence

we can use the following subdivision &; in the second level.

The integern > 2 is chosen as in Subsection 5.5.1 ddyis partitioned into
m? rectangles with a squared diameter less thanThis ensures again that each
partition set contains at most one member of an optimal solution of (PP). The
(m — 1)? rectangles, which are nearest to the verteof U belonging toR;, are
chosen as squares with a squared diamete? ef 5, whered > 0 is a given small

tolerance, i.e., we choose squares with edge—leg@. Assume that we have

to selectm = 3. The partition of each squafé (i € {1,...,4}) is done as in
Figure 5.39. Applying this strategy we obtain that the partition of the squares
(¢ € {1,...,4}) is still invariant with respect to rotations and the relevant reflec-

tions. Moreover, we choose among thé partition set§m — 1)? squares as large
as possible. This strategy has at least two effects on the performance of Algorithm
5.1.

First of all, we obtainn? — (m — 1) rectangles, which are smaller than those
given by the old basic strategy. Taking the volume reduction strategy into account
we can expect that this strategy is more successful. Indeed, on the one hand we
can cut away more from neighboring rectangles and on the other hand, it is more
likely that the smaller sets gets empty. A second effect of this new strategy is
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FIGURE 5.39. New basic partitioning strategy

1.0 1.0
= ’I’]O —_(S - \ 770 - 5
0.5 0.5
0.0 0.5 0.5 1.0
(@) Us (b) Us
0.5 0.5
= 770 — g / 0_9§
0.0 ) 0.0 V7
0.0 0.5 0.5 1.0
(¢) Ux (d) U2
that the partition sets d; (¢ € {1,...,4}), which are nearest to the vertices of

the unit square, are larger. This can lead to a more successful application of the
corner rules. Remember that, in addition, the dimension and the volume reduction
strategies interact.

The application of this altered basic strategy led to a substantial reduction of
the numerical effort for solving Problem (PP). In Table 5.5 the effort for solving the
problems, where we had to choosaas3, are displayed. It can be seen, especially,
that we obtained an extraordinary reduction of the iterations for solving (PP) with
16 and21 points. For Problem (PP) with = 26, 27 the new basic strategy led in
the second level nearly to the same partition as the old strategy. Note that in these

situations we had /752 = 0.1687 for n = 26 and0.1667 for n = 27, which

is almost equal té;2. Therefore, there was no improvement in these two cases.
For the other cases we could nearly halve the effort for determining approximate
solutions.
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TABLE 5.5. Numerical effort with altered basic strategy

n IT TT NLP TLP NR MNPS
14| 6,651 24.1 340 3.97 18,015 702
15| 1,532 6.30 158 2.22 3,590 255
16 | 1,832 7.24 150 2.11 4,401 176

17| 17,023 113 2,371 44.0 38,718 1,373
18 | 10,446 101 2,306 54.3 21,861 494
19| 29,046 130 1,239 30.0 60,514 1,927
20 | 13,374 180 4,440 107 26,161 488
21| 82,865 771 11,885 314 161,072 5,590
22 | 33,644 281 3,331 102 62,579 2,669
23| 86,412 | 1,549 | 26,750 953 154,418 4,778
24 | 103,557 1,431 | 17,285 697 177,526 7,007
25| 66,900 | 1,066 | 12,324 554 111,056 4,376
26 | 661,811 9,024 | 46,472 2,291 | 1,034,886| 36,335
27 | 251,004| 3,204 | 13,656 799 365,210 | 15,457

In the implementation of Algorithm 5.1, whose results are reported in Table
5.5, we also altered the selection rule of the current hyperrectdtiglé in Step
VIl of our method. Instead of choosigf*! among all hyperrectanglésc R**!
with a lower bound equal tp**!, we select, if possible, a child @t* with this
attribute. Note that in the old strategy we applied the FIFO principle, i.e., first-in-
first-out, and that the new strategy is related to the LIFO principle, i.e., last-in-first-
out. Our numerical experience showed that this selection strategy nearly halved the
maximal number of stored partition sets (see the cases26, 27 in Table 5.5 and
remember that in these cases the new basic strategy had almost no influence).

5.8.2. Altered Decision Criterion. In the previous section we described a
criterion according to which we decide, whether we calculate an upper bound for
the current hyperrectange®» (p € {1,...,1}) by solving a linear program or
whether we choose the old upper bourld respectively the updated opg,x, =
min{p*, firk, } (see (5.7.1)). This criterion based on the check of the feasibility of
a pointx € U™ with respect to the linear subproblem (LSP’) (see page 264), where
the members of this point are vertices of the rectangles formifyg Taking the
large number of possible points into account the verification of this criterion can be
time-consuming. Nevertheless, the application of this strategy lead to an essential
reduction of the running-times. The following cheap and simple decision criterion
showed even better results.
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As long as the squared diametéfR*») of the hyperrectanglé&*» is not
smaller than%o, l.e, as long as there holds

n 2 0
d(RM) = L ez > 1L 5.8.1
<>;;u i = (5.8.1)
we do not calculate a new upper bound for Problem (SP) with respect to the set
RF». We simply sefupr, = u*. Moreover, ifd(R*») is smaller tharf72—0 we check
additionally the old criterion.

At first glance this new criterion might be surprising, since in all strategies
developed so far we never considered the hyperrectangle as a whole. We always
analyzed the rectangles forming these sets. Nevertheless, this criterion worked very
well and is thus at least a good heuristic. Applying this decision criterion we could
almost halve again the running-times of Algorithm 5.1 for solving Problem (PP)
with n € {14,...,27} points (see Table 5.6 and compare with the results in Table
5.5). For determining an approximate solution for the scattering problemiwith

TABLE 5.6. Numerical effort with altered basic strategy and al-
tered decision criterion

n IT 1T NLP TLP NR MNPS
14 | 6,777 17.0 3 0.01 18,403 691
15| 1,534 3.07 2 0.01 3,596 224
16 | 1,878 3.49 1 0.01 4,536 177
17| 17,176 | 56.9 52 0.37 39,057 1,478
18 | 11,229 | 32.7 27 0.16 23,733 599
19| 29,149 | 85.5 14 0.14 60,717 1,955
20| 13,491 | 41.2 12 0.09 26,838 706
21| 83,799 371 993 11.7 162,838 6,057
22| 34,772 147 14 0.21 64,851 2,759
23 | 87,667 382 8 0.13 154,418 5,431
24 | 104,684 554 29 0.25 179,524 7,853
25| 67,742 412 4 0.03 112,534 4,405
26 | 669,709| 6,107 1,883 36.7 | 1,051,445| 40,517
27| 252,517 2,187 1,021 24.6 367,854 | 15,648

points we had to solve only one linear program. It is interesting to note that the
number of iterations did not grow substantially. Hence, the advantage of solving
less linear programs was not outbalanced by the fact that we could obtain worse
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upper bounds. Note that, if we do not solve (LSP’), we save time since we do
not call MINOS 5.4 and, additionally, we save time since we do not construct the
LP-relaxation of Problem (SP).

A reason for the good performance of Algorithm 5.1 using this criterion might
be the following. Our numerical experience showed that the subdivision set mani-
pulation strategies are really successful in detecting areld$ oivhere no optimal
solution exists. Moreover, they are able to significantly reduce the size of the re-
maining sets containing solutions of Problem (PP). However, if these setgigét
and the best known solution is maybe not good enough, the manipulation strategies
do not result in further progress. In this situation it is useful to calculate upper
bounds by solving the LP-relaxation of (SP). Doing this we can obtain slight im-
provements of the best known solution and we diminish the distance between the
lower and the upper bounds. The described criterion seems to be a good choice for
detecting such situations, where the considered hyperrectanglesalle

We tested also several other criteria, which were not as keen as the above one.
For instance, we required that each rectari@ﬁé (e € {1,...,n})was subdivided
twice, i.e., that there held
770

k
max max |[L,” — 17| < {/—.
i=1,...,nj=1,2 J 2

Using these criteria the running-times always increased on average.

On the other hand we tested additionally a variant of Algorithm 5.1, where we
never calculate an upper bound by solving a linear program. We always chose the
simple upper boungd ., = min{u*, jipx, } With /i, given asin (5.7.1). Doing
this the running-times explode for the most examples. Hence, even though we have
in comparison with the number of considered hyperrectangles only a small number
of linear problems to solve, the solution of these problems is necessary in order to
obtain an efficient method for solving the point scattering problem.

kp

]

5.8.3. Solutions of Problem (PP) with more than 27 PointslIn the previous
section we pointed out that we were not able to solve Problem (PP) with more than
27 points, at least with the version of Algorithm 5.1 used there. The improvements
of Algorithm 5.1 developed in the present section enabled us to solve such prob-
lems. However, in comparison to the cagses 27 the running-times still explode.

In order to obtain approximate solutions for Problem (PP) with- 27 we
used a"parallelized"variant of Algorithm 5.1. At first we generated all possible
hyperrectangle® = R; x ... x R,, with the property that each rectandke was
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subdivided once, i.e., coincides with one of the squéfg$j € {1,...,4}, see
(5.5.1)). After this we used each of these hyperrectangles as the initialization set
for Algorithm 5.1. In this way we could use several machines in order to solve
Problem (PP). Apart form th&UN ULTRA 60 workstations used till now, we
additionally appliedSUN Server 100@vorkstations. These machines are — with
our code — on average 4 times slower.

In order to avoid excessive storage requirements we used the depth-first-search-
strategy mentioned in Remark 5.7.2(b). Since we did not know the coordinates of
the best known solutions for Problem (PP) with> 27 we did not initializex.

We initialized onlyn°.

REMARK 5.8.1. The coordinates af, which is used for the initialization of
2, are not substantial for Algorithm 5.1. This methods needs only a good ap-
proximation forn®. Therefore, it is sufficient if we se® without knowing the
coordinates of:. Moreover, if we initializen® with 7 — ¢, wheres is the best pub-
lished value, we can guarantee that Algorithm 5.1 delivers the coordinates of an
e-optimal solution.

Since we used the best known solutions given in [NO97] we had to choose
m = 4 in the second level of our basic partitioning strategy in order to solve Prob-
lem (PP) with more tha@7 points. According to our new partitioning strategy the
rectangled’; (i € {1,...,4}) were hence partitioned int® squares with edge-

Iength\/# and 7 additional rectangles. Thus the number of possibilities for

settingRY (j € {1,...,n},i € {1,...,1}, k € IN) in Step IIl of Algorithm 5.1
was substantially larger than by choosimg= 3, as it was the case far < 27.
With respect to our subdivision set manipulation strategies and the fact that there
were 7 small rectangles we still hoped to be able to solve (PP) with acceptable
computational effort. However, even the fastest one (seercas80 in Table 5.7)
could not be solved within one day, and hence we could not expect to solve many
cases with > 27.

The numerical effort for solving Problem (PP) with € {28,29,30,31} is
shown in Table 5.7. We used again the accuraey 10~°, except forn = 31
we appliede = 5 x 10~°. The abbreviations are the same as before. However, the
running-times are given in hours. The additional column NP shows the number of
possible hyperrectangles after the first level, i.e., the number of different problems
we solved in order to obtain an approximate solution of the corresponding point
scattering problem. Since we solved each problem using different machines we
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TABLE 5.7. Numerical effort for solving (PP) with > 27

n | NP IT 1T NLP TLP NR n*

28 | 29 | 86,848,406 205.44 7,149 0.04 | 206,979,450 0.0531427
29| 21 | 38,423,801| 103.23 109 0.01 96,339,168 | 0.0514739
30| 16 | 11,034,381 27.71 8 0.00 24,955,286 | 0.0503987
31| 9 | 76,263,071 229.39 | 4,802,901| 42,57 | 164,774,004| 0.047324

added the effort needed for each process. In order to obtain comparable running-
times we scaled the times obtained with 818N Server 1008vorkstations with the
speedup-factot.0 mentioned before. Thus the running-times displayed in Table
5.7 are approximations of the necessary time for completely solving these problems
on aSUN ULTRA 60workstation.

It is interesting to note that even though there are nearly double as much pos-
sibilities in the second patrtitioning level as for the cases 27, the number of
considered hyperrectangles in Step IV is still less than three times the number of
iterations. This corroborates again the success of the special features of the subdi-
vision strategy. As in the cases considered in the previous section we did not de-
termine solutions of Problem (PP) (see columihwith a larger minimum squared
pairwise distance than the best known so far.

