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CHAPTER 1

Introduction

What is design? One definition posited by Papalambros is that design “is a

decision-making process” [66]. This dissertation focuses on the kinds of decisions

facing the designer who must assign parameter values describing an artifact in order

to best achieve some desired performance. For example, the designer could be decid-

ing what thickness to assign a structural member that should be as light as possible

while supporting the given loads.

But how does one go about making such decisions? How could one make this

process more efficient? These are questions that have pushed engineers, scientists,

and mathematicians to develop tools to aid designers in decision making. Many such

tools belong to a field known as design optimization, whereby numerical algorithms

are used to solve problems of the form

min
x

f(x) (1.1)

subject to: g(x) ≤ 0

h(x) = 0 .

The designer is to choose values for the vector of design variables, x, that mini-

mize the scalar objective function, f(x), while satisfying the inequality constraints,

1
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g(x), and the equality constraints, h(x). When the functions in Equation (1.1) are

nonlinear, problems of this form are referred to as nonlinear programming.

The general nature of nonlinear programming has led to specialized fields within

optimization. One field has focused on solving structural optimization problems

which have a characteristically large number of design variables and constraints.

Another field, Multidisciplinary Design Optimization (MDO), has focused on how

to solve problems involving a variety of engineering fields effectively by solving the

large problem as a collection of smaller subproblems. The field of interest in this

dissertation is simulation-based optimization.

Simulation-based optimization addresses problems where the objective and/or

constraint functions are not expressed with closed-form analytical equations, but with

so-called “black box” computer simulations. Typically the functions (a) are noisy or

discontinuous (i.e., non-smooth) and/or (b) require a long time to compute. Each of

these features causes specific difficulties that must be addressed in simulation-based

optimization.

Figure 1.1 shows the fuel economy of an automobile as a function of the fi-

nal drive ratio. A computer simulation was used to compute the response, and

each function evaluation required approximately 60 seconds on a Pentium III 500

MHz processor. Note that the response is both noisy and has several discontinuous

jumps. Numerically finding the final drive ratio that maximizes the fuel economy is

a simulation-based design optimization problem that poses several challenges.

Some traditional design optimization techniques (e.g., Newton’s method) use gra-

dient information from finite differencing to guide a sequential strategy towards the

maximum. The noisy nature of the simulation shown in Figure 1.1 may render finite

differencing ineffective at estimating the gradient, thereby preventing the algorithm
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Figure 1.1: Example of a simulation-based design problem

from successfully finding the maximum. The discontinuities may also lead the algo-

rithm to a local peak (i.e., a local optimum), but prevent it from finding the best of

all peaks (i.e., the global optimum). One could start the search from several initial

points to increase the chances of finding the global optimum, but the expense of the

simulation may prevent such a strategy from being practical.

A common approach to deal with these problems is the use of approximations.

Because approximations are models of a simulation which is itself a model of reality,

they are often called metamodels. The terms approximations, surrogate models and

metamodels will be used synonymously throughout this dissertation. The goal of

using a surrogate model is to provide a smooth functional relationship of acceptable

fidelity to the true function with the added benefit of quick computational speed.

The approximation could be used in conjunction with a gradient-based algorithm or

in entirely different ways. The details of how to build and exploit approximations

effectively keep simulation-based optimization a thriving research area.

Some optimization algorithms utilize statistical models of the functions to define
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an infill sampling criterion (ISC). The criterion determines which design points to

sample next (the so-called infill samples). The infill samples are then evaluated on

the true functions and the models updated. This is a completely different method

than algorithms that rely on a search path because the sampling criterion could place

the next iterate anywhere at all in the design space.

A wide variety of optimization algorithms search the design space in this global

manner via statistical models. Throughout this dissertation, we will refer to this

class of algorithms as Bayesian analysis algorithms in the spirit of key articles such

as Žilinskas’ “One-step Bayesian Method of the Search for Extremum of an One-

Dimensional Function” [102] and Mockus, Tiešis and Žilinskas’ “The Application of

Bayesian Methods for Seeking the Extremum” [60]. Simply put, Bayesian analysis

is the use of statistical models to predict future outcomes.

Take initial
data sample

Update kriging
models

Optimize Infill
Sampling Criterion

Sample new
infill points

Stop?

yes
no

Figure 1.2: Flowchart of the EGO algorithm

One particular Bayesian analysis optimization algorithm is known as Efficient

Global Optimization (EGO), developed by Schonlau, Welch and Jones [83]. It em-

ploys kriging models as the approximation method, which also provide a very useful
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measure of local uncertainty. Because of the generality of the EGO framework and

the appeal of the kriging models, EGO was chosen as the launching point for this

dissertation. The basic outline of EGO is summarized below (see also Figure 1.2).

1. Use a space-filling design of experiments to obtain an initial sample of the true

functions.

2. Fit a kriging model to each function.

3. Numerically maximize a sampling criterion known as the expected improvement

function to determine where to sample next.

4. Sample the point(s) of interest on the true functions and update the kriging

models.

5. Stop if the expected improvement function has become sufficiently small, oth-

erwise return to 2.

To demonstrate EGO’s search strategy for traditional optimization problems, a

one dimensional multimodal example is shown in Figure 1.3. The w-shaped dashed

line is the true objective function we wish to minimize, while the solid line is the

kriging approximation conditional to the sample points shown as circles. The plot at

the bottom is the sampling criterion, normalized to facilitate comparisons between

iterations.

The infill sampling criterion, known as the expected improvement function, de-

termines where EGO will evaluate the functions. It tends to choose the design points

most likely to improve the accuracy of the model and/or have a better function value

than the current best point. The progression of the example shown in Figure 1.3

demonstrates this behavior. After the initial sample of four points is taken, the
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Figure 1.3: Demonstration of EGO. Dashed line is the true function, solid line is the
approximation, circles are the sample points. The plot at the bottom is
the sampling criterion.

resulting kriging model is a poor fit compared to the true function. However, the

expected improvement function leads the algorithm to sample points where the un-

certainty in the model is highest. After two iterations, the model has improved in

the region of the local optimum on the right, and the expected improvement func-

tion leads EGO to sample another few points in that region where there is a high

probability that a better point can be found. By the fourth iteration, the region on

the right has been explored, but the uncertainty in the model on the left portion
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of the model drives superEGO to sample points in that region. After six iterations,

both local optima have been discovered and the true solution has been found quite

accurately.

From this example, one can see that a Bayesian analysis algorithm such as EGO

does not follow a search path. It selects points from anywhere in the design space

depending on where the sampling criterion is highest. The optimum is found as the

model accuracy is eventually improved in regions with a high probability of yielding

good designs.

Because the process of fitting the kriging models and locating the maximum of

the infill sampling criterion are optimization problems themselves, the overhead as-

sociated with EGO can be significant. Other methods such as genetic algorithms or

gradient-based algorithms on the other hand require very little computational effort

in determining where to evaluate the functions next. However, they require a large

number of function evaluations to converge on a good solution. The benefit of the

overhead of Bayesian analysis algorithms is that each iteration uses as much infor-

mation as possible in determining where to evaluate the functions next, enabling

them to locate good solutions with fewer iterations. This makes the Bayesian anal-

ysis algorithms best suited to situations where the functions are expensive, and the

designer cannot afford to perform a large number of function evaluations.

The goal of this thesis is to advance the efficiency and flexibility of Bayesian

analysis optimization algorithms via an adaptation of the EGO algorithm. Several

areas have been identified where EGO could be expanded and/or improved.

1. Improving the kriging modeling in Step 2. Kriging is a data interpolation

scheme that has its roots in the field of geostatistics. In the 1980’s a group of

statisticians began adapting the technique for cases where the data came from
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deterministic computer simulations. This form of data collection and approxi-

mation, known as Design and Analysis of Computer Experiments (DACE), is

used in EGO and by most other mathematicians and engineers working in the

field of optimization. The DACE procedure for determining the kriging model

parameters may occasionally lead to poorly fit models. We propose a simple

strategy for detecting a specific type of modeling error and a method for cor-

recting the situation. We also demonstrate how techniques for incorporating

measurement error can improve the capabilities and robustness of the models.

2. Using alternative ISC in Step 3. EGO uses a criterion known as the expected

improvement criterion to select the next iterate. Other Bayesian analysis meth-

ods use different criteria. This thesis compares a wide variety of sampling cri-

teria to examine their effectiveness at solving analytical and simulation-based

problems. In addition, the ability to use alternative ISC allows our approach

a new degree of flexibility that dramatically broadens its application domain.

3. Improving the constraint handling. The vast majority of Bayesian analysis was

done on unconstrained problems. Some authors used techniques to transform

the constrained problem into an unconstrained one via penalty methods or

similar approaches. This dissertation incorporates the inequality constraints

directly into the ISC subproblem of Step 3. The advantages and possibilities

are discussed.

4. Taking into consideration the computational time of each function. Another

contribution of this thesis is to take into account the computational time of

each function. In EGO, each function is considered expensive, and therefore

a kriging model is made for all functions in the optimization model. The ap-
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proach taken here is to exploit situations in which some of the problem’s func-

tions are not expensive. By using information from these inexpensive functions

directly in the ISC subproblem, significant savings can be made in the number

of function evaluations and in the clock time required to reach good solutions.

These improvements collectively allow Bayesian analysis to solve a wider variety

of optimization problems and do so in less time. To distinguish the work at hand

from that done in the original EGO algorithm, the version enhanced by the proposed

changes will be referred to as superEGO to signify that it can solve a superset of the

problems EGO was originally designed to solve.

The remainder of this thesis is organized as follows. Chapter 2 provides a review

of the several approximation techniques and their current uses in simulation-based

optimization as well as of the development of Bayesian analysis. In Chapter 3, an

explanation of the kriging technique is accompanied by a comparison of DACE and

kriging. Chapter 4 explores alternative infill sampling criteria and provides compar-

ative results. Chapter 5 examines a variety of approaches for extending Bayesian

analysis to constrained optimization and proposes a new method for locating sample

points in problems with disconnected feasible regions. Chapter 6 demonstrates the

benefits of exploiting discrepancies in functional computation time. A variety of is-

sues related to the implementation details of the superEGO algorithm are discussed

in Chapter 7. In Chapter 8, a simulation-based study is presented for an automotive

product platform problem. In Chapter 9, an application involving an adaptive test-

ing procedure for an ergonomics study is presented to demonstrate the benefits of the

alternative ISC and of incorporating inexpensive information. The final conclusions

and considerations for future work are given in Chapter 10.



CHAPTER 2

Literature Review

As described in the Introduction, one can use approximations to enhance design

optimization in a number of ways. One can categorize their uses by the type of

approximation and the way in which the approximations are integrated into the

optimization algorithm. This chapter begins by briefly describing several commonly

used approximation techniques. The second section reviews many of the relevant

areas of optimization to which approximations have been successfully applied. The

third section focuses specifically on the algorithm under consideration in this work.

The origins and development of the algorithm are presented so that the contributions

of this thesis are put into perspective.

2.1 Review of Surrogate Modeling Techniques

In this section, a brief overview of many different surrogate modeling techniques

is given. The purpose is not to explain each in detail. Rather, the aim is to illustrate

the wide variety of approximations available. It should be made clear that the most

important technique for this dissertation is kriging (Section 2.1.6). While kriging is

presented in this overview, the details of the technique are left for the next chapter.

10
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2.1.1 Least squares

The simplest and most familiar metamodels are polynomials. For a given data

set (xi, yi), i = 1 to n, one can determine the regression coefficients βi in, say, a

quadratic model of the form

ŷ(x) = β0 + β1x + β2x
2, (2.1)

where x is the input variable, ŷ(x) is the predicted value at that input value. This

is usually done by minimizing the mean of the sum of squared errors (MSSE) of the

predicted output values at the xi

MSSE =
1

n

n∑
i=1

(yi − ŷ(xi))
2 . (2.2)

For the set of sampled data, Equation (2.1) is written as

1 x1 x2
1

1 x2 x2
2

...
...

...

1 xn x2
n




β0

β1

β2

 =



y1

y2

...

yn


(2.3)

or in matrix notation:

Xβ = y . (2.4)

Solving for the vector β gives the least squares estimate

β = (XtX)−1 Xt y . (2.5)

With the optimal values of the coefficients chosen, a simple polynomial equation

relating the inputs and outputs is built. This type of metamodel can be performed

for any degree polynomial equation by simply changing the number of regression
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coefficients included in the model. The polynomial can also be readily extended to

multivariate expressions.

Statistical techniques known as analysis of variance (ANOVA) can then be car-

ried out with this new functional relationship to determine the significance of any

particular term in the polynomial. The model can be revised by changing the form

of the regression equation, adding or deleting terms in a heuristic fashion, until a sat-

isfactory representation is achieved. Increasing the number of terms or data points

increases the size of the X matrix to be inverted; but in general, the fitting time for

least squares models is negligible.

Oftentimes, the behavior of the data cannot be captured by a single equation

over the range of the data. For example, if the data tend to have highly nonlinear

behavior, a quadratic, or even cubic polynomial fit would have difficulty following

the data. One possible solution is to use as high an order polynomial as possible. If

there are, say, ten data points that have been sampled, then a ninth order polynomial

consisting of ten regression coefficients can be determined by least squares. This

solution, however, is not a very good one. High order polynomials tend to oscillate

wildly between data points at the extremes of the range [28]. For this reason, they are

not considered appropriate surrogate models. Another solution is to include terms

other than polynomials in the regression equation.

2.1.2 Interpolating and smoothing splines

Splines, where the polynomials are defined in a piecewise manner rather than as a

single expression for the entire data set, provide an alternative solution to the problem

of fitting highly nonlinear data. Simply put, several low order polynomials are fit

to the data, each over a separate range defined by the knots or break points. Then,
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boundary conditions are placed on the polynomials to ensure that the pieces match

up with a prescribed order of continuity. Most often, the cubic polynomial pieces

with C2 continuity are used. By enforcing C2 continuity, the pieces have identical

value, slope, and curvature at the knot locations. In the case of interpolating splines,

the knots are taken at the data points so that the spline passes exactly through each

data point. Therefore, while interpolating splines may be more true to the sampled

data than least squares polynomials (i.e., a single polynomial), they can exhibit more

waviness in between the data points.

There has been considerable work done in the past thirty years on another regres-

sion model known as the smoothing spline. Most notable are the defining works by

Wahba and Craven [22], [98]. By adjusting a weight factor known as the smoothing

parameter, a compromise can be reached between the goodness of fit seen in inter-

polating splines and the smoothness of the approximating functions seen in least

squares models.

2.1.3 Fuzzy logic and neural networks

Even though splines do not require the heuristic, fit and analyze methods that

least squares models use, they still make the assumption that the data can be locally

fit by a cubic polynomial. There are many other methods that avoid these assump-

tions by letting the data be fit in a more free form. Two popular methods in use are

known as fuzzy logic and neural networks. In the former, variables are classified as

belonging to sets that define an input as say, high, medium or low. Rules are then

defined to describe how the dependent variable responds to the various input sets.

By describing how closely an input belongs to one set or another, an approximate

response can be defined [76].
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Figure 2.1: Neural network with one hidden layer of 3 nodes

For neural networks, only the set of input and corresponding output values are

required. As the name suggests, the technique is analogous to the way the human

brain learns. The input values are passed to a layer of nodes which alter the data

using transforms such as the sigmoid or tansig functions (the “hidden layer” in Figure

2.1). The outputs of the hidden layer nodes are then passed to the output layer

where they are recombined and scaled. Nonlinear optimization techniques are used

to “train” the model parameters of the nodes so that the network can predict the

output or response for a given input accurately [88]. Having multiple nodes and layers

allows for highly nonlinear models. Because no prior knowledge of the behavior of the

response is necessary, these methods have gained in popularity throughout various

fields.

2.1.4 Radial basis functions and wavelets

Two other metamodels that have found wide use in image filtering and reconstruc-

tion are radial basis functions and wavelets. The radial basis function metamodel

was originally developed by Hardy in 1971 as an interpolating scheme. Fifteen years

later, the work of Dyn made radial basis functions more practical by enabling them

to smooth data [26]. As the name suggests, the form of these metamodels is a basis
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function dependent on the Euclidean distance between the sampled data point and

the point to be predicted. Radial basis functions cover a wide range of metamodels,

and one particular choice of basis function leads to the well-known thin plate splines.

Wavelet metamodels are also relatively recent in their development [89]. They are

similar to Fourier transforms, but wavelet transforms have the ability to maintain

space or time information. They are also much faster and require fewer coefficients

to represent a regular signal [39].

2.1.5 Wiener process

The Wiener process model is an interpolating function that was used as the basis

for the original Bayesian analysis optimization algorithms described below in Section

2.3. It is a one dimensional function, but techniques have been used to successfully

adapt it to multidimensional space. The Wiener process is a type of Brownian motion

or Markov process, that is, the conditional expected value and variance are functions

only of the nearest neighboring sample points. More specifically, the Wiener process

is a piecewise linear interpolator between the data points with a quadratic variance

model that returns to zero at each of the sample points. While this model is quite

simplistic, it was widely used in early approximation-based optimization because of

its ease of use [69]. More information on the Wiener process can be found in [50]

and [53].

2.1.6 Kriging

Another type of metamodel that is currently gaining popularity is kriging. In all

of the above metamodels, a fundamental assumption is that y(x) = ŷ(x) + ε, where

the residuals ε are independent, identically distributed normal random variables,

ε ∼N(0, σ2). The main idea behind kriging is that the errors in the predicted values,
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εi, are not independent. Rather, they take the view that the errors are a systematic

function of x. The kriging metamodel, ŷ(x) = f(x)+Z(x), is comprised of two parts:

a polynomial f(x) and a functional departure from that polynomial Z(x). While the

idea behind kriging is simply put here, the details are left for the next chapter.

2.2 Current Research in Optimization through Approxima-
tion

At this point, we are ready to examine the current uses of approximation in

the context of optimization. This section reviews the state-of-the-art as well as

the more classical uses of approximation. It is not meant to be a comprehensive list.

Rather, it serves to observe what areas of design optimization are taking advantage of

approximation methods, and where there are opportunities for further development.

2.2.1 Response surface methodology

The technique known as Response Surface Methodology (RSM) is not an algo-

rithm so much as a set of tools grouped together to analyze a problem. As Myers

and Montgomery define it, “[RSM] is a collection of statistical and mathematical

techniques useful for developing, improving and optimizing processes. It also has im-

portant applications in the design, development, and formulation of new products,

as well as in the improvement of existing product designs.” [62]. The area has been

studied extensively, and there are many comprehensive books that provide a good

background [14], [15], [46], [61], [62].

RSM is a sequential process. To begin, an initial point is guessed. With design

of experiments theory, data points are chosen and sampled in a small space around

the initial point. From there, a linear least squares model is fit to the local area,

and ANOVA is conducted to verify the adequacy of the polynomial model. Using
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basic calculus, the direction of greatest improvement is computed and a new area

of interest in the design space is chosen. The process iterates until a linear fit is no

longer adequate, at which point a quadratic model is fit and the optimal setting of

the design variables determined.

Given the sequential nature of RSM, global exploration and mapping of the design

space is not employed. Rather, RSM is a local exploration method. As Mitchell and

Morris quip, “One approaches the problem of finding the maximum response, say, in

the same way that a myopic person might climb a hill.” [57].

2.2.2 Sequential quadratic programming (SQP)

Perhaps the most widely used approximation method in optimization is the Tay-

lor series expansion, an eminent example being the Sequential Quadratic Program-

ming (SQP) algorithm. Once a starting point is chosen, the algorithm makes a local

quadratic polynomial approximation to the true function (i.e., a second order Taylor

series expansion) and a linear approximation to the constraints. This is done most

frequently using finite differencing to approximate the gradients and a quasi-Newton

approximation of the Hessian of the Lagrangian. SQP then proceeds to determine

a feasible descent direction from the quadratic programming approximate problem.

A step is taken in that direction and the process of forming a local quadratic pro-

gramming approximation is repeated until convergence occurs. It essentially works

like RSM, but is automated, uses quadratic approximations at each iteration, and is

able to account for constraints.

While the functional form of SQP can be much more complicated, this expla-

nation serves to show how local polynomial models are frequently used in design

optimization. SQP has found diverse uses in design optimization and is perhaps the
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most frequently used nonlinear optimization algorithm. As it has been studied ex-

tensively, current implementations of SQP are quite mature. The reader interested

in more detail is referred to Papalambros and Wilde [66].

2.2.3 Trust region framework for using surrogates

Researchers at the Institute for Computer Applications in Science and Engineer-

ing (ICASE), have recently shown how a Trust Region algorithm can be modified

to incorporate more general approximations than the standard second order Taylor

series expansion [3]. To begin, it is important to understand the standard Trust

Region algorithm.

The fundamental idea behind the Trust Region method is very much similar

to SQP. At each iteration, k, the algorithm begins by making a local quadratic

approximation qk of the Lagrangian of the form

f(xk + s) ≈ q(xk + s) = f(xk) + gt
ks +

1

2
stBks (2.6)

where s is the next step to be taken (i.e., the change in design variables), gk is the

gradient of f at xk, and Bk is the Hessian of f at xk. As opposed to SQP, the Trust

Region algorithm restricts the length of the step within some trust region radius, d.

Hence, the Trust Region subproblem is to find the vector s that solves the following:

min
s

qk(xk + s) (2.7)

subject to: ‖s‖ < δk

Once this problem has been solved approximately (i.e., an exact solution is not

required for convergence), a decision is made whether or not to accept the step based

upon the realization of an improvement over f(xk). After each iteration, the size

of the trust region radius can be updated. If the model qk has performed well in
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predicting the actual improvement in f , then it should be allowed a larger radius for

taking its next step. Conversely, if qk has poorly predicted the actual improvement

in f , then the trust region can be shrunk to reflect the lack of confidence in the

model. Models that do an acceptable job leave the size of the trust region alone.

The measure for determining how well a model has performed is as follows:

r =
f(xk)− f(xk + s)

f(xk)− q(xk + s)
(2.8)

Once the positive constants r1 < r2 < 1 and c1 < 1, c2 > 1 are chosen, then the

update to the trust region radius is determined as:

δk+1 =


c1‖s‖ if r < r1

min{c2‖s‖, ∆} if r > r2

‖s‖ otherwise.

(2.9)

where ∆ is an upper bound on the trust region radius. Common values for r1, r2, c1

and c2 are 0.25, 0.75, 2 and 0.5, respectively [66].

The ICASE group demonstrated that one can replace the standard quadratic

approximation, qk, with a more general approximation, ak, without sacrificing the

global or local convergence properties of the Trust Region algorithm. The only condi-

tions placed on this approximation is that it must match both the value and gradient

of the objective function at the point xk. This now provides an even more power-

ful tool for optimization, as global metamodels such as kriging or neural nets can

replace the standard local quadratic models. However, the drawbacks are that this

framework is only developed for unconstrained optimization problems. Obviously,

the majority of engineering design applications require some form of constraints.

This is an area that can be improved with existing extensions of the Trust Region

algorithm to constrained optimization.
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2.2.4 Metamodels in robust design

Recent work has applied approximation methods to robust design. In robust de-

sign, separate noise and control factors are identified. The former refers to values

over which the designer has no direct control, e.g., humidity in the production line

facility. The latter are the more traditional design variables used in optimization,

e.g., part dimensions. The often competing goals of robust design are to find a design

that is both optimal according to some design performance criteria and as insensi-

tive as possible to variations in the noise factors. The latter is usually measured

by the variance of the response. Two recent publications from Georgia Tech [47],

[87] demonstrate their approach to robust design optimization through surrogate

modeling.

To begin, a metamodel is fit as a function of both the noise factors, z, and the

control factors, x. The metamodel consists of a quadratic response model, although

any surrogate model could have been chosen. By evaluating the model while varying

the noise factors, a mean response

µŷ = f(x, z)

is defined. The response model is then used to estimate the robustness of the function

through the variance of the response as

σ2
ŷ =

k∑
i=1

(
∂f

∂zi

)2

σ2
zi

where k is the number of noise factors and σ2
zi

is the variance of the ith noise factor.

A similar method for estimating the variance of the response involves evaluating

the surrogate model for a great number of noise factor settings to find the mean

estimated response values and their variance directly from the model. This Monte
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Carlo-type approach results in more accurate estimates of the variance provided the

response model fits well.

A third method is to use product arrays to vary the noise factors several times for

a single setting of the control factors. In this way, an explicit model of the response

and variance can be made directly from the simulation or true function itself. The

downside is the large number of runs required and the small number of noise factor

settings used for each control setting, thereby leading to a questionable estimation

of variance.

Regardless of the method chosen, a model for both the mean and variance of

each response is now available. With these models, a Compromise Decision Support

Problem (DSP) is formulated. DSP is a multiobjective optimization problem based

on goal programming. The objective is to minimize the deviation function (usually a

weighted sum of individual deviations), which defines how well the design variables

meet their goals. These goals can be both target values for the mean response

models (or smaller-the-better functions) and target values for the variance models.

In this way, a compromise can be struck to balance minimization and robustness. A

comprehensive review of DSP and its application to robust design can be found in

Mistree [56].

2.2.5 Variable complexity response surface modeling

Some researchers have created more efficient metamodels by only modeling the

most promising region of the design space. This approach is called Variable Com-

plexity Response Surface Modeling (VCRSM) [8], [32], [45]. It is a very simple, yet

effective way of reducing the cost and increasing the usefulness of metamodels.

If one could construct a set of simple (e.g., algebraic) constraints that defined
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either infeasible or unreasonable designs, then one could quickly evaluate which de-

signs were good and which were bad. This is especially valuable for large scale design.

The goal is to make an approximation to the computer simulation using only points

that are in the reasonable design space. To that end, an initial design of experiments

(DOE) is performed to define a box around some nominal feasible design. Then a

factorial design is generated within the box to test points against the easy-to-evaluate

constraints. If the points are deemed infeasible, they are discarded immediately or

scaled back towards the center point. If more computationally expensive constraints

are available, additional DOE sweeps are performed. Eventually, only “reasonable”

designs remain. These are then run through the full simulation and stored for later

approximations. The designer can use the data for any type of model they see fit. In

the optimization phase, the expensive simulation is replaced with the model in the

reasonable design space. If a call is made to a point outside this domain, then either

the original simulation or some analytical function which smoothly transitions with

the metamodel is used. In the latter case, a simple penalty function can be used to

steer local optimization algorithms back towards the “reasonable” design space.

2.2.6 Approximation methods in decomposition

Multidisciplinary Design Optimization (MDO) has provided a difficult challenge

for engineering optimization. Expensive computer simulations may be required to

calculate important design quantities for several different engineering disciplines.

The results from one simulation are often fed into another such that the entire

design process involves the coupling of several complex analyses. For example, a

computational fluid dynamics code could predict the forces that the passing air

imposes on an airplane wing. With that information, a finite element analysis could



23

be conducted to estimate the stress distribution throughout the wing. Each of these

codes depends on a distinct, but not mutually exclusive, set of design variables.

Because of the sometimes disjoint nature of the analyses, it is possible to decom-

pose the overall analysis into subspaces of contributing disciplines. Each subspace

is defined by the design variables it can change and by the effect it can have on the

entire system. One of the more difficult problems in MDO decomposition methods

is the question of how to guarantee convergence at the system level and how to re-

solve conflicting changes made by different subspaces. A research group from the

University of Notre Dame has worked on a framework in which approximate models

are used to address these problems [9], [74].

To begin, a group of initial designs is selected and evaluated through the system

level simulation. The results are put into a database and used to create response

surface approximations. In the original work, the approximations were quadratic

models, but neural networks were used in later studies. Next, subspace optimization

is performed. Each discipline changes its own set of design variables in an attempt

to improve the system level merit function or to bring the design towards the feasi-

ble region. However, changing the design variables from one subspace often effects

what happens in the others. Rather than having each subspace discipline run the

other subspace discipline-specific codes to find how their changes effect others, an

approximate model of the other disciplines is used. In this way, designers now have

information to efficiently approximate the impact their decisions have on nonlocal

responses.

The goal of the subsystem level optimization is not necessarily to find the best

possible subspace design. Rather, the framework presented in the work is set up so

that the subspace designers are able to suggest a list of candidate designs. These
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new designs are then run through the system level analysis code and added to the

database. The response surfaces are updated and now the fully approximate system

coordination problem is addressed. Because the system level problem is approxi-

mated by the response surfaces, it can be more efficient than using the full simula-

tion. Convergence checks are made, and if necessary, the subspace level optimization

is begun again.

2.2.7 Exploiting functional cost disparities

An interesting feature common to many computer simulations is that the time

required to evaluate one function (e.g., the objective function) can differ by orders

of magnitude from others (e.g., the constraint functions). Nelson suggested ways

to take advantage of this characteristic in a modified Trust Region algorithm [64].

He directly uses functions (either the objective function or constraints) that are

inexpensive to compute while keeping the traditional quadratic approximation for

expensive functions. By doing so, subsequent iterates are more accurate, thereby

reducing the total number of calls made to the expensive functions. Even though

this requires more calls to the inexpensive functions, the algorithm makes fewer

calls to the expensive functions, and thus the overall time required to solve the

optimization problem is reduced. While theoretical convergence is not fully proven,

several examples in the work provide experimental evidence to support the claim.

2.3 Origins and Development of EGO

In this section we describe the Efficient Global Optimization (EGO) algorithm

that forms the basis of this thesis. While the algorithm did not appear until the

late 1990’s, its origins date back to the 1960’s. EGO fits into a general class of op-

timization algorithms which we will refer to as Bayesian analysis algorithms. These
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global searching algorithms use statistical models from an initial data sample to de-

termine where to next evaluate the functions via an auxiliary optimization problem.

In this section, the historical perspective of Bayesian analysis algorithms and their

development over time is examined. More specifically, issues such as the ability to

solve problems in mutidimensional space, the choice of sampling criteria, convergence

properties and stopping criteria are discussed.

