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Abstract: The process industries exhibit an increasing need for efficient management
of all the factors that can reduce their operating costs, leading to the necessity for
a global multi-objective optimization methodology that will enable the generation
of optimum strategies, fulfilling the required restrictions. In this paper a genetic
algorithm is developed and applied for the optimal assignment of all the production
sections in a particular mill in the kraft pulp and paper industry, in order to optimize
energy the costs and production rate changes. This system is intended to implement all
programmed or forced maintenance shutdowns, as well as all the reductions imposed
in production rates.
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1. INTRODUCTION

Plants in the continuous production industries
can be described as groups of departments, each
responsible for some specific operations and sepa-
rated by intermediate buffers. The production of
kraft pulp and paper is one of such industries.

Consider the notation of Fig. 1, suggested in
(Dourado and Santos, 1993), where buffer j,
with level xj (j = 1, . . . ,m), receives the produc-
tion from the department i, working at rate ui
(i = 1, . . . , n) units, and delivers the raw material
to department i + 1, working at rate ui+1 units;
bj,i+1 · ui+1 units are consumed from buffer j for

1 Partially financed by JNICT/PRAXIS XXI program.

Industrial data given by Eng. J. Amaral, Portucel, Viana
do Castelo, Portugal.

each unit of production ui+1. This work is based
on the case study of the flowsheet of Centro Fabril
de Viana da Portucel, represented in Fig. 5.

u i + 1u i x j

Fig. 1. Flowsheet example with two departments
and one buffer.

Pulp mills (and in general the continuous pro-
duction industry mills) are complex systems,
where shutdowns and disturbances are propagated
throughout the plant and influence the whole mill.
This may lead to mass and energy losses due
to transient incorrect chemical dosing, and con-
sequently to production losses by breakdowns in



the quality levels. The task of scheduling must
minimize these effects.

2. THE PRODUCTION SCHEDULING

The stock equation (1) represents the overall
discrete model for the production coordination,
where B is the mass balance matrix, and con-
trol vector u and state vector x are the depart-
ments’ production rates and the intermediate-
level buffers, respectively. T is the discretization
interval, N is the number of discrete planning
intervals and k = 0, . . . , N − 1.

x (k + 1) = x (k) +B · T · u (k) (1)

Both control u and state x are physically con-
strained by eqs (2) and (3).

0 ≤ umin (k) ≤ u (k) ≤ umax (k) ≤ Umax (2)

0 ≤ xmin (k) ≤ x (k) ≤ xmax (k) ≤ Xmax (3)

In the presented flowsheet here there are three
departments that exhibit some different behaviors
from the rest, and therefore require special atten-
tion: the water (collection and treatment) depart-
ment, the auxiliary boiler and the turbogenerator.

The water department produces filtered water for
consumption in the various mill departments, and
so the production rate is dependent on the rest of
the mill. This situation leads to a representation of
the water production (4), where FW is the filtered
water production and Dwater is the water balance
matrix.

FW = Dwater · u (4)

The task of the auxiliary boiler, together with
the recovery boiler, is to produce high-pressure
steam (HPS) (the recovery boiler also produces
green liquor). The two boilers must fulfil the re-
quirements of HPS in the mill. The mill also
needs medium-pressure steam (MPS) and low-
pressure steam (LPS) in several sections, namely
the paper machine, the pulp mill, the evaporation,
the causticizing, and the energy sector. Equations
(6) and (5) express the relation between the input
(HPS) and the output (MPS, LPS, condensed wa-
ter and electrical energy) in the turbogenerator,
where HPS, MPS, LPS and CW (condensed
water) are given in kg, and the electrical energy
(EEtrbgnr) is given in kW · h.

EEtrbgnr = (MPS · 77.5 + LPS · 117.5+

CW · 178.0) · 0.7
860.5

(5)

HPS = MPS + LPS + CW (6)

By an analysis of the production values, the
turbogenerator production rates are kept at the

minimum to maintain the needed output flow of
MPS and LPS. Therefore, the flow of condensed
water is as low as possible, and a statistical
analysis reveals a value of approximately 4.6% of
the HPS consumed in the turbogenerator. The
high cost of the fuel consumed in the auxiliary
boiler is responsible for this situation (the organic
combustible is not enough to produce the steam).
Consequently, the auxiliary boiler production can
be given by (7) where HPStotal is the total
production of HPS and HPSrecb is the HPS
produced in the recovery boiler.