Our numerical experience for the case= 31 showed that in this case a sym-
metry avoiding strategy in the third level could improve the numerical performance
of Algorithm 5.1. Note that for the cases < 27 we pointed out that it was not
useful to use this strategy in deeper levels than the second one. In Figures 5.40-5.42
we show again the arrangements of the calculatgptimal solutions together with

FIGURE 5.40. Solution fom = 28

x1 = (0.0000, 1.0000) x5 = (1.0000, 1.0000)
w3 = (0.0000,0.0060) x4 = (1.0000, 0.2170)
x5 = (0.0000,0.6333)  zg = (1.0000, 0.6163)
@7 = (0.0000,0.2365) x5 = (0.2305, 0.0000)

zg = (0.9221,0.0000) x10 = (0.2833, 1.0000)
x11 = (0.7444,1.0000) x5 = (0.2305, 0.2305)
x13 = (0.4601,0.0000) x4 = (0.4996, 0.2273)
z15 = (0.1175,0.4349) x4 = (0.3672, 0.4161)
z17 = (0.6915,0.0000) x5 = (0.7695, 0.2170)
z19 = (0.6417,0.4088) xo0 = (0.8847,0.4166)
zo1 = (0.2569,0.6185) xoo = (0.1417,0.8181)
x93 = (0.3986,0.8003) x4 = (0.5119, 0.5994)
xo5 = (0.7569,0.6085) w26 = (0.6291, 0.8003)
zo7 = (0.5139,1.0000) xog = (0.8722, 0.8081)
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their coordinates.

FIGURE 5.41. Solutions fon = 29, 30

z1 = (0.0000, 1.0000) =5 = (0.0000, 0.0450)
z3 = (1.0000,0.2051) 4 = (1.0000, 0.5981)
x5 = (1.0000, 1.0000)  z¢ = (0.0000, 0.7237)
@7 = (0.0000,0.4969) x5 = (0.2224, 0.0000)
xg = (0.9030,0.0000) 219 = (0.3193, 1.0000)
x11 = (0.0204,0.2709) x5 = (0.3194, 0.2051)
x13 = (0.4493,0.0000) x14 = (0.2059, 0.4016)
x15 = (0.4328,0.4016) w16 = (0.6761, 0.0000)
z17 = (0.5462,0.2051) x5 = (0.7731, 0.2051)
x19 = (0.6597,0.4016) x99 = (0.8860, 0.4016)
w91 = (0.3194,0.5981) x99 = (0.2140, 0.7990)
w93 = (0.4409,0.7990) w94 = (0.5462, 0.5981)
xo5 = (0.7731,0.5981)  x96 = (0.6678, 0.7790)
zo7 = (0.5462,1.0000) xog = (0.8947, 0.7790)
x29 = (0.7731, 1.0000)

z1 = (1.0000, 0.2000) =5 = (0.0000, 0.8000)
x5 = (0.0000, 0.4000) x4 = (0.0000, 0.0000)
x5 = (1.0000, 0.6000)  z¢ = (1.0000, 1.0000)
x7 = (0.8980,0.0000) g = (0.1020, 1.0000)
zg = (0.2245,0.0000) x1¢ = (0.1020, 0.2000)
x11 = (0.4490, 0.0000) x5 = (0.3265, 0.2000)
x13 = (0.2245,0.4000) x14 = (0.4490, 0.4000)
w15 = (0.6735,0.0000) x5 = (0.5510, 0.2000)
w17 = (0.7755,0.2000) x5 = (0.6735, 0.4000)
x19 = (0.8980, 0.4000) x50 = (0.1020, 0.6000)
x91 = (0.3265,0.6000) x99 = (0.2245, 0.8000)
w93 = (0.4490, 0.8000) w94 = (0.3265, 1.0000)
x5 = (0.5510, 0.6000)  z26 = (0.7755, 0.6000)
xo7 = (0.6735,0.8000) z9g = (0.5510, 1.0000)
wo9 = (0.8980, 0.8000) x30 = (0.7755, 1.0000)

(b) n = 30

We also tried to solve even larger problems. However, the point scattering
problem with32 points could not be solved within two weeks. Hence we do not
expect that the current version of Algorithm 5.1 is able to solve Problem (PP) with
n > 31 within several days, and we did not try this until now. Nevertheless, in this
section we saw that slight changes of some strategies can essentially improve the
numerical performance of Algorithm 5.1. Consequently, we hope that it is possible
to modify the presented strategies as well as to develop new strategies in order to
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FIGURE 5.42. Solution fom = 31

z1 = (1.0000,0.7828) x5 = (1.0000, 0.1061)
x3 = (0.0000,0.8101) x4 = (0.0000, 0.4351)
x5 = (1.0000,0.5497) =g = (1.0000, 0.3292)
x7 = (0.9870,1.0000) =g = (0.8101, 0.0000)
zg = (0.1061,1.0000) x19 = (0.4351, 0.0000)
z11 = (0.5496,1.0000) x5 = (0.3290, 1.0000)
x13 = (0.0000, 0.0000) x4 = (0.2175, 0.0000)
z15 = (0.0000,0.2175) =z = (0.2175, 0.2175)
x17 = (0.4351,0.2206) x15 = (0.2206, 0.4351)
z19 = (0.4382,0.4382) xo0 = (0.6226,0.1103)
w91 = (0.8132,0.2176) x99 = (0.6257, 0.3279)
w03 = (0.8125,0.4394) x4 = (0.1103, 0.6226)
x5 = (0.3279,0.6257)  x9g = (0.2175, 0.8132)
w97 = (0.4393,0.8125) x5 = (0.6115, 0.5696)
T2 = (0.8107,0.6570) x50 = (0.6568, 0.8107)
x31 = (0.7685,0.9979)

further improve the suggested method. This might lead to an approach, which is
even able to solve larger problems with acceptable effort. Recognize that Problem
(PP) withn > 30 is — from a deterministic global optimization point of view —
a huge problem. The small numbers of linear programs, which had to be solved
during the execution of Algorithm 5.1 (see the corresponding columns in Table 5.6
and Table 5.7), let expect that a further modification of the upper bounds will not
lead to a faster approach. The key for the acceleration of Algorithm 5.1 are the
subdivision set manipulation strategies.

Let us finish this chapter with a good solution of Problem (PP) B&Ipoints

FIGURE 5.43. Good solution fon = 32

x1 = (1.0000, 1.0000) x5 = (1.0000, 0.0594)

z3 = (0.0000, 0.7953)
x5 = (0.0000, 0.4262)
@7 = (0.0594, 1.0000)
zg = (0.4262, 0.0000)
x11 = (0.2131, 0.0000)

z13 = (0.2131,0.2131)
z15 = (0.2131, 0.4262)
x17 = (0.6108, 0.1066)
z19 = (1.0000, 0.2725)
x21 = (0.7953,0.4262)
x93 = (0.1066, 0.6108)
x95 = (0.2131,0.7953)
xo7 = (0.4262, 0.7953)

Tog9 = (0.5872, 0.5872)
x31 = (0.6393,0.7938)

x4 = (1.0000, 0.6987)

xg = (0.7953, 0.0000)

xg = (0.6987, 1.0000)
x19 = (0.0000, 0.0000)
x12 = (0.0000, 0.2131)
z14 = (0.4262, 0.2131)
z16 = (0.4262, 0.4262)
z18 = (0.7953,0.2131)
x99 = (0.6108, 0.3197)
T2 = (1.0000, 0.4856)
w94 = (0.3197,0.6108)
w9 = (0.2725, 1.0000)
zog = (0.4856, 1.0000)
w30 = (0.7938, 0.6393)
w30 = (0.8459, 0.8459)
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detected during our numerical tests. The solution displayed in Figure 5.43 has a
minimum squared pairwise distance ofn; << ;<32 ||z; — x;]|3 = 0.0454068,

which is slightly better than the one given in [NO97] (0.04540409). This is the
only case, where we detected by applying Algorithm 5.1 a better solution than the
best known so far.



CHAPTER 6

Conclusion

We would like to complete this doctoral thesis with a short review of the topics we
treated. What have we reached and which questions are still to be answered?

The main aim of this dissertation was the development and the theoretical as
well as numerical examination of solution methods for so-catledconvex all-
quadratic optimization problemise., for problems of type

min 7 Q% + (d°)Tx
TQa+(d)Tz+d <0  I=1,...,p (QP)
xr € P,

with Q' € R™ " symmetric,dd ¢ R*" (I = 0,....,p), ¢ ¢ R( =1,...,p)
andP = {zx € R" : Az < b} a non-empty, full-dimensional polytope with
A e IR™*™ andb € IR™. We proposed two, respectively three new approaches for
solving this class of global optimization problems.

The first method was developed for the solution of so-calledry problems
This class of optimization problem was of interest, since each problem of type
(QP) can be transformed into a unary program. With some technical effort we de-
rived several convergent solution approaches for this type of global optimization
problems. Hence we overcome the theoretical deficiency of an outer approxima-
tion scheme given by Ramana4R 93], which was the only solution approach for
unary problems known so far. Our algorithms are combinations of outer approx-
imations and — branch-and-bound like — successive subdivisions of the feasible
region. One variant of these new methods uses a regutamplex with all its
vertices on the boundary of the Euclidean unit ball. Even though the properties of
such amn-simplex are known in the literature, to the author’'s knowledge there is
no explicit construction of such a set — except in the present work and in [HR98].
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Unfortunately, the indirect approach for solving (QP) via the solution of the
corresponding unary program is only of theoretical interest. The numerical results
showed that this method is not able to solve all-quadratic problems with accept-
able computational effort. Excessive numerical effort was needed in order to solve
the unary problems resulting from the transformation of the all-quadratic problems
belonging to our randomly generated test set.

The numerical effort for solving a unary problem depends substantially on
the structure of the affine matrix mapping forming the single nonlinear constraint.
For unary problems resulting from the transformation of all-quadratic problems
this mapping has an unpleasant structure. If unary problems with an easier matrix
mapping are considered it is likely that our methods show a substantially better
numerical performance. Moreover, in such a case it could even be interesting to
change some features of Algorithm 2.3 in order to further improve its numerical
performance (see the considerations at the end of Chapter 2). However, another
application of unary problems, which could lead to a simpler matrix mapping, is
not known to our knowledge.

As mentioned before, we developed a new method for the solution of unary
problems since the convergence of the outer approximation scheme proposed by
Ramana is not provable. This is a theoretical problem of several algorithms, which
base on cutting planes, developed for global optimization problems (see, e.g.,
[HT968B]). It might be that the ideas used in Chapter 2 in order to obtain a con-
vergent algorithm can also be applied for other problem classes, where the conver-
gence of corresponding outer approximation schemes is not known. Hence, there
are some theoretically interesting aspects of the content of Chapter 2, even though
we did not reach our main goal to obtain practicable solution methods for problems

of type (QP).

The second solution approach for Problem (QP) suggested in Chapter 3 was
more successful with respect to this main intention of the present thesis. The
presented simplicial branch-and-bound method showed a good numerical perfor-
mance, at least for the solution of arbitrary problems of type (QP) with a dimension
less than10. Beside the rectangular branch-and-bound algorithm introduced in
[AKLV95] our simplicial method belongs to the rare approaches in the literature,
which consider Problem (QP) directly. Other solution approaches for all-quadratic
problems mostly interpret this type of programs as a special instance of a more gen-
eral problem class, like bilinear problems [AK92], polynomial problems [ST92],
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problems involving biconvex functions [FV®3 general d.c. problems (see Chap-
ter 4) or — as we did in Chapter 2 — unary problems{®3].

As long as an exhaustive subdivision rule for thheimplices considered in our
algorithm is used the convergence of our method can be ensured. Hence, this sim-
plicial algorithm has the same theoretical properties as the comparable rectangular
approach by Al-Khayyal et al. [AKLV95]. Moreover, numerically, our method
often outperforms this rectangular approach, in particular when all-quadratic prob-
lems with more quadratic constraints than the dimensionspi.e.,n, have to be
solved. The complexity of the LP-relaxations used in our approach, i.e., their di-
mension and number of linear constraints, depends linearpyaotn. In contrast
to this the LP-relaxations applied in Al-Khayyal et al.'s method for the calculation
of lower bounds have a dimension(@f+ 2)n and4(p + 1)n + p + m linear con-
straints. The less complex relaxations in our approach are the main reason for the
better numerical performance.