2.3.1 Bayesian analysis

The first known implementation of a Bayesian analysis optimization algorithm

was presented by Kushner in 1964 [51]. In this work, the weaknesses of gradient-based

optimization algorithms were discussed. Kushner stated that local optimizers are well

known for not overcoming local minima when searching for the global minimum.

Intuitively, one would prefer to have an algorithm that searched the entire design

space at each iteration rather than relying on purely local information. To that end,

Kushner introduced Bayesian analysis using the Wiener process model.

In the original work, the algorithm was designed for one-dimensional, uncon-

strained problems. Using a statistical model of the objective function, Kushner’s

method searched for the optimum by locating the point on the metamodel with the

highest probability of improving upon the current best point fmin by some amount

ε, that is,

max
x

P (ŷ(x) < fmin − ε) .

Kushner controlled how local or how global the algorithm searched the space by

changing ε as the iterations progressed. Starting with a large ε (more global search),

it then narrowed to a more local refinement by reducing ε. Because the intervals

between sample points are independent for the Wiener process, the algorithm could
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analytically search each interval to calculate the maximum of the probability mea-

sure. The interval containing the highest probability measure was chosen, a new

sample taken, and the Wiener process model updated. The search terminated when

the probability of finding a better point became sufficiently small. While the formu-

lae may deviate from what is now used in EGO, the concept was identical - search for

a better point based on a statistical model that predicts the probability of exceeding

the current best design.

It took quite some time before the Bayesian approach took root in the field of

global optimization. Some early research into Bayesian methods can be found in

Part One of Dixon and Szegö [25]. It wasn’t until the 1980’s that the P-algorithm as

it came to be known [105] began to see more widespread attention. Advances were

made in both the theoretical and practical aspects.

The remainder of this section highlights some of the research in Bayesian analysis

that eventually led to the work at hand. Other literature reviews on the topic can

be found in the following references [11], [25], [58], [92], [96], [106]. The most recent

review found at the time of this dissertation is that of Jones [41].

2.3.2 Extending the P-algorithm to multiple dimensions

One of the key shortcomings to Kushner’s original work was the fact that the

search was restricted to a single variable due to the use of the Wiener process. By

the late 1980’s, many researchers had extended Bayesian analysis to multidimen-

sional space through a variety of techniques. Stuckman’s implementation [91] of the

P-algorithm used 1-D projections of the Wiener process along lines connecting each

sample point. As with the original P-algorithm, each line segment was searched to

determine the best location for the next sample. Perttunen used Delauney trian-
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gulization on Stuckman’s algorithm to divide the space into n dimensional simplices

[67], [71], [68]. This was a significant development because iterates were no longer re-

stricted to lie along line segments between previously sampled points. Elder also used

a simplex division approach in his GROPE algorithm [27], another implementation

of the P-algorithm. Strongin used a Peano mapping technique to solve multidimen-

sional problems [90]. Both Mockus and Žilinskas also successfully extended Bayesian

techniques to n dimensions [58],[59], [103], [106]. It should be noted that most re-

searchers advise the use of Bayesian algorithms only for small problems, say n ≤ 10

[106].

2.3.3 Choice of statistical models

Another avenue of research has been the statistical model used to locate the

next sample point. Originally, the Wiener process was used because the Markovian

properties provided a simple statistical model that was separable for each interval

between the sample points. Many Wiener-based algorithms were introduced [4], [51],

[53], [54], [75], [105].

Perttunen investigated variations on the Brownian motion model [69]. One par-

ticular model considered was the Ornstein-Uhrbeck process, a close relative of the

kriging model used in this thesis. Perttunen and Stuckman applied a rank transform

to the sampled data in order to better satisfy the assumption of normality in the

model [70], [71]. This transform was also shown to increase the efficiency of the

algorithm. Locatelli allowed for the Wiener model parameter σ to be fit iteratively

during the optimization, enabling a more accurate model of the variance [53]. Calvin

and Žilinskas incorporated derivative information into the model for one-dimensional

functions with continuous derivatives [18].
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Other researchers departed from the Wiener process model completely. A sig-

nificant consequence was that solving problems in Rn became straightforward be-

cause the model itself allowed for it. Gutmann successfully applied Radial Basis

Function models to a statistical-based algorithm [35]. Björkman and Holström have

implemented Gutmann’s algorithm in Matlab [13]. The kriging model-based EGO

algorithm [83], [84], [44], is the algorithm most closely related to this thesis. The

algorithm was originally named Stochastic Processes Analysis of Computer Experi-

ments or SPACE in Schonlau’s Ph.D. thesis.

2.3.4 Choice of infill sampling criterion

Once the choice of a statistical model has been made, one can determine which

design point to sample next. This is done by numerically finding the optimum of some

auxiliary function. Throughout this thesis, this criterion is called the infill sampling

criterion (ISC), taken from the geostatistics literature. However, one should note

that the same concept is also given the name risk function or loss function in the

Bayesian analysis literature [10].

As described above, Kushner’s original work used the following criterion:

max
x

P (ŷ(x) < fmin − ε). (2.10)

Stuckman implemented a version of this criterion for special cases where the mini-

mum objective function value, or some approximation thereof, is known a priori [93].

He shows examples in fields such as curve fitting where the theoretical least squares

minimum is fmin = 0, and we want to find a solution ε close to that bound.

Other researchers have attempted to minimize the average deviation from the

best known point. Mockus’ algorithm [58], known also as the one-step Bayesian



29

method, quantified this as:

min
x

1√
2πσ̂(x)

∫ ∞

−∞
min(y, c) exp

−(y−ŷ(x))2

2σ̂2(x) dy, (2.11)

where ŷ(x) and σ̂2(x) are conditional mean and variance of the model at the point

x, and c = fmin − ε, ε > 0. An adaptive version of this criterion [103] utilizes

max
x

min
i

(σ̂(xi)/(ŷ(xi)− c), (2.12)

where c is defined as above and ŷ(xi) and σ̂2(xi) are the conditional mean and

variance of the model at the sample point xi.

Another group of researchers developed a criterion to quantify the benefit ex-

pected from sampling at a given location. Locatelli applied this to the Wiener

process model [53], [54], while Jones, Schonlau and Welch applied this to kriging

models [44]. The so-called expected improvement function, shown below, forms the

basis for EGO.

max
x

(fmin − ŷ(x)) · Φ(z) + σ̂(x) · φ(z), (2.13)

where

z =
fmin − ŷ(x)

σ̂(x)
,

and Φ(·) and φ(·) are the cumulative density and probability density functions of the

standard normal distribution, respectively.

Cox and John used an approach whereby a lower bounding function was mini-

mized at each iteration [20], [21].

min
x

ŷ(x)− bσ̂(x), (2.14)

where b is a user-controlled parameter that defines how globally or locally to search.

Cox and John reported results using b = 2 and b = 2.5.
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Gutmann [35] proposed a criterion based on the smoothness of a radial basis

function model of the objective function. Gutmann’s algorithm works significantly

differently than those mentioned above. At each iteration, a target value f ∗ for the

objective function is set (similar to fmin − ε in the P-algorithm), and the algorithm

seeks to find which location x is most likely to yield such a value. Gutmann selects

the next iterate based on the following measure of the “bumpiness” of the resulting

model:

min
x

(−1)m0+1µ(x)(ŷ(x)− f ∗)2, (2.15)

where m0 and µ(x) are model parameters. In other words, it seeks the location for

x that is most consistent with the previously sampled data.

There are obviously many more choices for sampling criteria. Sasena, Papalam-

bros and Goovaerts [82] compare several of those listed here and others. Chapter 4

of this thesis examines the issue of sampling criteria in more depth.

With all these methods, it is important to keep in mind practicality. Solving

the design optimization problem via Bayesian analysis requires the additional opti-

mization problem of minimizing the ISC at each iteration. Because this drastically

adds to the CPU time, researchers often remark that such algorithms are best suited

to situations where the objective function is expensive to compute [51]. It is also

posited that exact minimization of the ISC is not critical because the purpose of the

ISC is simply to determine the next sample location [60].

2.3.5 Convergence properties and stopping rules

Like most global optimization algorithms, proving convergence for Bayesian al-

gorithms is difficult. A theorem by Törn and Žilinskas [96] states, as paraphrased

by Jones, [41] “in order to guarantee convergence to the global minimum [of a con-
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tinuous function], we must converge to every point in the domain”. As long as an

algorithm periodically samples in still unexplored regions, it will converge in the

limit. While this is not terribly practical, it at least gives a necessary property for

a globally convergent algorithm. A number of authors describe Bayesian algorithms

that adhere to this theory of convergence [18], [54], [102], [105], [106]. Gutmann

shows a convergence proof for his Radial Basis Function based algorithm [35].

Work has also been done on convergence rates for global algorithms. Mockus

defines the density ratio as the ratio of density of observations in the vicinity of an

optimum to the average density of observations [59]. He states that the density ratio

can be regarded as a replacement of rate of convergence. Calvin also discusses the

convergence rate specific to the P-algorithm [16]. One of the main findings is that

the local convergence of the P-algorithms is quite poor [17], [96]. This is due to

the piecewise continuous nature of the Wiener process. The algorithm can quickly

identify the region around the global optimum, but cannot accurately refine the

solution because the statistical model cannot smoothly match the true continuous

function locally.

To address this problem, several researchers have created hybrid approaches. The

P*-algorithm of Žilinskas [104] uses hypothesis testing to check if a locally optimal

region has been found. If so, an SQP-type algorithm is employed to refine the

solution, then global searching recommences. This method has successfully increased

the local efficiency of the P-algorithm. In a similar approach, Locatelli’s two-phase

algorithm [53] periodically switches from a global search to a local refinement about

the best point. Locatelli and Schoen also show that their algorithm terminates in a

finite amount of time [54].

Equally important to the convergence proof is the convergence criterion. For most
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Bayesian algorithms, the search is terminated by a limit on the number of function

evaluations. Other termination criteria have been investigated, however. Most of

these involve statistically predicting the benefits from additional sampling.

It is first important to understand the k-step look ahead or k-sla rule. As Betrò

defines, “a k-sla rule calls for stopping the sampling process as soon as the current

cost [of stopping prematurely] is not greater than the cost expected if at most k

further observations are taken” [11]. An optimal strategy would be one that correctly

identifies the N observations required to identify the global optimum within the

specified tolerance. Of course, the inability to numerically define such a conditional

probability leads to 1-sla rules whereby the next iterate is assumed to be the last.

This approximation of the optimal search strategy makes the algorithm tractable

[58], [106]. Betrò and Schoen examine the benefits of applying a 2-sla rule [12].

They comment that the added computational difficulty does not justify the meager

gains in solution efficiency.

The 1-sla rule leads to intuitive termination criteria that stops the algorithm once

the cost of sampling an additional observation exceeds the expected improvement

over the current best point. Defining the cost of sampling is left to the user. Such a

criterion works quite naturally with algorithms that use Equation (2.13) as the ISC

and has been implemented in several algorithms [44], [54], [83].

Cox and John propose another criterion based on their lower confidence bounding

function shown in Equation (2.14) [20], [21]. For a value of b = 2, Cox and John

show that the probability of the actual function being below the lower bounding

function is less than 2.5%. Their algorithm terminates if the current best point is

below the best value of the lower bounding function computed at a predetermined

set of prediction sites.
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2.3.6 Miscellaneous advancements

In recent years, numerous other advancements have been made in Bayesian analy-

sis. Schonlau discussed the advantages of searching for several new sample locations

at each iteration [83]. To accomplish this, the expected improvement criterion of

Equation (2.13) is numerically solved several times before sampling the new points.

Jones [41] proposes selecting multiple candidates by using several different targets

for improvement at each iteration. This can be done either by using several values

for ε in Equation (2.10) or for b in Equation (2.14). Doing so allows the algorithm to

choose several candidate sample locations at each iteration, some using local search,

some using global search. Clustering analysis can then be used to select the most

efficient subset of candidates.

A major area where little research has been done to date is constrained optimiza-

tion. Björkman and Holström [13] use a penalty method to transform the constrained

optimization problem to an unconstrained one. Schonlau [83] multiplies the expected

improvement by the probability of feasibility to transform to an unconstrained prob-

lem. The limitations of both these approaches is discussed by Sasena, Papalambros

and Goovaerts [80]. In related papers, we propose incorporating the constraints di-

rectly into the ISC subproblem using a constrained optimizer [81], [79]. Constrained

Bayesian analysis represents one of the main contributions of this dissertation and

is discussed further in Chapter 5.

2.4 Chapter Summary

As seen in this chapter, there are a multitude of approximation techniques in

the open literature. This dissertation focuses on one particular technique, kriging.

This decision is not baseless. Other researchers such as Simpson [86] have made
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the argument that kriging provides a suitable approximation technique for design

optimization that uses computer simulations to evaluate the model functions.

Another point illustrated in this chapter is that optimization algorithms can make

use of approximations in a wide variety of ways. Bayesian analysis is chosen for

further research because it is both simple and very flexible. As kriging models have

been selected for the statistical basis, the EGO algorithm serves as an appropriate

starting point for this thesis. The framework of EGO will be used to explore new

ideas in alternative sampling criteria and constraint handling.

In the next chapter, the kriging technique is explored in more depth.



CHAPTER 3

Understanding Kriging

In this chapter, the approximation method known as kriging is discussed in detail.

The prediction equations are derived, and the model fitting procedures explained.

Differences between two forms of kriging are examined - geostatistics and DACE.

Finally, some strategies for improving the robustness of the fitting procedure are

proposed.

3.1 History and Terminology

There has been much interest of late in a form of curve fitting and prediction

known as kriging. The name refers to a South African geologist, D. G. Krige who

first used the statistics-based technique in analyzing mining data in the 1950s and

1960s [49]. His work was furthered in the early 1970s by authors such as Matheron

[55] and formed the foundation for a entire field of study now known as geostatistics

[23], [34].

At the end of the 1980s, kriging was taken in a new direction as a group of

statisticians applied the techniques of kriging to deterministic computer experiments

[77], [78], [100]. This new research avenue was quickly explored by a variety of authors

as the potential for more general engineering work became apparent. Their process

35
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of experimental design and using kriging models was named Design and Analysis of

Computer Experiments (DACE), much as RSM refers to a set of tools for modeling

and optimizing a system. The form of the kriging equations used in DACE branched

off from traditional geostatistics in the sense that it concentrated and specialized

on only a small portion of the available knowledge. To distinguish this form of the

kriging equations from those found in geostatistics, care will be taken in this chapter

to use the specific terms DACE and geostatistics when differentiating between the

two.

3.2 General Kriging Approach

The following two sections are devoted to developing the equations found in

kriging. Much of the derivation below follows the presentation of Schonlau [83].

Here, a general overview of kriging is given. In the next section, the formulae used

in fitting the model and using it in prediction are derived.

The majority of metamodeling techniques rely on the decomposition Y (x) =

f(x) + ε(x), where the residuals ε(x) are assumed to be independent and identically

distributed (normal distribution), i.e., ∼N(0, σ2) ∀x. The Y (x) is capitalized in order

to specify it as being a random variable. Any particular realization of that random

variable would be written in lower case, as y(x). The main idea behind kriging meta-

models is that the error in the predicted values, ε(x), are not independent. Rather,

they take the view that the errors are a systematic function of x. To understand

this statement better, consider the following illustration where a quadratic equation

is fit via least squares to a given data set. Figure 3.1 shows a narrow region around

two sample point of some true function y(x) (solid line) and its associated regression

model f(x) (dashed line). At the sample point xi, we know the true function value,
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Figure 3.1: Illustration that errors in regression function depend on x

y(xi) and therefore the error ε(xi) = y(xi) − f(xi). At a location xi + δ, for some

small δ, we only know the value of regression function f(xi + δ). Kriging theory

posits that if the error at xi is large, then there is good reason to believe that the

error at xi + δ is also large. This is because there is a systematic error associated

with the functional form f(x). The closer a point x is to xi, the more likely f(x) is

to deviate from the y(x) by the same amount as ε(xi).

A kriging metamodel in multidimensions, which takes the form Y (x) = f(x) +

Z(x), is comprised of two parts: a polynomial f(x) and a functional departure from

that polynomial Z(x). This can be written as

Y (x) =
k∑

j=1

βjfj(x) + Z(x), (3.1)

where fj(x) are the basis functions (i.e., the polynomial terms), βj are the corre-

sponding coefficients, and Z(x) is a Gaussian process. More precisely, Z(x) repre-

sents uncertainty in the mean of Y (x) with E(Z(x)) = 0 and

Cov(Z(w), Z(x)) = σ2
zR(w,x) . (3.2)
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Here, σ2
z is a scale factor known as the process variance that can be tuned to the

data and R(w,x) is known as the spatial correlation function (SCF).

The choice of the SCF determines how the metamodel fits the data. There are

many choices of R(w,x) to quantify how quickly and how smoothly the function

moves from point x to point w. One of the most common SCF’s (shown here for

one-dimensional points w and x) used in DACE is

R(w, x) = e−θ|w−x|p , (3.3)

where θ > 0 and 0 < p ≤ 2. As with all choices of the SCF, the function goes to

zero as |w − x| increases. This shows that the influence of a sampled data point on

the point to be predicted becomes weaker as their separation distance increases. The

magnitude of θ dictates how quickly that influence deteriorates. For large values of

θ, only the data points very near each other are well correlated. For small values

of θ, points further away still influence the point to be predicted because they are

still well correlated. The parameter p is a measure of smoothness. The response

becomes increasingly smooth with increasing value of p. One should also note the

interpolating behavior of the SCF. Because R(x,x) = 1, the predictor will go exactly

through any measured data point. With more advanced techniques, one can allow

the prediction to be non-interpolating. Such a method is presented in Section 3.7.2.

To extend the SCF to several dimensions, common practice in DACE is to mul-

tiply the correlation functions. The so-called product correlation rule applied to

Equation (3.3) results in

R(w,x) =
D∏

d=1

e−θd|wd−dk|pd

, (3.4)

where the superscript d = 1 to D refers to the dimension.
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The metamodels are robust enough to allow a different choice of SCF for each

dimension. For example, a different choice of θ and p is possible for each dimension

j = 1 to d, but some authors suggest that using a single correlation parameter gives

sufficiently good results [77]. In the work at hand, θ and p are fit for each dimension.

3.3 Derivation of the Prediction Formula

In deriving the prediction equations, it is necessary to first define several quanti-

ties and formulae. We begin by revisiting Equation (3.1). The polynomial term of

the model comprises of the k × 1 vector of regression functions

f(x) = [f1(x), f2(x), . . . , fk(x)]t

and the associated k × 1 vector of constants

β = [β1, β2, . . . , βk]
t .

We next define the n× k expanded design matrix

F =



f t(x1)

f t(x2)

...

f t(xn)


.

Notice that each row is one f(x) vector and there are n rows for the n sampled points.

If we notate the stochastic process as

z = [Z(x1), Z(x2), . . . , Z(xn)]t

then for the output of the sampled data, y = [y1, y2, . . . , yn]t, one can rewrite equation

(3.1) as

y = Fβ + z . (3.5)
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Finally, let R be the n× n correlation matrix with element i, j defined by R(xi,xj)

as in Equation (3.4) and let

rx = [R(x1,x), R(x2,x), . . . , R(xn,x)]t

be the n× 1 vector of correlations between the point at which to predict, x, and all

the previously sampled data points xi.

The goal of this derivation is to determine what is called the Best Linear Unbi-

ased Predictor (BLUP). To do so, we will need a measure of the prediction error to

quantify the best covariance model and a constraint to ensure unbiasedness. This

can be written as a minimization problem using Lagrange parameters for the con-

straints. The term unbiasedness refers to the fact that the expected value of the

linear predictor must equal the expected value of Equation (3.5). A linear predictor

is one of the form cx
ty. That is, it uses a linear combination of the sampled data

points, y, with the linear weighting vector cx. Thus, an unbiased linear predictor is

one for which E(cx
ty) = cx

tFβ, since E(Z(x)) = 0 by definition. This also means

that by similar reasoning, E(ŷ(x)) = fx
tβ. Equating these two for all β, we obtain

the set of k unbiasedness constraints:

Ftcx = fx . (3.6)

We now show that for any linear predictor cx
ty of Y (x), the mean squared error

of prediction is

E(cx
ty − Y (x))2 = E[cx

tyycx + Y 2(x)− 2cx
tyY (x)]

= E[cx
t(Fβ + z)(Fβ + z)tcx + (fx

tβ + Z(x))2

− 2cx
t(Fβ + z)(fx

tβ + Z(x))]

= (cx
tFβ − fx

tβ)2 + cx
tσ2

zRcx + σ2
z − 2cx

tσ2
zrx .
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If we substitute the unbiasedness constraint into the above equation, we eliminate

the first term and obtain

E[cx
ty − Y (x)]2 = cx

tσ2
zRcx + σ2

z − 2cx
tσ2

zrx . (3.7)

Introducing the Lagrange multipliers λi , i = 1 to k for the constraints, the best

linear unbiased predictor is the one that minimizes the error above. The formal

statement is

min
cx

[cx
tσ2

zRcx + σ2
z − 2cx

tσ2
zrx]− λ[Ftcx − fx] (3.8)

subject to: Ftcx − fx = 0

Taking the partial derivative of the objective function with respect to cx yields

σ2
zRcx − σ2

zrx − Fλ = 0 .

Notice that the factor of two was removed from the first two terms because defining a

new choice of Lagrange multipliers λ′ = 2λ is permissible. From optimization theory,

we now have two sets of equations to solve in the unknown vectors cx and λ:

Ftcx = fx .

σ2
zRcx − Fλ = σ2

zrx

Rewriting this system of equations in matrix form yields: 0 Ft

F σ2
zR


 −λ

cx

 =

 fx

σ2
zrx

 . (3.9)

Solution of this system leaves the BLUP as

ŷ(x) = cx
ty =

[
fx

t rx
t

] 0 Ft

F R


−1  0

y

 (3.10)
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which is more easily seen as

ŷ(x) = fx
tβ̂ + rx

tR−1(y − Fβ̂) , (3.11)

where

β̂ = (FtR−1F)−1FtR−1y (3.12)

is the generalized least squares estimator of β.

Often, one is also interested in the mean squared error (MSE) of the estimate.

This measure provides an estimate of how reliable the prediction is at a given location.

The MSE is defined as the square of the expected value of the difference between

the predictor and the true value. We have already defined that quantity in Equation

(3.7).

MSE[ŷ(x)] = E[cx
ty − Y (x)]2

= σ2
z [1 + cx

tRcx − 2cx
trx] .

Substituting in the matrices from Equation (3.9) leaves

MSE[ŷ(x)] ≡ σ̂2(x) = σ2
z

1−
[

fx
t rx

t

]  0 Ft

F R


−1  fx

rx


 . (3.13)

Another, less complicated formula for the kriging variance derived in the same Schon-

lau work [83] is

MSE[ŷ(x)] ≡ σ̂2(x) = σ2
z(1− rx

tR−1rx) . (3.14)

The only difference between Equations (3.13) and (3.14) is that the former takes

into account the estimation of β and is therefore slightly more accurate. Using

either formula, the measure will be small near sampled data points and large when

predictions are made far away from the known data locations. Note the use of the
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subscript z to differentiate between the process variance parameter, σ2
z of Equation

(3.2) and the kriging variance, σ2(x), of Equations (3.13) and (3.14). Care is taken

to use this notational convention throughout the thesis.

In summary, the kriging models estimate the mean value and variance as

ŷ(x) = fx
tβ̂ + rx

tR−1(y − Fβ̂) (3.15)

σ̂2(x) = σ2
z

1−
[

fx
t rx

t

]  0 Ft

F R


−1  fx

rx


 ≈ σ2

z(1− rx
tR−1rx) . (3.16)

3.4 Parameter Estimation

With Equations (3.11) and (3.14) above, one can predict the response and MSE

at any untried location. However, the question still remains of what values to use

for the parameters σ2
z in Equation (3.2) and θ and p in the SCF of Equation (3.3).

The DACE approach applies maximum likelihood estimation (MLE). While it will

not be proven here, it can be shown [83] that the MLE of β is the generalized least

squares estimator shown in Equation (3.12). The MLE of σ2
z is

σ̂2
z =

1

n
(y − Fβ̂)tR−1(y − Fβ̂) (3.17)

One can then write the log-likelihood of the stochastic process as

−1

2
[n ln(σ̂2

z) + ln(det(R))] (3.18)

Equation (3.18) is a function of the unknown SCF parameters θ and p only. Thus,

one can use numerical optimization techniques to iterate on these unknowns until

the maximum of this likelihood function (i.e., the maximum likelihood estimate) is

obtained.
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Practically speaking, this optimization procedure can be very time consuming

because of the inversion of the n× n R matrix required in Equation (3.17) for each

set of covariance model parameters evaluated. If one has a large data sample, say

more than 100 data, then the process can become cumbersome. Out of these practical

concerns, some simplifications can be made. For one, the value of p is often fixed

at 2 for all dimensions. The SCF is most often robust enough to adequately fit the

data with only changes in θ. Also, many suggest [77] that the global trend can be

reduced to a simple constant term model (i.e., f(x) = β) without a significant loss

in model fidelity. This simplification, known as Ordinary Kriging in geostatistics,

results in the following formulae

ŷOK(x) = β̂ + rx
tR−1(y − 1β̂) , (3.19)

where

β̂ = (1tR−11)−11tR−1y , (3.20)

and 1 is an n× 1 vector ones.

Figure 3.2 illustrates the impact that the polynomial order of the global trend has

on the resulting model. Three models are fit to the data with a constant term, linear,

and quadratic global trend shown as solid, dashed and dotted lines, respectively.

As one can see in Figure 3.2(left), the difference between the models is practically

negligible in the region around the data. This demonstrates why there is little reason

to fit anything other than the simplest model, a constant term global trend.

However, when one examines the behavior of the models in extrapolation (Figure

3.2(right)), the differences are drastic. When predictions are made far from existing

data (i.e., extrapolation), rx becomes a vector of zeros, and the kriging model de-

generates to the global trend. For this reason, one must be extremely cautious in
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Figure 3.2: Illustration of the impact of the global trend. Different models are fit
with a constant term, linear, and quadratic global trend shown as solid,
dashed and dotted lines, respectively.

the choice of global trend functions if the kriging models are to be used in extrapo-

lation. The general consensus among researchers, however, is to avoid using kriging

for extrapolation whenever possible.

3.5 Effect of the SCF and DOE on Model Accuracy

One question that arises is how much the choice of the SCF influences the ac-

curacy of the kriging model. Simpson addressed the question with an empirical

study using five different SCFs including the exponential model shown in Equation

(3.3) [86]. He used a testbed of six analytical functions to assess the accuracy of

the models. Three measures were used to quantify the accuracy of the metamodel:

the maximum absolute error, the root mean square error (RMSE), and the cross

validation root mean square error. These measures were all normalized by the corre-

sponding sample range so that responses of different magnitudes could be compared

directly. Simpson found that the exponential model performed at least as well as all

others to which it was compared. For that reason, the work here is at least partially

justified in using the exponential SCF for all kriging metamodels.
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Another question that arises is how much the initial choice of design points to

be sampled (i.e., the design of experiments) influences the accuracy of the kriging

model. Simpson also addressed this issue by comparing nine different space-filling and

classical designs. The same examples as before were tested to measure the average

error, RMSE, and maximum error associated with each DOE. It was found that the

classical DOE’s worked reasonably well for a small number of design variables, but

problems with four or more variables showed better accuracy with the space-filling

designs. There was no specific space-filling design that performed better than any of

the others. Therefore, little attention will be paid to the type of space-filling design

used in this work. If the DOE’s used perform reasonably well, no effort will be made

to find better experimental designs.

3.6 How Does DACE Differ from Geostatistics?

The DACE and geostatistical approaches to kriging, while quite similar, have

some important differences. In this section, we look at some of the most significant

differences in order to better understand the form of the DACE approach taken in

this dissertation.

3.6.1 Model fitting

The most significant difference between DACE and geostatistics is the model

fitting method. The standard practice in DACE is to use maximum likelihood es-

timation to find the covariance model parameters. Doing so involves numerically

maximizing the closed-form expression of Equation (3.18). It is most often used as

a black-box fitting method; however, it is prone to error because it is not completely

robust. At times, the optimization algorithm may fail to find the true minimum of

Equation (3.18), and the model will fit poorly. This is often the case because the



47

likelihood function can be multimodal with sharp peaks and valleys. Other times, the

likelihood function itself may be monotonic, forcing the covariance model parameters

to the extreme values, resulting in a poor fit.

Geostatisticians, on the other hand, commonly fit models with the so-called var-

iogram, a plot of the average dissimilarity between sampled data points versus their

separation distance. Large variogram values indicate little correlation between data

points at that separation distance (called a lag). Typically, the variogram function

takes small values at small lags where correlation is strong, then increases until it

reaches a plateau, or sill. The lag distance at which it reaches the sill is called the

range. These sill and range are analogous to σ2
z and θ in DACE modeling Equations

(3.2) and (3.3), respectively. Under the assumption of second-order stationarity, the

variogram

γ(h) =
1

2
Var[Z(x), Z(x + h)]

is related to the covariance function of Equation (3.2) as:

γ(h) = σ2
z(x)− Cov(Z(x), Z(x + h)) , (3.21)

where h is the lag distance between points.

The geostatistician calculates variogram values from the initial data (called the

experimental variogram) for a small number of lags. Once the form of the covariance

function has been chosen (e.g., the exponential model of Equation (3.3)), the sill

and range are changed until the variogram model approaches the experimental vari-

ogram values in a least-squares sense. Finding appropriate parameters can be done

either with numerical minimization of the least squares error or visual fitting with a

graphical software package. Figure 3.3 shows an example of a variogram fitting. The

experimental variogram values for 10 lag values are shown as circles. Two different
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variogram models are shown. They have the same sill, but the dashed model has a

longer range and appears to fit the experimental variogram better. Once model of

the variogram has been established, the geostatistician can then transform the vari-

ogram into the covariance model using relation (3.21) and proceed with prediction.
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Figure 3.3: Example of variogram fitting for two covariance models of different range
but identical sill. Experimental variogram points are shown as circles.

