
Parallel Global Optimization with the Particle Swarm Algorithm

J.F. Schutte1, J.A. Reinbolt2, B.J. Fregly1,2, R.T. Haftka1, A.D. George3

1 Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL

2 Department of Biomedical Engineering, University of Florida, Gainesville, FL

3 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL

-

Address correspondence to:

B.J. Fregly, Ph.D.

Department of Mechanical & Aerospace Engineering

231 MAE-A Building

P.O. Box 116250

University of Florida

Gainesville, FL 32611-6250

Email: fregly@ufl.edu

Phone: (352) 392-8157

Fax: (352) 392-7303



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 1

SUMMARY

Present day large-scale engineering optimization problems impose large computational demands, resulting in

long solution times even on modern high-end processors. To obtain enhanced computational throughput and global

search capability, we detail the parallelization of an increasingly popular global search method, the Particle Swarm

Optimization (PSO) algorithm. The parallel PSO algorithm’s robustness and efficiency are demonstrated using

a biomechanical system identification problem containing several local minima and numerical or experimental

noise. The problem involves finding the kinematic structure of an ankle joint model that best matches experimental

movement data. For synthetic movement data generated from realistic ankle parameters, the algorithm correctly

recovered the known parameters and produced identical results to a synchronous serial implementation of the

algorithm. When numerical noise was added to the synthetic data, the algorithm found parameters that reduced the

fitness value below that of the original parameters. When applied to experimental movement data, the algorithm

found parameters consistent with previous investigations and demonstrated an almost linear increase in throughput

for up to 30 nodes in a computational cluster. Parallel PSO provides a new option for global optimization of large-

scale engineering problems.

Copyright c© 2003 John Wiley & Sons, Ltd.

KEY WORDS: Particle swarm, parallel optimization, biomechanical model, cluster computing.

INTRODUCTION

Numerical optimization has been widely used in engineering to solve a variety of NP-complete

problems in areas such as structural optimization, neural network training, control system analysis

and design, and layout and scheduling problems to name but a few. In these and other engineering

disciplines, two major obstacles limiting the solution efficiency are frequently encountered. First,

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



2 J.F. SCHUTTE ET AL.

large-scale problems are often computationally demanding, requiring significant resources in time and

hardware to solve. Second, engineering optimization problems are often plagued by multiple local

optima and numerical noise, requiring the use of global search methods such as population-based

algorithms to deliver reliable results.

Fortunately, recent advances in microprocessor technology and network technology have led to

increased availability of low cost computational power through clusters of low to medium performance

computers. To take advantage of this, communication layers such as MPI and PVM have been used

to develop parallel optimization algorithms, the most popular being gradient-based, genetic (GA), and

simulated annealing (SA) algorithms [1, 2, 3]. In biomechanical optimizations of human movement,

for example, parallelization has allowed previously intractable problems to be solved in a matter of

hours [1].

The Particle Swarm Optimization (PSO) algorithm is a recent addition to the list of global search

methods [4]. This derivative free method is particularly suited to continuous variable problems and has

received increasing attention in the optimization community. It has been successfully applied to large-

scale problems [5, 6, 7] in several engineering disciplines and, being a population based approach,

is readily parallelizable. It also has fewer algorithm parameters than either GA or SA algorithms.

Furthermore, generic settings for these parameters work well on most problems [8, 9].

In this study study, we present a parallel PSO algorithm for application to large-scale problems.

The algorithm’s robustness to local minima and enhanced throughput due to parallelization are

demonstrated on a sample biomechanical system identification problem. The problem involves fitting

a parametric ankle joint kinematic model to synthetic and experimental movement data defined by

trajectories of surface markers [10].

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 3

SERIAL PARTICLE SWARM ALGORITHM

Particle swarm optimization was introduced in 1995 by Kennedy and Eberhart [11]. Although

several modifications to the original swarm algorithm have been made to improve performance

[12, 13, 14, 15, 16] and adapt it to specific types of problems [6, 17, 18], a parallel version has not

been previously implemented.