If we are interested in a practicable approach for solving (QP), convergence of
such an algorithm is not sufficient. In addition we need that the method is finite.
However, this can only be obtained, if we are satisfied with approximate solutions.
In particular, we have to be satisfied with solutions of Problem (QP), which are ap-
proximately feasible, i.e., fulfill the constraints up to a prespecified tolerance, and
which are, additionally, approximately optimal. The solution methods considered
in this thesis can determine such approximate solutions in finite time. In contrast
to other global optimization problems, like concave minimization, it is in general
not possible to require that the determined approximate solution of Problem (QP)
Is at least feasible. Note that the problem of detecting a feasible point for this type
of problems is as hard as the solution of (QP) itself. However, under additional as-
sumptions the feasibility of calculated solutions could be guaranteed. For instance,
if we require that the feasible region of (QP) contains a ball with known radius, then
it is possible to choose the accuracies in our simplicial method such that Algorithm
3.1 determines a feasible point in finite time. Our first method and the general-
ization of the simplicial branch-and-bound approach considered in Chapter 4 can
also be adapted in this way. However, the verification of such a strict assumption is
again a hard problem, unless the examined instance of Problem (QP) has a special
structure.

In the definition of our simplicial branch-and-bound method there are still
some features, which could be modified or changed in order to affect the numeri-
cal behavior of this approach. At the end of Chapter 3 we saw, for example, that
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the exploitation of the fact that the LP-relaxations applied in our approach are not
uniquely determined can improve the performance of Algorithm 3.1. Another fea-
ture of this method, which could be changed, is the subdivision rule. Whisse-

tion, where a partition of the currentsimplex is performed by a radial subdivision
with respect to the midpoint of the longest edge. This subdivision rule is exhaus-
tive. The same holds for thgeneralized bisectiomentioned on page 127. Hence,
this rule could also be applied without altering the theoretical properties of our
approach.

In the context of simplicial branch-and-bound methods for the minimization
of concave functions with respect to polytopes, i.e., éoncave minimization
problems the so-calledu-subdivisionis favored by some authors. In this rule
the currentr-simplex.S' is partitioned into up tow + 1 subsimplices by applying
a radial subdivision with respect to the point, where the optimal solution of the
LP-relaxation on the sef is attained. Using this rule one hopes to obtain bet-
ter numerical results, since the subdivision point is more related to the problem
than the midpoint of the longest edge used in the bisection rule. However, it was
an open question, whether simplicial branch-and-bound methods employing only
w-subdivisions are convergent, since this subdivision rule is not necessarily exhaus-
tive.

We were first of all interested in convergent solution approaches for Problem
(QP). Therefore, we had to answer this open question, if we wanted to apply the
w-subdivision rule in our simplicial branch-and-bound method. The ideas used in
Chapter 3 in order to develop a solution approach for (QP) could analogously be
used for deriving a simplicial branch-and-bound algorithm for the solution of so-
calledgeneralized d.c. problent®ntaining the class of all-quadratic problems as
well as the class of concave minimization problems. Therefore, we tried to answer
the open question mentioned above for the generalized algorithm introduced in
Chapter 4, which is able to solve such d.c. programs.

We proved that for general d.c. problems and in particular for general all-
quadratic problems our algorithm can fail to converge, if antgubdivisions are
employed. However, if this method is applied for concave minimization problems
or for problems with a d.c. objective function — consisting of a quadratic convex
part and a strictly concave part — and with concave and linear constraints, the con-
vergence even with-subdivisions can be guaranteed. This was the main result
in Chapter 4. Note that the convergence of this method could only be guaranteed
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in the sense that this approach detects for arbitrary accurgaies 0 either the
emptiness of the feasible region or and, 0)-solution of the considered problem

In finite time. This convergence result was theoretically weaker than the other con-
vergence results examined in this thesis. Nevertheless, — from a practical point of
view — all results have the same quality. They ensure the finiteness of our methods,
If we are satisfied with approximate solutions.

Apart from these convergence results we were, furthermore, able to prove that
this method withw-subdivisions delivers in finite time even the optimal solution
of a concave minimization problem, if two additional assumptions are fulfilled. It
does not seem that this finiteness result can be extended to more general problem
classes, since for the proofs it was essential that the feasible set is a polytope. On
the other hand, it is an interesting question whether the additional assumptions
could be weakened without losing the finiteness result.

We also examined the numerical performance of the introduced generalized
simplicial branch-and-bound Algorithm 4.1 with respect to problems of type (QP).
Since this algorithm uses convex relaxations instead of LP-relaxations applied by
Algorithm 3.1, we were at first interested in a numerical comparison of both ap-
proaches only using bisections. Note that the generalized algorithm is always con-
vergent, if an exhaustive subdivision rule is used — as it is the case for Algorithm
3.1. We observed that the version of Algorithm 4.1, which employs only bisec-
tions, can be expected to be numerically more efficient than Algorithm 3.1, at least
as long as a solver for the convex relaxations is used, which exploits the quadratic
structure of the involved functions.

The main aim for considering-subdivisions in Chapter 4 was the hope to ob-
tain an algorithm showing a better numerical performance than a method, which
simply chooses bisection. As mentioned before, we know that in general the con-
vergence of an approach, which employs anbgubdivisions, cannot be ensured.
However, our theoretical results derived in Chapter 4 enabled us to develop a mixed
subdivision strategy (MGWSR) — consisting of bisections ansubdivisions —
leading to a convergent approach for solving general d.c. problems. Note that
(MGWSR) is different form the mixed strategy used in the so-callednal sim-
plicial branch-and-bound algorithms. Unfortunately, the numerical tests using this
mixed strategy (MGWSR) and variants of it were really disappointing. Even though
Algorithm 4.1 using (MGWSR) had a good performance for a few test examples,
on average the application of this rule results in a substantially worse numeri-
cal performance than the use of bisection. We did not find a strategy based on
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(MGWSR), which has the best numerical performance in all test examples, i.e.,
which is the fastest one, if (MGWSR) leads faster to a solution than bisection as
well as if bisection is faster than (MGWSR). It is hence still an open question
whether there exists a subdivision rule for simplicial branch-and-bound methods,
which always shows the best numerical behavior. We believe that such a rule does
not exist in general. Taking the structure of special problem instances into account
it might be non the less possible to develop a subdivision rule, which has this prop-
erty, at least as long as the resulting algorithm is applied for the solution of these
instances.

Till Chapter 4 we developed two new approaches for the solution of the gen-
eral form of Problem (QP). Note that Algorithm 3.1 can be interpreted as a special
case of Algorithm 4.1. In the introduction of this thesis (see Section 1.1) we saw
that there are many applications of this type of global optimization problems. Con-
sequently, it was interesting to examine such a special instance of Problem (QP).
We chose the problem of packimge IN equal and non-overlapping circles with
maximum radius into the two-dimensional unit square, which we callegabking
problem The optimal solutions of this problem with up20 circles are reported to
be known. Hence, we had to solve an all-quadratic problem (see page 189) with a
dimension higher tha#0, if we wanted to determine new global optimal solutions.
From a global optimization point of view, such problems are very large. Thus, it
was not really surprising that our general methods for (QP) developed so far fail to
solve the packing problem with more tham circles and acceptable effort.

In the considerations of our general schemes we often claimed that the ex-
ploitation of the structure of special problem instances can improve their numer-
ical performance. This was particularly the case with the packing problem. We
suggested a rectangular branch-and-bound algorithm, which was able to solve the
packing problem with up t@7 circles within two hours.

We exploited the special structure of the packing problem, respectively of the
all-quadratic formulation (PP) of the equivalgriint scattering problenm differ-
ent ways. First of all we derived some new theoretical results showing the existence
of a solution of this problem with a special behavior on the boundary of the unit
square. In particular, we proved that there is an optimal solutioconsisting of
n two-dimensional members’ (i = 1,...,n) such that for each vertexof the
unit square there holds: Either the vertess itself a member ok* or there are
two members of this solution belonging to the boundary lines of the unit square
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forming this vertex, which have exactly the optimal distance from each other. Even
though we do not know an optimal solution of the point scattering problem with the
property that no vertex of the unit square is a member of this solution, we were not
able to prove this fact. We could not show that at least one vertex has to belong to
an optimal solution of the point scattering problem. This is still an open question.
The existence of optimal solutions with the proven behavior on the boundary of the
unit square could be used in order to reduce the number of possible solutions of the
considered problem, which our algorithm has to look for.

Apart from the derivation of these theoretical results we exploited the structure
of the packing problem in the construction of LP-relaxations, which are needed
for the calculation of bounds. These special relaxations are better than those ob-
tained by general approaches. We could also use the structure of the considered
instance of (QP) in order to develop special subdivision strategies for the relevant
hyperrectangles. Moreover, we were able to derive further powerful subdivision set
manipulation strategies. Note that the derivation of such strategies is mostly not
possible, if general problem classes are considered.

The combination of all these adjustments of a general rectangular branch-and-
bound scheme to a special problem instance led to a really successful solution
approach for the packing problem. The proposed algorithm is able to prove the
e-optimality of determined approximate solutions. Hence, this approach could be
used as a computer aided proof, since the optimal solutions of the packing problem
for more thar0 circles are mostly not known and since our numerical experience
showed that Algorithm 5.1 is able to solve problems with these sizes and acceptable
effort. We pointed out that our current implementation of Algorithm 5.1 cannot be
used without reservation as a computer aided proof. Nevertheless, it is possible to
adapt this implementation such that the required precision can be reached.

The performance of the proposed method depends essentially on the quality
of the solutions of the examined problem known in advance. Algorithm 5.1 is
not applicable in order to determine new solutions of the packing problem with-
out knowing good initial approximations. The main advantage of our method is
the possible guarantee of th@ptimality of determined points mentioned before.
Nevertheless, this approach can also detect better solutions than the best known so
far, as we saw for the case witl circles.
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The suggested strategies for improving the performance of Algorithm 5.1 are
surely not yet the best ones. We believe that there are still further possible im-
provements, especially for the subdivision set manipulation strategies, such that
even larger examples of the packing problem can be solved globally.

The last chapter of this thesis showed that an adjustment of a general solution
scheme to a special problem instance can significantly improve the numerical per-
formance of the method applied for the solution of this instance. Moreover, we saw
that in global optimization general approaches are — from a practical point of view
— often not able to solve problems resulting from applications, since the sizes of
these problems are too large. Another interesting aspect of Chapter 5 is that the key
for the acceleration of the branch-and-bound Algorithm 5.1 was not the develop-
ment of good relaxations for calculating bounds. The subdivision set manipulation
strategies were decisive. Also for other problem instances it is possible that the
examination of the structure of the feasible region and the resulting derivation of
subdivision set manipulation strategies is — with respect to the numerical perfor-
mance of a branch-and-bound method — more successful than the development of
special bounds.



APPENDIX A

Proofs for Section 4.4

Before expatiating the longer and more technical proofs of some results proposed
In Section 4.4 we first establish a lemma, which will ease our work. The statement

of this lemma does not depend on the problem class which we would like to solve

with Algorithm 4.1.

LEMMA A.1. Let{S*}.cw be an infinite nested simplex sequence generated
by Algorithm 4.1 with Properties (4.4.2.a) and (4.4.2.b), and{let} . be a
point sequence with* ¢ S* (k € IN). Choose\* ¢ B,, such that, for allk € IN,

2F = ARF (A.0.1)
1=0
Assume that there is an indéxe {0, ... ,n} such that the vertices? (k € IN)
change infinitely often, i.e.,
{k e IN: ot £k = o0, (A.0.2)
and such that there holds
A 40 (k— 00) . (A.0.3)

Then there exist an indéxc {0, ... ,p}, a positive real number and a subse-
quence{k, } e Of {k} ke Satisfying, for allg € IN,

Plorg (z¥0) = ol (aF0) + 7. (A.0.4)
In particular, there holds

P (250) 2 @,y (@) 47
if all elements of the vertex sequereg } e are (9, 0)-feasible.
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PrROOF FOR (DCP;) AND (DCP): The boundedness of the sequence
{\F } ke implies that there is a convergentsubsequﬁr}fé}qem satisfying

Nt — 20 (q— o)

for a positive real value. It follows that there exists a numbé&r € IN with the
property that, for aly > @, there holds

)\,l;,q>1/.