In short, the two approaches to model fitting are polar opposites. DACE modeling

treats model fitting as a black-box, despite the lack of robustness, in order to create an

automated fitting procedure. Geostatistics, however, choose a more labor-intensive,

interactive approach in order to allow the user greater control over the fitting process.

3.6.2 Anisotropy

Anisotropy refers to situations where the spatial variability is a function of both

distance and direction. Geostatistics accounts for two kinds of anisotropy: geometric

and zonal [34]. In the former, the sill of the covariance function is the same every-

where, but the model has a larger range in some directions. The latter accounts

for having variogram models that have different sills in different directions. DACE
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modeling applies a very particular anisotropic model whereby different θ and p values

are estimated for the different dimensions and a simple the product rule is applied.

3.6.3 Global search window

In general, model prediction requires solution of the kriging system, a set of linear

equations:

λSK = rx
tR−1 , (3.22)

where λSK is the vector of so-called simple kriging weights. The size of the R matrix

is n × n where n is the number of sample points. In geostatistics, only the nearest

neighbors of the point at which to predict are used in the kriging system. The search

window determines how many neighbors to include and the maximum separation

distance below which a sample point is included. Typically, a two-dimensional data

set would use only 16 data points in the search window, making the inversion of the

R matrix much easier. As predictions are made around the design space, the search

window shifts to include different sample points. Doing so also results in a local

mean, β̂, that varies throughout the design space to adapt to the local information

by changing the R matrix in Equation (3.12).

The practice in DACE modeling is to use a global search window. That is,

all sample points are included in the kriging system of Equation (3.22) regardless

of the prediction point location. This no longer requires a search for the nearest

neighbors, but the resulting R matrix is much larger and more difficult to invert.

However, if many predictions are to be made using the same model, computational

efficiency can be increased. The quantity R−1(y − Fβ̂) in Equation (3.11) is fixed

because the same data are used everywhere, and therefore it can be pre-computed

and stored with the kriging model. Overall, the DACE approach is more efficient
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because it only requires evaluating rx at each prediction point. However, using the

global search window means that the global trend function, fx
tβ, remains the same

throughout the design space because R is held fixed.

3.7 Improved DACE Modeling

The modeling practice of DACE could be greatly improved by incorporating some

of the tools from the more general field of geostatistics. We investigate some minor

modifications to the DACE approach to improve the robustness and flexibility of the

resulting kriging models, some of which were suggested by Jones [42].

Some modifications were made to improve the conditioning of the R matrix. As

sample points begin to cluster around the optimum, rows of the R matrix become

very similar, resulting in a nearly singular matrix that must be inverted. One way

to improve the conditioning of the matrix is to avoid values of p = 2 in the SCF of

Equation (3.3). Such a model, referred to as the Gaussian model, is known to result

in unstable kriging systems due to the behavior of the covariance model for short

separation distances [72]. To improve the models, we limit the parameter range to

0 < p ≤ 1.99.

We have also applied a variety of other covariance models that are generally

more stable than the Gaussian. The reader is referred to Lin et al. for a discussion

of the differences between them [52]. There has been no consensus in the DACE

community on the “best” covariance model to use in most situations. The results in

this dissertation were gathered using the exponential model as described above.

3.7.1 MLE fitting revisited

In Section 3.6.1, it was noted that the log-likelihood function may behave mono-

tonically, leading to poor model fitting. The phenomenon is illustrated using the
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one-dimensional function shown in 3.4 that was created for this work. It is referred

to as test function #1 throughout this dissertation and is defined as

f = − sin(x)− exp(x/100) + 10 , (3.23)

with x ∈ [0, 10].
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Figure 3.4: Test function #1

Two different sets of seven observations were taken and MLE was used to fit the

models. Data set A consisted of seven equispaced points, whereas the inputs for data

set B were located at x = [0, 2, 4, 5, 6, 8, 10]. Figure 3.5 shows that the model for the

data set A (left) is quite erratic, while the data set B (right) produces a model that is

almost identical to the original function (shown as a dashed line). Figure 3.6 plots the

likelihood function of Equation (3.18) for a range of θ values. For this example, p was

held fixed, making Equation (3.18) a function of θ only. For data set A, the function

monotonically decreases with θ, leading to an “optimal” value θ∗ that hits the upper

limit on θ. With such a large θ∗ value, the kriging model quickly degenerates to

the global constant trend, β̂ (the horizontal line in the graph), producing the erratic

behavior. However, for data set B, the likelihood function has an interior optimum.

The resulting model parameter leads to a much smoother kriging model.
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Figure 3.5: Maximum likelihood fitting for data set A (left) and B (right). The plot
shows the kriging models (solid line), the true function (dashed line),
and the data (circles). The horizontal line in the left graph is the global
trend of the kriging model.

This begs the question, what can one do to detect and prevent the kind of model

generated by data set A? One diagnostic would be to determine if the likelihood

function was in fact monotonic. Further examination of Equation (3.18) reveals

that the log-likelihood is comprised of two additive terms. As θ increases, the R

matrix approaches the identity matrix (no correlation). In this case, the second

term drops out, leaving −n log(σ̂2
z) (the factor of 0.5 was left out). But for the

case of no correlation, the generalized least squares estimate of σ2
z degenerates to

the least squares estimate of the variance in the data, Var(y). This signals that the

log-likelihood function will eventually reach a plateau with a value of −n log(Var(y))

for a large enough theta. One can therefore examine if following is true:

MLE(θ∗, p∗) < −n log(Var(y)) , (3.24)

i.e., the optimal value of the log-likelihood function found during fitting is below the

plateau value. If not, then there is a good chance that the likelihood function was

monotonic and that the resulting model is a poor fit. One should apply this metric
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Figure 3.6: Likelihood function for data sets A (left) and B (right).

rather than simply checking if θ∗ was at its upper limit because the numerical routine

for finding the minimum of the function may result in an MLE value on the plateau,

but with a θ∗ value below the upper limit.

For data set A, one can verify that the MLE(θ∗) was indeed above the plateau

value −n log(Var(y)). To remedy the situation, we attempt to “convince” the MLE

fitting process that there is indeed some correlation in the data by adding the data

point x = 0.1, which is near an existing sample point. We refer to this data sample as

set C. Having two neighboring sample points should improve upon the accuracy of the

short-range variability. That is, the strong correlation between the two points should

increase the acceptability of models with a smaller theta values (i.e., correlation that

takes longer to decay). To verify that the success is not an artifact of having an extra

sample point, another data set (set D) is created by moving one of the data points

next to an existing point. Specifically, the data point at x = 6.67 was replaced by

one at x = 5.1, near the point x = 5.0.

In Figure 3.7 we show the success of MLE fitting for data sets C and D. In both

cases, the resulting kriging model is much more accurate than the original fit from
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data set A. Figure 3.8 shows the associated likelihood functions. Notice that the

optimal likelihood value is indeed below the plateau at −n log(Var(y)), that is, the

fitting function is not monotonic. This example illustrates another way in which the

reliability of the MLE fit can be quickly assessed. Failure to find an optimal point

below the plateau may lead the designer to sample an additional point nearby an

existing sample to reduce the possibility of a monotonic likelihood function. While

this approach is not full-proof, it does provide a simple means for checking a situation

known to result in poor model fitting as well as a means to attempt to correct it.
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Figure 3.7: Maximum likelihood fitting for data set C (left) and D (right). The plot
shows the kriging models (solid line), the true function (dashed line),
and the data (circles).

3.7.2 Non-interpolating kriging models

The approach to kriging described above results in an interpolating surface. That

is, at the sampled data locations, the predictor goes exactly through the data, and

the kriging variance returns to zero. While this is appropriate for many engineering

applications, there are cases where a non-interpolating version of the kriging model

would be very beneficial – for example, when the data are highly noisy.
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Figure 3.8: Likelihood function for data sets C (left) and D (right).

To allow kriging to smooth the data, an additional parameter is introduced into

the SCF of Equation (3.4) to account for the measurement error, E(x). The kriging

model now takes the form Y (x) = f(x) + Z(x) + E(x), and the SCF appears as

R(w,x) = (1− nugget)
d∏

k=1

e−θk|wk−xk|pk

, (3.25)

with 0 ≤ nugget < 1. The name refers to the nugget effect model used in geostatistics

to describe the discontinuity of the covariance function as |w − x| approaches zero.

The scaling factor (1-nugget) is the same as the ratio σ2
z

σ2
z+σ2

E
defined in the DACE

literature [77], [78]. In either case, the additional parameter ranges between 0 and

1 and must be fit via MLE along with θ and p. We prefer the notation shown in

Equation (3.25) simply because it is easier to view the value of nugget which is

usually quite close to zero (e.g., 1e-5) rather than σ2
z

σ2
z+σ2

E
which is usually quite close

to 1 (e.g., 0.99999). Typically, a single scaling factor is applied to the covariance

model. It is, however, possible to fit a separate nugget parameter for each dimension

as

R(w,x) =
d∏

k=1

(1− nuggetk) e−θk|wk−xk|pk

, (3.26)

so that more smoothing is applied in some directions than others.
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A nugget value of zero means that the predictor goes exactly through the data.

Increasing the nugget value results in smoothed models because collocated points no

longer have perfect correlation. The nugget parameter can also be used to improve

the stability of the kriging model. When superEGO is used for design optimization,

points begin to cluster around the optimum (e.g., Figure 1.3(d)), making the R

matrix nearly singular and difficult to invert. In our implementation, a small nugget

effect (e.g., 10−12) is used to improve the conditioning without noticeably smoothing

the data.

It is important to note that the scaling factor (1-nugget) is not applied to the

diagonal of the R matrix, and is applied to each element of the rx vector even when

a prediction point coincides with a sample point. This is done because a point is

perfectly correlated with itself (diagonal of R matrix consists of ones), but would not

be perfectly correlated with a second sample point at the same location (rx vector)

in the presence of measurement error. An example of the resulting kriging system of

equations Rλ = rx is shown in Equation (3.27) for a set of three data points, where

the point at which to predict coincides with data point 1.
1 ηR12 ηR13

ηR12 1 ηR23

ηR13 ηR23 1




λ1

λ2

λ3

 =


η

ηR12

ηR13

 , (3.27)

where λi is the kriging weight for the ith data point, Rij is the (interpolating) corre-

lation between points i and j computed from Equation (3.4), and η = (1− nugget)

or η = σ2
z

σ2
z+σ2

E
depending upon the choice of notation for the scaling parameter. The

solution to this system of equations appears in the kriging prediction formula of

Equation (3.11) as rx
tR−1. The influence of the scaling parameter results in an ap-

proximation that does not pass through the data. However, if one were to not apply



57

the scaling parameter to the first element of rx where the prediction point coincides

with data sample 1 (i.e., r1 = 1), then the resulting approximation be smooth every-

where except at each sample point where it would have a discontinuous “spike” to

the sampled value. For this reason, the scaling parameter is applied to each element

of the rx even if it coincides with a sample point.

A one-dimensional example is shown to demonstrate the smoothing effect. A uni-

formly distributed random number between ±1
2

is added to the quadratic function

y = (x−5)2, x ∈ [0, 10]. Nineteen sample points are taken: 11 equally spaced points

and 8 additional points near the minimum. Kriging models are fit to [θ, p] for the in-

terpolating and [θ, p, nugget] for the smoothing covariance models of Equations (3.4)

and (3.25), respectively. Figure 3.10 shows the predicted value of the interpolating

(solid line) and smoothed (dashed line) kriging models. In the area where the noise

is prominent, the interpolating model oscillates in order to pass through each of the

data samples, whereas the other model is much smoother in a least squares sense.

Figure 3.11 shows the kriging variance. For both the interpolating and smoothed

models, the variance is lower in the middle because more data are available in that

region. A consequence of the smoothing effect is that the variance model no longer

returns to zero at the sample points. This is because the smoothing effectively

increases the uncertainty in the model everywhere. In this example, there is little

difference between the variance of the smoothed model at the sample points and the

variance in locations far from the data. Because of this feature, one must be cautious

when using Equation (3.14) as a measure of the uncertainty in smoothed kriging

models. It is recommended that the interpolating covariance model of Equation

(3.4) rather than Equation (3.25) be used in conjunction with Equation (3.14) for a

more useful estimate of the model uncertainty.
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Figure 3.9: Noisy test function (data points are shown as circles)
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Figure 3.10: Kriging predictions for interpolating (solid) and smoothed (dashed)
models (left). A close up of the boxed region is shown at right. Data
points are shown as circles
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Figure 3.11: Kriging variance for interpolating (solid) and smoothed (dashed) models
(left). A close up of the boxed region is shown at right.
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3.8 Chapter Summary

This chapter has developed the equations for fitting a kriging model and predict-

ing the corresponding mean and variance. The approach used in this work follows the

DACE literature, but incorporates some enhancements. Specifically, an additional

parameter was introduced into the covariance model in order both to improve the

stability of the kriging system and to enable the non-interpolating kriging models.

This version of kriging performs very well for smoothing over noisy data, but the

variance models do not tend towards zero at the sampled data points if the smooth-

ing effect is large. It was also demonstrated that the DACE procedure of MLE fitting

is not robust, but has the advantage of full automation. Some efforts were made to

detect and correct for poor model fits.

In the next chapter, we begin to use the kriging models with superEGO to explore

a series of infill sampling criteria on unconstrained optimization test problems.



CHAPTER 4

Infill Sampling Criteria

The choice of infill sampling criterion is what differentiates most Bayesian anal-

ysis optimization algorithms. Moreover, the vast majority of them use criteria that

search for the minimum of the approximate model, the location of maximum un-

certainty, or some compromise between the two. They do, however, vary in the

quantification of these ideas. In this chapter, several such criteria are compared on

a set of unconstrained analytical test functions.

4.1 A Taxonomy of Criteria

In this section, a number of sampling criteria and their formulae are presented.

Although many of them were developed independently, they often reveal striking

similarities. We begin by describing Kushner’s criterion [51] followed by the expected

improvement function and variations thereof [53], [58], [79], [83]. The next criterion is

the lower confidence bounding function of Cox and John [21]. We then describe three

criteria proposed by Watson and Barnes for the field of geostatistics [99]. The three

metrics - locating the threshold-bounded extreme, locating the regional extreme, and

minimizing surprises - are abbreviated here as WB1, WB2, and WB3, respectively.

Next, we describe the maximum variance criterion. Finally, we propose a hybrid

60
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approach, the switching criterion.

It is necessary first to clarify some notation that will be used for many of the

criteria below. Let fmin be the best sampled function value after n evaluations of

the function y = f(x). For simplicity, we will leave out the dependence on x in this

section, notating the predicted value ŷ(x) as ŷ and the variance σ̂2(x)] as σ̂2. Also,

the notational simplification

z =
fmin − ŷ

σ̂
, (4.1)

is used throughout the chapter and should not to be confused with the Z(x), the

Gaussian process of Equation (3.1).

Throughout this section, the behavior of the various criteria is illustrated using

test function #1 shown in Equation (3.23) (see Figure 4.1). The w-shaped dashed

line is the true objective function we wish to minimize, while the solid line is the

kriging approximation conditional to the sample points shown as circles. The plot at

the bottom is the sampling criterion, normalized to facilitate comparisons between

the various criteria. Higher values for the criterion in these plots are better, but it

is important to note we’ve also changed the sign because the ISC subproblem is a

minimization problem.

4.1.1 Kushner’s criterion

The first criterion, originally proposed by Kushner [51], is to maximize the prob-

ability of improving upon the best point, fmin by some amount ε, quantified as

Kushner = P (ŷ < fmin − ε)

= Φ

(
(fmin − ε)− ŷ

σ̂

)
, (4.2)

where Φ(·) is the Gaussian cumulative distribution function (cdf). The value ε is

a parameter that may either be chosen by the user, or used at its default value of
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Figure 4.1: Example of ISC plot for comparisons. Dashed line is the true function,
solid line is the approximation, circles are the sample points. The plot
at the bottom is the sampling criterion.

0.1% of fmin. To demonstrate the effect of ε on the criterion, two plots are shown

in Figure 4.2 for ε = 0.1% of fmin and ε = 1% of fmin. Note that the lower value of

ε leads to a more local searching criterion because decreasing the numerator of the

cdf tends to make the peak of the probability metric sharper in promising regions.

Larger ε values flatten out the probability curve, making it wider with a lower peak

value, but that effect is not as noticeable in Figure 4.2 because each ISC has been

normalized in the plots.

There are potential problems with this criterion if a wide region results in identical

P values. The criterion cannot distinguish between any of the candidate sampling

locations in the region, although some would be intuitively more beneficial to sample

than others based upon how redundant they are with existing sample locations.

The flatness of the criterion may also pose numerical problems if gradient-based

algorithms are used to solve the ISC subproblem. The methods used here however
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Figure 4.2: Kushner’s criterion for two values of ε

are derivative-free.

4.1.2 Expected improvement

As mentioned in the Chapter 1, the ISC used by EGO is known as the expected

improvement function. It was developed in part to overcome the difficulty of having

to choose a value for ε in Kushner’s criterion. The improvement over the current

best point is defined as

I = max{0, fmin − ŷ} . (4.3)

The expected value of the improvement (i.e., the expected improvement) is computed

as

EI =


(fmin − ŷ)Φ(z) + σ̂ φ(z), if σ̂ > 0

0, if σ̂ = 0

, (4.4)

where φ(·) and Φ(·) denote the probability density function and the cumulative dis-

tribution function of the standard normal distribution, respectively, and z is defined

in Equation (4.1).

Inspection of the expected improvement function reveals two important trends.
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The first term in Equation (4.4) is the difference between the current minimum and

the predicted value multiplied by the probability that Y (x) is smaller than fmin and

is therefore large where ŷ is likely smaller than fmin. The second term tends to be

large where there is high uncertainty about whether or not ŷ will be better than fmin.

Thus, the expected improvement is large for both regions of likely improvement and

regions of high uncertainty. As the prediction variance vanishes at the sampled data

points, the expected improvement also vanishes.

4.1.3 Generalized expected improvement

The generalized form of the expected improvement introduces a non-negative

integer parameter g, as

Ig = max{0, (fmin − ŷ)g}. (4.5)

The resulting recursive formula for the generalized expected improvement is

E(Ig) = sg

g∑
k=0

(−1)k

(
g!

k!(g − k)!

)
zg−k Tk, (4.6)

where

Tk = −φ(z) zk−1 + (k − 1)Tk−2 (4.7)

starting with T0 = Φ(z) and T1 = −φ(z). For a value of g = 1, the criterion

degenerates to the ordinary expected improvement function of Equation (4.4).

The impact of the parameter g in Equation (4.6) is shown in Figure 4.3. For

g = 1 (Figure 4.3(a)), the EI function rises significantly in two areas. The region

on the left is sparsely sampled, leading to high model uncertainty, while the region

on the right is where the probability of finding a better objective function value is

high. For g = 2 (Figure 4.3(b)), the criterion places as much emphasis on the region

of high uncertainty as it does the region of high likely improvement. For g = 10



65

0 1 2 3 4 5 6 7 8 9 10
7

7.5

8

8.5

9

9.5

10

(a) g = 1

0 1 2 3 4 5 6 7 8 9 10
7

7.5

8

8.5

9

9.5

10

(b) g = 2

0 1 2 3 4 5 6 7 8 9 10
7

7.5

8

8.5

9

9.5

10

(c) g = 5

0 1 2 3 4 5 6 7 8 9 10
7

7.5

8

8.5

9

9.5

10

(d) g = 10

Figure 4.3: Expected improvement criterion for different g values

(Figure 4.3(d)), the EI function rises only in the left region where model uncertainty

is high. In summary, increasing the value of g shifts emphasis towards global search

by giving more importance to the second term in Equation 4.4.

4.1.4 Cool criterion

Although the value used for g is extremely significant, there is no obvious way to

select it. Too high of a value could prevent EGO from converging on a good solution

in a reasonable amount of time. Too low of a value could lead EGO to overlook the

global optimum as it searches too locally. By analogy to the Simulated Annealing
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Table 4.1: Cooling schedule for the Cool criterion
Iteration g value

1 - 4 20
5 - 6 10
7 - 9 5

10 - 11 2
12 - 14 1
≥ 15 0

algorithm, which starts searching globally then refines the search more locally as

iterations continue, we propose starting with a large g value, reducing the value

towards zero. The heuristic cooling schedule used in this chapter is shown in Table

4.1. The use of the EI function with this schedule is referred to as the Cool criterion.

Note that this is akin to progressively decreasing the parameter ε as proposed by

Kushner [51].

4.1.5 Lower confidence bounding function

As described in Chapter 2, Cox and John’s SDO algorithm employs a linear

combination of the uncertainty in the model and its predicted value. The so-called

lower confidence bounding (lcb) function appears as:

lcb = ŷ − bσ̂, (4.8)

where b is a user-defined parameter. Cox and John report results for b = 2 and

b = 2.5. Recalling that the lcb function is to be minimized, locations that have either

low function values or high uncertainty are favored by Equation (4.8). Increasing b

increases the emphasis on high uncertainty, thereby forcing a more global searching

strategy. Plots of the lcb function for two b values are shown in Figure 4.4. There

is only a slight difference in the resulting ISC plots. However, the lcb function for

b = 2 would indeed choose the next iterate in the local improvement region on the
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right, whereas it would choose the high uncertainty region on the left for b = 2.5.
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(b) b = 2.5

Figure 4.4: Lower confidence bounding criterion for two values of b

4.1.6 WB1: Locating the threshold-bounded extreme

This criterion was developed in the context of contamination testing where the

objective was to locate points that maximize the probability that at least one of

the infill samples exceeds some specified threshold. This is exactly analogous to

Kushner’s approach. We extend Watson and Barnes’ concept to design optimization

by using fmin as the threshold. The objective is now to maximize the probability of

being no greater than fmin, which is computed as

WB1 = Φ

(
fmin − ŷ

σ̂

)
. (4.9)

Notice that this formulation is exactly Kushner’s criterion for ε = 0, or the general-

ized EI function for g = 0. It is therefore extremely local in its search, and one must

be confident that the model has found the region of the optimum for this criterion

to be successful.

The behavior of this function is illustrated in Figure 4.5(a). The large peak on

the right is because the cdf of a normal distribution is strictly increasing, making
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WB1 largest for positive quantities, i.e., when the predicted value is smaller than

the current best point. The smaller peak in the undersampled region on the left is

due to the large uncertainty, where the large σ̂ lowers the magnitude of the negative

argument of the cdf, thereby increasing the value of WB1.

4.1.7 WB2: locating the regional extreme

The next criterion attempts to minimize the expected value of the smallest ob-

servation once the infill samples have been added:

WB2 =


ŷ + (fmin − ŷ) Φ(z) + σ̂ φ(z) , if σ̂ > 0

0, if σ̂ = 0

. (4.10)

The resulting formula is remarkably similar to the EI function in Equation (4.4).

The only difference is the additional first term, which is the predicted value at the

location of interest. This criterion thus gives slightly more weight to local search

than does the EI function. It is also smoother since it does not return to zero at the

sampled points, see Figure 4.5(b). This appealing trait is noteworthy, as it may help

locate the maximum of the criterion.
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Figure 4.5: Sampling criterion for WB1 and WB2
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4.1.8 WB3: minimizing surprises

The third Watson and Barnes criterion aims to minimize the maximum proba-

bility that a true value deviates significantly from its predicted value. Watson and

Barnes use the simplified expression

WB3 = min
x

max
v

Var[Y (v)|S and x], (4.11)

where x is the candidate infill sample point of interest, v is a generic location in the

design space, and Y (v) is the random variable at the unobserved location v. Note

that the variance is conditional to both the sample set, S, and the candidate infill

sample, x. One can compute the variance of Y (v) because the updated variance

(i.e., the variance of the model once the candidate infill samples have been added)

does not depend on data values, but is a function of only their locations and a

given covariance function. Evaluating WB3 for a given candidate location requires

locating the maximum variance. This minimax problem within the original design

optimization problem adds significantly to the total run time. Thus it is best suited

for problems where the objective function is extremely expensive to calculate.

A characteristic of the updated variance of Y (v) is that it becomes constant if the

distance between v and the closest sample point exceeds the range of correlation.

As a consequence, the profile of WB3 values in Figure 4.6(a) is flat on the left

side, which is undersampled. Also, adding infill samples far from areas that are

not covered will not reduce the maximum variance. These characteristics can cause

serious difficulties in locating the maximum of WB3. For the above reasons, WB3 is

not considered further in this chapter.
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4.1.9 Maximum variance

Because of the inherent difficulty in solving the minimax problem of WB3, a sim-

pler measure of uncertainty is needed. The Maxvar criterion uses the variance at the

candidate location from Equation (3.14) and is to be maximized, see Figure 4.6(b).

While WB3 has the benefit of looking ahead to locate regions of high uncertainty

in the next iteration, Maxvar is much more reliable and easy to compute. In the

example, WB3 and Maxvar would choose the next iterate at approximately the same

location, lending further support for the dismissal of WB3 due to its inefficiency.
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Figure 4.6: Sampling criterion for WB3 and Maxvar

4.1.10 Switching criterion

The final criterion described here is referred to as the switching criterion. In

all of the criteria described above except the last two, the selection process relies

on some compromise between two goals: exploring regions likely to produce local

improvements and sampling regions of high uncertainty. At each iteration, the above

criteria may find a point that is a good compromise between the two goals, but

does not excel at either one. We propose here that there is an advantage to not
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compromising. Instead, the switching criterion alternates between improving local

optima and sampling in regions of high variance as iterations proceed. The search

strategy is somewhat similar to the two-phase algorithm proposed by Locatelli and

co-authors [53] or Žilinskas’ P*-algorithm [104].

For the results shown in this chapter, the criterion alternated in the following

pattern. Five iterations were performed using the Maxvar criterion. Then, the

algorithm switched to a criterion that searched for the minimum point on the ap-

proximate model. Once three consecutive points were sampled within 0.1% of the

design space range of each other, it considered a local optimum as being achieved. It

then switched back to five iterations of Maxvar, and the cycle repeated. This pattern

was chosen on a purely subjective basis for the purposes of these examples.

4.2 Analytical Examples

The impact of each of the above criteria on superEGO is assessed using three

unconstrained analytical examples. Test problems with two design variables were

chosen for better visualization.

4.2.1 Example 1: Mystery function

The first example is a multimodal function in two dimensions with three local

optima, one of which is the global minimum. The origins of this function are unknown

to this author, hence the name mystery function.

f = 2 + 0.01(x2 − x2
1)

2 + (1− x1)
2 + 2(2− x2)

2 + 7 sin(0.5x1) sin(0.7x1x2) , (4.12)

defined over the range xi ∈ [0, 5], i = 1, 2. The global solution has a value of -1.4565

at x = [2.5044, 2.5778]. Figure 4.7 shows the mesh and contour plots of the function.

The global solution is shown as an asterisk on the contour plot.
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Figure 4.7: Mesh and contour plots of Example 1: mystery function

4.2.2 Example 2: Branin function

The second example is the Branin test function [25], defined as

f =

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos x1 + 10 (4.13)

with x1 ∈ [−5, 10] and x2 ∈ [0, 15]. The three global minima at x = [3.1416, 2.2750],

x = [9.4248, 2.4750] and x = [−3.1416, 12.2750] shown as asterisks in Figure 4.8(b)

have identical function values of 0.3979.

−5

0

5

10

0

5

10

15
0

50

100

150

200

250

300

−5 0 5 10
0

5

10

15

Figure 4.8: Mesh and contour plots of Example 2: Branin function
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4.2.3 Example 3: Six hump camelback function

The third example is the six hump camelback function [37], defined as:

f = (4− 2.1x2
1 + x3

2/3)x2
1 + x1x2 + (−4 + 4x2

2)x
2
2 , (4.14)

x ∈ [−10, 10], i = 1, 2. It has six local minima (hence the name of the func-

tion), two of which are global. The solutions occur at x = [−0.0898, 0.7127] and

[0.0898,−0.7127] with a value of f = −1.0316. The original function yields values

five orders of magnitude higher in regions away from the local optima. To make mod-

eling such a function practical, we solved the problem on the subregion x1 ∈ [−2, 2]

and x2 ∈ [−1, 1] which still includes all six local optima. The plots shown in Figure

4.9 are of that subregion.
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Figure 4.9: Mesh and contour plots of Example 3: six hump camelback function

4.3 Methodology and Comparison Metrics

In order to isolate the impact of the infill criteria for the analytical examples, it

was necessary to reduce the influence of model accuracy. Thus for a given example,

the same kriging model parameters were used for each criterion and for all iterations.

Typically, the kriging model parameters θ, p, and nugget are fit at each iteration via
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maximum likelihood estimation (MLE). In preliminary testing, it was observed that

cross-validation fitting often provides more accurate kriging models than MLE fitting

[80]. Thus a set of observations collected from previous experimentation was used to

find good covariance model parameters by minimizing the Root Mean Squared error

of cross-validation. While cross-validation was more expensive, no further model

fitting was required during optimization. The reduced overhead more than made up

for the initial computational costs.

In this work, the optimum of the infill sampling criteria was found via the DI-

RECT algorithm due to Jones [43]. It does not use gradient information and has

global search properties that help it avoid the local optima inherent to the infill cri-

teria. For the examples here, 50 iterations of DIRECT were used, requiring on the

order of 300 evaluations of the infill criteria for each iteration of superEGO. More

information on the search strategy can be found in Section 7.1.

Comparisons of the infill sampling criteria are difficult because there is no rigorous

convergence criterion for superEGO. Schonlau proposed stopping the search once

the ratio of the expected improvement to the current best sample value becomes

sufficiently small [83]. Because this stopping rule has no meaning for the other

criteria studied here, each optimization is stopped after 100 function calls have been

made, and the following metrics are computed:

• f1% metric: The number of iterations required before a point is sampled with

an objective function value within 1% of the true solution.

• x1% metric: The number of iterations required before a point is sampled within

a box the size of ±1% of the design space range centered around the true solution.