The following is a brief introduction to the operation of the particle swarm algorithm. Consider a

flock or swarm of p particles, with each particle’s position representing a possible solution point in the

design problem space D. For each particle i, Kennedy and Eberhart proposed that the position xi be

updated in the following manner:

xi
k+1 = xi

k + υi
k+1, (1)

with a pseudo-velocity υi
k+1 calculated as follows:

υi
k+1 = wkυi

k + c1r1(pi
k − xi

k) + c2r2(p
g
k − xi

k). (2)

Here, subscript k indicates a (unit) pseudo-time increment, pi
k represents the best ever position of

particle i at time k (the cognitive contribution to the search vector υi
k+1), and pg

k represents the global

best position in the swarm at time k (social contribution). r1 and r2 represent uniform random numbers

between 0 and 1. To allow the product c1r1 or c2r2 to have a mean of 1, Kennedy and Eberhart proposed

that the cognitive and social scaling parameters c1 and c2 be selected such that c1 = c2 = 2. The

result of using these proposed values is that the particles overshoot the target half the time, thereby

maintaining separation within the group and allowing for a greater area to be searched. The addition

of the variable wk, set at 1 at initialization, is a modification to the original PSO algorithm [13].

This allows a more refined search as the optimization progresses by reducing its value linearly or

dynamically [6].

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



4 J.F. SCHUTTE ET AL.

The serial PSO algorithm as it would typically be implemented on a single CPU computer is

described below, where p is the total number of particles in the swarm. The best ever fitness value

of a particle at design coordinates pi
k is denoted by f i

best and the best ever fitness value of the overall

swarm at coordinates pg
k by fg

best. At the initialization timestep k = 0, the particle velocities vi
0 are

initialized to random values within the limits 0 ≤ v0 ≤ vmax
0 . The vector vmax

0 is calculated as

a fraction of the distance between the upper and lower bounds vmax
0 = ζ(xUB − xLB) [6], with

ζ = 0.5.

1. Initialize

(a) Set constants kmax, c1, c2, w0

(b) Randomly initialize particle positions xi
0 ∈ D in IRn for i = 1, ..., p

(c) Randomly initialize particle velocities 0 ≤ vi
0 ≤ vmax

0 for i = 1, ..., p

(d) Set k = 1

2. Optimize

(a) Evaluate function value f i
k using design space coordinates xi

k

(b) If f i
k ≤ f i

best then f i
best = f i

k, pi = xi
k

(c) If f i
k ≤ fg

best then fg
best = f i

k, pg = xi
k

(d) If stopping condition is satisfied then go to 3.

(e) Update particle velocity vector vi
k+1 using Eq. (2).

(f) Update particle position vector xi
k+1 using Eq. (1).

(g) Increment i. If i > p then increment k, and set i = 1.

(h) Go to 2(a).

3. Report results

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 5

4. Terminate

The above is illustrated as a flow diagram in Figure 1

PARALLEL PARTICLE SWARM ALGORITHM

The following issues had to be taken into consideration to create a parallel PSO algorithm.

Concurrent Operation and Scalability

The algorithm should operate in such a fashion that it can be easily decomposed for parallel operation

on a multi-processor machine. Furthermore, it is highly desireable that it be scalable. This implies that

the nature of the algorithm should not place a limit on the amount of computational nodes that can be

utilized.

An example of an algorithm with limited scalability is a parallel implementation of a gradient-based

algorithm. This algorithm is decomposed by distributing the workload of the derivative calculations

for a single point in design space among multiple processors. The upper limit on concurrent operations

using this approach is therefore set by the number of variables in the problem.

On the other hand, population-based methods such as the GA and PSO algorithms are better suited

to parallel computing. Here the population of individuals representing designs can be increased or

decreased according to the availability and speed of processors. Any additional agents in the population

will allow for a higher fidelity search in the design space, lowering susceptibility to entrapment in local

minima. However, this comes at the expense of additional fitness evaluations.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



6 J.F. SCHUTTE ET AL.

Asynchronous vs. Synchronous Implementation

The original PSO algorithm was implemented with a synchronized scheme for updating the best

”remembered” individual and group fitness values, f i
k and fg

k , and their associated positions pi
k and

pg
k. This entails performing the fitness evaluations for the entire swarm before updating the best fitness

values. Subsequent experimentation revealed that improved convergence rates can be obtained by

updating the f i
k and fg

k values and their positions after each individual fitness evaluation (i.e., in an

asynchronous fashion) [8, 9]. It is speculated that because the updating occurs immediately after each

fitness evaluation, the swarm reacts more quickly to an improvement in the best-found fitness value.