We assume, without loss of generality, tiat= 1. Regarding (A.0.2) we are
able to choose the subsequelcﬁaé"}qem in a way such that each member of the
corresponding vertex sequenpéfq}qem Is different from his successor, i.e.,

Vg € IN Uf,q“ + vf,q :

Therefore, we know that, for af € IN, there exists an indek,(i') < kg,
kq,(i") > k,—1 —not necessarily belonging to the subsequdrigé,cw — with

vhe = Gkl

2

Thus, for eacly € IN, there holds

Skzq(i/)-i-l — [vlgq(i/), o 7,Uf/q_(7i/)’ f/q)vf/i(i/), o ’Uqu(i/)] and
Ska C Gka(i)+1 (A.0.5)
It follows that each vertequ (5 €1{0,...,n}\{i'}) of then-simplexS*« can be

represented as a convex combination of the verticed'df )+1 | i.e., there exists

a vectoml.“q“/) € B,, satisfying

n

kq kq i’ k?q i k:q 3’ k;q
1=0,37#£1%

By substituting eachzfq (7 € {0,...,n}\{i}) in (A.0.1) with (A.0.6) we obtain
a vectora*« € B, satisfying
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with

= \m oy Z Al ’““ > v,
=0,j7#7/

Denote by
Fea := {vi®: v} is (8, 0)-feasibleg € IN}

the set of all §, 0)-feasible elements of the sequer{aé,q}qem. Note that there
holds Fea = {vf,q : ¢ € IN} in the case of problem type (DGR If the setFea
contains an infinite number of elements, then we can assume, without loss of gen-
erality, that each verte>{3q (¢ € IN)is (6, 0)-feasible. From Lemma 4.4.1 we obtain

0 k 0 k
@Skq (ZI: q) Z @Skq(i/)_i_l(x q)
(A.0.5) and (4.4.3)

0 k k

Z (pskq(zl)(x q) _|_ ai/q 6

Lemma4.4.1 >"V

0 k

= Pgkq-1 (z q)+\Vf_/

Skq—1 D) Skq (i)

=T

If Fea contains a finite number of elements, then there exists an index
[ € {1,...,p} such that the constraint

g'(z) + fl(x) <6 (A.0.7)

is violated infinitely often by the elements of the seque{tqké}qem. In this case

we can assume, again without loss of generality, that each vej?fe(q € IN)
violates the constraint (A.0.7) for a fixéd: {1,...,p}. TakingLemma4.4.1 into
account (see, in particular, the proof of this lemma) we obtain now in an analogous
way

l k l k
(,Oskq<$ q) > @Skqfl(x q)_‘_\yé‘/’

=T

which completes the proof. [

REMARK A.1. The proofof Lemma A.1in connection with the proof of Lemma
4.4.1 shows that, in addition, there exist a further subsequéhgé’)},cn of



292 RROOFS FORSECTION 4.4

{k}rew and a positive real value with the properties, for aly € IN,
byt < kg(i) < kg, vh = w(SFal)) =yl (A.0.8.2)
and
N>
kq kq kq
@gkq(i/)*Fl (,Clj‘k:q) 2 ngkq(z’) (:L‘kq) —|_ >\i/ (fo('l)i/ ) - (ngq(i/) (Ui/ )) .

This additional subsequence and the real valaee useful in the proof of Lemma
4.4.5 for (DCB).

(A.0.8.b)

A.1. Proof of Lemma 4.4.2 for (DCR,) and (DCP)

PROOF Since{S*}.cn is a nested sequence of compact and non-empty sets
Sk =T[vf,... ,vE] (k € IN) we know that the sgf), . S* is not empty. Choose a
pointz € N, .y S* and, for eaclk € IN, an ¢ + 1)-dimensional vectok” € B,
satisfying

n

x = g eyl

1=0
Denote by

I:={ic{0,...,n}: {keIN: 0" £ oF} =00}

the index set of the vertices which change infinitely often. In the following we show
that, for eaclk € I, there holds

A= 0 (B — o0). (A.1.1)
Assume, by contradiction, that there exists an index I with the property
Y40 (B — o00) .

It follows by Lemma A.1 that there exist an indéx {0, ... ,p}, a real number
7 > 0 and a subsequeng&, } ,civ of {k}rew Satisfying, for allg € IN,

prs’kq (SU) > ()Olskq—l (CU) +T.
Therefore, we obtain, for eaghe IN,
Pl () = Pl () + (g = D7,
and, in particular,

Pl () — 00 (g — 00). (A.1.2)
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Because of: € S*¥ (kK € IN) we know — in view of the properties of the convex
envelope — that, for alt € IN, there holds

pgi(z) < fl(@) < oo,

which contradicts (A.1.2) and proves (A.1.1).

By construction we know thax* € B, and, hence, it is not possible that
(A.1.1) is satisfied by each index € {0,...,n}, i.e., it must exist an index
j, which is not contained id. Using an adequate numbering of the vertices of
Sk (k € IN) we are able to assume, without loss of generality, that there holds
I={r+1,...,n}forsomer € {0,... ,n— 1}. Hence, we obtain the existence
of a numberK € IN and an integet < r < n satisfying (4.4.5). Moreover, we
obtain that there holds

r € [vg,...,v;] = S (A.1.3)

and, in particular, fok > K andi € {r+1,... ,n}, that\F vanishes, i.e\f = 0.
Note that the representation of a point in a simplex as a convex combination of its
vertices is unique. With (A.1.3) we see

N s* c s,
keIN

and, on the other hand, fér> K, we know

k k k
S C S =1[vo,. ., 0,V 1500 U],

n

which proves (4.4.6). |

A.2. Proof of Lemma 4.4.3 for (DCR,) and (DCP)

PROOF. Let @ be an accumulation point ofw(S*)}rew, and let
{w(S*)},en be a subsequence convergingaowith the additional property
ki > K. Since{S*} N is a nested sequence of compact, non-empty sets it
follows immediately that

we (S =[)s=5.
qeIN kelN

Assume, by contradiction, that there is an indez {0, ... ,r} with

Vit — w . (A21)
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Using the properties of a convex envelope (see, especially, Relation (4.4.3)) we
obtain, forl € {0,... ,p} andg € IN,

Pars (W(S™)) < pign, (W(SF)) < flw(SH)).

The functionspl,, andf' (I = 0,... ,p) are continuous (for continuity of’ see,
e.g., [Roc70, Theorem 10.1]) and, furthermore, we know from Assumption (A.2.1)
that there holdg’,., (w) = f'(w). Therefore, we see that, for ealch {0,... ,p},

P, (@(S*)) — fl@) (g— o0). (A.2.2)

The pointw(S*«) is feasible for the convex subproblem (D@f?’) (¢ € IN). With
(A.2.2) we obtain, foi € {1,...,p}, by continuity ofg’

9" (w(S%0)) + ¢lgr, (W(S*a)) < 0

I (g—o0) |
d@ +  fw <0,

l.e.,w is feasible. It follows that there exists an integgre IN such that, for any
q > Q,w(S%) is (4, 0)-feasible. Though in the case of problem class (D)Gke
assumed = 0, we know that each point(S*) (k € IN) is (0, 0)-feasible, and
hence thed, 0)-feasibility of w(S*«) (¢ > Q) is also guaranteed in this case.

This means that/(S%«) was used for updating the upper bougfd. With
respect to Property (4.4.2.b) of the simplex sequence we obtaip fap,

phe = p(S*) = g (w(S™)) + ¢, (W(S*))
< —e < go(w(S™)) + fOw(S™)) —e.
This contradicts (A.2.2) fok = 0. Thus we have proved

w & {’Uo,... ,’UT}.
|

REMARK A.2. As we pointed out at the end of Section 4.4 it is possible to
prove some of the results of this section also for problems of the general type
(DCPs). Therefore, as long as we do not need more technical effort, we do not
eliminate the convex parig (I € {1,...,p}) of the nonlinear constraints in the
proofs in this appendix, even though there hajls= 0 (I € {1,...,p}) in the
proper relevant cases (D©PFand (DCRB).
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A.3. Proofof Lemma 4.4.5

The proof of this lemma is different, depending on the considered problem
class. In the proof for problem class (DQRve are able to exploit the feasibility
of each generated poiat(S*). In the case of problems of type (D&Pwve do not
have this property. However, exploiting the strict concavityféfin connection
with the result of the foregoing Lemma 4.4.3 we are still able to show the required
result.

PROOF FOR(DCP,): From Lemma 4.4.2 we know that, for eakh> K,

S* = Tvo,... ,vr,vf+1,... LUk,
where, for eacly € {r + 1,... ,n}, the verticesvf (k > K) change infinitely
often, i.e.,

{k e N: ot #£ o} = oo, (A.3.1)

For eachk € IN with £ > K, choose\* € B,, such that

Zkkv]—l— Z Ak (A.3.2)

j=r+1
Assume, by contradiction, that there exists an index{r + 1, ... ,n} with
Ao 40 (K — o0) . (A.3.3)

In the considered situation there holgs= 0, p = 0 andé = 0. Therefore, we
know that each solutiow(S*) of the linear subproblem (DCfIJ-") is feasible for
(DCP,). It follows that we can assume, without loss of generality, that each vertex
vk (k > K) is feasible. Using Lemma A.1 we obtain the existence of a positive
real valuer and a subsequenége, } ,cv of {k}ren satisfying, for ally € IN,

Py (W(S™)) > or, , (W(S*)) +7
Because of the feasibility @f(5%«), i.e.,w(S*) € Sk—t N F (I € IN,[ < ¢), and

the optimality ofw(S*s—1) with respect to the subproblem (D@li?_l) we obtain,
for eachg € IN,

pka = p(S*a) w%kq(w(Skq))
soskq (w(Sk)) +
Py (W(S* 1))
e

(AVARRNI

VvV

) + T:uq—l—l—T.
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It follows that

phs — oo (g — o)
and, in particular,
Iuk:q > nkq

for ¢ big enough, sincgn”} ey is by construction a non-increasing sequence.
This contradicts Property (4.4.2.b) of the nested simplex sequefcg.cn. W

PROOF FOR(DCP,): As in the foregoing proof for (DCP let \* € B,,
be chosen such that we have the representation (A.32)$f) (¢ > K), and

assume, by contradiction, that there is an indlex {r + 1, ... , n} with Property
(A.3.3). Since we do not know anything about the feasibilityo{k € IN) Lemma
A.1 only delivers the existence of an index {0,...,p}, a positive real value

and a subsequenéé, } ;v of {k} e Satisfying, for ally € IN
Pl (W(S*)) > ¢l (W(S*)) + 7. (A.3.4)

There holdsy = 0 and from Property (4.4.3) of the convex envelopes we see that

w(S*a) is feasible for the convex optimization problem (@Ffl). Therefore, if
there hold$ = 0 in Relation (A.3.4), we obtain, far € IN, by the same arguments
as in the proof for the case (DEP

phe = p(S*) = g2(w(S™)) + plu, (w(5*))
g°(w(S%)) + ¢lu, , (W(S™)) +7
g°(W(S*a1)) + @,y (W(S™1)) + 7
p(S*a=1) 7 = phar 47

AVARAYS

In this situation it follows again that®*= > n”s for ¢ big enough, contradicting
Property (4.4.2.b) of the sequeng&*} ;.

In the casd > 0 it is necessary to exploit the strict concavity 8f in order
to obtain the required result. In view of Remark A.1 we know that there exist a
further subsequendg:, (i) } ;e Of {k} e and areal value > 0 with Properties
(A.0.8.a) and (A.0.8.b). Lat;; be an accumulation point of the sequet{m?ag Feew
and assume, without loss of generality, that this sequence convergesior each
le{l,...,p},q € Nandk € IN with £ < k,(i") we obtain by Property (4.4.3)
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of the convex envelopes and by using the feasibilityw6§*) with respect to the

convex subproblem (Dcﬁﬁ) that
kq kq kq kq
g' (v;") + Splsk (v;") < gl(vz‘/ ) + (pgkq(i/)(vi/ )
} } (A.3.5)
= g (W(S* D) + ¢, (w(SH D)) < 0.