HPSauxb = HPStotal −HPSrecb (7)

TheHPStotal can be given by (8), whereHPSpapm
is the high-pressure steam consumption of the
paper machine, and HPStrbgnr is the HPS con-
sumed in the turbogenerator.

HPStotal = HPStrbgnr +HPSpapm (8)

As HPStrbgnr equals the sum of MPS, LPS and
CW produced in the turbogenerator (6), after
some calculations HPStotal is given by (9), where
LPSmass andMPSmass are, respectively, the low-
and medium-pressure steam consumptions of the
mass chain of the mill, bauxbLPS and bauxbMPS are the
low- and medium-pressure specific consumption
by the auxiliary boiler, and HPSpapm is the
high-pressure steam consumption by the paper
machine.

HPStotal =
Num

Den
,with

Num = [MPSmass + LPSmass−(
bauxbLPS + bauxbMPS

)
·HPSrecb+

HPSpapm] · 1
0.954

Den = 1− 1
0.954

·
(
bauxbLPS + bauxbMPS

)

(9)

The electrical energy production of the turbo-
generator, after the elimination of the condensed
water, is given by (10), where LPStotal and
MPStotal are described by (11) and (12).

EEtrbgnr = 70.017 ·MPStotal−
102.566 · LPStotal

(10)

LPStotal = LPSmass + bauxbLPS ·HPSauxb (11)

MPStotal = MPSmass+
bauxbMPS ·HPSauxb

(12)

The electrical energy bought from the public
power system is computed by (13).

EEEDP = EEtotal − EEtrbgnr (13)

The total electrical energy consumed in the mill
must be minimized by (14), where BEE is the
energy balance matrix.

EEtotal = BEE · T · u (14)



3. MATHEMATICAL FORMULATION

There are some issues that should be addressed in
the production scheduling, as stated in (Leiviskä,
1982) and in (Uronen, 1981):

(1) the final production must be accomplished
within the planning time horizon, since de-
lays in delivery times lead to economic losses;

(2) the storage capacities should be used in order
to avoid over- and underflows and also to

(3) avoid production-rate changes, as these are
responsible for additional costs due to effi-
ciency breakdowns in almost all departments;

(4) the maintenance shutdowns should be care-
fully planned so as to benefit the entire mill;

(5) the end of one schedule plan should be seen
as the beginning of the next one, and there-
fore the final storage levels should be pre-
determined;

(6) some attention should be paid to the energy
consumption, since the pulp and paper in-
dustry is highly energy-demanding.

The mathematical formulation must take account
of all the aspects mentioned above. From these, it
is essential to distinguish between objectives and
constraints.

From the above statements, it is seen that in this
problem two criteria are needed, given by (15) and
(16) where ch (k, i), as stated in (Monteiro, 1992),
is the production-rate change function (depart-
ment i and instant k) defined in (17).

Obj1 = min
N−1∑
k=0

{BEE · T · u (k)} (15)

Obj2 = min
N−1∑
k=1

n∑
i=1

ch (k, i) (16)

ch (k, i) =
{

1⇐ ui (k) 6= ui (k − 1)
0⇐ ui (k) = ui (k − 1) (17)

The formulation will be completed by a constraint
set definition:

• the accomplishment of final production, dur-
ing the planning time horizon, must corrobo-
rate equation (18), where xmpap stands for
the paper machine buffer level and Kfpap

represents the finished paper needed;

xmpap (N − 1)− xmpap (0) = Kfpap (18)

• the planned maintenance shutdowns and the
production restrictions expressed by (2);
• the minimum and maximum safety limits of

all storage buffers, as stated in equation (3);
• the buffers’ final state, which should be pre-

determined, as in (19) where xfinal repre-
sents the intended final state of the buffers;

x (N) = xfinal (19)

• the contracted electrical power, which is time
variant, should not be exceeded, as in (20)
where Pc (k) is the contracted power limit.