With the parallel implementation, however, this asynchronous improvement on the swarm is lost

since fitness evaluations are performed concurrently. The parallel algorithm requires updating f i
k and

fg
k for the entire swarm after all fitness evaluations have been performed, as in the original particle

swarm formulation. Consequently, the swarm will react more slowly to changes of the best fitness

value “position” in the design space. This produces an unavoidable performance loss in terms of

convergence rate compared to the asynchronous implementation and can be considered part of the

overhead associated with parallelization.

Coherence

Parallelization should have no adverse affect on algorithm operation. Calculations sensitive to program

order should appear to have occurred in exactly the same order as in the original formulation, leading

to the exact same final answer as obtained by a serial implementation. In the serial PSO algorithm the

fitness evaluations form the bulk of the computational effort for the optimization and can be performed

independently. For our parallel implementation, we therefore chose to decompose the algorithm to

perform the fitness evaluations concurrently on a parallel machine. Step 2 of the particle swarm

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 7

optimization algorithm was then modified accordingly to operate in a parallel manner:

2. Optimize

(a) Evaluate all i particle fitness values f i
k in parallel using design space coordinates xi

k.

(b) Perform barrier synchronization of all fitness evaluation results.

(c) If f i
k ≤ f i

best then f i
best = f i

k, pi
k = xi

k.

(d) If f i
k ≤ fg

best then fg
best = f i

k, pg
k = xi

k.

(e) If stopping condition is satisfied then go to 3.

(f) Update all particle velocities vi
k for i = 1, ..., p with Eq. (2).

(g) Update all particle positions xi
k for i = 1, ..., p with Eq. (1).

(h) Increment k.

(i) Go to 2(a).

The parallel PSO algorithm is represented by the flow diagram in Figure 2

Network Communication

In a parallel computational environment, the main performance bottleneck is the communication

latency between processors. This is especially true for large clusters of computers where the use of high

performance network interfaces are limited due to their high cost. To keep communication between

different computational nodes at a minimum, fitness evaluation tasks are used as the level of granularity

for the parallel software. As previously mentioned, each of these evaluations can be performed

independently and requires no communication aside from receiving design space coordinates to be

evaluated and reporting the fitness value at the end of the analysis.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



8 J.F. SCHUTTE ET AL.

Evaluate objective function
f(x) for particle i

Update velocity vi
k

for particle i

Stopping criterion
satisfied?

Update velocity xi
k

for particle i

Stop

Initialize algorithm
constants kmax, vmax

0 , w, c1, c2

i > total number
of particles?

Set i = 1,
Increment k

Increment i

no

Output results

yes

Update particle i and swarm
best values f i

best, fg
best

Randomly initialize all
particle velocities vi

k

Randomly initialize all
particle positions xi

k

Start

Set k = 1, i = 1

yes

no

Figure 1. Serial implementation of PSO algorithm

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 9

Randomly initialize all
particle velocities vi

k

Barrier
synchronize

Stopping criterion
satisfied?

Stop

Update particle and swarm
best values f i

best, fg
best

Update velocity vi
k

for all particles

Update position xi
k

for all particles

Randomly initialize all
particle positions xi

k

Increment k

Initialize algorithm
constants kmax, vmax

0 , w, c1, c2

no

yes

Output results

f(x4)f(x3)f(x1) f(xn)f(x2)

Set k = 1

Start

Figure 2. Parallel implementation of PSO algorithm

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



10 J.F. SCHUTTE ET AL.

The optimization infrastructure is organized into a coordinating node and several computational

nodes. PSO algorithm functions and task orchestration are performed by the coordinating node,

which assigns the design coordinates to be evaluated, in parallel, to the computational nodes. With

this approach, no communication is required between computational nodes as individual design

fitness evaluations are independent of each other. The only necessary communication is between the

coordinating node and the computational nodes and encompasses the following:

1. Several distinct design variable configuration vectors assigned by coordinating node to slave

nodes for fitness evaluation.