The functionsy’ and¢k,, (k < kq(i'), | € {1,...,p}) are continuous (for con-
tinuity of ¢’ see again [Rc70, Theorem 10.1]). Therefore, for eakhe IN, it
follows

g (i) + oL (o) < 0,

l.e.,v; Is feasible with respect to (DC?I’f’). The pointy;, is obviously an accumu-
lation point of the sequendes(S*) }xe. From Lemma 4.4.3 we know that

vy € [vo,...,vr] \ {vo,..., 00} .

Therefore, it follows by the strict concavity ¢f that there exists a real valge> 0
satisfying

FPr) =D Nifo(vi) +5 (A.3.6)
1=0
with A € B,, v, = E;.":O \;v;. For eachk > K, we know that the functionsgk
have the same function values on thsimplexS = [vo, ... , v,] independent of,
l.e.,
() = > Nfo(vi) . (A.3.7)
1=0

Sincev; is feasible we obtain with (A.3.6) and (A.3.7)
9°(@(8" ) + @l (@(S*)) < g (Wi) + P, (B) A28
< ¢°(0w) + fO(i) — 5.

The functionsg® and f° are continuous, thus, there exists a num@es IN such
that, for allg > @,

9°) + i) = o°@) = @) < 5
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Hence we obtain, for al} > @, by using Relation (A 3.8)
Pw( S ) + @0, o (w(SK ) < gOvy?) + o) — 5
e fO(up) — @0 (Uh") > 5
With (A.0.8.b) it follows, for eachy > @,

SDg*kq(i’)Jrl(‘*‘}(Skq)) > @gkq(i’)(w(skq))“i_ At 5

Thus, by using the relatioris, > £,(i') + 1 andk,—1 < k,(¢') and the fact that
w(S%4) is feasible for (Dcékq‘l) there holds

phe = p(S*a) = g%w(S*)) + i, (w(5*))

> g°(W(8™)) + Pgr,an (W(S™))

> g (W(S™)) + Pgr,an (W(S™)) +7

> g°w(8™)) + ¢lu, (W(S™)) + 7

> g°W(S" 1)) + e, (W(SF 1)) + 7

p(S* ) +7 = prat 47

By the same arguments as in the case 0, we see that the last relation is a
contradiction to Property (4.4.2.b) of the nested simplex sequgsith.c, and
the proof is complete. [

A.4. Proof of Lemma 4.4.7

The proof of Lemma 4.4.7 depends again on the considered problem class. A
part of the proofis the same for both classes and a part is different. In order to make
this proof more structured we split it. In Lemma A.3 we prove a technical result,
which is the substantial part of the proof of Lemma 4.4.7. Only for this result we
need different argumentation depending on the problem type. After proving this
lemma for both classes we are able to show the existence of asjomtS with
Properties (4.4.14.a)-(4.4.14.c) in one proof, i.e., independent of the considered
problem class.

However, first of all, we present and prove a result in Lemma A.2, which will
ease the proof of the technical Lemma A.3 in the case of PCFhis lemma
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does not depend on Algorithm 4.1. Itis a general result concerning strictly concave
functions over simplices.

LEMMA A.2. Let S = [vg,...,v.] C IR"™ be anr-simplex ¢ < n),
f : R" — IR be a strictly concave function, anf*}.c be a sequence in
S. Let furthery* € B, be the barycentric coordinates of (k € IN) with respect
to S. Assume that each accumulation painof the sequenc@a:’“}kem IS not a
member of the vertex set §fi.e.,

Tr € S\{UO,...,UT}.

Then there exist an integét € IN and a positive real value such that, for all
k > K, there holds

F@®) = AFfw)+v. (A.4.1)
1=0

PROOE Assume that there do not exist a numbérc IN and a real value
v > 0 with the required property. Lev?} e be a non-increasing sequence of
positive real values converging to It follows that, for eachy € IN, there exists a
numberk, € IN with

Flafa) < 3 4l o) + 07
=0

We can assume, without loss of generality, that the sequignggc is monoton-
ously increasing. The corresponding subsequénte} i is bounded. There-
fore, there exists an accumulation pomnbof this sequence. Assume, again with-
out loss of generality, that the sequereé« } ,c v converges ta;, and, moreover,
that the sequence of the barycentric coordinétés} i is converging to a point
Y € B,,i.e.,z =Y ._,%vi. Then, we obtain by continuity and concavity pf
(for continuity of a concave function see, e.g.dJ& 0, Theorem 10.1])

éﬂqu(vi) < flaka) < é)quf(vi) + v
! : ! I (4= 00)
2 f(v) < f@) < XAf(e) + 0 (A4.2)

The accumulation point of the subsequender*s },ciy is obviously an accumu-
lation point of the whole sequende”} ;. Therefore, we know that does not
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belong to the vertex set ¢&f, and we obtain by the strict concavity 6f
f@ > Aif(vi).
=0
This contradicts (A.4.2) and completes the proof. |

As mentioned before, we are now able to show a technical result, which will
be substantial for the final proof of Lemma 4.4.7. In the proof of this lemma we
have to distinguish between both problem classes.

LEMMA A.3. Let {S*},.cv be an infinite nested sequence of simplices gen-
erated by Algorithm 4.1 with Properties (4.4.2.a) and (4.4.2.b). Ket IN be
chosen as in Corollary 4.4.6 and let< » < n be chosen asin Lemma 4.4.2, i.e.,

SF =g, ..., v vF g, 0E] (B> K)
and
|{k:€]N:v§’+17év§"}|:oo (je{r+1,...,n}).

Then there exist an integdd € IN, a positive real valuer and, for each index

je{r+1,...,n}, aninteger sequende:(j) }rew C {k}ren, pOint sequences
{v*0N e and{¢*)}, ey, and, additionally, for each inddxe {0, ... ,p}, real
value sequence{gl’fj}kem such that, foralk > K andj € {r+1,...,n}, there
holds

j:

vF = w(S*9)Y AFU) e B, FU) e R™ vf = va(j)vi + kW) | (A.4.3.a)
i=0

W) = w8+ 3w W) +o (A4.3.b)
1=0
and
fl(vf) = Tl]fj + f! (Z'yf(j)vi> I=1,...,p. (A.4.3.c)
1=0

Furthermore, the involved sequences have, for gaeh{r + 1,... ,n}, the fol-

lowing convergence properties
k(j) — oo (k— o), (A.4.3.d)

IsF D]y — 0 (k — oo) (A.4.3.e)
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and
Tl]fj — 0 (k— o0) [=0,...,p. (A.4.3.1)

PROOF FOR(DCP;) AND (DCP;): Even though the proof of Lemma A.3 is
different for the considered problem classes, the choice of the involved sequences
{k()kens (7" ken, {FP}rew and {7/ lkew (G € {r + 1,...,n},

[ € {0,...,p})is the same. Therefore, the beginning of the proof holds for both
problem classes.

Choosek € IN such that, for alk > K andj € {r +1,... ,n}, there exists
an integerk(j) > K, k(j) < k with

vk = w(Sk(j)).

J
Since, for each indexe {r+1,... ,n}, the verticesjf (k € IN) change infinitely
often Property (A.4.3.d) of the sequenej) } e follows immediately.
Select now an arbitrary, but fixed indgxe {r + 1,...,n}. From result
(4.4.12) of Corollary 4.4.6 we know that, for eath> K, there exist a point
~*) ¢ B, and a residual*\) ¢ IR" satisfying

b = NPy, 4 RO) (A.4.4)
=0
and, additionally,
¥y — 0 (k— 0) . (A.4.5)
The functionsf! (I € {0, ... ,p}) are continuous. Therefore, there must exist, for
eachindex € {0,... ,p}, a sequenc@ﬁfj}kem with the properties
fl(vf) = ft (ny(j)vi> —|—7'l’fj : (A.4.6)
1=0
and
7, > 0 (k—o0). (A.4.7)

The choice of the positive real valdeand the verification of Property (A.4.3.b)
depends now on the considered problem class.

PROOF FOR(DCP;): In this situation we know that each poiatS*)

(k € IN) is used for calculating the current upper bouyidi.e., for each
k > K, there holds



302

RROOFS FORSECTION 4.4

1< LE) = ) = (S ) 4, (aas)
1=0

Moreover, in view of Property (4.4.2.b) of the simplex sequefifte} 1.c,
we knowp* = u(S*) < n* — e. Therefore, by using result (4.4.13) of
Corollary 4.4.6 we obtain, for ea¢h> K, a real valuevf satisfying

-

T k(i r k(i .
L 1) = Ganen (T ) = P () o]

~

= k)
< ) —e—0ok, (A4.9)

and, furthermore,
of -0 (k- o). (A.4.10)

J

From (A.4.7) and (A.4.10) we know that there exists a nunibéj) € IN,
K(j) > K such that, for alk > K (j), there holds

€

k € k
|TO,j‘ < 1 and‘aﬂ < 1
If we seto(j) := £, then we obtain, for each > K (j),
T k(i
f° (Z% (j)vz') > " -,
=0 (A.4.8)
> YA w) +etof -
A4ag 0 >
T k(i .
> 3] D10 w:) + o (j) - (A4.11)

Combining this result and (A.4.8) we see that Property (A.4.3.b) is fulfilled
forindexj € {r +1,... ,n} in the case of problems of type (DEP O

PrROOF FOR(DCP;): Because of the possible infeasibility of S*) the
left-hand side of Relation (A.4.8) is no longer true. In order to prove the
existence of a positive real valaewith Property (A.4.11) in this situation,

it is necessary to exploit the strict concavity £ Denote fork > K by

the part of the representation (A.4.4)ujfcontained inS = [vg, ..., V]
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Since the residuak*) vanishes, ifk tends to infinity, it is obvi-
ous, that each accumulation point of the sequefieg, . . is also an

accumulation point ofv}, . . The sequencévf}, . » is by construc-
tion a subsequence &k (S*)}  ew. Therefore, according to Lemma 4.4.3
we know that, for each accumulation poinof {z*}, . -, there holds

T € S\{vg,...,v-}.

Using Lemma A.2 we obtain a numbéi(j) € IN, K(j) > K and a real
valueco(j) > 0 satisfying, for allk > K(5),

o) > é}vf(j)fo(vi)ﬂw(j)- (A4.12)

Combining (A.4.12) with Relation (A.4.6) fdr= 0 we see that Property
(A.4.3.b) is also satisfied fof € {r + 1,... ,n} in the case of problems
of type (DCR) with a strictly concave part of the objective function.O

proof.

........

REMARK A.3.
(@) In order to prove Relation (A.4.3.b) we neededpecialstrict concavity

(b)

result for f0 at the pointsc® = Y7 Ay (ke N j=r+1,...,n),

i.e., we need the existence of a positive real val(g satisfying

@) = AR ) + o ()

1=0

As long as the points(S*) (k € IN) are feasible for the original problem
(DCP) and hence used for updating the upper boyhdas it is the case
for the class (DCP), this result follows by the definition of Algorithm 4.1
and the existence of an infinite nested sequence of simplices with Proper-
ties (4.4.2.a) and (4.4.2.b). By applying Algorithm 4.1 to problems of type
(DCP,) we do not have the guaranteed feasibility.gf5*) (k € IN) any-
more. In order to ensure also in this case the above relation we need the
additional requirement that” is strictly concave itself.
In the part of the proof of the previous lemma concerning (PGl value
o is chosen in a constructive way, i.e.,can be determined in advance,
where in case of (DCH we were only able to show the existence of such a
value with the required properties.
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After the verification of the statements of the technical Lemma A.3 we are now
able to prove Lemma 4.4.7 independent of the considered problem class.