EEEDP (k) ≤ Pc (k) (20)

4. THE GENETIC ALGORITHM

The optimization of objectives (15) and (16) can-
not be achieved by traditional methods since it is
a mixed integer problem. However, since genetic
algorithms are able to solve mathematically ill-
defined problems, they are a tool of great poten-
tial. In this work a GA multicriteria approach is
used, based on constraint-handling techniques.

Several methods exist for handling constraints
by genetic algorithms in optimization problems.
The technique used here (Michalewicz, 1994) is
based on preserving the feasibility of solutions by
using specialized operators that are closed on the
feasible part of the search space. These operators
(crossover and mutation) transform feasible solu-
tions into other feasible solutions. The basic idea
behind this method lies (i) in the elimination of
the equalities present in the constraint set and,
(ii) in the use of specific operators that guarantee
that individuals are kept inside the feasible space.

GAs have been used particularly in single-objective
problems; nevertheless, most of the practical ap-
plications exhibit more than one objective to be
attended to. In this work, the Pareto ranking
method is used in order to properly select the
next generation. This technique, which makes use
of the definition of Pareto optimality, was first
introduced by (Goldberg, 1989) and later rede-
fined as a slightly different scheme in (Fonseca
and Fleming, 1993). As proposed by Fonseca, an
individual’s rank corresponds to the number of
individuals in the current population by which
it is dominated; therefore, the heavily dominated
individuals are given a worse chance of reproduc-
tion. This process ends with the fitness assignment
by interpolating from the best individual to the
worst, usually according to an exponential func-
tion, but possibly also using other types. Here the
function expressed in (21) was used, where P is
the rank of the best individual, and 0 < c < 1 is
a constant.

fi =
c− 1
cP − 1

cP−i; i ∈ {1, . . . , P} (21)

The crossover and mutation operators employed
in this algorithm were chosen from those found in
the literature, and which, by simulation, proved
to be the set with the best convergence time
and with the best diversification in the trade-
off surface. The uniform crossover is based on
(Syswerda, 1989) and (Spears and De Jong, 1991),



where, at instant k, two vectors with dimension
m, xak and xbk, exchange genes i with each other;
that is, xa(i)

k and x
b(i)
k for i = 1, 2, . . . ,m, with

probability p. Fig. 2 represents this crossover.
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Fig. 2. Uniform crossover with probability p.

The mutation phase is formed by a set of
four strategies: uniform, boundary, non-uniform
(Michalewicz, 1994) and exchange mutations. Let
C = (c1, . . . , ci, . . . , cl) be a chromosome of length
l, and let ci ∈ [ai, bi] be the gene to which the mu-
tation operator will be applied resulting in gene c′i;
then in the uniform mutation c′i is a random value,
according to a uniform probability distribution,
from [ai, bi]. In the boundary mutation c′i is either
ai or bi, with equal probability. In the non-uniform
mutation, if gmax is the maximum number of gen-
erations, c′i is given by (22), where α ∈ {0, 1} is a

random binary digit, ∆ (k, y) = y ·β ·
(

1− k
gmax

)b
,

β is a random number from the interval [0, 1] ,
and b is a parameter determining the dependence
degree in the number of generations.

c′i =
{
ci + ∆ (k, bi − ci) ⇐ α = 0
ci −∆ (k, ci − ai)⇐ α = 1 (22)

Finally, in an exchange mutation, two consecutive
genes ci and ci+1 are exchanged for each other.
This last type can be seen as a particular case of
uniform mutation, where interval [ai, bi] is simply
ci+1 and [ai+1, bi+1] is ci.

The stochastic universal sampling is used in this
work since it is considered the standard algo-
rithm for sampling, which exhibits null distor-
tion and minimum spread. For the reinsertion the
elected mechanism was the generational reproduc-
tion (Syswerda, 1991) where the whole population
is replaced in each generation.