2. Fitness values reported from slave nodes to coordinating node.

3. Synchronization signals to maintain program coherence.

4. Termination signals from coordinating node to slave nodes on completion of analysis in order

for the program to stop cleanly.

Synchronization

From the parallel implementation algorithm, it is clear that some means of synchronization is required

to ensure that all of the particle fitness evaluations have been completed and results reported before the

velocity and position calculations can be executed (steps 2c and 2d). This is done by using a global

synchronization or barrier function in the MPI communication library which temporarily stops the

coordinating node from proceeding with the next swarm iteration until all of the computational nodes

have responded with a fitness value. This, however, implies that the time required for a single parallel

swarm fitness evaluation will be dictated by the slowest fitness evaluation in the swarm.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 11

Implementation

The parallel PSO scheme and the required communication layer was implemented in ANSI C on the

Linux operating system with the message passing interface (MPI) libraries [19]. A cluster of 40 1.3

GHz Athlon personal computers was used to obtain the numerical results.

SAMPLE BIOMECHANICAL APPLICATION

For our example problem, we chose a system identification problem of a biomechanical nature. This

computationally-intensive large-scale optimization attempts to determine the kinematic structure of a

parametric ankle joint model from experimental surface marker data. The experimental data is gathered

by using an optoelectronic system. The system uses multiple cameras to record the positions of external

markers placed at certain locations on the body segments. To permit measurement of three-dimensional

motion, three non-colinear markers are attached to the foot and lower leg. The recordings are processed

to obtain marker trajectories in a laboratory fixed coordinate system [20], [21].

The first step in the system identification procedure is to formulate a parametric ankle joint model

that will emulate the patient’s movement by having sufficient degrees of freedom. The complexity

of the parametric model depends on the purpose of the end application. Any added complexity will

translate into increased computational effort at simulation time. Consequently, some tradeoff must be

made, taking into consideration the available computational power and time that can be committed to

solving the problem.

For the purpose of this paper, we approximate the talocrural and subtalar joints as simple 1 degree

of freedom revolute joints. As shown in Figure 3, the selected ankle joint model contains 12 adjustable

parameters that define its kinematic structure [10]. Each parameter is a joint axis position or orientation

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



12 J.F. SCHUTTE ET AL.

Figure 3. Joint locations and orientations in parametric kinematic ankle model. Each pi (i = 1,...,12) represents a

different position or orientation parameter in the model.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 13

in the lower leg, talus, or foot segment. This kinematic model also has a set of virtual markers fixed to

the limb segments in positions corresponding to those of the measured subject. The linkage parameters

are then adjusted via optimization until the model is able to accurately emulate the rigid body motions

dictated by the marker trajectory data.

To quantify how closely the kinematic model can follow experimental marker trajectories, we define

a cumulative marker error e as follows:

e =
n∑

j=1

m∑

i=1

∆i,j
2 (3)

with

∆2
i,j = ∆x2

i,j + ∆y2
i,j + ∆z2

i,j . (4)

where ∆xi,j , ∆yi,j and ∆zi,j are the spatial displacement errors in the x, y, and z directions as

measured in the laboratory coordinate system, for marker i, in frame j. These errors are calculated

between the experimental marker locations on the human subject and the virtual marker locations on

the kinematic model. The cumulative error becomes the objective function to be minimized. For each

time frame, a nonlinear least squares sub-optimization is performed to determine the joint angles that

minimize ∆2
i,j for the current set of model parameters. By varying the model parameters, the PSO

algorithm finds the best model that minimizes e over all time frames.