PROOF OFLEMMA 4.4.7FOR (DCP;) AND (DCP;): In view of Lemma
A.3 we know that there exist sequencfsj)}rem, {79 ke, {¢F9)} e,
{rfitkew (4 € {r+1,...,n} andl € {0,...,p}), an integerk € IN and a
real values > 0 with Properties (A.4.3.a)-(A.4.3.). In particular, for> K and
je{r+1,...,n}, there holds

vf = va(j)vi + k0 (A.4.13)

By substituting (A.4.13) in the representation (4.4.10)«fS*) we obtain,
for eachk > K, :

w(S*) = Z AP 4 Z Aj% v; + 2”: Ak k()

=0 j=r+1 i=r+1

\ - -
Vo

=: rk

It follows thatr* belongs tduy, . .. , v,]. With Property (A.4.3.e) of the sequences
(k0 ew (G € {r+1,...,n}) we obtain further

> AIFWl2 = o(a®),

1=r+1
with A* defined as in (4.4.11). Thus, (4.4.14.c) is proved, i.e.,
|w(S*F) =¥l = o(AF). (A.4.14)

Using Properties (A.4.3.b) and (A.4.3.f) it follows, for edebkr K,

n

P (w(ST) = fof‘)(vm > AW

i=r+41
> i)\r]jfo(vz Z )\k TOz+Z k(Z)fO U]
1=0 1=r-+41

T

=Y [AF+ zn: Ny ") f0(w,) Z Mg+ Afo

1=0 j=r+1 1=r+1

= % (") + AFo + o(AF) (A.4.15)
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The functiong® is convex on the whole spade”. Therefore, we know that for
each compact, non-empty subgétc IR", ¢ is Lipschitz continuous o' with
Lipschitz constant

Le = sup{[[¢2: € € 99°(x),x € C},

wheredg®(z) denotes the subdifferential gf at the pointz (see, e.g., [RC70,
Theorem 24.7]). Taking Relation (A.4.14) into account it follows that

g°(r*) < g°(w(S*)) + Lplw(S*) — ¥,
= ¢°(w(S%)) 4 o(AF) . (A.4.16)

Combining this result with (A.4.15) we obtain the postulated result (4.4.14.a) of
Lemma4.4.7.

In order to complete the proof, we have to show that (4.4.14.b) is also true.
The pointw(S*) is feasible with respect to (DC§I5). Therefore, it follows from
(A.4.3.c),forl € {1,...,p},

Pl (M) = i (r") — ol (w(SF)) + Pl (w(SF))

IN

> (A” 5 Aé‘“%’““)) b= SN ) — 3 A

1=0 Jj=r+1 i=0 i=r+1

i=0 \j=r+1 i=r+1

_Z(Z )\ffyfo) Z)\k<7'“+f Z’yj ) .
In view of the concavity off’ we obtain

z Du) 2 3wy,
7=0
and from Property (A.4.3.f) of the sequen({eﬁj}kem we can conclude

Phn(r) < = Y AT, = o(AF).

1=r+1
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A.5. Proof of Lemma 4.4.8

The proof of Lemma 4.4.8, which does not depend explicitly on the considered
problem class, is again a technical one. Therefore, we decided to split this proof in
three steps. First of all, we establish a technical result concerning finite point sets
and the cones generated by these sets. We will obtain this result in Corollary A.6
after introducing two lemmata, where each lemma itself is of some interest.

In the proof of Lemma 4.4.7 the precedent Lemma A.3 contained the substan-
tial and most technical part. We repeat here this strategy in order to obtain a more
structured proof. We show again the essential part of the proof of Lemma 4.4.8 in
the independent technical Lemma A.7. Then we derive the results of Lemma 4.4.8
in a short and clear way.

LEMMA A.4. LetL = {y1,... ,y,} C R" (¢ € IN) be an arbitrary finite set
of n-dimensional points. Then there exist two positive real valyesnd 5 with
the property that, for each linear independent sublset= {y;,, ... ,y:.} (r <n)
of L, there holds

1 < HxHQ < Ty Yoz € Srr, (A51)

where S;.; = [yi,,--.,¥i,] C IR"™ denotes the--simplex with the vertices
yim"' 7yir'

PROOE Let LI C L be an arbitrary linear independent subsef.ofSince
Sp1 1S a compact set not-containing the origin, it follows immediately that there
exist real values; (LI), 72(LI) > 0 satisfying, for allx € Sy,

T(LI) < ||z|l2 < m(LI).

The setL is finite. Therefore, we know that there is only a finite humber of linear
independent subsets bf By setting

7 = min{n (LI): LI C L, LI linear independern,
7o = max{m(LI): LI C L, LI linear independer

we obtain that; andm, have Property (A.5.1) for each linear independent subset
LI, and, in particular, there holds

7,72 > 0.
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LEMMA A.5. LetL = {y1,... ,y,} C R" (¢ € IN) be an arbitrary finite set
of n-dimensional points. Denote by
q

CO :={zcR":x= vyi,yeRi,i=1,...,q}
1=1

the cone generated by the element& oDenote further by
COr; = {a:E]R”:x: Z’ijij,’VGIR:_—{—l,j:O,... ,7‘}
j=0

the cone generated by the elements of a linear independent (l.i.) slilhset
{Yigs--- i} (r <mn)of L. Then there holds

co= |J cou. (A.5.2)

PROOFE Therelation (J COp; C CO isimmediately clear. In order to

LI CL
LTl

prove the inverse relation, we choose an arbitrary poiat CO. From definition
of C'O we know that there exists a vectpre IR? satisfying

q
= > Vi (A.5.3)
1=1
and
v >0 i=1,...,q.
Denote byl := {i € {1,...,q} : 7 > 0} the index set of all positive;'s.
Assume that the sdty; : i € I} is linear dependent. It follows that there exists a
vectors € R/, 3 £ 0, with
0 = > Bivi,
el
l.e., there exists a non-trivial representation of the origin by the elements of
{y; : i € I'}. We assume further, without loss of generality, that

max 3; > 0.
icl

Seta = minief{% : B; > 0} and leti’ € I be one of the indices where this
minimum is attained, i.eq = g— We obtain

vi—ap =2 0 iel, (A.5.4)
Yir —afy = 0 (A.5.5)



308 RROOFS FORSECTION 4.4

and

T o= vy o= vy —ay. By = > (i—aB)yi.  (A5.6)
iel iel il ieI\{i'}
This means that is an element of the cone generated by the paints < 7\{i'}).
In this way we see that as long as the §gt: i € I} is linear dependent we are
able to reduce the number of necessary elements in the representation (Az5.3) of
l.e., of elementg; with ~; > 0, by at least one. Therefore, the required relation
can be deduced by induction. |

With these two lemmas we are now able to develop the pronounced result of
the following Corollary A.6. This result, though really technical, will ease the proof
of the subsequent Lemma A.7.

COROLLARY A.6. Let L = {y1,...,y,} € R" (¢ € IN) be an arbitrary
finite set ofn-dimensional points, and 1€fO C IR"™ be defined as in Lemma A.5.
Let further{z*}.c be a point sequence 0. Then there exist a positive real

valuer, and, for eactt € IN, alinearindependentsubsef* = {y.... ,y¥ 1,
a pointw® € [yF ... ,yfq(k)] and a real value3* > 0 satisfying

ot = pruw” (A.5.7)
and

w2 > 7. (A.5.8)

PROOF Choose a fixed: € IN. Sincez* is contained in the con€O
we know, in view of Lemma A.5, that there exists a linear independent subset
k __ k k =
LI =A{y;s - ¥, } (@(k) < n)of L such that
Kk ) 1(k)+1
" € COppr={xeR":2 =3 7vy,,y € R} }.
j=0

Therefore, there is a vectgf € IRZ¥ " with
a(k)
F = %”Cyij :
5=0
Lemma A.4 yields the existence of a real vatue- 0 independent of the sétl”
satisfying, for allx € [yi,,- -, Yi ) |»
Jzllz > 7. (A.5.9)
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If there holdszgfg 7]’?’ = 0, then we can choose far* an arbitrary element of
theq(k)-simplex[yi,, - -, Yi |- BY setting3* = 0 we obtain the required value,
and in view of (A.5.9) it follows thatv* is a point satisfying Properties (A.5.7) and
(A.5.8). In the case th@?g 73’-‘; = 4% > 0is true, we obtain by setting

q(k) _k
ko Vi
we o= %yij € [Yigs--- ,yz‘q(k)]
and 7=0
gE =5 >0
the postulated results. |

Using this corollary we prove now the substantial part for the proof of Lemma
4.4.8. This will be done with the next lemma.

LEMMA A.7. LetS = [vg,...,v] C R" be anr-simplex withl < r < n
andP := {x ¢ R" : Az < b} be a polytope withl = (@, ... ,a,)" € R™*"
andb € IR™. Let further{r*} < be a point sequence satisfying, for edch IN,

= (A.5.10.a)
and

alr® < b+ j=1,...,m (A.5.10.b)

with a positive real-valued sequene”} e converging td.
Then there exist a real valug > 0 and a point sequencg”* } v With the
properties, for allk € IN,

e SNP (A.5.11.a)
and
[r* — 7|, < CVP. (A.5.11.b)
Moreover, there is an affinedimensional subspadg containingS and a matrix
H e R™ )" with linear independent rows,; € R" (i = 1,...,n — )
satisfying
H = {x€R": Hr = Huy} (A.5.12.a)

and, forz € S,
hlx=0 i=1,..,n—r. (A.5.12.b)
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PrROOF. We will show that the projection of* on the setS N P has Properties
(A.5.11.a) and (A.5.11.b). However, first of all, we have to show that such a pro-
jection exists, i.e., that the s& P is not empty. The sef is compact. Therefore,
there exists a convergent subsequefde} v of {7} e, i-€.,

rka - r € 8 (g — 0) .

With Property (A.5.10.b) of the sequencg”}.cw We obtain, for each
jgeA{l,...,m},

and, thusy is contained also i®, i.e.,
SNP # 0.

In order to prove that the projectiofi on the setS N P has Property (A.5.11.b) we
use the Karush-Kuhn-Tucker (KKT) optimality conditions of the convex optimiza-
tion problem, which delivers this projection as its solution. Therefore, we need a
representation of this optimization problem. This will be done in the following.
LetH = {z € R" : 2 = Y| ,\vi, A € R, 37\ = 1} be the

r-dimensional affine subspacel&f" containing the simple$ = [vg, ... ,v,] and
{hi,...,h.} be abase of{. Let furtherH' be the orthogonal complement &f
with base{h,11,... ,hn}. If we denote byH e IR ~")*" the matrix with rows
hryi (0 =1,... ,n—r), there holds
H = {z€R": Hr = Huvy} . (A.5.13)
In order to describe thesimplexsS by a system of linear equalities and inequalities
let, for eachi € {0,... .7}, v; € IR" be the normed normal of the facgt =
[vo, .. ,Vi—1,vi41, ... , U] With respect to the subspatg i.e., the point; is the
unique solution of the following system
(v; —ve)To; =0  §je€{0,...,r}\{5,i'}, (A.5.14.a)
hiyvi =0  je{l,...,n—r} (A.5.14.b)
and

Billa = 1 i, < iy =:¢ A.5.14.c
|94 | :
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for an arbitrary, but fixed € {0,... ,r}\{i}. Note that there holds> 1 and thus
{0,...,r}\ {i} # 0. A solution of this system always exists. Indeed, the solution
of the systems (A.5.14.a) and (A.5.14.b) of linear equations is a line, since the set
L=1{(j—wv),je€{0,....7}\{i,i'}, hpij,5 € {1,...,n —r}}is linear
independent Withﬁ| = n — 1. The constraints (A.5.14.c) guarantees the unique-
ness of the solution and, additionally, that, for alie S, there holdw!z < ¢;

(i€ {0,...,r}).
With these normal vectors and the representation (A.5.13) @fe obtain a
description ofS by linear equalities and inequalities. There holds

S ={xcR": Hr=Huvy, 02 <c¢;,i=0,...,r}.