• x∗ metric: The Euclidean distance from the best sample point to the global

solution, x∗.
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• RMS metric: The global modeling error. After 100 evaluations, the metamodel

is compared to the true function on a 30 by 30 gridded set of locations. The resulting

errors at N = 900 points are summarized by the RMS error, calculated as

RMS =
1

N

√√√√ N∑
i=1

(ŷ(xi)− f(xi))
2 .

The first two metrics measure how efficiently the algorithm finds the solution,

while the third one measures how accurately it finds the solution. The last metric

evaluates how accurately the final metamodel approximates the response over the

entire design space. For all metrics, lower values are better.

To test the robustness of the results, 10 optimizations were performed for each

criterion using a different set of 10 initial sample points. The same set of initial

points was used across the different criteria. There were 11 criteria evaluated on three

examples, optimized 10 times each – 330 optimizations in all. For each criterion, we

calculated the average value, standard deviation and median for each metric. For

cases where the algorithm was unable to sample a point within the f1% or x1% limits,

the metric was assigned a value of 90, the maximum number of iterations allowed.

4.4 Results

A total of 11 sampling criteria were compared for the three examples. The ab-

breviations used for each is summarized in Table 4.2.

Tables 4.3 through 4.5 show the median value of the performance metrics over the

10 optimization runs for each example. In some instances, a criterion performed well

for most of the 10 optimizations of a particular example, but was unable to satisfy

the f1% or x1% limits in one or two cases. This significantly skewed the average

values of the metrics because only 10 optimizations were performed per criterion per
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Table 4.2: List of criteria compared
Abbrev. Description

EI1 expected improvement function
EI2 generalized expected improvement for g = 2
Cool generalized expected improvement with cooling schedule Table 4.1
K0.1% Kushner’s criterion for ε = 0.1% of fmin

K1% Kushner’s criterion for ε = 1% of fmin

lcb2 lower confidence bounding function for b = 2
lcb2.5 lower confidence bounding function for b = 2.5
WB1 Watson and Barnes’ threshold-bounded extreme criterion
WB2 Watson and Barnes’ regional extreme criterion
Maxvar maximum variance criterion
Switch switching criterion for 5 iterations of Maxvar

example. Therefore, the median value is reported in the tables rather than the mean

to reduce the impact of outliers. Bar graphs are given for the same data in Figures

4.10 through 4.12 to facilitate comparisons. Note that the x∗ metric for the Maxvar

criterion was far higher than the for the others and therefore extends above the limits

of plot.

The results from this study are not intended to provide conclusive evidence of

which criterion performs best for the comparison metrics. Rather, the goal is to

understand how the balance of local/global search as defined by the various criteria

impact their search strategy. Do the criteria designed for more local searching in

fact find the optimum more accurately? Do the criteria designed for more global

searching in fact provide a more accurate metamodel? How effective is the approach

of not compromising? These questions and others will be addressed in the following

sections.
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Table 4.3: Median value of performance metrics for Example 1
Criterion f1% x1% x∗ RMS

EI1 16 16 1.54e-2 2.98e-2
EI2 31 24 1.15e-2 5.45e-2
Cool 16 16 8.06e-3 6.08e-2
K0.1% 32 32 6.30e-3 1.19e-1
K1% 90 90 1.10e-1 1.99e-1
lcb2 15 14.5 1.85e-4 1.77e-1
lcb2.5 25.5 24.5 4.03e-4 1.11e-1
WB1 29.5 29.5 1.25e-2 7.87e-2
WB2 15 15 2.52e-4 1.98e-1
Maxvar 90 90 2.38e-1 8.37e-3
Switch 28.5 28.5 5.91e-3 3.75e-2

Table 4.4: Median value of performance metrics for Example 2
Criterion f1% x1% x∗ RMS

EI1 67.5 19.5 2.38e-2 2.85e-1
EI2 39 25 3.63e-2 3.56e-1
Cool 22 18.5 1.91e-3 7.15e-1
K0.1% 37 26.5 8.34e-3 8.21e-1
K1% 32.5 26 1.24e-2 7.33e-1
lcb2 59 26 1.37e-2 7.26e-1
lcb2.5 60 29 1.85e-2 6.13e-1
WB1 36 22 7.51e-3 6.93e-1
WB2 13.5 9 1.34e-3 1.18e0
Maxvar 90 90 6.70e-1 8.84e-3
Switch 35 16.5 3.06e-3 2.41e-2
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Table 4.5: Median value of performance metrics for Example 3
Criterion f1% x1% x∗ RMS

EI1 6.5 6.5 9.88e-3 5.97e-3
EI2 15.5 15.5 9.61e-3 1.33e-2
Cool 14 14.5 7.38e-4 1.54e-2
K0.1% 7.5 14.5 2.83e-3 1.84e-2
K1% 45.5 45.5 1.86e-2 3.12e-2
lcb2 9 10.5 1.29e-4 2.98e-2
lcb2.5 20.5 22 5.15e-4 2.10e-2
WB1 6 7.5 9.13e-4 1.37e-2
WB2 4.5 5 1.14e-4 3.17e-2
Maxvar 90 90 1.37e-1 1.73e-3
Switch 10 10.5 2.11e-4 5.34e-3
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Figure 4.10: Median value of comparison metrics for Example 1
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(d) RMS metric

Figure 4.11: Median value of comparison metrics for Example 2
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Figure 4.12: Median value of comparison metrics for Example 3
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4.4.1 Solution efficiency

Let us begin by examining how quickly the various criteria arrived at the solution

as measured by metrics f1% and x1%. As expected, the Maxvar criterion did not

find solutions within the 1% limits before the 100 function call limit was reached.

The variance reducing technique does not attempt in any way to improve upon the

objective function, so any sample point within the f1% or x1% limits was purely

coincidental. Theoretically, the generalized expected improvement, Kushner and lcb

criteria can be made more local searching by decreasing their associated parameter

values g, ε, and b, respectively. Generally speaking, the more local searching versions

(EI1, K0.1%, WB2) sampled points within the 1% limits more quickly than criteria for

which the parameter values were higher (more global searching). While the results

are not conclusive, they suggest that the parameter values may be tuned to control

how quickly the algorithm arrives at a local solution. Of course, this comes at the

risk of overlooking the global optimum. An efficient strategy may be to begin with a

local search to quickly find a good solution before continuing on to revisit unexplored

regions.

4.4.2 Solution accuracy

Let us next examine the issue of solution accuracy as measured by the x∗ metric.

The more local searching version of the Kushner criterion (K0.1%) yielded apprecia-

bly more accurate results than K1%. The lcb2 function was slightly more accurate

than the lcb2.5 function for Examples 1 and 3, but based upon statistical hypothesis

testing, the difference in Example 2 was insignificant.

Because only two values of the parameters ε and b were tested here, one cannot

draw conclusions as to how effective changing parameter values is at producing a
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more local search. The parameter b may need to be varied over a wider range in

order to produce results that are significantly more local searching. An exhaustive

sensitivity analysis is beyond the scope of this work, but may provide quantitative

measures of the impact of these parameters on local search accuracy.

Because a wider set of variations on the EI function was tested, more discussion

is merited on its local search accuracy. Changing the parameter g from 1 to 2 did

not appear to have a strong impact on the criterion. In fact, the difference in the

x∗ metric was statistically significant only for Example 2, in which case the local

accuracy for the EI2 criterion was actually better than for EI1. The WB1 criterion

is exactly the generalized EI function for g = 0 and therefore provides results for the

most local searching version of the criterion. The accuracy of the solutions for WB1

far surpassed EI1 and EI2 for Examples 2 and 3. This may indicate that there is a

more significant difference between parameter values of g = 0 and g = 1 than there

is for g = 1 and g = 2. For Example 1 however, there was no statistically significant

difference between the x∗ results for g = 0, 1 or 2.

Additional insight into the question of parameter sensitivity can be gained from

examining the results of the Cool criterion, as it used a wide range of g values for the

generalized EI function over the course of optimization. Analysis of the Cool criterion

verified that the initial few iterations produced data points spread throughout the

design space, but later iterations honed in on a local optimum. In the implementation

here, it continued using g = 0 from iteration 15 to the end, and thus settled on the

most local searching version of the generalized EI function. The results of the x∗

metric indicate that it was significantly more accurate at finding the optimum than

the WB1, EI1 or EI2 criteria. Further testing may increase the understanding of how

parameters such as these impact the local searching accuracy of such criteria.
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The WB2 criterion is essentially the predicted function value added to the EI

function and is therefore slightly more local searching. For all three examples used

here, the x∗ metric for the WB2 criterion was substantially better than for the EI1

criterion. This may be due to the relative ease of locating the criterion’s optima.

As described above, the EI function returns to a value of zero at each sample point.

As a consequence, the expected improvement function becomes extremely “bumpy”

as sample points begin to accrue around the optimum. Such a function is difficult

to optimize when solving the ISC subproblem. The WB2 criterion does not exhibit

this spiked behavior and is therefore more likely to produce a good iterate. To

illustrate the difference between the two criteria, 30 points were sampled for the one

dimensional example used in the plots of the previous section. Most of samples occur

near the optimum on the right (see Figure 4.13). The two criteria have an optimum

at the same location. However, it is apparent that the WB2 criterion is much more

likely to successfully locate the optimal infill sample during the ISC subproblem. For

this reason, the WB2 criterion may provide a more robust criterion than the expected

improvement function.

4.4.3 Global searching properties

We next examine the global searching properties of the criteria. Because inter-

polating kriging models were used in these examples (i.e., nugget = 0), we have

quantified the amount of global searching by the RMS of the approximation after

100 function calls. Note that in all three examples, the Maxvar criterion performed

extremely poorly for the first three comparison metrics. However, it is designed to

spread points throughout the design space and therefore provided a benchmark as

the most global searching criterion. The switching criterion also placed a large em-
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Figure 4.13: Comparison of the relative difficulty in locating the next iterate using
the EI criterion versus the WB2 criterion

phasis on global searching. Its RMS metric was the second best for Examples 2 and

3, and came in a close third to the EI function for Example 1.

As discussed in the last subsection, the parameters used in defining the criteria

play an important role in how locally or globally they search. There was, however,

no strong evidence here to suggest that more global searching parameter settings

resulted in better RMS metrics. In fact, quite the opposite is true for many cases. For

example, the EI1 criterion actually yielded better RMS metrics than the EI2 criterion.

One possible explanation relates to the difficulty in solving the ISC subproblem as

shown in Figure 4.13. It is conceivable that failure to locate the true optimum of

the ISC subproblem led to sample points being more spread out around the design

space because only local optima of the criterion could be found. These local optima

would occur in between the sample points where the variance was at its peak.

4.4.4 Periodic local search

Based on the success of the switching criterion, it was hypothesized that some

additional local search may improve upon the accuracy of the criteria. A periodic
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local search was performed whereby the approximate model of the objective function

was used as the sampling criterion to be minimized. Once every ten iterations,

superEGO would find the minimum of the approximate model and sample the next

iterate at that location, thereby increasing the solution accuracy. It would then

return to whatever sampling criterion was specified by the user. Because 90 iterations

were performed, the periodic local search occurred 9 times during each optimization.

Local searching versions of the same tests as above were performed. Comparisons

between the two approaches are shown as bar graphs in Figures 4.14 to 4.16. The

results from the standard approach and periodic local searching are shown as black

and white bars, respectively. It should be mentioned that the local search performed

here is exactly the same as that used in the switching criterion. For that reason,

the difference between the standard and local searching variations of the switching

criterion are not meaningful. The local searching version simply changed the cyclic

pattern of the switching criterion.

In general, it appears that the periodic local search has limited success. In most

cases, it significantly reduces the number of iterations required to sample a point

within the f1% or x1% limits. However, it does not systematically do so. There are

several cases where the standard technique is at least as efficient.

One fairly consistent result is that the periodic local search results in worse RMS

metrics. This was expected because the nine iterates produced during the minimiza-

tion of the metamodel tend to pile up near the optimum.

The periodic local search made a significant improvement in the x∗ metric for all

criteria in Example 3. However, there were several criteria in the first two examples

for which the periodic local search actually resulted in a worse x∗ metric, significantly

so in many cases. The reason for this is not yet clear. It is possible that the difference
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Figure 4.14: Comparison of metrics for standard approach (black) and periodic local
search (white) for Example 1

in local search strategies was the cause. All the criteria except the switching criteria

attempt to locate points with low objective function values using the z-statistic

Φ(z) rather than purely minimizing ŷ as does the periodic local search. The former

approach may be more successful than the latter. If that is the case, a more successful

strategy may be to perform a periodic local search using the WB1 criterion instead.
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(a) f1% metric

0

10

20

30

40

50

60

70

80

90

100

EI
1

EI
2

Co
ol

K0
.1
%

K1
%

lcb
2

lcb
2.
5

W
B1

W
B2

M
ax
va
r

Sw
itc
h

(b) x1% metric

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

EI
1

EI
2

Co
ol

K0
.1
%

K1
%

lcb
2

lcb
2.
5

W
B1

W
B2

M
ax
va
r

Sw
itc
h

(c) x∗ metric

0

0.2

0.4

0.6

0.8

1

1.2

1.4

EI
1

EI
2

Co
ol

K0
.1
%

K1
%

lcb
2

lcb
2.
5

W
B1

W
B2

M
ax
va
r

Sw
itc
h

(d) RMS metric

Figure 4.15: Comparison of metrics for standard approach (black) and periodic local
search (white) for Example 2
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Figure 4.16: Comparison of metrics for standard approach (black) and periodic local
search (white) for Example 3
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4.5 Discussion

The main discussion of this chapter revolved around the balance between local

and global searching. On one hand, the designer wishes to find the optimal solutions

quickly and with as much accuracy as possible. On the other hand, there is the risk of

overlooking the global optimum by overemphasizing the local search. There are also

cases where the designer may wish to perform future analysis and what-if studies on

the same problem. The ability to produce an accurate global approximation during

the course of optimization is a valuable contribution to that end. However, it was

shown that criteria that tend to be good at local searching are not always good at

producing good global accuracy of the resulting approximation.

It was proposed that a more effective strategy may be to alternate between local

and global search over the course of the optimization rather than to compromise

between the two at each iteration. While the results here are not conclusive, they

are quite promising. The switching criterion was the only one to perform well for all

four metrics. In most cases, the switching criterion performed better than all others

except the Maxvar criterion for the RMS metric. However, the switching criterion

also performed quite competitively at the x∗ metric as well, coming in either third or

fourth in each example. It was not significantly less efficient than the other criteria.

However, if efficiency of finding local solutions was of more importance, the number

of Maxvar iterations performed in the switching cycle could have been adjusted.

The results here provide some evidence to support the claim that there are ad-

vantages to focusing on one objective at a time, rather than compromising at each

iteration. The current implementation of superEGO only samples one new infill per

iteration, making the switching criterion the only way of avoiding compromise. Other
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researchers have performed similar Bayesian analysis studies that gather several new

sample points per iteration [7], [41]. For each iteration, some of the new sample

points are global searching and others are local searching, rather than compromising

for the entire set of new infills. Similar to our own results, their research suggests

that there are benefits to this approach. For future enhancements of superEGO, the

ability to select multiple infill points per iteration would benefit from the findings of

this research.

4.6 Chapter Summary

This chapter examined the differences between many of the sampling criteria

proposed in the literature. Moreover, the criteria tend to produce similar search pat-

terns that balance the objectives of finding local optima and searching in previously

unexplored regions. It was shown, however, that some of the criteria can be guided

more towards local or global search by changing the value of some criterion-specific

parameters. It was also demonstrated that there may be advantages to alternating

between local and global search rather than compromising between the two at each

iteration.

The next chapter examines methods for including constraints in Bayesian analy-

sis.



CHAPTER 5

Constrained Bayesian Analysis

The ability to incorporate nonlinear constraints is an important but as yet rel-

atively unexplored aspect of Bayesian analysis. In this chapter, we examine several

methods for extending Bayesian analysis to constrained optimization. In addition, a

new method is proposed for locating feasible points within the design space, which

is particularly useful for problems where the feasible design space is disconnected.

5.1 Methods for Constraint Handling

Bayesian analysis was originally developed for the optimization of simply bounded

problems, that is, with constraints only on the ranges of the design variable values

to be considered. More recent research has attempted to extend Bayesian analysis to

include general, nonlinear constraints. This author is aware of only four approaches

for doing so: the probability method of Schonlau [83], the penalty method [79], [80],

the expected violation method of Audet et al. [7], and the constrained ISC method of

Sasena et al. [81]. In this section we examine each method and discuss the rationale

for choosing the constrained ISC approach.

91
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5.1.1 Probability and penalty methods

The first two methods – the probability and penalty methods – are related in

that they both attempt to transform the constrained optimization problem into an

unconstrained one. In his work, Schonlau suggests multiplying the value of the

expected improvement by the probability that the point is feasible. In this way, the

probability of feasibility will reduce the magnitude of the expected improvement,

driving it to zero where there is a very low likelihood of feasibility. Schonlau reports

successful optimization of an engine piston subject to friction constraints using the

probability method.

One concern is that the probability method will impact the value of the infill

criterion too strongly, keeping the algorithm from exploring points directly along the

constraint boundary where the true optimum lies. A proposed remedy is to use a

penalty method, whereby a large constant (i.e., a penalty) is added to the criterion in

order to restrict it from choosing infill samples in the infeasible region. Björkman and

Holström apply a penalty method to their algorithm [13]. The penalty method will

theoretically provide a sharp adjustment to the sampling criterion at the constraint

boundary. By contrast, the probability-adjusted sampling criterion will transition

into the infeasible zone more gradually. To illustrate the difference between the

two, an optimization is performed on the mystery function from Chapter 4 with an

additional constraint as shown in Equation (5.1).

min f(x) = 2 + 0.01(x2 − x2
1)

2 + (1− x1)
2 + 2(2− x2)

2 + 7 sin 0.5x1 sin 0.7x1x2

subject to: g(x) : − sin (x1 − x2 −
π

8
) ≤ 0 (5.1)

Figure 5.1 shows the contour of the EI function without adjustment in the region

near the constrained optimum. The contours of the kriging approximation of the
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objective function are shown as dashed lines. The constraint boundary cuts diago-

nally across, the bottom right being the feasible side. The circle on the top left is

the nearest sample point, and the asterisk near the center is the location of the true

optimum. The fact that the true optimum lies directly on the boundary of the con-

straint metamodel is an indication that the constraint was approximated accurately.

The optimum of the EI function is shown as a triangle.
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Figure 5.1: Contour plot of EI criterion for Equation (5.1). Dashed contours are of
the true objective function. Sample point, true optimum, and optimum
of ISC are shown as a circle, asterisk, and triangle, respectively.

Figures 5.2(a) and (b) show the contours of the probability-adjusted and penalty-

adjusted EI criterion, respectively. The optimum for each criterion is shown as a

triangle. Although both criteria drop off quickly in the infeasible region, the optimum

of the penalty method is much closer to the constraint boundary than the probability

method. This provides support to the claim that the probability method effectively

pushes the infill sample point away from the constraint.

A similar test was run adding three sample points around the optimum. Figures

5.3(a) and 5.3(b) show the contours of the probability- and penalty-adjusted criteria,
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respectively, with the additional sample points shown as circles and the optimum

infill points shown as triangles. The two are extremely similar in shape and in

the location of their optima. The probability method drops off slightly past the

constraint boundary whereas the penalty method drops exactly at the boundary.

The implications are unclear. Further testing must be done to understand what

happens as points begin to cluster around the constraint boundary or as the number

of constraint functions increases.
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(a) Probability-adjusted EI
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(b) Penalty-adjusted EI

Figure 5.2: Contour plot of the adjusted EI criterion for Equation (5.1). Dashed
contours are of the true objective function. Sample point, true optimum,
and optimum of adjusted ISC are shown as a circle, asterisk, and triangle,
respectively.

To visualize how the different methods behave, a 100 point optimization was

performed on Equation (5.1). Figure 5.4 shows a comparison of the function calls

made by the EI criterion with the probability method throughout (a) and with a

switch to the penalty method after ten iterations (b). The contours are of the

true functions, and the initial samples are shown as circles and the infill points

as x’s. While both methods cluster around the global optimum, the probability

method samples more frequently in the infeasible space. The penalty method clusters
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(a) Probability-adjusted EI
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(b) Penalty-adjusted EI

Figure 5.3: Contour plot of the adjusted EI criterion for Equation (5.1) in the pres-
ence of additional sample points. Dashed contours are of the true objec-
tive function. Sample points, true optimum, and optimum of adjusted
ISC are shown as a circle, asterisk, and triangle, respectively.

more sample points around the optimum on the feasible side of the constraint. For

optimization problems where strict feasibility at each iteration is important, using a

penalty method may prove useful.

5.1.2 Expected violation method

Another method for constraint handling was proposed by Audet and colleagues at

Rice and Boeing [7]. They take an alternative approach whereby the constraints are

inspected before the sampling criterion is considered. Their Constrained, Balanced,

Local-Global Search (CBLGS) algorithm incorporates the expected improvement

function of Equation (4.4) and is designed to search for ngoal infill samples per

iteration from among a finite set of candidate locations generated by a large Latin

hypercube. They first calculate the expected violation of each candidate, defined as:

EVi =


(ĝi − 0)Φ( ĝi−0

σ̂i
) + σ̂ φ( ĝi−0

σ̂i
), if σ̂i > 0

0, if σ̂i = 0

, (5.2)
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) Penalty method

Figure 5.4: Differences in the feasibility of sampling regions for the probability and
penalty methods. The contours are of the true functions, and the initial
samples are shown as circles and the infill points as x’s.

where ĝi and σ̂i are the predicted mean and standard deviation of constraint i,

respectively. The dependence on x is left out for notational simplicity. Note that

the expected violation is exactly analogous to the expected improvement function.

It is low except in regions where the constraint is likely to be violated or where

there is a large uncertainty in the model of the constraint. The expected violation

is vector-valued for problems with multiple constraints.

The CBLGS algorithm then accepts any candidate for which the infinity norm

(i.e., maximum) of the expected violation vector is within a user-specified limit. The

expected improvement is then calculated only for the set of acceptable candidate

points. Finally, the algorithm evaluates the true functions at the ngoal number of

candidate locations for which the expected improvement is largest, where ngoal = 5

in their implementation.

The expected violation as given by Audet et al. is not sufficiently defined. If a

candidate point coincides with a previously sampled point, the expected violation will
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be zero if the sample point is feasible. However, if the sample point is infeasible, there

is no discussion of what value to assign the expected violation in such a case. In our

implementation, we have arbitrarily assigned a value of 1000 to such an occurrence.

To help visualize the expected violation, we have used test function #1 as a

constraint that must satisfy

g(x) = − sin(x)− exp(x/100) + 10 ≤ 9.4 , (5.3)

we get the expected violation shown in Figure 5.5. It has a large peak in the center

and a smaller one on the right where it is fairly certain to be infeasible. It also has a

smaller peak on the left where the uncertainty is high. The latter behavior is actually

quite detrimental because it may prevent the optimization algorithm from sampling

points in regions of high uncertainty.
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Figure 5.5: Plot of expected violation for Equation (5.3). Dashed line is the true
function, dotted horizontal line is the constraint boundary, solid line is
the approximation, circles are the sample points. The plot at the bottom
is the expected violation.
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5.1.3 Constrained ISC method

The fourth method for handling constraints, originally proposed by Sasena, Pa-

palambros, and Goovaerts [81], is simply to solve the ISC subproblem as a constrained

optimization problem. Rather than transforming the ISC, the information about con-

straint satisfaction is considered directly in the solution of the ISC subproblem. This

is different than the expected violation method in that a constrained optimization

problem is solved rather than an exhaustive enumeration of the expected violation

at a predetermined set of candidate sample points. The constrained ISC method has

been selected for the superEGO algorithm.

5.1.4 Justification of choosing constrained ISC method

Before continuing, let us briefly give some justification for choosing the con-

strained ISC method. First of all, we have rejected the probability method. Based

on some preliminary analysis, it appears to have difficulty finding solutions directly

along the constraint boundary. Another important shortcoming is that the proba-

bility method will not work with every kind of sampling criterion.

Consider, for example, the local search criterion described in Chapter 4 which

uses the predicted value of the objective function, ŷ(x), as the ISC. Multiplying

ŷ(x) by the probability of feasibility would not result in the next infill point being

the constrained minimum of the ŷ(x). For instance, if ŷ(x) took on both positive

and negative values, multiplying it by a number between 0 and 1 would not have

the desired result. The strength of superEGO is its flexibility to offer a variety of

sampling criteria. Using the probability method would restrict the set of applicable

criteria, rendering it impractical for implementation within superEGO.

The penalty method, however, will work regardless of sampling criterion. In
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infeasible regions, it simply increases the value of the ISC to be minimized, making

it general enough for our purposes. There are however, shortcomings of the penalty

method that cause us to reject it as well. For one, adding a penalty to the objective

function of the ISC subproblem creates a large discontinuity exactly at its optimum.

This makes accurately finding the optimum infill sample quite difficult, especially

for the DIRECT algorithm which is used to solve the ISC subproblem. Another

difficulty associated with penalty methods is finding a good value for the penalty

parameter. For these reasons, the penalty method of constraint handling has been

rejected for the purposes of this research.

The expected violation method for handling constraints has some advantages

over the probability and penalty methods. First, it does not transform the sampling

criterion, thereby avoiding any undesirable distortion. Second, the expected violation

is computed before the ISC objective. Then the ISC objective is only computed for

those candidates that “pass the test”. This is an efficiency measure that may reduce

the time needed to solve the ISC subproblem.

There are shortcomings to the expected violation method that leads us to choose

the constrained ISC method. The most significant is the way in which it locates

the infill sample. Because it evaluates points from among a finite set of candidates,

it may not be able to locate the optimum of the ISC subproblem as accurately as

solving the constrained ISC subproblem as an optimization problem. In addition,

the number of candidate points to evaluate must be very large for there to be any

reliability in the selected infill. Audet and coauthors report using Latin hypercubes

of 10,000 to 100,000 candidates when searching for the next iterate [7]. This is

much more than would be required for a reliable constrained optimization, even for

a moderately large number of design variables.
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For the above reasons, we have decided to use a constrained optimization algo-

rithm, namely DIRECT, to extend Bayesian analysis to constrained optimization via

the constrained ISC approach.

5.2 Quantifying Constraint Satisfaction

Having decided upon the method for incorporating constraints into superEGO, we

turn our attention to how to measure if a constraint has been satisfied. The difficulty

lies in the fact that we only have approximations of our constraint functions. The

question is how best to use the approximations to locate design points that satisfy

the true constraint functions.

The constrained ISC method is quite general and allows for any number of meth-

ods for quantifying the constraint violation. The superEGO algorithm currently im-

plements six different approaches. The choices are summarized in Table 5.1 below.

There are three ways to quantify the satisfaction of each constraint: the probability

of feasibility, the estimated feasibility, and the expected violation function. One may

use each metric as a vector, or take the maximum of the vector.

Table 5.1: List of metrics for quantifying constraint satisfaction
Name Formula Description

Probabilityv P(ĝ(x) ≤ 0) ≥ Ptol vector

Probabilitys maxi P(ĝi(x) ≤ 0) ≥ Ptol scalar

Estimatedv ĝ(x) ≤ 0 vector

Estimateds maxi ĝi(x) ≤ 0 scalar

EVv EV(x) ≤ 0.01 vector

EVs maxi EVi(x) ≤ 0.01 scalar

The probability metric states that the probability of feasibility must be greater
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than some tolerance. By default, Ptol = 0.95 in superEGO, but the user may spec-

ify any threshold. The estimated feasibility metric uses the predicted value of the

constraint functions directly as constraints of the ISC subproblem. The tolerance on

the constraint is that of the original design problem. The last metric is the expected

violation of Equation (5.2), which is constrained to be below 0.01 as suggested by

Audet et al [7].

To better understand these metrics, we defined a new example in Equation (5.4)

which will be referred to as test function #2.

min f(x) = −(x1 − 1)2 − (x2 − 0.5)2

subject to: g1(x) : (x1 − 3)2 + (x2 + 2)2 e−x7
2 − 12 ≤ 0

g2(x) : 10x1 + x2 − 7 ≤ 0 (5.4)

g3(x) : (x1 − 0.5)2 + (x2 − 0.5)2 − 0.2 ≤ 0

defined over xi ∈ [0, 1], i = 1, 2. There are local optima at x = [0.2316, 0.1216]

and x = [0.2017, 0.8332]. The latter is the global solution which has a value of

-0.7483, and g1 and g3 are active. Figure 5.6 shows the problem. At left is the

objective function, which gets better away from the point [1,2]. At right is a contour

plot where the solid and dashed contours are of the objective and the constraints,

respectively. The shaded region is the feasible design space. Because the two active

constraints meet at the objective at an acute angle, this problem can be difficult to

solve accurately by approximation-based methods.

We began by running a 50 point optimization on the example using the expected

improvement as the ISC. It was observed that after superEGO found a design point

reasonably close to the solution area, it began sampling the same point repeatedly.

This behavior was examined further by creating plots of the sampling criterion. As
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Figure 5.6: Contour plot of test function #2. Solid contours are of the objective,
dashed lines are constraints. The problem is feasible in the shaded area.
The optimum is shown as a filled in circle.

shown is Figure 5.7, the expected improvement function to be minimized is almost

completely flat (with a value of zero) until the predicted value of the objective func-

tion drops below the current best point. This can be explained by the fact that the

model had a very low variance, and therefore the expected improvement function

took on non-negligible values only for regions of good improvement.

The problem we experienced occurred because of the constraint functions. They

are shown in both plots as solid lines. In this example, the vast majority of the

feasible design space is flat, with a only small corner below the plane. While in

theory, the sampling criterion does in fact lead to a good design point at that corner,

the practicality of finding such a point is a concern. Because there is no trend for

most of the feasible space to guide the search to the corner, narrowing in on the

solution was difficult.