The experimental marker trajectory data consist of n = 50 time frames for a total of 111

experimental marker coordinates (i.e., 37 markers) on the subject. Only the relevant subset of m =

6 markers, namely 3 lower leg and 3 foot markers, are of interest for the kinematic ankle model. These

marker trajectories define the motion of the foot and lower leg, both of which are assumed to be rigid

bodies, in the laboratory reference frame.

For the numerical testing, three data sets were analyzed as described below, where the number of

particles used in the swarm for each optimization was 20.:

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



14 J.F. SCHUTTE ET AL.

1. Synthetic data without numerical noise

Synthetic data without numerical noise were generated by simulating marker movements using

a lower body kinematic model with virtual markers. The synthetic motion was based on an

experimentally measured ankle motion (see 3 below). The kinematic model used anatomically

realistic joint positions and orientations. Since the joint parameters associated with the synthetic

data were known, this optimization was used to verify that the parallel PSO algorithm could

accurately recover the original model.

2. Synthetic data with numerical noise

Stochastic numerical noise was superimposed on each synthetic marker coordinate trajectory

to emulate the effect of marker displacements caused by skin movement artifacts [22]. A

previously published noise model requiring three random parameters was used to generate a

marker perturbation N [23]:

N = Asin(ωt + φ) (5)

where A is the amplitude, ω the frequency, and φ the phase angle of the noise. The random

variables were scaled to fall within the bounds 0 ≤ A ≤ 1 cm, 0 ≤ ω ≤ 25 rad/sec, and

0 ≤ φ ≤ 2π [23].

3. Experimental data

Experimental marker trajectory data were obtained by processing three-dimensional recordings

of a subject performing movements with reflective markers attached to the foot and shank as

previously described. Institutional review board approval was obtained for the experiments and

data analysis, and the subject gave informed consent prior to participation. Marker positions

were reported in a laboratory fixed coordinate system.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 15

NUMERICAL RESULTS

Synthetic and experimental optimization results are summarized in Tables I and II. In the tabulated

results, p1 to p12 are the kinematic model parameters and Nfe is the number of fitness evaluations

(sub-optimizations of 50 timeframes) per analysis.

Upper Lower Synthetic Synthetic data Synthetic data

bound bound solution without noise with noise

Nfe 40000 40000

p1 (degrees) 48.66935 -11.633065 18.366935 18.364964 15.13010

p2 (degrees) 30.0 -30.0 0.0 -0.011809 8.00750

p3 (degrees) 70.230969 10.230969 40.230969 40.259663 32.97410

p4 (degrees) 53.0 -7.0 23.0 23.027088 23.12202

p5 (degrees) 72.0 12.0 42.0 42.002080 42.03973

p6 (cm) 6.270881 -6.270881 0.0 0.000270 -0.39360

p7 (cm) -33.702321 -46.244082 -39.973202 -39.972852 -39.61422

p8 (cm) 6.270880 -6.270881 0.0 -0.000287 0.75513

p9 (cm) 0.0 -6.270881 -1.0 -1.000741 -2.81694

p10 (cm) 15.266215 2.724454 8.995334 8.995874 10.21054

p11 (cm) 10.418424 -2.123338 4.147543 4.147353 3.03367

p12 (cm) 6.888097 -5.653664 0.617217 0.616947 -0.19037

Table I. Optimization results for synthetic marker trajectories without and with noise.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



16 J.F. SCHUTTE ET AL.

Synthetic Data Synthetic Data Experimental

RMS Errors Without Noise With Noise Data

Marker distances (cm) 3.58e-4 0.551 0.394

Orientation parameters (deg) 1.85e-2 5.05 N/A

Position parameters (cm) 4.95e-4 1.04 N/A

Table II. Synthetic and experimental marker distance and joint parameter RMS errors

As can be seen from Table I, the algorithm had no difficulty recovering the original parameters from

the synthetic dateset without noise, with a final cumulative error value e on the order of 10−13. This

results in the optimum model being recovered with mean orientation errors less than 0.05 degrees and

mean position errors less than 0.008 cm. Furthermore, the parallel implementation produced identical

fitness and parameter histories as a synchronous serial implementation. For the synthetic data with

superimposed noise, a RMS marker distance error of 0.551 cm was found, which is on the order of

the imposed numerical noise with a maximum amplitude of 1 cm. This error corresponds to a RMS

orientation error of 5.05 degrees and a mean position error of 1.04 cm. For the experimental data, the

RMS marker distance error was 0.394 cm, which is on the same order of magnitude as for the synthetic

data with noise. The recovered parameters were consistent with values in the literature [10].