Now we are able to formulate in the following way the convex optimization prob-
lem (OPP), which has the orthogonal projectionbon the setS N P as its solu-
tion.

min [|r* — z||3

Hx = Hug (OPP)

Using the KKT optimality conditions for the optimal solutiati of (OPP) (see,
for example, [FOR79, ALE87, MAN94]) we obtain that there exist index sets
IF c{1,...,m}andIy c {1,...,r} satisfying

al/®* = b ielf,

oIt = ¢ diell,

k k
and, additionally, there are real vectors € ]R'f', V2 € ]R'j2| andy3 € R"™"
with
k  —k 1 2 3
rt =T = Y G+ X i D e

ielk ielk i=1
It follows that the vector” — 7* is contained in the cone generated by the elements
of the finite set

LF = {a;,i € ITY U {v,i € I}}
U{hryii=1,... n—r}U{=h.ps,i=1,... ,n—r}.
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From Corollary A.6 we know that there exists a linear independent subi$et=

{vbs-- - Yk}t € L¥ (q(k) < n), apointw® = [yg, ... ,y¥,,] and a real value
A% with
Pk = ghyt
in particular,
e TP =
gr = L —_ 2 (A.5.15)
[ |2

Moreover, since there is only a finite number of possibilities for the.§eCorol-
lary A.6 yields the existence of a positive real valyendependent of, satisfying

w2 > 7. (A.5.16)

Select now a poinb € By with wb = 7% X4k and set); = {i :

yb € a5 € IVh Jo = i oF € {05 € Y Js = {i ¢ o € {hoyy,
i=1,...,n—r}tandJy = {i:yF € {~hy;,i=1,... ,n—r}}. Itfollows

0 < I = = 8wt -

= Z)\ al ) + ZXi(@?r’“—UZT?“k)
eJ eJ y y
L <bik =Dy IS <y =
Z )‘ hr—f—z Z )‘ hr—H )
1€ J3 ;’O 1€J4 ;rO
i€Jq
——
<1

By substituting3* with (A.5.15) we obtain
I = 7ol w2 < VF.
Hence, with (A.5.16) and’ := 1 it follows, for eachk € IN,

Ik =y < Cvt
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Now we complete the proof of Lemma 4.4.8 for both considered problem
classes.

PROOF OF LEMMA 4.4.8 FOR (DCP;) AND (DCPR;): If we denote by
S = |vg,...,v,| ther-simplex, which is the fixed face of the residual simplices
{S*},~ &, then —in view of Lemma 4.4.7 — we know that, for edck K, there
is a pointr® ¢ S with Properties (4.4.14.a)-(4.4.14.c). The set

P={zeP:Y_Nfl(v;)<0,l=1,...,p
with \ € B, , = Z::O)\ivi}.

is a polytope. In order to describe the function§_, Aif'(v;) (I = 0,...,p)
by an inner product of = ;_, A\;v; € R" and a vectos! € IR™ we use the
representation (A.5.12.a) of the affine subspateontainings, which is given
by Lemma A.7. Lets' € R", forl € {0,...,p}, be the unique solution of the
following system of linear equations

(s") 7 (vi —vo) = f'(vi) — f'(vo) i=1,...,r
(sHThyy; = 0 i=1,...,n—r

with h,.o; ¢ = 1,...,n — r) given by Lemma A.7. Note that the set
{(vi —vp),i = 1,...,r}is a base ofH and{h,;,7 = 1,...,r} is a base of
the orthogonal complement @{ (see Property (A.5.12.b)). Then we obtain, for
1€{0,...,p}andx € S,

(sHT (x — vo) + f(vo) ZA ) (A.5.17)

with A € B, z = Y._, \v;. With (A.5.17) we are able to describe the polytope
P in the following way

P={zcR":alz<b;,i=1,...,m,
(s"YTz < flvo) + (s w0, L=1,...,p}.

Because of Lemma 4.4.2 we know that, for edgch> K > K, the vertices
vo, . .. , v, Of the simplexS* are fixed. Therefore, for eachc S = [vy, ... ,v,],
there holds that the function value of the convex enveldgg(l =0,...,p) does
not depend olk.
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Actually, for A € B, with z = >_7_ A\;v; andk > K, there holds
Phr(@) = D Aif(w) . (A.5.18)
1=0

Combining (A.5.17) and (A.5.18) and by using Property (4.4.14.b) afe obtain,
fork > K andl € {1,...,p},

(sHTr* < o) + (s") T vg + o(AF) . (A.5.19)
Furthermore, foi € {1,... ,m}, it follows from Property (4.4.14.c) of® that
afrt = ol (P —w(SM) +  afw(sh)
——
<b; sincew(S*) € P
laill2llr* = w(S®)ll2 + b;
< o(AF) +b; . (A.5.20)
From (A.5.19) and (A.5.20) we see, that the seque{mé@kzk fulfills the assump-

tions of Lemma A.7 with respect to the polytopeand ther-simplexS. Thus, this
lemma provides the existence of a sequeftde v satisfying, for allk > K,

e SNP

IA

and, additionally,
lw(S*) =72 < [lw(S*) =7*l2 + 7" =72 = o(A¥),

i.e.,7* is an element of and fulfills condition (4.4.16.b).

In order to prove that* has also Property (4.4.16.a) we use Relations (A.5.17)
and (A.5.18) forl = 0, and exploit again the Lipschitz continuity gf on the
compact seP’ (see the proof of Lemma 4.4.7). Ifp is a Lipschitz constant aof"
on P, then, fork > K, there holds

9°(%) = g° ()| < Lp|lr* —*[la = o(AF)
and
(03 () = 0 (P)] = [T (" =) < [[s%]l2llr” = 7[l2 = o(A¥).
Therefore, it follows
9 + o () = g°(r*) + i (r*) + o(A*)
and the use of Property (4.4.14.a) concludes the proof. H



APPENDIX B

Solution Methods for (DCP°)

In this appendix we are interested in some solution methods for the convex opti-
mization problem

min ¢°(z)
g'(xz) <0 I=1,...,p (CP)
rePNS,
whereg! : R" — R (I = 0,...,p) are convex functionsP = {r € R" :
Ar < b} with A = (a1,...,a,n)T € R™™ andb € R™ is a non-empty
full-dimensional polytope, and' = [vg,...,v,] = {z € R" : (v?)T2 < ¢,
i = 0,...,n} is ann-simplex (see Problem (DCPin Section 4.2 and see also

(4.2.3.a), (4.2.3.b) for the construction®f andc? (i = 0,...,n)). These solu-

tion methods should detect in finite time either the emptiness of the feasible region
F:={rePnS:g(x)<0,1l=1,...,p}orang,é,0)-solutionz € IR" (see
Definition 4.2.1), i.e., a point with the properties

xr e PNS, (B.a)
gd@ <5 I=1,...,p (B.b)
and
0(7) — ¢ < min a®
g°(z) —e < ming(z) (B.c)

for prespecified tolerancess > 0 (see also the definition of @ONVEXSOL-
VER, 5,0 In Section 4.2).

In the first section of this appendix we use the concept of subgradients of con-
vex functions (see, e.g., 70, Roc81, SH085]) to develop a solution method
following the cutting-plane approach given, for example, ire[{6€0] (see Remark
4.2.1(c)). In Section B.2 we assume that a solution method for (CP) is given, which

315
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detects in finitely many iterations either the emptiness @ an €, 4, 5)-solution
7 € IR" (see again Definition 4.2.1), i.e., a point with the properties

afj_b] S ﬁ j:17"'7m’ (Ba;)
@)TE—cf <p  i=0,...,n, '
o g@E <6 1=1,....p (B.b")
0/~ ~ . 0 ¢
(%) =€ < ming (z) (B.c’)

for arbitrary accuracied é , 5 > 0. We show that in this situation it is possible to
construct and, J, 0)-solutionz € IR" of (CP) by using the orthogonal projection

of z onthe setP N S, and, in particular, we are able to specify the necessary values
¢, 6 andp.

B.1. The Kelley-Cheney-Goldstein Cutting-Plane Approach

A subgradient £ of a convex functiory : IR" — IR at a pointy € IR" is
defined as an-dimensional vector with the property

gz) > gly)+ €T (x—vy), Ve e R™. (B.1.1)

As customary we denote hyy(y) the set of all subgradients gfat the pointy.

This set is called theubdifferential of g aty. It is known that, for an arbitrary
convex functiong and an arbitrary poiny € IR", the subdifferentiabg(y) is
non-empty, bounded, convex and closed B85, Theorem 1.7]. In general it can

be a hard problem to calculate a subgradient, but for some interesting classes of
convex functions the subgradients are known (see, e.go8S, Section 1.3]). If

the functiory is differentiable, then there holdg(y) = {Vg(y)} foreachy € R"
[Roc70, Theorem 25.1].

In the following we assume that the linear $&0.S is not empty. This assump-
tion can be verified by the first phase of the Simplex-Algorithm. We do not require
that a feasible point € F' for Problem (CP) exists, since in our branch-and-bound
Algorithm 4.1 in Section 4.2 we are not able to verify such an assumption for all
convex subproblems of the form (DER This is the main reason for the descrip-
tion of a CONVEXSOLVER, s, for Problem (CP) in this appendix, even though
this method is very similar to the KCG-method [CG5%1K60] or to other outer
approximation methods for optimization problems with convex feasible sets given,
for example, in [HTT87, HT98].

The algorithm is as follows.
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ALGORITHM B.1 (A CONVEXSOLVER. 5,0 for (CP)).

Initialization
Choose real numbetsd > 0 and a pointz® € PN S.
Compute a vectaf®? € 9¢°(z°) and set
FIL— {(N)eR"™ :zePnS, ¢°%a°) + (€90 (z —2°) —t <0},
STOP+ False, k£ +— 1
While STOP= False Do

If F* =0 Then (SC1)
STOP« True (F = )
Else

Solve the linear optimization problemin(i)eFk t and Iet(f:) be
an optimal solution.
If (gl(xk) <é§,l=1,...,p)AND (go(xk) —tF<e ) Then (SC2)
STOP« True (z* is an ¢, §, 0)-solution of (CP))
Else
Fk—I—l - Fk
Fori=1TopDo
If g'(x*) > 0 Then
Computetk! € agt(z*).
If ¢€%! =0 Then (SC3)
STOP« True (F = 0)
Else
Frtl  pktl {(92:) c R*H! :gl(ajk) + (é‘kvl)T(q: _ xk) < O}
EndIf
EndIf
EndFor
If ¢%*) —t* > 0Then
Computes®0 € 9¢°(2*) and set
FE+1 . R+l A {(f) c R+ . gO(azk) + (fk’O)T(cc _ xk) —t< 0}_
EndIf
EndIf
EndlIf
k+—k+1
EndWhile
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Algorithm B.1 does not solve Problem (CP) directly. Indeed, this method
solves the equivalent problem

min ¢

g°(x) <t

g'(x) <0 l=1,...,p
rePNS,

(CP)

which has a linear objective function. If we denote bythe feasible region of
(CP), i.e.,

F = {(f)ER"J“l::CEPﬂS,gO(x)St,gl(:c)gO, l=1,...,p},

then it follows immediately from Property (B.1.1) of the subgradients that, for each
k € IN, the setF’* is an outer approximation of, i.e.,

Fcr cFf (kelN). (B.1.2)
Therefore, the emptiness &ffollows if F* is empty, and because of
F=0 & F=1

we obtain, in particular, the emptinessiof(see stopping criterion (SC1) in Algo-
rithm B.1).

If a pointz* € PNS is infeasible with respect to a convex constraitit:) < 0
(I € {1,...,p}) and there holds € dg'(z*), then it follows by (B.1.1), for each
x e IR",

gl(x) > gl(xk) > 0.

This is the second possibility to detect the emptinesE ¢éee stopping criterion
(SC3) in Algorithm B.1).

As long asF* is not empty, we know in view of (B.1.2) that (k € IN),
which is the solution value of the linear optimization problaﬁn(f)em t,Is a

lower bound for the optimal valug of Problem CP). Note that the optimal value

of (CP) isco, if no feasible point(jf) c F exists. If the stopping criterion (SC2) is

satisfied, it is clear that” is a (5, 0)-feasible point for Problem (CP). Furthermore,
we know

P(z") —e < t* < min t = ming®(z), (B.1.3)
(I)GF zelF
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and, thereforez* fulfills Conditions (B.a)-(B.c), i.e.z" is an ¢, ¢, 0)-solution of
Problem (CP).

Because of the previous notes we know that, when finite, Algorithm B.1 will
solve Problem (CP) in the required way. In order to obtain the correctness of the
presented method, we still have to prove that Algorithm B.1 is always finite, if
the tolerances andé are chosen greater th@an This will be done by showing
the convergence of Algorithm B.1 fer= § = 0, which is the result of the next
theorem.

THEOREMB.1. Assume that = § = 0 and that Algorithm B.1 generates an
k
infinite point sequenc{é(fk)}kem. Then each accumulation point € IR" of the
sequencdz’} <y is an optimal solution of Problem (CP).