To address this difficulty, we used the WB2 criterion described in Section 4.1.7,
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which adds the predicted value of the objective to the expected improvement func-

tion. This criterion, shown Figure 5.8, had a definite trend throughout the entire

feasible design space, guiding the DIRECT algorithm more easily towards the opti-

mum of the ISC subproblem. This provides additional support to favor WB2 over

the expected improvement criterion.
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Figure 5.7: Plots of the EI criterion for Equation (5.4). The constraint boundaries
are shown as dashed lines.
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Figure 5.8: Plots of the WB2 criterion for Equation (5.4). The constraint boundaries
are shown as dashed lines.

Having decided upon a sampling criterion, we next examined the behavior of

the six constraint satisfaction metrics by running a series of optimizations for 50
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function evaluations. As with the methodology described in Section 4.3, we fixed

the covariance model parameters for all iterations to reduce the influence of model

fitting on the results. We also ran 10 optimizations for each constraint satisfaction

metric to reduce the impact of the DOE for the initial 10 point sample.

Table 5.2 and Figure 5.9 show the comparison metrics used here: x∗ and xnearest.

The former is the Euclidean distance from the best sampled feasible point to the

known solution for Equation (5.4). The xnearest metric is the Euclidean distance

from the known solution to the nearest point sampled, feasible or not.

Table 5.2: Comparison of constraint satisfaction metrics
Metric x∗ xnearest

Probabilityv 2.20e-4 2.20e-4
Probabilitys 2.20e-4 2.20e-4
Estimatedv 2.77e-5 1.56e-5
Estimateds 2.20e-4 2.20e-4

EVv 1.84e-1 5.49e-3
EVs 2.49e-1 9.48e-3
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Figure 5.9: Comparison of constraint satisfaction metrics. Figure (a) cuts off the
values for EVv and EVs because they are 3 orders of magnitude larger.

The results exhibit a few trends worth noting. For one, the scalar-valued treat-



105

ment of the constraint satisfaction metric was never better than the vector-valued

treatment. This indicates that, while computationally simpler, there does not ap-

pear to be much gain in using the maximum of a constraint satisfaction metric rather

than the vector itself. In fact, the results for the vector-valued Estimatedv metric

was significantly better than for the scalar Estimateds metric. The DIRECT algo-

rithm is not significantly slower for a problem of ten constraints than it would be

for one with a single constraint. Therefore, there is no impetus for using the scalar

valued constraint satisfaction metric. A second observation of interest is that the

Estimatedv metric appears to locate the constrained optimum more precisely than

the others. The probability metric appeared to perform fairly well also, but using

the expected violation metric did not perform well.

While we have only tested a single example function here, there is reason to believe

that the conclusions may generalize. It was discussed above that the measuring

the constraint satisfaction as the probability of feasibility may be too conservative,

preventing the algorithm from sampling points close to the constraint boundary. As

for the expected violation, note the significant difference between the x∗ and xnearest

metrics. This indicates that the expected violation may be too liberal, choosing

candidates points that are in truth infeasible.

These interpretations are validated by the example here. Figure 5.10 shows the

contours of the constraint satisfaction metric (solid lines) against the true constraint

boundaries (dashed lines). The contours of the WB2 metric are shown as dotted

lines. For all plots, the same set of sample points was used, four of which were in the

vicinity of the true optimum. At the global view, the only noticeable trend is that

estimated value of the constraint appears to match the true constraint boundary

more closely than either the probability or expected violation metrics. Figure 5.11
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shows a close-up of the region around the optimum. At this view, it is clear that

the probability metric is somewhat conservative, the estimated metric is difficult to

distinguish from the true boundary, and the expected violation metric is too liberal.

These plots confirm the hypothesis that the expected violation metric resulted in

a worse x∗ metric for this example because most of the infills it chose were in fact

infeasible. The behavior of the expected violation is such that it gradually increases

around the infeasible zones (e.g., see Figure 5.5). If the expected violation does not

reach a value of 0.01, it is considered an acceptable candidate point. The metric

chose infills in the infeasible region because their expected violation was below the

threshold. Determining an acceptable value for the threshold is difficult. Too low a

value will result in the metric being too conservative, avoiding points directly along

the constraint boundary. Too high a value will result in overconfidence, and many

sample points will be placed in the infeasible region.

In general, the probability and expected violation metrics do not predict the

constraint boundary as accurately as using the kriging models directly to estimate

them. This is perhaps due to the fact that they incorporate the kriging variance.

It has been the experience of this author that the kriging variance is not always a

reliable measure of the uncertainty in the model. It is not unusual to fit a kriging

model to a data set that matches the true function quite accurately, yet produces

very high, or even erratic kriging variance values. Because using the estimated value

of the constraint function does not include any information from the kriging variance,

it may be more robust than either the probability or expected violation metrics.

Based upon the discussion above, it is recommended that the vector of constraint

values estimated from the kriging models be used as the measure of constraint sat-

isfaction.
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Figure 5.10: Differences between the quantification of constraint satisfaction. The
contours of the ISC are dotted lines, the true constraint functions are
dashed lines and the ISC constraint functions are solid lines.



108

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

(a) Probabilityv

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

(b) Probabilitys

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

(c) Estimatedv

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

(d) Estimateds

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

(e) EVv

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

(f) EVs

Figure 5.11: Differences between the quantification of constraint satisfaction (close-
up). The contours of the ISC are dotted lines, the true constraint
functions are dashed lines and the ISC constraint functions are solid
lines.
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5.3 Disconnected Feasible Regions

This section examines the challenge of solving design problems where the size of

the feasible design space is small relative to the range of the entire space. We also

examine problems which have disconnected feasible regions (i.e., there are several

“islands” of feasibility), making it quite difficult to locate the global optimum. We

propose taking advantage of superEGO’s flexibility and utilize alternative sampling

criteria to locate multiple feasible regions in a new way.

The proposed strategy is based upon the probability that a candidate design

point is feasible. As will be discussed in Chapter 6, one may classify each constraint

function as “inexpensive” or “expensive” based upon the time it takes to compute.

For expensive constraint functions the probability of feasibility is estimated from

the statistical models, as described in this chapter. For inexpensive constraints, the

probability of feasibility takes a value of 0 or 1 because one can directly determine

if the constraint is satisfied.

5.3.1 Locating an initial feasible point

When no feasible point has yet been found, one can simply search for the location

in the design space that yields the highest probability of feasibility. We propose the

following sampling criterion when searching for an initial feasible point:

ISC13(x) =
m∏

i=1

P(gi(x) ≤ 0) , (5.5)

The subscript 13 refers to the ISC number used in the superEGO code to identify

this particular criterion.

Because the inexpensive functions are evaluated directly, the probability of fea-
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sibility is simply:

Pinexp =


1, if g(x) ≤ 0

0, otherwise

. (5.6)

For expensive constraints, the kriging model is used to estimate the probability of

feasibility as:

Pexp = Φ

(
0− ĝ(x)

σ̂(x)

)
, (5.7)

where Φ is the Gaussian cumulative distribution function, ĝ(x) is the kriging estimate

of the constraint function and σ̂2(x) is its associated kriging variance computed via

Equations (3.11) and (3.13), respectively. While a constraint boundary of 0 is shown

in the equations above, the user is free to set any constraint tolerance they wish.

To illustrate the behavior of the criterion, a two dimensional example with one

constraint function is introduced. The objective is a simple quadratic function, but

the Branin function is treated as a constraint whereby its value must be below 5.

The example problem, referred to here as the newBranin example, is of the form:

min f(x) = −(x1 − 10)2 − (x2 − 15)2 (5.8)

g(x) =

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos x1 + 10 ≤ 5 .

A contour plot of the newBranin example is shown in Figure 5.12. The problem

consists of three disconnected feasible regions (shown as dashed lines). The contours

of the objective improve down and to the left. Thus the global optimum of the

newBranin example occurs at x = [3.2730, 0.0489] (shown as an asterisk) with local

optima (shown as circles) in the two other feasible regions.

A plot of the ISC13 criterion using an initial 21 point sample (none of which are

feasible) on the newBranin example is shown in Figure 5.13. Because there is only

one constraint function, ISC13 is the probability that the constraint will be satisfied.
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Figure 5.12: Contour plot of the newBranin example. Feasible region boundaries
are shown as dashed lines, the local optima as circles, and the global
optimum as an asterisk.

As expected, there are three regions of high probability of feasibility. The remainder

of the design space is very unlikely to be feasible and therefore has a value of ISC13

close to zero.

Figure 5.13: Mesh and contour plot of ISC13 for the newBranin example. Sample
points are shown as circles.

Optimizing the ISC13 criterion searches for points where the probability of fea-

sibility is largest. Of course, this will only work for cases where feasible points have

yet to be found. Otherwise, there will be a region of probability 1, and the algorithm
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will simply continue sampling in that region. Therefore, a second strategy must be

employed to find subsequent feasible points.

5.3.2 Locating subsequent feasible points

Once an initial feasible point has been found, the challenge is to force the algo-

rithm to search elsewhere for other feasible regions. We propose using an approach

similar to tunnelling [48] whereby the ISC subproblem maximizes the distance from

the current best point while searching for areas that have a high probability of fea-

sibility. The two terms in the criterion are the probability (P) and the distance to

the nearest feasible point (D).

ISC14(x) =
m∏

i=1

Pi ·Di , (5.9)

where P is calculated by Equations (5.6) and (5.7) above and the distance, D, is

calculated as

D = min
xfeas

(
‖xfeas − x‖

range

)
. (5.10)

Dividing the distance by the range is done to balance the magnitudes of the distance

in each dimension. Failure to do so might lead to the distance portion of ISC14 being

dominated by one design variable. Multiplying the distance by the probability has

the effect of reducing the value of the criterion wherever there is a low probability of

feasibility.

To illustrate the behavior of ISC14, we continue the same newBranin example.

After the initial 21 point design, ISC13 guides superEGO to sample a point inside

the feasible region in the upper left portion of the design space. ISC14 was then

used to distinguish between these regions of likely feasibility by their distance from

the feasible point. A plot of the sampling criterion is shown in Figure 5.14. The

initial sample points are shown as circles, and the only feasible point is shown as
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an x. Observe how the surface takes a noticeable dip in the immediate vicinity of

the known feasible point. The algorithm is guided to the center of the the feasible

region farthest away. Once that location is sampled, only the middle feasible region

is left unexplored. Figure 5.15 shows the ISC14 now that two feasible points have

been found. Note that the criterion is small in the immediate neighborhood of those

points, but is high in the middle where the constraint is likely to satisfied and there

are no nearby feasible points. Thus utilizing ISC13 and ISC14 successfully locates

all three feasible regions in just three iterations.

Figure 5.14: Mesh and contour plot of ISC14 for the newBranin example. Initial
sample points are shown as circles, and the only feasible sample is shown
as an x.

Figure 5.15: Mesh and contour plot of ISC14 for the newBranin example after an
additional iteration. Initial sample points are shown as circles, and the
two feasible samples are shown as x’s.
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5.3.3 Demonstrations

In general, the proposed criteria appear to satisfy the need of finding multiple

regions that are likely to be feasible in an efficient manner. We demonstrate the

method below on a more difficult example, the Gomez #3 [33] test function:

min f(x) = (4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x

2
2

subject to: g(x) : − sin (4πx1) + 2 sin2 (2πx2) ≤ 0 (5.11)

defined over the range xi ∈ [−1, 1], i = 1, 2. Figure 5.16 shows a mesh plot of the

objective and contours of the objective and constraint functions. The feasible so-

lutions are constrained to lie within circles. The example is quite difficult to solve

because the sine terms in the constraint function create 20 disconnected feasible

regions. Gradient-based methods are not typically able to solve such problems effi-

ciently because they require a large number of multistarts before the global solution

can be found with any confidence. Approximation-based methods would also have

difficulty with this problem because the constraint function (shown in Figure 5.17)

is quite challenging to model accurately.

We first considered the constraint inexpensive and used Equation (5.6) to calcu-

late the probability of feasibility. An initial 21 points sample yielded four feasible

points. After 16 iterations with ISC14, superEGO had sampled exactly one point in

each of the 20 feasible regions, as shown in Figure 5.18. The initial sample points are

displayed as circles and the infill samples as x’s. This demonstrates that the sam-

pling criterion has met the goal effectively. It was able to uncover feasible regions

scattered throughout the design space with excellent efficiency.

Of course, the efficiency of the method is directly related to the accuracy of the

kriging models of the constraint function. The next step was therefore to perform the
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Figure 5.16: Plot of the Gomez #3 test function. The solid and dashed contours
are the objective and constraint boundaries, respectively. The feasible
space is inside each of the dashed circles.

same test with the constraint considered expensive. That required a kriging model

to be fit to the constraint function and Equation (5.7) used to calculate the prob-

ability of feasibility. As mentioned above, modeling the highly nonlinear constraint

function is quite difficult, but the proposed methodology works well in this example.

The initial 21 point model of the constraint was highly inaccurate, but superEGO

attempted to place points where ISC14 perceived the constraint likely to be satis-

fied. After a few iterations, the model became more accurate as the new points were

sampled, and superEGO began to correctly identify new feasible regions.

Figure 5.19 shows the progression of the test as the number of iterations, n,

increased. By iteration number 151, 19 of the 20 feasible islands had been sampled.

It took over 300 function calls to locate the last feasible region. Note that unlike the

previous test shown in Figure 5.18, there are multiple infill samples in many of the

feasible regions. That is because at some iterations, there were not any regions of

high probability of feasibility that were also far from the existing feasible samples.

The model of the constraint could not identify the true feasible boundaries accurately
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Figure 5.17: Plot of the Gomez #3 constraint function

enough to predict a high probability of feasibility in some of the unexplored feasible

regions. The algorithm was therefore forced to pick points as far as it could from

the known feasible points, sampling points within already identified feasible islands.

However, as sampling continued, the model accuracy improved, and new feasible

regions were identified.

In general, this demonstration was quite successful considering the difficulty of

accurately modeling the constraint and the dependence of the probability calculation

on the accuracy of that model. Due to the distance term in Equation (5.9), the

method is able to spread points in the appropriate regions until the model accuracy

begins guiding it towards the correct solution.
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Figure 5.18: Results of ISC14 on the Gomez #3 example. The initial samples are
shown as circles, and the infill samples as x’s. Contours are of the true
functions (feasible regions are inside the dashed circles).
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(a) n = 25
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(b) n = 50
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(c) n = 75
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(d) n = 100
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(e) n = 125
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(f) n = 151

Figure 5.19: Progression of the ISC14 criterion on the Gomez #3 example for ex-
pensive constraint function as the number of iterations, n, increases.
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5.4 Equality Constraints

All of the above discussion has been applied only to inequality constrained prob-

lems. To enable Bayesian analysis-based algorithms to solve problems including

equality constraints, one approach is to bound each equality constraint as an in-

equality on both sides. As Audet and co-authors state [7],

However, since this paper deals with modeling of expensive simulations, it

is assumed that there will be a fairly loose feasibility tolerance for equal-

ity constraints. Thus . . . equalities will be considered to be inequality

constraints with upper and lower bounds that happen to be somewhat

close to each other.

The justification for converting an equality constraint into two inequality con-

straint is that the constraint need not be satisfied exactly due to the nature of the

analysis models. This returns us to the discussion of constraint satisfaction metrics

from Section 5.2. If the constraint boundary of an expensive simulation doesn’t need

to be found exactly, what difference does the choice of constraint satisfaction metric

make?

As described in Section 5.2, there are three proposed constraint satisfaction met-

rics: the expected violation, probability of feasibility and estimated value metrics.

There is reason to believe that the expected violation metric is slightly less con-

servative when predicting if a design point is feasible or not, and it may lead the

algorithm to sample several points in the infeasible region. For some applications,

there is no interest in designs that are even slightly infeasible. Thus, the expected

violation metric is not recommended for general use because it may waste valuable

computational resources.
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For most applications then, there will be little practical difference between the

estimated feasibility and probability of feasibility metrics for constraint satisfaction.

The designer is satisfied as long as the search strategy finds designs that are feasible

and reasonably close to the constraint boundary. This would not be the case however

if the original problem contained equality constraints. Consider the example shown

in Figure 5.20. A single equality constraint, h(x) is transformed into two inequality

constraints, g1(x) and g2(x), that are somewhat close to each other (depending on

the tolerance assigned by the user). Note that g1(x) and g2(x) will always be parallel

to each other by virtue of their origin.

g2(x)

g1(x)

h(x)

Figure 5.20: Splitting an equality constraint into two inequality constraints

Consider the effect of the constraint satisfaction metric on g1(x) during the so-

lution of the ISC subproblem. A constraint satisfaction metric that is too liberal

(e.g., the expected violation) may violate g1(x) and select candidate points too far

up and to the left. A constraint satisfaction metric that is too conservative (e.g.,

the probability of feasibility metric) may satisfy g1(x), but in doing so may actually

violate g2(x) if it places the candidate too far from the constraint boundary of g1(x).

Therefore, a metric that is able to place iterates as close as possible to the constraint

boundary is more likely to satisfy both sides of the split equality constraint. For this

reason, it is recommended that the estimated value of the constraint be used as the

constraint satisfaction metric for both equality and inequality constrained problems.
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5.5 Constraint Activity

A constraint is called active if the solution to the optimization problem changes

when the constraint is removed. Knowledge of which constraints are active is often

useful to designers because it identifies the limiting factors on the design performance,

thereby enabling them to focus their efforts. Some design optimization algorithms

automatically generate information about constraint activity during their search pro-

cess. Most common among these is the SQP algorithm described in Section 2.2.2.

Upon termination, the Lagrange multipliers identify which constraints are active at

the local optimum.

SuperEGO, like other Bayesian analysis algorithms, does not supply constraint

activity information upon termination. Rather, the user may examine the values of

the constraint functions at the best known design. Constraints with a value close to

zero are likely to be active, although there is no theoretical guarantee of activity as

with the Lagrange multipliers in SQP. It is simply the fact that the constraint is close

to its limit that leads the designer to believe it may be active. An active constraint

that also takes on a value of zero at the optimum is referred to as tight. Relying

solely on the value of the constraint function at the optimum may not identify all

active constraints.

Consider the example shown below. The objective function is the multipeak

curve, and the constraint is shown as a vertical line, with the infeasible side hatched.

The optimum, x∗, is shown as a circle. In Figure 5.21(a), the constraint is both

active, because removing it would shift the solution to the valley on the right, and

tight, because the solution lies exactly on the constraint boundary (i.e., g(x∗) = 0).

However, the example in Figure 5.21(b) shows a constraint that is active, but not
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tight – that is, g(x∗) 6= 0. Looking only at the value of g(x∗) would not identify the

constraint as being active.

(a) active and tight (b) active but not tight

Figure 5.21: Illustration of active and tight constraints

While the example above demonstrates that using Bayesian analysis alone may

incorrectly identify a constraint as inactive, active constraints in engineering design

problems tend to be tight in most cases. Thus relying on the value of the constraints

at the best sample point will provide the designer with the necessary information for

most applications. If however, the designer is to place more confidence in identifi-

cation of the active set, further work is required. One simple strategy would be to

begin SQP from the best point found from superEGO. Presumably, it is near a local

solution, enabling SQP to terminate efficiently. The results from SQP could then be

examined to identify the active constraints from the Lagrange multipliers.

Other possibilities exist for enabling superEGO to better identify active con-

straints. At each iteration, the DIRECT algorithm is called to find the global solu-

tion to the ISC subproblem. It evaluates the approximate models thousands of times

over the course of the optimization. The information from these searches could be

analyzed to detect possibly active constraints. For example, if during all the func-
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tions evaluations made by DIRECT, constraint g1(x) never exceeds a value of -100,

there is a strong likelihood that the constraint is not active because it is satisfied

everywhere that has been evaluated. Likewise, if constraint g2(x) was the only vi-

olated constraint for a candidate design that predicted a better objective function

value than the best constrained solution, then there is a strong likelihood that g2(x)

is active.

It is important to understand that DIRECT evaluates the kriging approxima-

tions to the constraints, not the constraints themselves. Therefore, any statements

about the activity of a constraint arising from the analysis of the DIRECT search

history must consider the accuracy of the models. The ideas presented here provide

interesting avenues for future research that may enable Bayesian analysis algorithms

to identify active constraints even if they are not tight.

5.6 Chapter Summary

This chapter discussed various approaches to handling constraints in Bayesian

analysis. The approach proposed in this dissertation was to incorporate the con-

straints directly into the ISC subproblem. Doing so removed the problems with

solution accuracy at the constraint boundary often associated with other methods.

One drawback is that time consuming constrained optimization algorithms are now

needed to solve the ISC subproblem. We have used a fairly efficient, robust global

optimizer to satisfy this need. It was decided that the constraint satisfaction should

be measured by the estimated values of the kriging models.

This chapter also demonstrated a new method for locating feasible points. This

helps to overcome challenging optimization problems where the feasible region is

either disconnected or relatively small. It was demonstrated that this method ap-



124

plied even to constraint functions that are difficult to approximate, so long as they

are continuous. The chapter concluded with a brief discussion on solving equality

constrained problems and identifying the active constraint set.

In the next chapter, we propose a method for incorporating inexpensive informa-

tion in the ISC subproblem in order to improve the efficiency of superEGO.



CHAPTER 6

Exploiting Disparities in Function Computation

Time

For approximation-based algorithms, an approximation is typically made for the

objective function and each of the constraint functions. However, this may be quite

inefficient if some of the functions (either objective or constraint) are not expensive

to compute. This chapter discusses the benefits of exploiting situations where there

is a large disparity in the computation time of functions within the optimization

problem. By incorporating information from inexpensive functions in an intelligent

way, analytical tests performed here required between 10% and 50% fewer iterations

and 20% to 65% less time. A simulation-based study shown in Chapter 8 shows even

greater benefits.

6.1 Motivation

In simulation-based optimization, the expense of the analysis models is often

a prime concern. While surrogate modeling algorithms can reduce computational

time, not all such algorithms can exploit differences in the computational costs of

functions in the problem statement. In previous work by Nelson and Papalambros

[64], inexpensive functions were used directly in a trust region algorithm, resulting in
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fewer expensive analyses. This provides motivation to extend the work to surrogate

model-based optimization algorithms such as EGO.

Originally, EGO was intended for problems where all the functions were expen-

sive. The approach here does not have such limitations. It is not always clear whether

to classify a simulation response as expensive or inexpensive, nor is it always feasible

to segregate the two classes of functions into independent simulation runs. However,

if one can do this, then eight types of well-defined optimization problems exist for the

various combinations of expensive and inexpensive objective and constraint functions

(see Figure 6.1).

EGO was originally designed for type 1 or 2 problems. The changes proposed here

enable EGO to differentiate between all eight problem types, including the special

case where all functions are considered inexpensive (types 3 and 4). Because DIRECT

[43], another global optimization algorithm, is used to solve the ISC subproblem,

EGO degenerates into DIRECT for those problem types. This chapter focuses on the

more interesting cases of types 5 through 8, where both inexpensive and expensive

functions exist. We propose using information from the inexpensive functions to

avoid sampling the expensive functions when it is not beneficial to do so. The

methods for making such decisions are referred to as filters. Table 6.1 lists the eight

problem types and the method that shall be used to solve each. Expanding EGO to

handle the entire array of possibilities allows the designer to solve the optimization

problem efficiently, regardless of the cost of the functions. As mentioned in the

Introduction, we have chosen the name superEGO for our algorithm because it is

able to handle a superset of the types of problems that EGO was originally designed

for.
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Figure 6.1: Possible Problem Statement Types

6.2 Filter Method

As explained in the previous chapter, our work takes advantage of the fact that

a constrained ISC problem can be solved with a global searching, derivative-free

algorithm, namely DIRECT. Using the estimated values of the constraint functions

as the constraint satisfaction metric, the ISC problem of superEGO is solved as

min f = ISC(x) (6.1)

subject to: ĝi(x) ≤ 0,∀i

where ĝi(x) refers to the kriging model prediction of the ith constraint at the candi-

date infill point x.

Information from any inexpensive functions is used here to prevent suboptimal

points from being evaluated by the expensive true functions. This is done by imposing
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Table 6.1: Problem types and associated solution strategies
Type Objective Function Constraint Functions Solution Strategy

1 Expensive None Unconstrained EGO
2 Expensive Expensive Constrained EGO
3 Inexpensive None Unconstrained DIRECT
4 Inexpensive Inexpensive Constrained DIRECT
5 Expensive Inexpensive filter type I
6 Expensive Expensive & inexpensive filter type II
7 Inexpensive Expensive filter type III
8 Inexpensive Expensive & inexpensive filter type IV

two additional constraints on the ISC problem of Equation (6.1). The first checks

if any inexpensive constraint functions are infeasible, and the second checks if an

inexpensive objective function is worse than the current best design point. The

original constraint of keeping the predicted value of the expensive constraints feasible

is retained as well. Thus the filter method changes the ISC problem to the following:

min f = ISC(x) (6.2)

subject to: ĝi(x) ≤ 0, i = 1, ..., nexpc

gj(x) ≤ 0, j = 1, ..., ninexpc

finexp(x) ≤ fmin

where nexpc and ninexpc are the numbers of expensive and inexpensive constraints,

respectively, finexp is the inexpensive objective function of the original optimization

problem, and fmin is the best feasible point found thus far. There are four filter

types based on which kinds of functions exist as shown in Table 6.1.

6.3 Analytical Examples

The effectiveness of the filter method was evaluated for a suite of two-dimensional

analytical examples. In the figures below, the feasible regions are shaded, and the
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optima are shown as a filled circle. The variable bounds and solutions are summarized

in Table 6.2.

Table 6.2: List of analytical examples
Example no. Variable Bounds Solution

1 xi ∈ [0, 5] ∀ i f(2.7450, 2.3523) = −1.1743
2 xi ∈ [0, 5] ∀ i f(3.0716, 2.0961) = −0.5503
3 x1 ∈ [−3, 3], x2 ∈ [−1.5, 1.5] f(1.7476, 0.8738) = 0.2986
4 xi ∈ [−2, 2] ∀ i f(0.5955,−0.4045) = 5.6694
5 xi ∈ [0, 1] ∀ i f(0.2017, 0.8332) = −0.7483

6.3.1 Example 1: Constrained mystery function

Example 1 uses the mystery function in Equation (4.12) with an additional con-

straint (see Figure 6.2). The constraint is tight at the optimum, i.e., it is satisfied as

an equality at the solution.

Figure 6.2: Example 1 with feasible region shaded, optimum shown as filled circle

min f(x) = 2 + 0.01(x2 − x2
1)

2 + (1− x1)
2 + 2(2− x2)

2 + . . .

7 sin 0.5x1 sin 0.7x1x2

subject to: g(x) : − sin (x1 − x2 −
π

8
) ≤ 0 (6.3)
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6.3.2 Example 2: Reverse constrained mystery function

Example 2 switches the objective and constraint functions of Example 1 (see

Figure 6.3). The feasible design space is relatively small and the constraint is tight

at the solution.

Figure 6.3: Example 2 with feasible region shaded, optimum shown as filled circle

min f(x) = − sin (x1 − x2 −
π

8
)

subject to: g(x) : −1 + 0.01(x2 − x2
1)

2 + (1− x1)
2 + 2(2− x2)

2 + . . .

7 sin 0.5x1 sin 0.7x1x2 ≤ 0 (6.4)

6.3.3 Example 3: Three-hump camelback function

Example 3 is the three-hump camelback test function of Hardy [37] modified by

adding a constraint (see Figure 6.4). In this case, the constraint is active, but not

tight. In other words, removing the constraint changes the location of the optimum,

but the solution does not lie along the constraint boundary.

min f(x) = 2x2
1 − 1.05x4

1 +
1

6
x6

1 − x1x2 + x2
2

subject to: g(x) : (3− x1)
2 + (1− x2)

2 − 3 ≤ 0 (6.5)
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Figure 6.4: Example 3 with feasible region shaded, optimum shown as filled circle

6.3.4 Example 4: Goldstein-Price function

Examples 4 is the Goldstein and Price test function [73], modified by adding

two additional constraints. In order to improve the ability to model the objective

function, a log-transform was used on the data as suggested by Schonlau [83]. Figure

6.5 shows the transformed function.

Figure 6.5: Example 4 with feasible region shaded, optimum shown as filled circle
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min f(x) = (1 + A(x1 + x2 + 1)2)(30 + B(2x1 − 3x2)
2),

where A = 19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2,

and B = 18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

subject to: g1(x) : −3x1 + (−3x2)
3 ≤ 0

g2(x) : x1 − x2 − 1 ≤ 0 (6.6)

6.3.5 Example 5: Test function #2

Example 5 is the test function #2 of Equation (5.4), shown again in Figure 6.6

for convenience.

Figure 6.6: Example 5 with feasible region shaded, optimum shown as filled circle

min f(x) = −(x1 − 1)2 − (x2 − 0.5)2

subject to: g1(x) : (x1 − 3)2 + (x2 + 2)2 e−x7
2 − 12 ≤ 0

g2(x) : 10x1 + x2 − 7 ≤ 0 (6.7)

g3(x) : (x1 − 0.5)2 + (x2 − 0.5)2 − 0.2 ≤ 0
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6.4 Results

To reduce the initial sample locations’ influence on the results, the examples were

run using a series of 50 initial 21-point (11-point in the case of example 5), random

Latin Hypercube design of experiments (DOE). Using the same initial DOE’s, su-

perEGO was run for the various filter types by making different choices as to which

functions were considered inexpensive. Results labelled as coming from EGO simply

refer to those where all functions were considered expensive. In all cases, our own

superEGO algorithm was used to gather the data.

For each example, the algorithm was stopped once it located a feasible point

within 5% of the global minimum value. EGO and each filter type were then com-

pared with respect to clock time and the number of iterations required (one function

evaluation per iteration). The kriging model parameters were held fixed for all iter-

ations so that the choice of model fitting frequency did not impact the study. Only

examples 4 and 5 ran filter types II and IV because those filters require multiple con-

straints. Two tests for each of those filter types were run by swapping the constraints

considered to be expensive.