Figures 4, 5, and 6 indicate convergence data for the three sets of data under consideration. As

can be seen from the plots, the initial convergence rate is quite high, whereafter it slows when the

approximate location of the minimum is found. After approximately 750 swarm iterations, there is

little or no improvement in the fitness value and the algorithm can be considered to have converged.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 17

DISCUSSION

The poor agreement of orientation parameters (p1 − p4) to actual values for the noisy synthetic dataset

(Table I) are the result of the induced numerical noise. This can be explained by the dependency

of orientation calculations on marker positions. Because of the close proximity of the markers to

each other, even relatively small amplitude numerical noise in marker positions can result in large

fluctuations in the best-fit joint orientations. This can be clearly seen in the RMS orientation error

(Table II). To counter this, a larger dataset could be used to offset the effects of noise. Nonetheless the

fitness value for the optimized parameters was lower than that obtained by evaluating the fitness using

the original parameters.

Several local minima were observed when the noiseless synthetic data were analyzed with a gradient-

based optimizer using random initial starting points. These minima are illustrated in Figure 7 by using

an interpolating fitness plot on lines between three of local minima. To evaluate further the parallel

PSO algorithm’s ability to avoid entrapment in local minima, ten additional runs were performed using

different initial random number seeds. In all ten cases, the algorithm converged to the global solution.

A scaling study was also undertaken to investigate the speedup obtained by solving a fixed amount of

ankle parameter fitness evaluations (1000) with an increasing number of computational nodes from 5 to

30, with the swarm size set accordingly. The particle swarm has been proven to be relatively insensitive

to the amount of particles in the swarm [8, 9], as long as the swarm size does not drop below a value

of 5. Figure 8 shows analysis duration (wall clock times) per fitness evaluation as a function of number

of nodes. As can be seen from this figure, using an increasing number of nodes leads to dramatically

improved thoughput, obtaining near linear speedup rates. However, at the upper limit of this study,

communication overhead began to degrade efficiency.

Large variations were observed for the time required to complete some of the concurrent processes

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



18 J.F. SCHUTTE ET AL.

0 100 200 300 400 500 600
0

200

400

600

800

A
nk

le
 fi

tn
es

s

0 100 200 300 400 500 600
5

10

15

20

25

30

35

S
um

m
ed

 R
M

S
 e

rr
or

0 100 200 300 400 500 600
0.2

0.3

0.4

0.5

0.6

0.7

O
rie

nt
at

io
n 

R
M

S
 e

rr
or

0 100 200 300 400 500 600
0.5

1

1.5

2

Swarm iterations

P
os

iti
on

 R
M

S
 e

rr
or

Figure 4. Fitness convergence and parameter error plots for synthetic ankle data without noise

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 19

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

A
nk

le
 fi

tn
es

s

0 100 200 300 400 500 600 700 800
5

10

15

20

25

30

35

S
um

m
ed

 R
M

S
 e

rr
or

0 100 200 300 400 500 600 700 800
0.1

0.2

0.3

0.4

0.5

0.6

O
rie

nt
at

io
n 

R
M

S
 e

rr
or

0 100 200 300 400 500 600 700 800
0.5

1

1.5

2

Swarm iterations

P
os

iti
on

 R
M

S
 e

rr
or

Figure 5. Fitness convergence and parameter error plots for synthetic ankle data with noiseplot

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



20 J.F. SCHUTTE ET AL.

0 250 500 750 1000 1250 1500
0

200

400

600

800

A
nk

le
 fi

tn
es

s

Swarm iterations

Figure 6. Fitness convergence plot for experimental data

on different computational nodes. This can be explained in part by some fitness evaluations requiring

more time to complete. Consequently, due to the synchronization requirement of the parallel PSO

algorithm, the time taken by each parallel set of fitness evaluations on the cluster was dictated by the

slowest concurrent process. This results in a single slow node severely degrading the entire analysis.