The scheme of sharing was introduced in (Goldberg
and Richardson, 1987), known as fitness sharing,
and its main purpose is the distribution of the
population in a set of niches in the search space.
Use of this procedure eliminates the existence of
similar individuals that would lead to redundancy,
enemy of diversity. Equation (23) represents the
shared fitness function, where nni is the niche
number of individual i, as given in (24).

fsharei =
fi
nni

(23)

nni =
∑
j∈P

Sh (d (i, j)) (24)

Function d (i, j) enables the computation of the
distance between individuals i and j, and rep-
resents the distance between the vectors formed
by all the objective functions in the multicriteria
problem. Sh (d) is the sharing function as ex-
pressed by (25). σshare represents the niche radius
which, as stated in (Fonseca and Fleming, 1993),
can be determined by (26), where n is the number
of objectives, D1i = Mi − mi + σshare, D2i =
Mi−mi,m andM are the minimum and the maxi-
mum of all objectives from the non-dominated set,
Q =

(
d

σshare

)αshare
and αshare is a positive real.

Sh (d) =
{

1−Q⇐ d ≤ σshare
0 ⇐ d > σshare

(25)

N · σn−1
share −

n∏
i=1

D1i −
n∏
i=1

D2i

σshare
= 0 (26)

Once the sharing scheme has been applied to
the population, the crossover between individuals
belonging to different niches may result in descen-
dants in any niche. The mating restriction scheme
(Deb and Goldberg, 1989) involves the parameter
σmate which is quite similar to σshare. The sim-
plest mechanism using this approach is the mating
radius which chooses as the second progenitor an
individual from the mating pool at a distance less
than σmate from the first progenitor. If none are in
this situation, then a random individual is chosen.

5. APPLICATION TO THE MILL, AND
SOME SIMULATION RESULTS

With the simplifications introduced in Section 2,
three out of the ten mill departments can be
determined subsequently; therefore, the schedul-
ing problem is formed by seven departments. A
discretization interval of four hours is used, in a
planning horizon of forty-eight hours, which leads
to eighty-four system variables. Each chromosome
is then coded as real multiparameters, constructed
from the concatenated codes. The population is
composed of fifty individuals, and the initial ones
are randomly generated feasible examples.

The initial and final buffer states are constrained
to be 50% of their capacity and the final state
for the finished paper is to be 90% of capacity. A
shutdown in the paper mill is also imposed during
the third discretization interval, and a reduction
to 30% in the causticizing must occurs during
the second discretization interval. Due to the
limitations of the floating-point representation, a
change in a production rate (17) is considered only
if it is greater than 2% of the maximum.
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Fig. 3. Evolution of Obj1 and Obj2 across 100,000 generations.
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Fig. 4. The population and the cumulative trade-off surface in generations 100, 10,000 and 100,000.
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Fig. 5. One solution from the trade-off surface in generation 100,000.



Some simulation results are shown in Figs 3 to 5.
The evolution of the best individual in the pop-
ulation across one hundred thousand generations
is shown by Fig. 3. Fig. 4 depicts the population
in three different generations as well as the cumu-
lative trade-off surface. Finally, Fig. 5 represents
the solution marked in Fig. 4, in generation one
hundred thousand, being one of the possible solu-
tions from the optimal Pareto set. These results
show optimistic prospects for the potential of the
GAs ability to solve this problem.

6. CONCLUSIONS

The aim of this work is to contribute to the
development of an optimal scheduling system for
the mass and energy production, with an applica-
tion to a kraft pulp and paper mill. The dimen-
sions of the problem, its multiobjective character-
istic, and the presence of a high-order constraint
set preclude the use of (only) traditional opti-
mization techniques. The Pareto ranking method,
and a technique that preserves the feasibility of
the solutions, were used in a genetic optimiza-
tion framework. In agreement with other studies
(Santos, 1996), these methods and the genetic
operators mentioned above (crossover, mutation,
sharing and mating restriction) were those that
revealed the best convergence time and the best
diversification in the trade-off surface.

If a non-linear component were present in the con-
straint set, the system could be adapted using the
proposal in (Michalewicz and Nazhiyath, 1995).
In this way, the technique presented here exhibits
a flexibility that is not achieved by traditional op-
timization methods. Further work will be needed
in order to improve the convergence time, which
is still the main drawback. Although the litera-
ture shows several applications with reasonable
computational times in sequential architectures,
it could always be possible to go over to parallel
technologies, not necessarily using multiproces-
sors, but using existing resources such as personal
computers and data networks.
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