With a large amount of data gathered for five examples, 50 optimizations each,

the results for each approach are shown as the average across all examples and initial

experimental designs. For the following three tables, the results of superEGO are

categorized as better, the same, or worse according to how many function evaluations

were required compared to EGO for a given optimization run. Table 6.3 summarizes

the breakdown of these categories.

There are several trends worth noting. For one, superEGO is not systematically

better than EGO, yet is at least as good in the vast majority of cases. Also, filter
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Table 6.3: Summary of comparisons to EGO (in percentage) for each category
Comparison filter type I filter type II filter type III filter type IV

better 59.2 52.0 59.2 74.5
same 30.0 40.5 36.8 24.0
worse 10.8 7.5 4.0 1.5

types III and IV are worse than regular EGO less often than filter types I and II.

This is most likely due to the fact that the former consider the objective function

inexpensive. Using this information forces superEGO to find feasible points at least

as good as the current best at each iteration, thereby reaching good solutions more

quickly than for filter types I or II.

Tables 6.4 and 6.5 show the relative improvement (or worsening) in the number

of iterations and time required to find the optimum. For each filter type, the average

difference is shown alongside the average standard deviation across examples. The

overall averages for each filter are weighted by the percentages of occurrence in

each category as shown in Table 6.3. From Tables 6.4 and 6.5 one can observe

that, on average, superEGO outperforms EGO for any given Filter Type, both in

terms of function evaluations and time required. Also, filter types III and IV have

both higher relative improvement and lower standard deviations for both time and

iterations required. This is another indication that exploiting the information from

an inexpensive objective function can consistently lead to significantly improved

efficiency.

6.5 Discussion

This research attempted to quantify the gains in efficiency to a surrogate model

optimization algorithm made by exploiting information from the inexpensive func-
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Table 6.4: Relative improvement (in percentage) over EGO in iterations required
Fn Call filter type I filter type II filter type III filter type IV

Comparison avg std dev avg std dev avg std dev avg std dev
better 50.7 14.7 40.1 16.6 60.7 18.8 63.6 15.9
worse -62.0 62.6 -151.2 229.0 -68.3 27.1 -44.4 7.9

overall 23.3 15.5 9.5 25.8 33.2 12.2 46.7 12.0

Table 6.5: Relative improvement (in percentage) over EGO in time required
Fn Call filter type I filter type II filter type III filter type IV

Comparison avg std dev avg std dev avg std dev avg std dev
better 63.7 11.6 49.2 14.6 72.9 14.8 77.0 10.9
same 18.6 17.7 15.1 5.6 19.2 3.7 33.2 4.3
worse -23.3 49.4 -126.0 231.8 -62.3 67.1 8.1 11.7

overall 40.7 17.5 22.3 27.3 47.7 12.8 65.4 9.3

tions. By adding constraints to the ISC subproblem of Equation (6.1), the algorithm

avoids evaluating locations known to be suboptimal. While this does not guarantee

that the solution will be found more quickly, it tended to perform more efficiently

most of the time. For the analytical tests, direct use of inexpensive functions de-

creased the number of required iterations by between 10% and 50% and the required

time between 20% and 65%.

The results of this study point to new avenues of increased efficiency. The filter

constraints used here are not the only kind one can use. For example, one may

want to use information from the expensive functions to determine if a candidate

infill sample location is in an area of poor model reliability. For some iterations, the

desire to improve the expensive model functions locally could override the desire to

sample only feasible and/or better locations. Our framework is generic enough to

allow for such a filter. Another promising avenue is the ability of these filters to

serve as convergence criteria, a current weakness of EGO. For example, one could
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constrain the ISC problem to improve upon the best known point according to some

statistical confidence interval such as the lcb function proposed by Cox and John [21]

(see Chapter 4). Failure to find a feasible solution to the ISC problem would thus

terminate the algorithm.

6.6 Chapter Summary

This chapter proposed that inexpensive information from the optimization prob-

lem should be directly incorporated into the ISC subproblem. That information

could take the form of a feasibility check using the constraints that are quick to

evaluate, or an objective function improvement check if the objective is quick to

evaluate. This additional information was shown to produce a significant savings in

the time required to find a good solution.

In the next chapter, we look at a variety of implementation details that to some

extent impact the superEGO algorithm.



CHAPTER 7

Bells and Whistles

A variety of issues pertaining to the actual implementation of superEGO are

discussed below. While none of them are critical research topics of this dissertation,

it is still beneficial to explain the details of the heuristics. Specifically, we describe the

methods for solving the auxiliary optimization problems (the ISC subproblem and

fitting the kriging models) and the selection of the sampling criterion and stopping

rule.

7.1 Locating the Infill Sample

At each iteration, superEGO must solve the ISC subproblem, an auxiliary op-

timization problem. The problem tends to be multimodal and may be constrained

even if the original problem is unconstrained (e.g., if the filter method of Chapter

6 is applied). The ISC functions – either analytical expressions or evaluations of

a kriging model – are inexpensive to evaluate. In short, locating the next iterate

requires a good global optimization algorithm.

Some researchers have applied strategies where the choice of the next iterate

is restricted to a predetermined set of candidate points [21], [95]. The sampling

criterion is evaluated at the candidate locations, and the best observed value chosen
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as the next iterate. The approach used in this thesis is to use continuous optimization

techniques, thereby allowing the next iterate to be anywhere within the design space.

While our approach is much more general, it is more difficult to implement.

The DIRECT algorithm of Jones [40], [43] has been selected to solve the ISC

subproblem. In order to complete the psychoanalysis trio of the EGO and superEGO,

the ISC DIRECT step of the process is affectionately referred to as the ID [31]. A

Matlab-based implementation of the DIRECT algorithm known as UMDIRECT was

recently developed by this author and other graduate students at the University of

Michigan. It works both for constrained and unconstrained problems and was used

for the results in Chapters 3, 4, 9 and Chapter 5. Results for Chapters 6 and 8

were gathered using another Matlab implementation of DIRECT from the Tomlab

research group in Sweden [38].

Simply put, DIRECT works by subdividing the design space into hyper-rectangles

at each iteration. The decision of which hyper-rectangles to divide is based upon Lip-

schitz theory and has been generalized to constrained optimization. The constraint

functions for the ISC subproblem may take on any of four possible forms: kriging

models of the expensive constraints of the main design problem, direct evaluation

of the inexpensive constraints from the main design problem, analytical constraints

imposed by the filtering method described in Chapter 6, or any special constraints

that are specific to the infill sampling criterion itself.

In some cases, a local search step was added to UMDIRECT as suggested by

Jones [40]. Doing so helps to overcome the slow local convergence of DIRECT.

Matlab’s constrained SQP algorithm, fmincon, was used for the local search steps

[19]. However, this author has experienced occasions where fmincon went into an

infinite loop for unknown reasons. Such an occurrence prevented superEGO from
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continuing; and therefore, most results were gathered with the local search feature

disabled. In the future, a more robust local search algorithm will be incorporated

into UMDIRECT to increase its efficiency.

For the implementation of DIRECT used in the ID portion of superEGO, the

algorithm stops once it has performed either 50 iterations or 200*d function evalu-

ations, where d is the number of design variables, whichever occurs first. However,

the user has the option of changing those limits. These are the same stopping rules

applied when DIRECT is called to fit the kriging models. Additional information

on the University of Michigan implementation of DIRECT may be found in the

Appendix.

7.2 Model Fitting Frequency

The frequency of model fitting has a significant impact on the efficiency of su-

perEGO. After fitting the covariance model from the initial data sample, the question

arises of whether or not to refit the model at each iteration. On one hand, refitting

the covariance parameters may lead to more accurate kriging models, and therefore

better results at each iteration. On the other hand, fitting the models is a time

consuming process that may dominate the computational time of the iteration if the

functions in the problem statement aren’t extremely costly.

To demonstrate this tradeoff, Figure 7.1 shows the breakdown of the computa-

tional costs for a simulation-based optimization run using superEGO. The example

is a 3 variable problem with an expensive objective function and 12 expensive con-

straints. The function evaluation time is fairly consistent at around 70 seconds. The

time required to solve the ISC subproblem increases approximately linearly with the

number of sample points and ranges between 100 and 300 seconds. The time for
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fitting models is relatively insignificant when existing parameters are used, but every

10 iterations, the covariance model parameters are refit via MLE. Refitting covari-

ance models requires inverting the n × n covariance matrix, where n is the number

of sampled points, for every iteration of the fitting procedure. On a Pentium IV, 1.7

GHz personal computer, the cost of fitting all 13 covariance models is between 30

minutes and two hours and increases linearly with the number of sample points.
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Figure 7.1: Breakdown of the computational costs per iteration (times on the y-axis
are in seconds)

When looking at the overall costs per iteration, it is clear that the model fitting

steps dominate the computation costs. Therefore, the user must be careful in deciding

how frequently to refit the covariance models. For examples such as this where model

fitting can exceed two hours, it is not practical to refit models more than a few times

during the optimization. Otherwise, the cost of fitting models far exceeds performing
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an exhaustive search of the design space using the true functions.

Ideally, the model parameters would start to stabilize towards a set of values

as the iterations progress. At some point, the program would stop refitting the

models and keep those parameter values for the rest of the optimization. However,

the experience of this author has been that even small changes in the data set can

lead to large changes in the fitted model parameters. This has happened even when

the algorithm used to fit the data was the gradient-based SQP algorithm started

from the previous model values or the global searching DIRECT algorithm. In our

approach, we refit the models with UMDIRECT every 10 iterations unless the user

specifies otherwise.

7.3 Intelligent Sampling Strategies

Throughout most of the discussion in this dissertation, a single sampling criterion

has been used during the optimization. However, a more general approach is to let

superEGO itself select the sampling criterion as iterations progress. Some heuristic

strategies have been implemented and are described below.

Oftentimes, Bayesian analysis approaches have difficulty in refining the local so-

lutions. To combat this problem, superEGO does a local search every 10 iterations

to find the best point on the approximate models, as suggested in Chapter 4. During

the local search, superEGO uses the predicted value of the constraint functions as

the ISC subproblem constraints. Due to modeling error, these may or may not be

true local optima, but at least it guides the algorithm more efficiently towards those

points. This feature was disabled for many of the examples shown here because we

were demonstrating specific search strategies. Using the periodic local search would

have skewed the interpretation of their behavior.
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SuperEGO also looks for special cases before beginning the ISC subproblem.

First, it checks if a feasible point has been found. If not, then it begins using the

probability of feasibility criterion (see Section 5.3) until a feasible point has been

found, at which point it switches back to the criterion originally selected. The

algorithm also checks if the objective function is inexpensive to compute and if the

user has selected one of the improvement-based criteria (i.e., expected improvement,

generalized expected improvement, cool criterion, or Kushner’s criterion). If both

conditions are true, then superEGO uses the actual value of the objective function

as the sampling criterion rather than estimating the improvement with a kriging

model. In this way, it guides the iterations more accurately by avoiding the use of

approximate models.

Another intelligent search strategy that has been implemented is for solving prob-

lems with disconnected feasible regions. As with other search strategies, superEGO

begins by searching for an initial feasible point. Once a feasible point is obtained,

it switches to a local search mode to refine this local optimum. After the change

in the location of the next iterate has become sufficiently small (less than 0.1% of

the design space range for three consecutive iterations), it switches back to ISC14

described in Section 5.3 to search for new feasible regions. If another feasible point is

found sufficiently far away (greater than 5% of design space range) from the nearest

feasible sample, another local search is launched. The user may override the default

the conditions for switching between local search and feasible region search. In ad-

dition, the user may specify that superEGO not sample new feasible regions unless

ŷ(x) − bσ(x) ≤ fmin if the objective function is expensive or unless y(x) ≤ fmin if

the objective is inexpensive.

Search strategies such as those described above are automatically implemented
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by choosing the appropriate sampling criterion (see Appendix). Some relatively

sophisticated search methods are easy to apply. More advanced users with an un-

derstanding of Matlab can also define custom search strategies relatively easily. In

short, the flexibility of the framework allows for superEGO to perform a large variety

of complicated search strategies.

7.4 Termination Criteria

As discussed in Section 2.3.5, few stopping criteria for Bayesian analysis algo-

rithms exist in the open literature. The most prevalent is to terminate the algorithm

once the number of function evaluations has exceeded some specified limit. Another

somewhat common criterion is to stop once the expected improvement from further

sampling drops below a user-defined threshold. Of course, for this criterion to be

meaningful, one of the improvement-based criteria must be used.

A third stopping rule comes from the lower confidence bounding (lcb) function

of Cox and John shown in Equation (2.14). At each iteration, the sampling criterion

is evaluated at a fixed set of prediction sites and the best point is chosen. In other

words, the ISC subproblem is solved from a finite set of candidates. Their algorithm

terminates if the objective function value of the best sample point is below the best

value of the lcb function among the prediction sites. Since our algorithm does not

restrict the iterates to a finite set of candidates, it is difficult to determine if the global

minimum of the ISC subproblem has been found. Incorporating the lcb stopping rule

within superEGO would require DIRECT to run for a larger number of iterations to

have more confidence that the best value of the lcb has indeed been found. Failure to

do so may result in premature termination of superEGO. Evaluating the lcb function

at a set of prediction sites could however be done after solving the ISC subproblem,
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regardless of which sampling criterion was chosen.

In short, the expected improvement termination rule restricts the user to a subset

of the available sampling methods, and the lcb function termination rule is compu-

tationally inefficient for this framework. Therefore, superEGO mainly relies on the

function evaluation limit for termination. That said, there are other termination

rules that have been implemented in our framework as well.

First of all, there are special cases besides the function evaluation limit where the

algorithm automatically terminates. In some cases, the user may be able to define a

goal for the objective function value, i.e., a value below which they are indifferent to

further improvement. If an improvement-based sampling criterion is chosen, the goal

can be used to select the target for improvement [93] (e.g., the value of ε in Equation

(2.10)). However, it also provides a simple stopping rule and has been incorporated

into superEGO. Another special case occurs when all of the functions in the problem

are labelled “inexpensive”. As discussed in Chapter 6, superEGO degenerates into

DIRECT for such an event. Therefore, one iteration of superEGO should provide a

satisfactory solution from the DIRECT algorithm, and superEGO terminates.

Two other stopping rules are currently implemented in superEGO. The first stops

the algorithm if N feasible design points have been found. By default, N = 1, but the

user may define any number they wish. This criterion is useful for situations where

superEGO is applied to identify a feasible starting point for a different algorithm.

The second stopping rule terminates the algorithm if the last N iterations have

produced sample points that are all located within tol percent of each other, where

the distance between points is measured as a percentage of the total range of the

design space. By default, N = 3 and tol = 0.1%, but the user is free to specify their

values. This stopping rule is useful for cases where the search tends to converge upon
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a solution rather than scattering points throughout the design space.

While many of the stopping rules described in the above two paragraphs are only

useful for certain applications, they all have two desirable qualities: they are easy

to evaluate, and they are meaningful regardless of the sampling criterion chosen,

making them well suited for the flexible superEGO framework. Further research will

hopefully provide new stopping rules that have these qualities but are less heuristic

in nature.

7.5 Chapter Summary

In this chapter, several implementation details of superEGO were described. It is

hoped that some of the discussion here may spark future research. In the following

chapters, we present two case studies that illustrate the benefits of the increased

flexibility and efficient constraint handling.



CHAPTER 8

Vehicle Product Platform Design Study

In this chapter, a simulation-based case study is presented using a vehicle sys-

tem analysis package known as ADVISOR [63]. The purpose of this study is to

provide empirical evidence that taking the cost of the functions into consideration

can significantly reduce the time required to solve a simulation-based optimization

problem.

8.1 Problem Description

The terms product platform or product family refer to a group of artifacts that

have been designed such that some of their components are identical. An example

would be a line of handheld power tools. While the shape and purpose of each tool

may vary within a given family of products, they often use the same motor. A product

platform benefits the product costs by reducing design time, inventory costs, and

manufacturing costs. Product platform design problems provide interesting Pareto

optimality studies and have been explored for a variety of applications [29], [65].

This study presents the design of a family of vehicles. Two vehicles – premium

compact (PC) and lower midsize (LM) vehicles – are to share a common engine while

having independent final drive ratios. Sharing the engine is a cost effective way to

146
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create a product family, and keeping the final drive (a simple component compared

to the engine) separate allows for the two vehicles to be “tuned” differently. The

premium compact is designed to maximize fuel economy while meeting six perfor-

mance constraints. The lower midsize is a slightly larger vehicle designed to minimize

0–60 mph acceleration time while meeting 25 mpg fuel economy and performance

constraints 10% more demanding than for the premium compact. This results in a

three variable design problem with a bicriterion objective (wPCfPC + wLMfLM) and

12 constraints in addition to the simple bounds.

In order to scale the objectives of the two vehicles better, a transformation based

on utility theory was applied. Three parameters – the baseline, ideal, and critical

points – define the value curve, a unitless measure of a product’s worth. These pa-

rameters were chosen according to market data on existing designs. For the premium

compact’s fuel economy and the lower midsize’s 0–60 time, the actual performance

predicted by ADVISOR was transformed to a value roughly between 0 and 1. The

value curves for the two objectives in this problem are shown in Figure 8.1. Equation

(8.1) summarizes the formal statement of the optimization problem.
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minimize wPC · value(fuel economyPC) + wLM · value(t0−60 LM)

with respect to: x = {engine size, final drivePC , final driveLM}

subject to: g1 : t0−60 PC ≤ 12 s

g2 : t0−85 PC ≤ 24 s

g3 : t40−60 PC ≤ 6 s

g4 : 5-sec distancePC ≥ 100 ft

g5 : max accelerationPC ≥ 0.5 g’s

g6 : max speedPC ≥ 90 mph

g7 : fuel economyLM ≥ 25 mpg

g8 : t0−85 LM ≤ 21.6 s

g9 : t40−60 LM ≤ 5.4 s

g10 : 5-sec distanceLM ≥ 110 ft

g11 : max accelerationLM ≥ 0.55 g’s

g12 : max speedLM ≥ 99 mph

g13, g14 : 50 kW ≤ engine size ≤ 120 kW

g15, g16 : 3 ≤ final drive ratioPC ≤ 4.5

g17, g18 : 3 ≤ final drive ratioLM ≤ 4.5

(8.1)

where wPC and wLM are the Pareto weights in the multicriterion objective. The

metric t0−60 refers to the 0 to 60 mph acceleration time (smaller is better). The

five second distance is the distance the vehicle can travel from a dead stop in five

seconds (larger is better). The maximum acceleration and speed metrics are the best

performance the vehicle is able to produce, which must meet minimum standards.

The values chosen for the constraint bounds are derived from the performance of the

baseline vehicle model.

The simulation chosen to predict the vehicles’ performance is known as the AD-
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Vanced vehIcle SimulatOR (ADVISOR) [63]. Developed by the National Renewable

Energy Laboratory (NREL), ADVISOR version 3.2 was released in August, 2001.

One reason for the choice of simulation is public availability and reported work in

the open literature, e.g., on the usefulness of ADVISOR in powertrain design [24]

and on the validation of the simulation through the PNGV-sponsored FutureCar

competition [85].

ADVISOR is a Matlab-based program which makes use of Matlabs Simulink tool-

box to describe a physics-based model. It is a feed-backward, quasi-steady model of

a total vehicle. Feed-backward, means that a driving cycle is specified first (e.g., the

federal urban driving schedule, or FUDS), and then the simulation computes the load

required at each of the power components such that the vehicle traces the prescribed

driving schedule. Steady-state, means that ADVISOR approximates the continuous

behavior of the vehicle by discrete time steps during which transient effects such as

the rotational inertia of drivetrain components are ignored. The component mod-

els in ADVISOR are empirical, relying on input/output relations measured in the

laboratory, and quasi-static, using data collected in steady state tests, corrected for

transient effects. With steady state assumptions, efficiency tables can be used to

trace back the power requirement from the wheels to the power components. For the

speed and load at any time step, the instantaneous fuel consumption rate is found

from a look-up table for the engine. The simulation then integrates over the entire

driving schedule to compute any required information.

On a 550 MHz Pentium III computer, each vehicle analysis requires approx-

imately 30 seconds for fuel economy and 7 seconds for performance calculations.

Note that all performance metrics are computed at once. Because the performance

constraints were too expensive relative to the fuel economy, they were replaced with
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highly accurate spline models. Using the spline models as the “true” functions, five

optimization studies were performed by varying the weights wPC and wLM between 0

and 1 such that wPC +wLM = 1. In addition, two optimization runs were performed

to locate the so-called null platform where each vehicle is optimized independently.

Filter type II was used for superEGO on all cases except for wPC = 0 where filter

type IV was used (see Chapter 6).

8.2 Results

The competing vehicle objectives are shown in the Pareto plot of Figure 8.2.

Better designs occur up (better premium compact vehicle fuel economy) and to the

left (better lower midsize vehicle acceleration). The null platform point, shown in

the upper left corner, represents the best achievable vehicle designs if the engine

were not shared. For the remaining points, similar shapes are for problems of a given

(wPC , wLM) combination, with the x’s indicating the superEGO results.

Note the difference between EGO and superEGO solutions for a given (wPC , wLM)

combination. Because its resulting convex hull (i.e., Pareto set) is further up and

left, superEGO found a somewhat better combined objective than EGO in all cases

except Pareto point one (/) which was only 0.2% worse. Table 8.1 compares the

time and number of iterations it took superEGO to locate a feasible point better

than EGO’s best solution for a given optimization problem. In all but the one case,

superEGO’s approach to constraint handling significantly improves the efficiency of

the algorithm.
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Table 8.1: Percent improvement over the original EGO
Pareto 1 Pareto 2 Pareto 3 Pareto 4 Pareto 5 Null 1 Null 2

/ M ◦ . O ∗ ∗
Iterations -50.0 88.9 75.0 92.9 72.7 50.0 81.3

Time -95.2 86.3 70.0 91.2 69.8 34.6 80.4

8.3 Discussion

The results of this study strongly support the claim that incorporating inex-

pensive information directly into the ISC subproblem yields good solutions more

efficiently. In six of the seven optimization runs that were compared, superEGO

required between 35% and 91% less time to arrive at a solution at least as good as

the best solution obtained by EGO. For the remaining case, superEGO required one

more iteration than EGO. Overall, the improvement in the number of iterations was

slightly more significant than the savings in time. This shows that the benefits of

using inexpensive information directly are not purely due to the time savings during

the model fitting step. More accurate representation of the constraint functions lead

to better solutions at each iteration. Had the expensive functions required more time

to compute, the time savings would have been even more significant because fewer
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iterations were required to reach good solutions.

This study also illustrates the difficulty in deciding whether to classify a function

as “expensive” or “inexpensive”. Classifying a function as inexpensive reduces the

number of models to fit and usually produces more accurate results for each ISC

subproblem. However, for each iteration of superEGO, the inexpensive functions are

evaluated on the order of 100n times, where n is the number of design variables.

As mentioned above, the ADVISOR calculations of the performance constraints

were replaced by spline models in order for the filter method to be applied. This

is because the fuel economy was only four times more computationally expensive

than the set of performance constraints. Therefore the performance metrics were

only “semi-expensive” in this example. The results would have taken much longer to

generate if they had been classified as “inexpensive” because the time required for

hundreds of performance evaluations during the ISC subproblem far exceeds a single

fuel economy calculation. By creating spline models of those function a priori, solving

the ISC subproblem becomes negligible compared to the fuel economy calculations.

While it is not always efficient to generate accurate spline models, the point of this

study was simply to demonstrate the behavior of superEGO in cases where there is

a large disparity in function computation time. The spline models were necessary to

demonstrate that behavior.

In summary, unless the difference in the computation time is at least two orders

of magnitude, we suggest classifying the semi-expensive functions as “expensive”.

Otherwise, the time required to solve the ISC subproblem will exceed the time saved

by avoiding a model fitting step.
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8.4 Chapter Summary

This chapter has demonstrated the capabilities of the superEGO algorithm to

successfully solve a simulation-based optimization problem efficiently. Directly in-

corporating inexpensive constraint information into the ISC subproblem was shown

to generate good solutions more quickly than the original EGO methodology. Us-

ing the techniques described in Chapter 6, we were able to reduce the number of

iterations required to solve the optimization problem by 50 – 93%.

In the next chapter, we examine the second study which involves the design of

experiments for an ergonomics test procedure.



CHAPTER 9

Reach Effort Study

The study presented here demonstrates how superEGO can be applied to a prob-

lem involving something other than traditional artifact design. Instead, superEGO

is utilized to create adaptive experimental designs for an ergonomics test procedure

that explores the reach range of a seated subject. A subjective measure of the diffi-

culty of reaching to a specific target is obtained. SuperEGO creates a model of the

difficulty and adaptively controls the data to be gathered from the test subject. The

goal is to have superEGO determine a design of experiments (DOE) that adapts

to each test subject. The resulting DOE is more efficient and yields more useful

information than the current experimental procedure.

One of the arguments in this thesis is that optimization via Bayesian analysis

should not be restricted to a single infill sampling criterion (ISC). Rather, the ability

to tailor the algorithm easily to the problem at hand is a powerful property of the

methodology proposed here. The unusual nature of this problem requires a sampling

criterion created specifically for this application. In addition, inexpensive constraints

are directly incorporated into the ISC subproblem to prevent a robot arm from

coming too close to the test subject. Thus, this study demonstrates the flexibility of

superEGO to solve completely different kinds of problems that EGO could not.
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9.1 Problem Description

A reach effort study is currently underway at University of Michigan’s HUMOSIM

Laboratory. Figure 9.1 shows the setup for the experiment. A subject is seated in a

mock-up of an industrial or workplace environment, with the chair oriented so that

the reach target is in the subject’s lateral plane. A computer controlling the target

can raise and lower it as well as move it nearer to or farther from the subject (see

Figure 9.2(a)). In the testing procedure, the target is positioned and the subject is

asked to reach to the target and depress the button for two seconds. The subject

then rates the difficulty of the reach on a scale of 1 to 10, with 10 being the most

difficult. Maintenance of balance, the amount of exertion or degree of awkward

posture required, and distance to the target all contribute to the difficulty of the

reach. Once the subject presses the button, they use a small control panel (see

Figure 9.2(b)) to quantify how difficult it was to reach the target on a scale of 1-10

(i.e., the reach effort). Because the number is input through a slider, the information

is continuous. If the subject is unable to reach the button, the reach effort is assigned

a value of 11.

Figure 9.1: Example of a test subject reaching for the target
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(a) robot arm (b) slider

Figure 9.2: Reach effort study testing equipment

The objective of the test procedure is to obtain a mapping of the subject’s reach

effort, i.e., a data set with the reach effort for each associated target location. This

is accomplished by obtaining a large data set from each subject using a number of

different chairs. The current testing protocol requires a total of 400 button reaches

- 200 in one chair, and 100 each in two other chairs - requiring five to six hours over

the course of two days. The goal of this study is to reduce the required testing time

without losing accuracy by creating more efficient designs.

Once data from a variety of subjects has been collected, reach effort models can be

created to predict how difficult one may perceive a given reach to be. These models

could take into account anthropometry (i.e., the size and shape) of the subject as

well as their gender and age. The reach effort models could eventually be used to

design the layout of the controls in an automobile interior as shown in Figure 9.3 or

similar design domain.

The current testing protocol collects data along a finite number of rays in multiple

planes. Only the right half of the test subject’s reach zone is measured, assuming a
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Figure 9.3: Automotive interior layout design

symmetric reach effort for the left half. The length of the rays are calculated before

the experiment by estimating the maximum reach length of the subject. The target

is placed at 0, 25, 50, 70, 80, 90, 95 and 100% of the distance from the subject to

the expected maximum reach. Figure 9.4 shows an example of the current sampling

scheme for the 90 degree (lateral) plane. The plot is shown from a perspective

behind a subject extending their right arm in a lateral motion. The [0, 0] reference

is taken as the h-point, an ergonomic reference point at the mid-hip level along the

body centerline. For convenience, the design shown below will be referred to as the

ray-based experimental design.

It should be noted that the reaches are not ordered such that the subject samples

all eight points in one radii, then moves to the next radii, etc. Rather, for a given

rotational plane, the total set of 32 sample points (not including the 8 points directly

overhead) is split such that 16 points are sampled in random order in one block of

time. Then the plane is rotated for another set of 16 points, randomly chosen.

Eventually, the total set of 200 points is sampled.
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Figure 9.4: Example of ray-based experimental design

Throughout this study, testing was kept to a single plane (the 90 degree, or

lateral, plane) to aid in the visualization and understanding of the methodology.

The experiment placed the target in various locations around the test subject’s right

lateral plane. In addition, there were constraints to where the target may be placed.

1. Don’t hit the test subject! This constraint is a rather important one. The

protocol must ensure that the robot arm never encroaches upon the subject’s

personal space. More critically, it must never touch the subject. This area

is referred to as the exclusion zone. It is modelled by two boxes around the

subject as shown in Figure 9.5(a) and the lower left corner of Figure 9.4.

2. Don’t play keep away! This constraint is intended to prevent placing the button

in areas that are known to be too far for the subject to reach. Sampling a point

there is a waste of time and energy. In the adaptive sampling scheme described

below, this constraint is modelled as a sphere around the h-point. The radius

is determined by the maximum reach length of the subject estimated in the
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(a) Exclusion Zone (b) Out of Reach Zone

Figure 9.5: Button placement constraints around test subject

initial setup. This zone is referred to as the out of reach zone and is shown in

Figure 9.5(b) and the arc in upper right of Figure 9.4. An alternative approach

for this constraint that utilizes the kriging models of the reach effort will be

described in Section 9.3.

9.2 Adaptive Sampling

In this section, we describe the approach taken for the study, known as adaptive

sampling. The methodology is described and some initial tests done to illustrate

their effectiveness. The case is made that adaptive sampling is necessary to fulfill

the objectives of the study.

9.2.1 What is adaptive sampling?

An experimental run, be it a physical experiment or done on a computer, can

be viewed as a black-box function. Input values are sent to the black-box, and

the associated outputs are returned. Design of experiments (DOE) studies how to

select the set of input values at which to evaluate the black-box in order to explore

its behavior efficiently. There are many ways to quantify how well a particular
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design achieves that goal. Among the most frequently used DOE’s are factorial and

composite designs, Latin hypercubes and orthogonal arrays. Each strategy attempts

to spread points around the design space in some appropriate manner. The reader is

referred to Montgomery [61] for more background on classical design of experiments.