PROOF Let z* be an accumulation point of the sequedaé} e and let
{x*a} e be a subsequence §f*} v converging tar*. Since there holds, for
eachg € IN, thatz"« is an element o> N S we obtainz* € P N S. Denote by

I:={le{l,...,p}: HgeIN:gl(z") >0} = o0}

the index set of all convex constraints of (CP), which are infinitely often violated
by the sequencér”s} . If I is empty, then it follows immediately that is a
feasible point. Indeed, in this case, there must exist a nu@bkeilN with

gl(xk:q>§0 l=1,...,p,q¢>Q,

and, in particular, because of the continuity of the convex functighs
(l=1...,p)(see,e.qg., [Rc70, Theorem 10.1]) it follows

gl(z*) <0 l=1,...,p.

If 7 is not empty, then we are still able to prove the feasibility:df Indeed,
choosd € I and assume, without loss of generality, that there hgl@sg®) > 0,
forall g € IN. The set{z"« : ¢ € IN} is bounded. Therefore, it follows by (70,
Theorem 24.7] that the sé¢*«'! : ¢ € IN} is also bounded. We assume further that
the sequencs®a-t} o\ is convergentto a poigt-! € IR™. (There always exists a
subsequence dft* '}, with this property.) With respect to 70, Theorem
24.4] there even holds*! ¢ dg'(z*). Because oft*s+1 ¢ Frati=l c [ka
(¢ € IN) we obtain
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gl (") + (¢h)T (ke —ake) < 0
l l l l (g — o)
g @)+ (DT (2r — 2%) <0. (B.1.4)
Relation (B.1.4) is true for eadhe I. This shows the feasibility of*.
In order to complete the proof we have to show the optimality ofif there
holds

{ge IN: ¢O(zFa) —the > 0} < oo, (B.1.5)
then there exists a numb@r< IN such that, for each > Q,
g'(@*) < th < min g%(x) < ¢"(2%)
xre

(compare with (B.1.3)). Using the continuity g we obtain the optimality of*.
If (B.1.5) is not fulfilled, then it follows by the same argumentation as before

g°(ahe) 4 (R O)T (gharr —ghe) < the < min ¢°(x)
x e

l l l ! (¢ — 0)
@)+ (&) (2" — 2) < ming(a) < ¢°(2) .

reF
Therefore, in each case is an optimal solution of Problem (CP). u

As a direct consequence of the previous proof we are able to conclude that
Algorithm B.1 withe = 6 = 0 will stop after a finite number of iterations, if no
feasible point exists, i.e., i = (). A second consequence is that the presented so-
lution method for Problem (CP) is always finite, if the tolerancasds) are chosen
greater thart). Therefore, Algorithm B.1 can be used aS@NVEXSOLVER. 5,0
for solving the convex subproblems of the form (DG Algorithm 4.1 proposed
in Section 4.2.

B.2. Another Approach for Obtaining an (e, §, 0)-solution

We assume now that@ONVEXSOLVER, ;5 - is given, i.e., a solution method
for Problem (CP) which detects in finite time either the emptiness of a point
Z € IR™ with properties (B.a‘)-(B.c'), and we assume again tRatS is not empty.
In this section we show that it is possible to choose the accurgaieg > 0 such
that the orthogonal projection of = on the setP N S is an ¢, 6, 0)-solution of
Problem (CP) (see (B.a)-(B.c)) for arbitrary toleranegs > 0. Sincez is the op-
timal solution of a quadratic convex optimization problem with linear constraints,

this point can be calculated exactly in finite time (see Remark 4.2.1(b)). Therefore,
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by combining the givelCONVEXSOLVER, ; ; , with appropriate accuracies, with
a finite solver for convex quadratic optimization problems we obtad©&VEX-
SOLVER, 5.0 .

In order to prove that the orthogonal projectionf z on the set” N .S has the
required properties we use an analogous argumentation as in the proof of Lemma
A.7. In the proof of this lemma it is sufficient that we have the existence of Lip-
schitz constants for the involved convex functions and the existence of a positive
real valuer delivered by Corollary A.6. In the present section we would like to
quantify the values o€, 4 and 5 depending ore andé. Therefore, we have to
show that it is possible to calculate Lipschitz constants for the convex funetions
(I € {0,...,p}) and, furthermore, that we are able to calculate the value

Due to [Roc70, Theorem 24.7] we know that the convex functigyis
(I € {0,...,p}) are Lipschitz continuous on each compact Set_ IR™ with
Lipschitz constant

LY = max{||¢]l2: € € dg'(y), y e C}. (B.2.1)

Note that the sef : € € dg(y),y € C} is compact (see also 70, Theorem
24.7)). If ¢ (I € {0,...,p}) is differentiable and the set is a polytope with
known vertex set/ (C), then, as long a§Vg'(z)|2 is a convex function, we are
able to calculate the valug,, by using the following relation

Ly = Vg = Vg (@)|2 .
o = max [Vo @)z = max [Vg ()

In general, we do not know how to solve the optimization problem givenin (B.2.1).
Nevertheless, the following lemma yields an upper boundfor which is com-
putable if aACONVEXSOLVER, ; , is known.

LEMMA B.2. Letg : IR" — IR be aconvex function),Z C IR" be polytopes
with known vertex selg (@) andV (Z) and the additional property that contains
the unit ball B = {z € R" : ||z]]s < 1}. Let furtherz € IR" be an €, 0, p)-
solution of the convex optimization problenin,cq g(x) with €, p > 0. Then an
upper bound for the Lipschitz consta) of g on the set) is given by

Lo = —g(x €. B.2.2
Q = max  max g(x+2z) —g(@) + ¢ (B.2.2)

PROOE In view of Property (B.1.1) of a subgradient we know that, for each

y € IR" and¢ € dg(y), there holds

&2 < gly+2)—gly) VzeR"
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and, therefore,
max &7z < g(y+2) — g(y) Vz e R™. (B.2.3)
£€09(y)
Furthermore, it is immediately clear that the following relation holds for the Eu-
clidean norm. Letr € IR" be an arbitrary point. Then we know that
|z]ls = max 27z. (B.2.4)
z e R"
[2]l2 =1
Combining Relation (B.2.3) with Relation (B.2.4) we obtain an upper bound
for L.

Lo = max |€|l = max max max &7z
€ € dg(y) YeQ £€99(y) z e R
yeQ [2]l2 =1
= max max max &7z
YeEQ L cR™ £€99(y)
————
I2ll2 =1

<g(y+2)—g(y)

< max max + z) — min
S max max gy +2) yng(y)
——
Izl =1 >g(z)—€
< max ma; z)—glx e = Lo .
< max Zegg(@ﬁ ) —9(Z) + Q

The functiong(y + -) : IR™ — IR is convex fory € IR". Using the facts that a
convex function attains its maximum over a polytope in a vertex of this polytope
[HPT95, Theorem 1.19] and that the maximum over an arbitrary family of convex
functions is again a convex function, it follows

max ma. 4+ z) = ma ma + z = ma ma. +z),
max maxg(y + z) yeff(zevé)g(y ) yev(Q) zew}%g(y )
con&gkiny
which proves (B.2.2). |

REMARK B.1. A polytope which contains the unit balt is obviously the
hypercube

Z = {zeR":|z]o <1}.

This polytope is a good approximation &% ;, but it has2™ vertices. Another
possible polytope which has the required properties and which hasnomiyl
vertices is the regular simplex given in Chapter 2 (see, in particular, Subsection
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2.6.2). It is immediately clear using the same ideas as in Section 2.6 that this
regular simplex can be enlarged such that it contdinAdmittedly, this simplex
IS in general a worse approximation of the sethan the hypercubg.

Apart from the Lipschitz constants we also need a way to quantify a value
7 > 0 with the property that, for each linear independent sulget. .. ,y,}
(¢ < n) of the set

L ={a;,j=1,..., m}u{e?,i=0,...,n},
there holds
lzll2 > 7 Vx €lyo,.-.,Yq - (B.2.5)

This value can be calculated in the following way. ke(i € {1,...,n}) be the
i-th unit vector and denote by

R = {B=(by,... b)) e R"™™:b;eL,i=1,...,r,

b €{e1,...,en},i=r—+1,...,n, Bregular, 1 <r <n}
the finite set of all regular matrices with at leastone tpw L (i € {1,... ,n}).
Set
1 1
= — min ————, B.2.6
T 7 R B (529

where||-|| : R"*"™ — IR denotes an arbitrary norm on the spacef ()-matrices,
which is compatible with the Euclidean norm. Then there holds the following.
Let {yo,...,yq} (¢ < n) be a linear independent subsetiafand letz be
an element of the-simplex|[yo, ... ,y,]. Then there exists a matri® € R with
bi=vy,_1(@=1,...,g+1)andb; € {61,... ,en} (i=q+2,...,n),and there
is a vector\ € B,,_; with
g+1

r = Z/_\iyi—l = BA
i=1

and

A =0 t1=q+2,...,n.

Using the facts that there hold= B~ 'z andminjes,_, [|A[|2 = —= we obtain

Al 1

lzlle = wo = > 7.
IB=H — Vo lB~H
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Therefore, the value defined in (B.2.6) has Property (B.2.5) for each linear inde-
pendent subsdtyo, ... ,y,} (¢ < n) of L. The final theorem quantifies now the
necessary values éfé andp.

THEOREMB.3. Lete, § > 0. Let further L%, be a Lipschitz constant af
(I € {0,...,p}) on the simplexS = {zr € R" : ()72 < ¢ +1,
i =20,...,n} D S and let the real value= > 0 be given by (B.2.6). Assume
that is an , 0, p)-solution of (CP) with

- _ €T ot
p = mln{l’ﬂ’ﬂ,l_:{’ ,p}>0,
D )
< P l
= 0—=— m Lz > =
0 0 7-121?.).(,;9 S =2
and
. P o €
= - Lo > £
‘ ‘ )

Then the orthogonal projection of = on the setP N S is an (, §, 0)-solution of
Problem (CP).

PROOFE The orthogonal projectiom of  on the setP N S is the solution
of the following convex optimization problem (compare with the proof of Lemma
A.7)

min [|T — xH%
T

a;x < b j=1,....m
(OP)
(@) Tz < ¢ i=0,...,n
x € R".

Using the same argumentation as in the proof of Lemma A.7 (see pages 311f.) we
know that there exist two index sets C {1,... ,m} andl> C {0,... ,n} with

alz =b; iel; ) 'z=¢ iel,,

and, additionally, a linear independent sub§gt, ... ,y,} (¢ < n) of the set
L = {a;,i € [} U{v?,i € I}, a pointw € [yo, ... ,y,] and a real value
with

. T — |2
N =

(B.2.7)
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Sincer has Property (B.2.5) with respect to each linear independent subset of
we obtain

Jwl] = 7. (B.2.8)

SelectA € B, with w = Y7, \;y;, and set/; := {j : y; € {a;,i € I;}} and
Jo == {j :y; € {v?,i € IL}}. By using the fact that is an , 9, p)-solution of
(CP) it follows

)>

|1z — 2|3 = Bw' (&~
Ni(alz —alz)+ > N((07)"% - (v7)"7)
W—/ ~——

>
(
\ ~~ =

Hz
8|
SN—

= 0

=B

<b;+p =b; <cf+p =c?

K3

IN

\,_/
=1

Substitutings with (B.2.7) and using (B.2.8) we obtain

|& -z, < - < 2.
[wlz = 7
The real valuailg is by assumption a Lipschitz constantgf(l € {0, ... ,p}) on

the setS. Therefore, using the definition éfandé and the fact that there holds
z,z € S, it follows

and, forl € {1,...,p},

. LLp
¢@) < @)+ L2 < 5420

This means that is an ¢, ¢, 0)-solution of Problem (CP). |

< 0.
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This theorem shows that it is always possible to adjust €MVEXSOLVER, ; ;

in order to obtain a solver for Problem (CP), which delivers in finite time a so-
lution with the same quality as Algorithm B.1 does. Whether this is numerically
practicable depends on the effort which is necessary for calculating the Lipschitz
constants and the value Note that the calculation of these values must be done
only with respect to the start simple®, if we apply such an adjusteZONVEX-
SOLVER, 5 ; for solving the subproblem (DCR in Algorithm 4.1. Nevertheless,
these calculations are in general expensive.
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