In some applications, a particularly useful approach is to determine the set of

input values sequentially, taking into account information from the previous exper-

iments each time a new sample is requested. These so-called adaptive designs can

be performed either in stages, where several new inputs are chosen at each stage, or

fully adaptively, where each new input incorporates all prior information. Adaptive

designs often appear in such fields as clinical research or allocation problems. For

example, one class of problems known as bandit problems seeks to choose points from

a finite set of alternative experiments with unknown outcomes at each of n stages in

order to maximize overall yield. Clinical trials may use adaptive designs to determine

whether to assign a test subject to the control or study group based upon the data

collected thus far [101].

Adaptive designs are generally more complicated to generate because they re-

quire an optimization problem to be solved each time new input values are chosen

rather than fixing the entire DOE before the experiments begin. The topic is cur-

rently an active area of research [5], [6], [30], [94] and specialized algorithms have

been developed [36]. However, because adaptive design involves solving an optimiza-

tion problem, general nonlinear programming techniques can be used to generate

the designs. Due to the nature of the algorithm, superEGO is well suited to such

problems.

The premise of this study is that the current testing protocol is extremely inef-

ficient and yields poor reach effort models. SuperEGO is used to address both of
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these shortcomings by creating a more efficient experimental design. In the proposed

approach, superEGO takes a small initial data sample, then iteratively determines

where to place the target next based on the previous reaches. Unlike the current

sampling protocol, SuperEGO is able to select any point within the feasible space,

not just points along discrete planes and rays. This greatly increases the accuracy

of the models by filling the design space.

An important question in the adaptive sampling scheme, therefore, is what con-

stitutes a “beneficial” sample point in this application. Obviously, the expected

improvement function is not appropriate for the problem, so sampling criteria suit-

able for the needs of adaptive sampling must be applied. In much of the research

on adaptive sampling, measures such as the integrated mean squared error or max-

imum mean squared error of the model are used as the criterion for selecting the

next sample point [77], [78]. These criteria do not fully satisfy our needs, so we take

advantage of the flexibility of superEGO by defining several sampling criteria de-

signed specifically for this study. Doing so is straightforward and does not interfere

with any of the remaining code (see Appendix A). For this study, two metrics were

considered:

1. Reduce local uncertainty throughout the design space. For this criterion, su-

perEGO searches for the location in the design space where the kriging vari-

ance (a measure of local uncertainty) is highest. Placing a sample point in

that location will improve the local model accuracy. For this experiment, the

variance is calculated as shown in Equation 3.14 in Chapter 3.

ISC1 = σ̂2(x) (9.1)

2. High definition of the 7-8 zone. We would also like to ensure that the model
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of the reach effort has a high accuracy for reach efforts between 7 and 8. This

is a typical range of values about which automotive interior designers make

decisions for control placement. SuperEGO searches for the location of maxi-

mum kriging variance conditional to the fact that predicted reach effort value

is between 7 and 8. The goal is to spread the points out well in the 7-8 zone,

thereby reducing the uncertainty in its shape and location. To quantify the

criterion, the following expression is used:

ISC2 =


σ̂2(x), if 7 ≤ ŷ(x) ≤ 8

0, otherwise

. (9.2)

9.2.2 How does it behave?

To evaluate the efficacy of the adaptive sampling approach, a pilot test was

performed using analytical models to simulate the reach effort value a subject may

assign for any given target location. Two analytical models were created to mimic

the behavior of different test subjects. Virtual subject A was a quadratic polynomial

with a log term, virtual subject B a pure quadratic model (see Figure 9.6). The

virtual subjects were then used to evaluate the behavior of the adaptive sampling

methodology. An initial 11 point sample was selected to include a number of points

around the perimeter of the feasible space. It is a well known feature of kriging that

the variance tends to be large around the outer edge of the design space which is less

densely sampled. Populating points in this area at the onset attempted to reduce

the number of far away samples chosen as infill samples during the procedure.

An initial test was run with subject A using ISC1, the kriging variance, as the

sampling criterion. Figure 9.7 shows the progress of superEGO over 39 iterations (50

samples total). The initial 11 point sample is shown with circles, and infill sampling
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(b) Virtual subject B

Figure 9.6: Contour plots of the reach effort for two virtual subjects. The exclusion
zone and out of reach zone constraints are also shown.

points are shown as dots and x’s, the most recent being the x’s. The test reveals

that the variance ISC behaves as expected. The infill points chosen tend to “fill the

space”.

Because an analytical model was used as the test subject, the error from the

predicted to the actual reach effort could be calculated. Obviously this is not a

practical approach for actual testing, but it at least indicates the trend in the model

accuracy improvement as infill samples are added. Figure 9.8 shows two measures

of model error in the feasible region. The plots asymptotically approach zero error,

as expected. The benefits from sampling more than 30 points become increasingly

negligible, so we have chosen that as our limit for this demonstration.

Given this initial success, a 30 point sample was taken for both virtual subjects

(see Figure 9.9). The same initial 11 point sample (shown as circles) was used for

both models, and the infill samples selected by superEGO are shown as x’s. The two

resulting sample sets are indeed different, indicating that the adaptive sampling can
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Figure 9.7: Progress of adaptive sampling for ISC1. Circles are initial samples, dots
and x’s are infill samples, x’s being the most recent.
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(b) Virtual subject B

Figure 9.9: Adaptive sampling results using ISC1. Contours of the reach effort model
are shown along with the constraints and sample point locations. Circles
are initial samples, x’s are infill samples.

effectively choose sample sets that depend on the subject. The models also appear

to be a reasonable representation of the virtual subjects’ reach effort. The accuracy

deteriorates in the infeasible space which is unsampled, but that is irrelevant because

the models are only meaningful in the feasible space.

A final test applied the 7-8 zone criterion of Equation (9.2) to generate a smaller

20 point sample around an area of interest. SuperEGO correctly placed the new

infill samples in the region where the reach effort model predicted a value between 7

and 8 (see Figure 9.10). The modeling error may lead to sample points that are not

actually in the 7-8 zone. But overall, the method tends to place points around the

subjects’ true 7-8 zone, thereby increasing the local accuracy of the models in that

region. It is important to note that even though the shape of the 7-8 zone differs

from subject A to subject B, the method successfully adapted the sampling pattern

to the individual subject.
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Figure 9.10: Adaptive sampling results using ISC2. Contours of the reach effort
model are shown along with the constraints and sample point locations.
Circles are initial samples, x’s are infill samples.

9.2.3 Why use it?

Confident that the proposed methodology is able to generate adaptive designs,

we now examine the benefits of doing so. In other words, why do we need adaptive

sampling at all?

Consider first the demonstration shown in Figure 9.9. Applying the maximum

variance criterion, different samples resulted in different experimental designs for the

two subjects. This is because the kriging model parameter θ from Equation (3.3) was

fit at each iteration via maximum likelihood, leading to different covariance models.

The same θ values could have been used for each test subject and kept constant

throughout the testing. The approximation would have still fit each data set well,

but having identical covariance models would have resulted in identical experimental

designs. This is because the kriging variance is a function of the covariance model,

but not the response values.
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If both subjects could have been sampled using the same set of covariance model

parameters, resulting in identical designs, why use adaptive sampling? The answer

is that maximizing the kriging variance for a fixed covariance model subject to the

exclusion and out-of-reach zone constraints is not an adaptive procedure. For a given

covariance model, neither the objective nor the constraints functions are impacted

by the value of the reach effort given by the subject; therefore, a sampling design can

be computed a priori. In order to make the process adaptive, one of two alterations

must be made: refit the covariance models as data is sampled, or include constraints

that are effected by the data.

In the virtual subject testing, we refit the covariance models to generate an adap-

tive process for ISC1. However, there are reasons one may wish to fix the covariance

model parameters during sampling, as will be described in the next section. There-

fore, additional constraints should be added to the ISC subproblem if the sampling

is to be truly adaptive. It will be shown in Section 9.3 that defining the exclusion

zone constraint as a kriging model results in experimental designs that adapt well

to individual test subjects. It is important to note that tests using ISC2 are always

adaptive because the sampling criterion is influenced by the reach effort data through

the condition 7 ≤ ŷ(x) ≤ 8 in Equation (9.2).

With a firmer understanding of what is and what is not adaptive sampling, we

now justify the need for adaptive sampling through the results from the virtual

subject testing described above. For each virtual subject, a kriging model was fit to

a 40 point data sample collected at the locations specified by the ray-based approach

shown in Figure 9.4. Kriging models were also fit to a smaller data sample collected

using superEGO for two different sampling criteria, each initialized with the same 11

point sample. A total of 30 and 20 samples were collected utilizing ISC1 and ISC2,
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respectively. Because the virtual subjects were analytical functions, the RMS error

from the predicted to the actual reach effort could be calculated for each kriging

model.

Table 9.1 compares the model accuracy for each subject for the two sampling

criteria. Test 1 computed the accuracy over the entire feasible space for the 40 point

ray-based design and the 30 point adaptive design from ISC1. Test 2 computed

the accuracy in only the 7-8 zone for the 40 point ray-based and 20 point adaptive

design from ISC2. The adaptive sampling strategy using ISC1 provided a model

with superior global accuracy and had an RMS error 3 times lower than the ray-

based design even though it used 25% fewer sample points. Adaptive sampling also

provided very accurate results in the local zone of interest when ISC2 was applied

for test 2. It was more than twice as accurate than the ray-based model for subject

A while using half as many samples. The model from superEGO was slightly less

accurate than the ray-based model for subject B, but one additional iteration of

superEGO (21 points total) resulted in an RMS of 0.0198, better than the 40 point

ray-based model.

Table 9.1: Comparison of RMS errors resulting from various sampling strategies.
Measures of model accuracy are restricted to the feasible space for test 1
and to the 7-8 zone for test 2.

Virtual subject A Virtual subject B
superEGO ray-based superEGO ray-based

Test 1 0.1072 0.3616 0.0664 0.1944
Test 2 0.0745 0.1786 0.0252 0.0220

While the RMS error helps identify the accuracy of the kriging models generated

by various samples, it is important to also understand how accurately the borders

of the 7-8 zone were defined. In Figure 9.11 we see the 7 and 8 contours of the
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superEGO-based models are much closer to the true contours than those of the ray-

based model for virtual subject A, which agrees with the information in Table 9.1.

However, there is no discernable difference between the two models for virtual subject

B as shown in Figure 9.12. The model from each predicts boundaries for the 7-8 zone

that are very close to the true boundaries. This also agrees with Table 9.1.

It is important to examine the certainty with which each model defines the 7-8

zone as well. While the contours predicted by each model of subject B are com-

parable, there is a large discrepancy between the confidence intervals around those

contours. Figure 9.13 shows the contours of the mean value (shown as a solid line)

plus or minus 3σ (shown as dotted lines), for the reach effort values of 7 and 8. The

meaning of the confidence interval, say for a reach effort of 7, is that the model pre-

dicts with 99.7% confidence that the true contour for a reach effort of 7 is between

the plus or minus 3σ bounds. For each model, the intervals are tighter in regions

where a data point is nearby, and looser (farther apart) in regions far from sample

points.

It is clear from Figure 9.13 that the confidence intervals around the 7 and 8

boundaries are much tighter for the model from the 20 point superEGO design than

for the 40 point ray-based design. This signifies that the designer can place a much

higher degree of confidence in the location of the 7-8 zone as defined by the superEGO

model than for the ray-based model even though half as many samples were taken.

In general, the accuracy of the model from adaptive sampling shows that efficiency

in experimental design can be achieved through adaptive sampling via superEGO.

The advantages of adaptive sampling would likely be even more pronounced for a

full three dimensional sampling.

While the results here support the claim that adaptive sampling can lead to im-
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Figure 9.11: Contours of the 7-8 zone of virtual subject A for two experimental
designs. The true contours are shown as a dashed line.

proved modeling accuracy and/or efficiency, can one justify the added complication?

It would be much simpler to generate a generic space-filling design as a fixed DOE.

Because the variation in the stature of test subject prohibits using a single DOE, one

would have to scale the DOE for each subject. Doing so is not necessarily reliable

because of the number of physical characteristics that determine reach range. Also, a

subject may have physical limitations that prevent them from reaching a point that

another person of the same size might easily reach. Individuals vary in how flexible

they are as well, so two subjects of identical size may in fact rate identical reaches

differently. Thus, it is not feasible to create a scalable, static design that would fulfill

the needs of this experiment. In addition, there may be an interest in subject-specific

information to be accounted for in the sampling (e.g., the location of a subject’s 7-8

zone). The adaptive sampling scheme is necessary in such cases. For these reasons,

adaptive sampling has been selected as an appropriate tool for the test procedure.
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Figure 9.12: Contours of the 7-8 zone of virtual subject B for two experimental de-
signs. The true contours are shown as a dashed line.
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Figure 9.13: Confidence intervals for the 7 and 8 contours (solid lines) of the reach
effort of virtual subject B. The superEGO generated design yields much
tighter ±3σ confidence bands (dotted lines) with half as many samples
(circles).
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(b) 7-8 Zone criterion

Figure 9.14: Resulting sample for first subject

9.3 Initial Assessment

After the virtual testing was complete, the behavior of adaptive sampling was

examined on human test subjects. An initial test was done to better understand

the practical difficulties associated with the experiment. Given that the purpose of

the tests was to debug the methodology and not to generate results, I bravely used

myself as the first test subject. As with the virtual subjects, we sampled 30 points

in the 90 degree plane only. The same 11 point sample set was used to initialize the

routine. Tests were performed with ISC1, the variance criterion and ISC2, the 7-8

zone criterion. The resulting 30 point samples are shown in Figure 9.14.

The adaptive sampling did not fully perform as anticipated during this experi-

ment. SuperEGO fit the covariance model parameters every time a new point was

added, and plots were made to show the resulting mean and variance of the models.

Small changes in the data set unpredictably lead to such poor fits at times that the

variance reached its maximum value (i.e., the sill of the variogram in geostatistics
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terms) everywhere except in the immediate vicinity of a sample point. This was

due to poor model parameters chosen during the MLE fitting process. Specifically,

the situation described in Section 3.6.1 lead to very large theta values (i.e., no cor-

relation). As a result, the variance was essentially identical everywhere, and the

ISC could not determine the location of maximum uncertainty. The importance of

reasonable reach effort models for this procedure cannot be understated.

In an effort to correct the situation, the value of p in the correlation model of

Equation (3.3) was fixed at 1.99. Doing so resulted in models that did not behave

erratically after MLE fitting was complete. This points to one of the difficulties in us-

ing Bayesian analysis successfully - development of a robust, accurate approximation

technique. While kriging has generally performed quite well in this field, this author

has experienced occasions where the robustness of the models fit by the standard

DACE modeling MLE procedures is in question.

Even when the reach effort models were reasonable, they were not always as

accurate as was needed. The specific problem encountered was that the reach effort

model did not fully conform to our expectation of what the true reach effort should

look like. For example, several times during the 7-8 zone criterion test, the procedure

placed buttons in a location that I subsequently rated either below 7 or above 8.

Figure 9.15 shows the actual reach effort I assigned each sample point after the

initial 11 points. Theoretically, one would expect the actual values to converge

towards the 7-8 zone as iterations progressed. This did not occur during the initial

testing. It is possible that more data is needed to accurately predict such a narrow

band with confidence. It is also possible that a one integer range of 7-8 is impractical

given the imprecise, subjective nature of the reach effort rating.

Another important lesson from these early experiments concerned the implemen-
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Figure 9.15: Actual reach effort values assigned during initial testing. Horizontal
lines are the 7-8 zone limits.

tation of the out-of-reach zone. In the testing done in this experiment, the zone was

defined simply by a 1600 mm radius around the subject’s h-point. The adaptive

sampling tended to place the target along the 1600 mm limit because kriging models

have high variance where little data exists. The constraint was therefore active in

the solution to the ISC subproblem. Because the 1600 mm radius was clearly out of

reach when I myself was the test subject, it was decided that a different approach

was needed to prevent the adaptive sampling approach from “playing keep away”.

The proposed solution was to replace the 1600 mm radius constraint with one

that used the predicted reach effort model as:

goutofreach = max(ŷ(x)− 10, 0) (9.3)

The role of Equation (9.3) was to provide a means of preventing exceedingly far

reaches in a way that adapts to how far the subject can actually reach. The imple-

mentation is such that the constraint has a zero (feasible) value for any location the

predicted reach effort is less than 10 and linearly increases for predicted efforts above

10. The user could easily change to some other value besides 10 to either widen or

narrow the feasible search space as fits the application.
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It was also discovered that the ability to use non-interpolating kriging models

greatly enhanced the accuracy of the approximations. By smoothing out the noise

inherent to the subjective reach effort metric, the resulting models behaved more

intuitively. The advantages of the smoothed models were an important factor in

the success of subsequent experiments. With a better understanding of the adaptive

sampling methodology, it was time to use test subjects unfamiliar with the project.

9.4 Subject Testing

For clarity’s sake, we summarize the problem description for the final pilot exper-

iment involving two test subjects. Subject A was a 181 cm tall, 84 kg, 25 year-old

male. Subject B was a 157 cm tall, 52 kg, 24 year-old female. Before any measure-

ments were recorded, they were each given about 10 reaches of various difficulty in

order for them to begin building an internal system for assigning the reach effort

value. Each subject was then given the same set of 11 initial sample point locations

shown in Figure 9.16. The sample points were moved closer to the subjects than

previous experiments in order to prevent “wasting” reach efforts on area that were

clearly out of reach for subject B.

A kriging model of the subject’s perceived reach effort was successfully fit using

the initial data set, then the model parameters [θ, p, nugget] were held fixed for the

rest of the experiment. Doing so reduced the waiting time between reaches and

yielded more reliable reach effort models.

Three different sampling criteria were implemented in this study. The first at-

tempted to create a space-filling design by selecting the location of maximum kriging

variance, Equation (3.14), at each iteration. The other two criteria were used to in-

crease the accuracy of the model where reach effort values were between 7 and 8.



176

0 200 400 600 800 1000 1200 1400 1600

−200

0

200

400

600

800

1000

1200

1400

1600

Figure 9.16: Initial set of 11 reaches

The difference between the last two criteria was that one predicted the 7-8 zone us-

ing an interpolating kriging model, while the other used a smoothed model. Points

predicted to be outside the 7-8 zone were assigned an ISC value of zero. The ISC

are summarized below.

ISC1 = σ̂2(x) (9.4)

ISC2 =


σ̂2(x), if 7 ≤ ŷinterpolating(x) ≤ 8

0, otherwise

(9.5)

ISC3 =


σ̂2(x), if 7 ≤ ŷsmoothed(x) ≤ 8

0, otherwise

(9.6)

Three constraints were incorporated into the solution of the ISC problem at each

iteration. They were the exclusion zone, out-of-reach, and predicted out-of-reach

constraints. The first kept the target from getting too close to the subject and was

modeled by the rectangular region shown in the lower left corner of Figure 9.16. The
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out-of-reach constraints prevented placing the target in locations that were clearly

out of the subject’s reach, thus wasting time. The second constraint modeled the

out-of-reach zone by a 1600 mm radius around the subject’s h-point ([0,0] on the

graph). The third constraint modeled the out-of-reach zone by a smoothed kriging

model of the reach effort. Predicted reach efforts above 10 were considered infeasible.

While g3 is more adaptive to the subject, g2 was kept as a redundancy in case the

reach effort model were to behave erratically. The three constraints are summarized

below.

g1 : x /∈ Encroachment zone (9.7)

g2 : ||x|| ≤ 1600mm (9.8)

g3 : ŷsmooth ≤ 10 (9.9)

During the experiments, the kriging variance of an interpolating model was used

to quantify the uncertainty in reach effort model. While the smoothing approach

exhibited a more well-behaved reach effort model, there were problems with the

variance calculations as demonstrated in Figure 3.11. Because the sampling criteria

used the kriging variance to create a space-filling design, it was critical that the

variance tend toward zero at the sampled locations and increase monotonically as

the distance from neighboring samples increased. Thus, the interpolating model

was selected. However, we have taken advantage of the flexibility of superEGO

to calculate the objective of the ISC subproblem with variance of the interpolating

model and the constraint of the ISC subproblem with predicted value of the smoothed

kriging model.

In summary, the R matrix of the kriging model was updated each iteration to

incorporate the new data (without refitting the model parameters), then one of the
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ISC’s of Equations (9.4)-(9.6) was maximized subject to the constraints in Equations

(9.7)-(9.9). The solution to the ISC subproblem was the location to place the target

next. The subject reached for the target, rated the effort, and the process was

repeated until a specified number of reaches were performed. For ISC1, a total of

30 points (including the initial 11) were sampled. Only 20 points were sampled for

ISC2 and ISC3.

9.4.1 Results

We begin by showing the resulting DOE’s for each subject from ISC1 (see Figure

9.17). The initial 11 points are shown as circles, with the remaining 19 infill points

shown as x’s. As expected, the two DOE’s were quite different from each other. As

discussed in Section 9.2.3, the kriging variance is homoscedastic, that is, it depends

only on the location of the data, not the values thereof. So why then were the

DOE’s different? It is because the predicted out-of-reach constraint, g3, adapted to

the user. As the kriging variance is high on the outer perimeter of the design space,

where fewer data points are nearby, some infill points tended towards the edge of the

feasible space. Because the predicted out-of-reach zone for subject A was beyond the

1600 mm radius, g3 was dominated by g2 in the majority of the space, and points

were placed along the edge of the 1600 mm radius. However, for subject B, g2 was

dominated by g3 because she could not reach that far, and points were placed along

the edge of her predicted out-of-reach zone instead. Therefore, the infill locations for

the two subjects quickly diverged. To compare the resulting reach effort models of

the subjects after the 30 points, the interpolating and smoothed kriging models are

shown in Figures 9.18 and 9.19, respectively.

The next two criteria were run for a total of 20 points each. Looking first at
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Figure 9.17: DOE for ISC1 for Subjects A (left) and B (right)
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Figure 9.18: Reach effort interpolating model for Subjects A (left) and B (right)
based on DOE from ISC1

ISC2, Figure 9.20 shows the adaptive designs for the two subjects. For ISC2, the

criterion estimates the 7-8 zone using the interpolating model. Figure 9.21 compares

the predicted to the actual reach effort at each iteration. Similarly, Figures 9.22

and 9.23 show the adaptive designs and predicted vs. actual reach efforts for ISC3.

For ISC3, the predicted 7-8 zone was estimated using the smoothing model. In

both cases, the prediction accuracy was higher for subject B than for subject A. It is

possible that subject B’s smaller feasible design space made predictions more reliable,

or that subject B had an underlying (true) reach effort that was more smooth than
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Figure 9.19: Reach effort smoothed model for Subjects A (left) and B (right) based
on DOE from ISC1

that of subject A, thereby facilitating the modeling. However, no general conclusions

should be drawn from such a small pilot test.
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Figure 9.20: DOE from ISC2 for Subjects A (left) and B (right)
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Figure 9.21: Comparison of predicted (x-axis) to actual (y-axis) reach effort using
ISC2 for subjects A (left) and B (right)
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Figure 9.22: DOE from ISC3 for Subjects A (left) and B (right)
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Figure 9.23: Comparison of predicted (x-axis) to actual (y-axis) reach effort using
ISC3 for subjects A (left) and B (right)
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9.4.2 Discussion

A global, constrained, nonlinear optimization algorithm was used to create adap-

tive design of experiments. The generality of the framework lent itself well to ex-

ploring a variety of sampling criteria and constraint sets. It has been shown that

the adaptive sampling successfully created experimental designs that adapted to the

individual test subjects. For one subject, target locations were pushed further away

because of his tall stature. For another, sample points were kept closer to the subject

due to her shorter reach range. The integration of constraints into the solution of

the ISC maximization problem allowed for irregularly shaped design spaces that took

subject behavior into account. In addition, the ability to create smoothed kriging

models was shown to be an important contribution to the study. The results of this

pilot study have lead to some interesting possibilities.

Note from Figure 9.20 that two sample points for subject A were taken outside

the 1600 mm radius. For that particular experiment, g2 was eliminated from the

constraint set to explore how well g3 kept the samples within reach. The resulting

DOE yielded 3 out-of-reach responses, compared to none for the ISC3 experiment

of Figure 9.22. While this does indicate that more targets were placed outside the

subject’s range, it did provide a reasonable constraint in that the subject was nearly

capable of reaching the target. Occasionally placing the target just outside the

subject’s reach is not necessarily undesirable because having some sensored data

helps clearly identify the maximum reach boundary.

Eliminating g2 may prove essential in some cases. For example, subject A was

actually able to reach many of the targets placed along the 1600 mm radius. An

experiment designed to search for an individual subject’s maximum reach range

would be hindered by g2 if the subject were tall because no out-of-reach samples
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would be taken. One could measure the subject’s height before testing and determine

a suitable radius for g2, but adaptively setting the out-of-reach boundary via g3

appears to be a more robust method. A sampling criterion similar to those applied

here could be used effectively with g1 and g3 to adaptively locate the maximum reach

range.

9.5 Chapter Summary

In this chapter, we have shown that determining an experimental design as the

data is sampled can be an effective strategy. Using superEGO, models that are

more accurate have been created using fewer data points than current procedures,

resulting in an overall time and cost savings.

All four of the main contributions of the thesis were needed to complete the

study. First, non-interpolating kriging models were created to accommodate the

significant noise in the experimental data. Second, the flexibility of the framework

was leveraged to easily create new sampling criteria specific to this problem. Third,

this was a constrained optimization problem where analytical functions were used

to describe the acceptable placement of the target. Fourth, because the constraints

were inexpensive to compute, they were used directly during the ISC subproblem

search without loss of accuracy. If approximations had been used instead of the

constraints themselves, it is possible that any model inaccuracy could have led to a

mistakenly violated constraint. Had the exclusion zone constraint been violated, the

test subject would have been hit by the robot arm. Needless to say, direct evaluation

of the inexpensive constraints was critical.

Having demonstrated the importance and success of the dissertation goals, we

present the conclusions in the next chapter.



CHAPTER 10

Conclusions and Future Work

The goal of this dissertation was to advance the state of the art in design opti-

mization via Bayesian analysis. Specifically, the main contributions focused on mak-

ing Bayesian analysis more flexible and better suited to efficiently solve constrained

optimization problems. These improvements were done by modifying an existing

framework, the Efficient Global Optimization (EGO) algorithm of Schonlau, Welch

and Jones [44].

We began by examining the kriging approximation and the relationship between

the geostatistics and DACE approach to kriging in an effort to understand how the

models in superEGO could be improved. A diagnostic for identifying certain poor

model fits was proposed along with a corrective measure. The techniques for incorpo-

rating measurement error into the models were used for improving the conditioning

of a nearly singular correlation matrix as design points cluster about the optimum.

Smoothed models were later combined with interpolating variance in the reach effort

study to better guide an adaptive sampling procedure.

To allow for flexibility, a modularized framework was created such that any quan-

tifiable infill sampling criterion could be easily incorporated into the algorithm. A

number of sampling criteria were implemented in the new superEGO framework to
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illustrate the difference between many Bayesian analysis approaches. Also, a num-

ber of new criteria were introduced. A new technique for locating an initial feasible

point in a highly constrained problem was successfully demonstrated. Another new

technique was shown to have success at locating subsequent local optima in problems

with disconnected feasible regions, even when the constraint function was difficult

to model. New sampling criteria were also developed to enable Bayesian analysis to

effectively generate adaptive experimental designs.

To advance the constraint handling abilities of Bayesian analysis, several tech-

niques were compared. Some solve the infill sampling subproblem as an uncon-

strained problem by penalizing the criterion in some way for infeasible designs. The

approach proposed in this dissertation was to directly incorporate the constraints into

the infill sampling subproblem. The resulting method is very flexible and worked well

on the examples, regardless of the sampling criterion chosen.

Significant advancements were made with respect to the efficiency of solving con-

strained optimization problems. By solving the infill sampling problem as a con-

strained problem, inexpensive constraints were directly and accurately accounted for

during the search for the next iterate. The new search strategy was able to reduce

the number of iterations required to achieve an acceptable solution by as much as

90%. When the time required for each function evaluation was significant, this also

resulted in a substantial savings in overall time to solve the problem.

One of the remaining challenges for Bayesian analysis algorithms is the termi-

nation criterion. As described in the literature review, several researchers have de-

veloped stopping rules for specific sampling criteria. The flexibility of superEGO

allows the user to select the stopping rule. However, while some rules work well for

some choices of the sampling criterion, they lose meaning once a different sampling
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criterion is selected. The challenge, therefore, is to find a suitable stopping rule

(other than a function evaluation limit) that is applicable to Bayesian analysis-based

optimization regardless of the sampling criterion.

An ideal stopping rule would incorporate an estimate of the model accuracy or

of the probability that the global optimum has been found. These metrics provide a

natural criterion for stopping that apply regardless of the sampling criterion chosen.

The tradeoff between this metric and the number of function evaluations may provide

a stopping rule somewhat akin to the Akaike Information Criterion (AIC) [1], [2]

for choosing an appropriate model while limiting the number of basis functions.

Termination could occur if either the metric value is sufficiently high, or when the

ratio of the metric value to the number of sample points reaches a certain threshold.

Of course, the reliability of either approach is severely limited by the difficulty of

accurately predicting the model accuracy or the probability of having found the global

optimum. However, if sufficiently advanced statistical techniques are developed, such

stopping rules may prove useful for a wide variety of applications.

More advanced statistical techniques may also improve the efficiency of con-

strained optimization. For many situations in design optimization, there is a strong

correlation between constraint functions (e.g., the 0-60 time and 0-85 time constraints

in the vehicle study). Principal Component Analysis may provide ideas for trans-

forming and combining the responses, thereby reducing the number of kriging model

to fit.

Efficiency becomes a prime concern when the number of design variables be-

comes large. Like most curve fitting techniques, kriging suffers from the “curse of

dimensionality”. That is, it becomes extremely difficult to fit and/or unreliable for

prediction as the number of dimensions increases. The examples shown in this thesis
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were restricted to a small number of design variables to ease visualization. Readers

are directed to Schonlau’s work [83] to see how EGO handles problems of six to ten

design variables. New strategies must be employed for solving problems with a large

number of design variables.

One strategy would be to make the problem tractable by reducing the num-

ber of relevant design variables through sensitivity analysis, ANOVA, or some other

appropriate statistical means. Failing that, the large problem may be solved as a col-

lection of smaller problems through decomposition methods [97]. Another approach

to solving large problems would be to replace the kriging models with a simpler ap-

proximation that can be fit easily in higher dimensions and couple it with a trend

for the uncertainty that returns to zero at the sample points. The Wiener model

mentioned in Section 2.1.5 may provide such an approximation. While the accuracy

of the model would be inferior to kriging, the problem would no longer be hindered

by the impracticality of fitting models, and the search process may eventually lead

to better designs as the simple models adapt to the data collected.

Even if the number of design variables remains small, the computational burden

of fitting and evaluating the kriging models can become prohibitive as the number of

data sample points, n, increases beyond 300 or so, due to the inversion of the n× n

R matrix. It may become necessary to filter out data points that are redundant (i.e.,

have neighboring sample points with better objective function values) to reduce the

size of the data set. Another approach for aiding prediction efficiency would be to

use the geostatistics method of the moving search window (see Section 3.6.3) such

that only data points near the point at which to predict are considered.

Perhaps the greatest obstacle to successful use of Bayesian analysis has been

the reliability of automated model fitting. Some strategies were developed in this
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dissertation to detect situations known to result in poorly fit models. However, the

robustness of maximum likelihood estimation (MLE) is still in question. MLE fitting

can still generate very poor models even if the diagnostic criterion of Equation (3.24)

is satisfied. Because most designers are not experts in kriging modeling or statistics

in general, the algorithm must either be intuitive enough for the average user to

easily adapt it to their needs, or it must be robust enough that the average user

will not need to adapt it. Some attempt has been made here to provide such an

algorithm, but the lack of a robust automated model fitting process is still at issue.

If the optimization is not successful, the user may have to examine the kriging models

that came out of the algorithm and understand how to rectify the situation. The

existence of problems such as these prevent Bayesian analysis from becoming an

attractive option to designers.

Further work is currently underway to enhance the abilities of the smoothed

kriging models. Rather than having a uniformly smoothed model, we have considered

incorporating a measurement error that is a function either of the location in the

design space or of the predicted value of the model. The method would have a wide

range of applications. In the reach effort study for example, one could account for

the fact that the subjects are more consistent when assigning very high or very low

reach effort values than they are in assigning values in the medium range. The kriging

model could potentially include more smoothing in the region of higher intrasubject

variability and remain more true to the data at the extremes.

In summary, the goals of this dissertation have been met. Some suggestions were

made to improve the kriging models, and new uses were found for combining inter-

polating and smoothed approximations. The utility of modularizing the ISC sub-

problem was demonstrated by a variety of new sampling criteria designed to solve
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types of optimization problems that were previously either impossible or impractical

given the algorithm’s original capabilities. Constrained optimization problems were

addressed more rigorously and the proposed method for handling constraints appears

successful. Finally, incorporating inexpensive information directly into the ISC sub-

problem led to a significant reduction in the time required to find good solutions.

The contributions of this dissertation have advanced the field of Bayesian analysis

while pointing to opportunities for further research.
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APPENDIX A

Software Manual

This Appendix is intended to give a basic understanding of the Matlab imple-

mentation of superEGO. The comments in the code itself will provide more detail

for advanced users. To receive a copy of the source code (available for academic use

only), send an email to msasena@umich.edu listing your name, affiliation, and a brief

synopsis of how you will use the code.

A.1 Background

SuperEGO is an optimization algorithm for solving problems of the form

min
x

f(x) (A.1)

subject to: g(x) ≤ 0 .

Equality constraints can be incorporated by defining two inequality constraints with

appropriate bounds on either side. SuperEGO is designed for problems where the

objective and/or constraint functions are expensive to compute. It solves the prob-

lems by making a global approximation of each response with a kriging model. Due

to the nature of the approximations, superEGO is intended for problems where the

number of design variables and expensive constraints are both relatively small (less

than 10).
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The basic procedure of superEGO is as follows (see also Figure A.1):

1. Use a space-filling experimental design to obtain an initial sample of true func-

tions.

2. Fit a kriging model to each function.

3. Numerically maximize the infill sampling criterion (ISC) to determine where

to sample next.

4. Sample the point(s) of interest on the true functions and update the kriging

models.

5. Check for termination, otherwise return to 2.

Take initial
data sample

Update kriging
models

Optimize Infill
Sampling Criterion

Sample new
infill points

Stop?

yes
no

Figure A.1: Flowchart of the superEGO algorithm

A.2 Framework and Important Files

SuperEGO requires a number of files to run. The master program, superEGO,

calls all the other subroutines needed including the function calling files created by
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the user, which will be referred to as myfun exp and myfun cheap throughout this

manual. The flow of information is summarized in Figure A.2. The solid boxes

represent the various subroutines, with their respective names shown above.

superEGO

1. Create initial DOE sample expensive
functions

myfun_exp

2. Fit kriging models

3. Choose next iterate

a. set up fitting 
procedure

b. create model 
w/ optimal 

parameters

fitkrige

optimize model 
parameters

UMDIRECT
or fmincon

evaluate given 
model parameters

MLEopt

calculate 
SCF

SCF

evaluate candidate 
sample point

ISCprob

optimize location of 
next sample point

UMDIRECT
calculate mean 
and variance of 
kriging models

predictkrige

sample cheap 
functions

myfun_cheap

5. Check for termination

4. Evaluate new point sample true
functions

myfun_exp and
myfun_cheap

calculate 
SCF

SCF

Figure A.2: Flow of information between superEGO and its subroutines

The main code (superEGO) runs the initial data sample by evaluating the ex-

pensive functions in the user-defined file myfun exp. SuperEGO then calls out to

the subroutine fitkrige to fit a kriging model to each of the expensive functions.

Fitkrige in turn calls out to another algorithm to optimize the model parameters.

That algorithm could be either UMDIRECT, a University of Michigan implementation

of Jones’ DIRECT algorithm, or fmincon, Matlab’s SQP algorithm. The algorithm

chosen depends on what fitting criterion is used, but most often, UMDIRECT is called.
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The model fitting optimization algorithm calls out to MLEopt to compute the good-

ness of fit metric which requires SCF to calculate the spatial correlation function

(SCF) between two sample points.

Once the optimal parameter values have been found, kriging models are created

and control is returned to superEGO. In the next step, UMDIRECT is used to locate

the next sample point by maximizing the infill sampling criterion (ISC). This aux-

iliary optimization problem is referred to as the ISC subproblem. The file ISCprob

evaluates the sampling criterion at each candidate design point. It calls out to the

subroutine predictkrige whenever the predicted mean and/or variance of the krig-

ing models are needed to compute the objective or constraint functions of the ISC

subproblem. Predictkrige, like fitkrige, requires the SCF subroutine to evaluate

the covariance model. If the sampling criterion requires it, ISCprob also evaluates the

inexpensive functions in the user-defined file myfun cheap. The solution to the ISC

subproblem is the location of the next sample. SuperEGO evaluates the true functions

in myfun exp and myfun cheap at that location, checks if a new best feasible solution

has been found and stores information from that iteration. After checking the ter-

mination criterion (usually the number of function evaluations), it either terminates

or returns to the model fitting step. Fitkrige uses the same model parameters from

the previous iteration most often, but determines a new set of optimal parameters

every tenth iteration.

While many of the subroutines can be appended to superEGO to reduce the

number of files needed, some must remain separate. When an auxiliary optimization

problem is solved (e.g., finding optimal model parameters or maximizing the ISC),

UMDIRECT or fmincon must evaluate the objective function of the auxiliary problem

using a separate file. Therefore, at least two extra files are included in the source
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code: MLEopt to evaluate the goodness of the model fit and ISCprob to evaluate

the sampling criterion. In addition, the user must write three Matlab files: a script

file which sets the superEGO options and starts the optimization, and two function

files (myfun exp and myfun cheap in this example) which independently evaluate the

expensive and inexpensive functions.

A.3 The Subroutines

While most of the subroutines used in superEGO are only used internally, some

may be used independently. Here we describe the basic functionality of those func-

tions, their set of input and output arguments, and the portions of code that the

user may want to change. Detailed descriptions of the programs can be found in

the header and comments of the Matlab files themselves. All programs have been

coded by Michael Sasena except UMDIRECT which was coded by Ryan Fellini, Michael

Sasena, and John Whitehead and fmincon which is part of Matlab’s optim toolbox.

A.3.1 myfun exp and myfun cheap

These are the function files that the user must create to compute the objective

and/or constraint functions of the design problem. SuperEGO distinguishes between

so-called ‘expensive’ functions and ‘inexpensive’ functions which are evaluated hun-

dreds of times per iteration. Doing so can result in an overall time savings when the

inexpensive information is used to more intelligently dictate what expensive informa-

tion is requested. Kriging models are fit only to those functions labelled ‘inexpensive’.

See Chapter 6 for more details.

If all functions are to be considered expensive, than all computations may be done

in a single file. All functions to be considered inexpensive must be calculated using a

separate function file. In both files, it is important that the first input argument be
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the vector of design variables. Additional input arguments may be sent when calling

these files, as will be discussed in Section A.5.

A.3.2 fitkrige

This function file creates a kriging model(s) for a given data set. While this

function is called directly from superEGO, it is also useful for fitting kriging models

independent of optimization. The syntax for calling fitkrige is as follows (with

optional input arguments shown in italics):

kparam=fitkrige(x,y,method,lb,ub,theta,p,nugget,order )

x matrix of data inputs

y matrix of data outputs

method choice of fitting method

lb lower bounds on data input values

ub upper bounds on data input values

theta correlation model parameters

p correlation model parameters

nugget correlation model parameters

order order of global trend

The first two inputs arguments are mandatory as they are the data set. Each

column of y is a different response, thus the user may fit multiple models at once. The

parameter method defines which fitting criterion is used (e.g., maximum likelihood),

which algorithm is used when fitting the kriging model (e.g., UMDIRECT), and which

parameters among theta, p, and nugget are to be fit rather than left at their nominal

value. These variations lead to over 50 fitting methods, the full listing of which is

found in the header of the fitkrige program. The default method is to use UMDIRECT

to fit just theta via maximum likelihood.
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The lb and ub row-vectors are used to specify the lower and upper bounds of the

input data, respectively. This scales each input dimension to the [0, 1] range, which

helps the model fitting if there is a large disparity in the magnitude of the various

inputs. If they are not specified, fitkrige uses the range of the data set, x, to define

lb and ub. The input arguments theta, p, and nugget can be used to either specify

a value for that model parameter (if method=0) or to provide a starting point for

a gradient-based search (if method=41-57). Finally, the order of the polynomial in

the global trend model can be specified to override the default of 0 (constant term

model).

The output of the fitkrige program is the structure array kparam, which stores

all information required to evaluate the kriging model. It includes the original data

set itself, the method used in fitting, the values for the correlation parameters and

order, and the range of the data set (to identify the scaling used). Kparam also

precomputes and stores several terms of the kriging equations in order to reduce the

computational effort of evaluating the kriging models. These include β̂, σ̂2
z , R

−1, and

the product R−1 · (y − β̂).

The fitkrige program requires the following additional subroutines: MLEopt,

SCF, UMDIRECT, and the Matlab optim toolbox. For some rarely used choices of

method, the program calls out to the following subroutines: errorcheck, predictkrige,

variogram aniso, WSS, and vmodel.

In some cases, the user may wish to define a new fitting procedure. This could

mean changing the optimization algorithm used to find the optimal parameter values

or changing the criterion used to determine the goodness of the parameter values

(e.g., maximum likelihood). There are two files they must edit: fitkrige and

MLEopt. In fitkrige, there is a long list of ‘elseif method == ...’ statements
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that set up the optimization run for each value of method. To create a new fitting

procedure, the user must simply add a new ‘elseif method == ...’ branch defining

how to call the optimization algorithm for the new procedure. Then, they can define

a new fitting criterion by adding a new ‘elseif criterion == ...’ branch in the

MLEopt file. To implement their new procedure, they must now simply call fitkrige

with the new value of method they have defined. The user must take care not to

use a value for either method in fitkrige or criterion in MLEopt that has already

been defined.

A.3.3 predictkrige

Another useful program is the predictkrige function, whose purpose is to calcu-

late the predicted mean and variance of the kriging models at a given location using

Equations (3.11) and (3.13), respectively. This program can be used when making

plots of the approximate responses, or within ISCprob to evaluate the mean and

variance of the approximation at the candidate design point. The syntax for calling

predictkrige is as follows (with optional input arguments shown in italics):

[ynew,yvar,lambda]=predictkrige(xnew,kparam,THETA,P,NUGGET,ORDER )

xnew the design point(s) at which to evaluate kparam

kparam the kriging model generated by fitkrige

THETA correlation model parameters

P correlation model parameters

NUGGET correlation model parameters

ORDER order of global trend

The first argument tells the program where to evaluate the kriging models. As

each row in xnew is a design point, a matrix may be sent to evaluate multiple points

at once, which is more efficient than using predictkrige within a loop. The second

argument is the kriging model itself, created by fitkrige. The final four input
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arguments are optional and may be used to override the SCF parameters in kparam

when evaluating the models.

The predictkrige function returns up to three output arguments: ynew, yvar,

and lambda. The first is the column vector (matrix if kparam contains multiple krig-

ing models) of predicted values of the kriging model at xnew. The second output is

the associated simple kriging variance. The third output returns the kriging weights

for each prediction point defined in Equation (3.22). While most users will not need

lambda, it is provided to help debug modeling errors. The predictkrige program

requires only the SCF subroutine.

A.3.4 UMDIRECT

This program is the University of Michigan version of Jones’ DIRECT algorithm

[40], [43]. It is a derivative-free method for constrained (or unconstrained), non-

linear optimization. DIRECT works by using Lipschitz theory to divide up the

design space into hyper-rectangles. At each iteration, the set of hyper-rectangles

most likely to contain good function values are further subdivided. The algorithm

is used by superEGO to find optimal kriging model parameters and to solve the ISC

subproblem. The syntax for calling UMDIRECT is as follows (with optional input

arguments shown in italics):

results=UMDIRECT(fileInfo,lb,ub,options,restartFile )

fileInfo information on the functions to be evaluated

lb lower bounds on design space

ub upper bounds on design space

options DIRECT running parameters

restartFile used to continue a previous DIRECT run
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The first argument is a structure array with the following fields: fName, gName,

fParams, gParams. The first two store the names of the function files that compute

the objective and constraint functions, respectively. If the user would prefer to

calculate both the objective and constraint functions in a single file, they must be

assigned to fName. The fParams and gParams fields store any additional arguments

that must be sent to the files fName and gName in order to execute them. The lb and

ub arguments simply constrain the range of the design space. The options argument

is another structure with the following fields:

maxfCount limit on function calls (default = 200*(# variables))

maxIter maximum number of iterations allowed (default = 50)

termType termination criterion (default = fCount OR Iter exceeded)

conTol allowable constraint violation (default = 1e-10)

display amount of output sent to screen (default = show only final results)

saveFile save the results to file at each iteration (default = don’t save)

lgBalance local / global balance parameter (default = 1e-4)

localSearch allow for local optimization (default = use SQP)

Default values exist for all options, thus the user is not required to specify any

of them. Several termination criteria exist, such as limiting the number of function

evaluations or iterations, or stopping once very little progress has been made after

a set number of function evaluations or iterations. The reader is referred to the

comments in the header of UMDIRECT for more details. The lgBalance option can be

set by the user to control the balance between local and global searching. However,

the default value has been shown by Jones to be quite robust, and therefore does

not require tuning to the specific problem in most cases. The localSearch option

allows the user to turn on or off the local search capability. While allowing for local

searching is often quite helpful at efficiently locating the local optima, it may launch
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spurious local searches at times. If the function calls are inexpensive, the drawbacks

are not significant, and local searching is recommended.

The final input argument, restartFile, is used to restart UMDIRECT in case the

user would like to continue searching for a better solution beginning from the results

of a previous run. It can be either the name of the .mat file containing the previous

results, or the structure array of results itself.

The output of UMDIRECT is a structure array with the following fields:

xBest best feasible design point found

fBest objective function value at xBest

gBest vector of constraint values at xBest

fCount number of function evaluations performed

iter number of iterations performed

fChangeRate rate of change in f (used in conWeight)

gChangeRate vector of rate changes for each constraint

conWeight vector of constraint weights

hist structure array containing history of best point

rect structure array of rectangle properties

inputs structure array of input arguments passed to DIRECT

UMDIRECT is a self-contained function. However, if its local search option is active,

then it will call out to fmincon to find local solutions.

A.3.5 fmincon

This program is the Matlab SQP algorithm for constrained, non-linear optimiza-

tion. In some cases, it is called by superEGO to find optimal model parameters

or to solve the ISC subproblem. The reader is referred to Matlab’s help for more

information on this program.
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A.4 Syntax and Options for SuperEGO

Now that the subroutines have been introduced, we are able to explain the main

code, superEGO. The syntax for superEGO, which is very similar to UMDIRECT, is as

follows (with optional input arguments shown in italics):

results = superego(fileInfo,lb,ub,options,restartFile )

fileInfo information on the functions to be evaluated

lb lower bounds on design space

ub upper bounds on design space

options superEGO running parameters

restartFile used to continue a previous superEGO run

The fileInfo structure array has the following fields: expFile, cheapFile,

expParams, cheapParams and expObjFun. The first two fields are the names of the

function files that will be used to compute the expensive and inexpensive arguments,

respectively. Any additional arguments that must be passed to these files are given

via the expParams and cheapParams fields. The last field, expObjFun, indicates if the

objective function is computed by the expensive (fileInfo.expObjFun=1) or cheap

(fileInfo.expObjFun=0) function file. SuperEGO will store two additional fields

when the algorithm terminates, expFileNargout and cheapFileNargout. These

provide information as to how many output arguments are produced by each of the

user-defined functions.

Similar to UMDIRECT, the lb and ub arguments define the range of the design

space. The options argument is a structure array that can be used to override

many of the default settings for superEGO. It contains the following fields:

• display: The amount of output sent to the screen. The default suppresses all

output until the algorithm displays the final results (options.display=0). It
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can be set to 1 to print each iteration, or to 2 to show additional information

about the ISC subproblem at each iteration.

• ISC: Determines which sampling criterion to use when searching for the next

iterate. There are a number of choices, and they are listed in the header of

the ISCprob code. The default criterion (options.ISC=9) is the Watson and

Barnes regional extreme function (WB2) described in Section 4.1.7.

• ISCParams: Any additional parameters that may define the ISC. For example,

if the user had specified options.ISC=2 (generalized expected improvement),

they could also set options.ISCParams=5 to override the default value of g in

Equation (4.6). Likewise, they could define options.ISCParams as a vector to

create the cool criterion explained in Chapter 4. Of course, each criterion has

it’s own definition of ISCParams, thus the user must inspect the criterion in

the ISCprob file to determine how to use ISCParams if they want to override

the default settings.

• maxfCount: Limits the number of function calls before termination. The default

value is 50*d, where d is the number of design variables.

• termType: The termination criterion to use. If none is specified, superEGO will

terminate if any of the following occurs: options.maxfCount is exceeded,

options.fGoal is met, or all functions are inexpensive and one iteration has

been completed. Currently, three other options for termination criteria have

been implemented. For options.termType=1, superEGO will terminate once

the ratio of the value of the expected improvement function at the new iterate

to the best feasible objective function value has stayed below the threshold 1e-3

for three iterations in a row. This is a criterion proposed by Schonlau [83]. For
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options.termType=2, superEGO will terminate once a feasible point has been

found. For options.termType=3, superEGO will terminate if the last three

iterations have not produced a change in the location of the next iterate of

more than 0.1% of the range of the design space. For options.termType=4,

superEGO will terminate once a sample point is taken within a given radius of

a point specified by options.termParams (see below). This last criterion is

useful for conducting experiments on problems with known solutions.

• termParams: Any additional parameters that may define the termType criterion.

For example, the user may change the settings for options.termType=2 de-

scribed above such that superEGO will terminate once options.termParams=5

feasible designs have been found instead of the default, 1. The user is referred

to the superEGO file to determine what the termParams setting does for each

termType.

• fGoal: Terminates superEGO once fGoal is reached. The default is set at -∞

so that superEGO will only terminate by the specified termType or by the

maxfCount limit.

• conTol: The allowable constraint violation. The default value is somewhat high

(1e-4) because superEGO is designed for simulation-based optimization. The

user may also define options.conTol as a vector in order to provide a differ-

ent tolerance for each constraint. This is effective when some constraints are

analytical functions, and some are simulations.

• filter: Apply the filtering method to the ISC subproblem (default=0, don’t

apply filtering). The inexpensive constraints will be met for all iterations for

constrained ISC subproblems. However, the filter constraint f(x) < fmin is
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only applied if options.filter=1. See Chapter 6 for more details about the

filtering method.

• expCon: The method for handling expensive constraints during the ISC subprob-

lem. The default value (options.expCon=3) means that the predicted value

of each expensive constraint must be no greater than options.conTol. Other

settings allow for expensive constraints to be handled using the probability of

feasibility or the expected violation metric. See Section 5.2 and the ISCprob

code for more information.

• localSearch: Enable periodic local search. The local search consists of locating

the minimum of the kriging model of the objective function every tenth iteration

and sampling the true functions at that location.

• infillMethod: Force a specific algorithm for ISC subproblem. The default is to

use UMDIRECT, either constrained or unconstrained, depending on the problem

statement and the choice of options.ISC. The user, however, may choose to

force a specific method in order to override the default selection.

options.infillMethod=1 unconstrained Tomlab DIRECT

options.infillMethod=2 constrained Tomlab DIRECT

options.infillMethod=3 constrained SQP using fmincon

options.infillMethod=4 constrained Tomlab DIRECT on subregion

options.infillMethod=5 unconstrained UMDIRECT

options.infillMethod=6 constrained UMDIRECT

• fitMethod: Force a specific method for model fitting. This sets the value of the

method input to the fitkrige program. The default is to use UMDIRECT to fit

theta only via maximum likelihood (options.fitMethod=21).
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• fitOrder: Force a specific value for the polynomial order of the global trend of

the kriging model. This sets the value of the order input to the fitkrige

program. The default is options.fitOrder=0, use a constant term model.

• loadDOE: Allows the user to pass their own DOE to initialize superEGO. The

argument must be sent as an n × d matrix, where n is the number of design

points to sample and d is the number of design variables. Also, the inputs must

be scaled to the [0,1] range for all variables. They will subsequently be scaled

to the [lb,ub] range by superEGO.

• modelID: Use predetermined values for kriging model parameters, if available.

For some examples shown in this dissertation, good covariance model param-

eters have been found from fitting data samples. Those values were stored

within superEGO to avoid having to fit models at each iteration. The user is

referred to the superEGO code to see which functions have pre-computed model

parameters. SuperEGO is able to determine if the problem uses one of these

examples by checking the name of the problem files. The Gomez #3 example

consists of the objective and one constraint function. If the user would like to

consider the objective function as expensive (i.e., create a kriging model), but

consider the constraint function as inexpensive (i.e., use the constraint function

directly), they would set options.modelID=[1]. However, if they wanted the

opposite, they would use options.modelID=[2]. If they wanted both functions

to be labelled as expensive, they would use options.modelID=[1 2]. Leaving

options.modelID undefined will let the algorithm fit the expensive functions

via fitkrige rather than using the pre-computed model parameters. The user

may also enter new kriging model parameters for their own models into the
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main code in order for them to be recognized by options.modelID.

• saveFile: The name of file to save the results to at each iteration. If no filename is

specified, the default is to save the results to a file named ’results myfun exp’,

where ’myfun exp’ refers to the name of the expensive function file. If only

inexpensive functions exist, that file name will be used instead. The user may

prevent superEGO from saving the results to a file each iteration by setting

options.saveFile=’nosave’.

As with UMDIRECT, a previous superEGO run can be continued by passing either

the previous results file name, or the results structure array itself via the optional

restartFile input argument. The results structure output from superEGO has the

following fields:

xBest best feasible design point found

fBest objective function value at xBest

gBest vector of constraint values at xBest

lb lower bounds on design space

ub upper bounds on design space

fCount number of function evaluations performed

fCountCheap number of inexpensive function evaluations performed

iter number of iterations performed

minIndex function evaluation at which xBest was found

history structure array containing history of xBest

inputs set of all row-vector inputs sent to the function file

outputs set of all row-vector outputs ordered as [f, g1, g2, ...]

kparam the kriging model generated by fitkrige

infill iterations’ ISC choice and best found value

flag indicates if superEGO converged or crashed

prob structure array defining the problem statement

fileInfo fileInfo argument originally passed to superEGO

options options argument originally passed to superEGO
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Note that the expensive constraints are listed first in the results.outputs matrix.

The user may wish to define a sampling criterion specific to their problem as was

done for the case studies in this thesis. Doing so requires editing the portion of the

ISCprob file that defines each ISC as ‘elseif options.ISC == ...’. The user must

simply insert a new elseif branch and create the function to define ISC f, making

sure to not use a previously defined value for options.ISC.

A.5 Examples of How to Execute SuperEGO

In order to execute superEGO, the user must write a script file. Below are several

examples of script files to set up the superEGO parameters and begin the optimization.

A.5.1 Example 1

In the first example, the user is setting up an ordinary optimization problem

that consists of both expensive and inexpensive functions. The objective function is

expensive.

fileInfo.expFile=‘myfun_exp’; %name of expensive function file

fileInfo.cheapFile=‘myfun_cheap’; %name of cheap function file

fileInfo.expParams=[10]; %extra parameter sent to ‘myfun_exp.m’

fileInfo.expObjFun=1; %the objective function is expensive

lb=[0 5 0]; %lower bounds on design variables

ub=[10 25 50]; %upper bounds on design variables

options.maxfCount=75; %limit on number of function calls

options.conTol=[1e-3 1e-2]; %tolerance on the two constraints

options.display=1; %show progress every iteration

options.saveFile=‘myfile’; %name of file to save each iteration

myresults=superEGO(fileInfo,lb,ub,options); %start superEGO

Note that the names of the function evaluation files are passed as strings by

putting single quotes on either side. The user may also include the .m after the

filename, but it is not necessary to do so. Once the optimization is complete, the
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results are stored in two ways: the structure array output of the function call to

superEGO (named myresults in this example) is saved to the workspace, and the

same structure array is saved to the Matlab data file myfile.mat, where it is named

results.

A.5.2 Example 2

If the user wanted to continue with the same problem shown in Example 1 for

another 25 function calls, they could restart superEGO with either the two following

two lines of code:

newoptions.maxfCount=100; %set a higher limit on the fCount

mynewresults=superEGO([],[],[],newoptions,‘myfile’);

OR

newoptions.maxfCount=100; %set a higher limit on the fCount

mynewresults=superEGO([],[],[],newoptions,myresults);

Note that the user only had to define the specific options that they wished to

change from the previous results. All the remaining options would take on the values

from the original results stored in the file myfile.mat or the variable myresults in

the workspace.

It should be noted that the user may also change either of the lb or ub input

arguments when continuing an optimization run. If any of the problem bounds have

been changed, say to narrow the search space, the user will be shown the old and

new bounds and prompted to either accept the new bounds or terminate the run. If

the fileInfo has been changed, an error occurs because the user is attempting to

use previous results with a different function file.
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A.5.3 Example 3

In some instances, the user may wish to keep more control over the sampling of

the functions due to the extreme cost of the functions in the design problem. For

example, they may wish to make an initial set of function calls before starting any

optimization, or to reuse existing data. They may also wish to fit the model in order

to more easily verify that the model is a good fit and visualize the results before

starting the optimization.

%define a simple DOE of 4 experiments and run simulation

X = [[1 0 0];[-1 0 0];[0 1 0];[0 0 0]];

for i=1:4

y(i) = myfun_exp(X(i,:));

end

y=y(:)’; %ensure it’s a column vector

%create the kriging model

mymodel = fitkrige(X,y);

At this point, the user is free to inspect the kriging model stored in mymodel.

Obviously, the illustration above is not practical because only 4 data points were used

for a 3 dimensional data set. When the user is satisfied that the model sufficiently

captures the trend, they may then import that information into superEGO and begin

optimization by creating a structure array called results and passing it to superEGO

as if it were from a previous optimization run to be restarted. The names of the fields

must match exactly the names defined by the usual superEGO results array. Only

the fields for the input and output data (and the kriging model if it has been fit)

should be created in this way. SuperEGO will fill in the missing information itself.
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%define results structure array

results.inputs=X;

results.outputs=y;

results.kparam=mymodel;

%define input arguments to superEGO

fileInfo.expFile=’myfun_exp’;

lb=[-1 -1 -1];

ub=[1 1 1];

options.maxfCount=10; %only run 6 more points using superEGO

options.infill=11; %use maximum variance criterion

options.saveFile=’mynewresults’; %store new results to file

options.fitMethod=0; %just reuse model parameters w/o refitting

%start superEGO using previously gathered data

myresults=superEGO(fileInfo,lb,ub,options,results);

Note that the setting options.fitMethod=0 is used so that the kriging model

parameters will not be refit at each iteration. As long as the model built in the

preliminary stages shown above is acceptable, then setting that option will reduce

the overhead and fix the kriging model parameters at known good values to avoid

potentially poor fits as during the optimization. Once the options.maxfCount limit

has been reached, the algorithm will terminate. The user may then evaluate the

results, determine how to proceed next, and continue the optimization as shown in

Example 2. They are of course free to change the design variable bounds or any of

the options settings during restart.
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