An added drawback is that a loss of any node will result in the entire analysis being stopped.

CONCLUSIONS

This study has presented a parallel implementation of the Particle Swarm Optimization algorithm.

The method was validated by accurately recovering the parameters on a kinematic ankle model from

synthetically generated data. Models were also created from synthetic data with numerical noise and

experimental data collected from a human subject. By using parallel computation, the time required

to solve the system identification problem was reduced substantially, proving that optimization using

a PSO algorithm on a cluster of processors is a worthwhile option to solve large-scale optimization

problems exhibiting multiple local minima. A possible avenue for future study will be investigating

ways of modifying the PSO algorithm to obtain a more efficient and robust parallel scheme. This could

by achieved by eliminating wasted CPU cycles via a dynamic task queue.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 21

0

2

4

6

8

10

12

1 2

F
it
n

e
s
s
 v

a
lu

e

(a) Fitness value interpolation plot between solution 1 and 2

0

0.2

0.4

0.6

0.8

1

1 3

F
it
n

e
s
s
 v

a
lu

e

(b) Fitness value interpolation plot between solution 1 and 3

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
it
n

e
s
s
 v

a
lu

e

2 3

(c) Fitness value interpolation plot between solution 2 and 3

Figure 7. Presence of local minima

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



22 J.F. SCHUTTE ET AL.

5 10 15 20 25 30
0

1

2

3

x 10
-4

Number of nodes

F
it
n
e
s
s
 e

v
a
lu

a
ti
o
n
s
 p

e
r 

s
e
c
o
n
d

Figure 8. Speedup with increasing number of nodes

ACKNOWLEDGEMENTS

The authors gratefully acknowledge funding for this study from NIH National Library of Medicine

(R03 LM07332-01) and Whitaker Foundation grants to B.J. Fregly and an AFOSR (F49620-09-1-

0070) grant to R.T. Haftka.

REFERENCES

1. F.C. Anderson, J. Ziegler, M.G. Pandy, and R.T. Whalen. Application of of high-performance computing to numerical

simulation of human movement. Journal of Biomechanical Engineering 1995;117:300–308.

2. A.J. van Soest and L.J.R. Casius. The merits of a parallel genetic algorithm in solving hard optimization problems. Journal

of Biomechanical Engineering 2003; 125:141–146.

3. B. Monien, F. Ramme, and H. Salmen. A parallel simulated annealing algorithm for generating 3D layouts of undirected

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



PARALLEL GLOBAL OPTIMIZATION WITH THE PARTICLE SWARM ALGORITHM 23

graphs. In Franz J. Brandenburg, editor, Proceedings of the 3rd International Symposium of Graph Drawing. Springer-

Verlag: Berlin, 1995; 396–408.

4. Russell C. Eberhart and Yuhui Shi. Particle swarm optimization: Developments, applications, and resources. In

Proceedings of the 2001 Congress on Evolutionary Computation 2001; 81–86.

5. G. Venter and J. Sobieszczanski-Sobieski. Multidisciplinary optimization of a transport aircraft wing using particle swarm

optimization. In 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization 2002, Atlanta, GA.

6. P.C. Fourie and A.A. Groenwold. The particle swarm algorithm in topology optimization. In Proceedings of the Fourth

World Congress of Structural and Multidisciplinary Optimization 2001; Dalian, China.

7. R. C. Eberhart and Y. Shi. Particle swarm optimization: developments, applications and resources. In Proceedings of the

IEEE Congress on Evolutionary Computation 2001; 27–30.

8. J.F. Schutte. Particle swarms in sizing and global optimization. Master’s thesis, University of Pretoria, Department of

Mechanical Engineering, 2001.

9. A. Carlisle and G. Dozier. An off-the-shelf pso. In Proceedings of the Workshop on Particle Swarm Optimization, 2001;

Indianapolis.

10. A.J. van den Bogert, G.D. Smith, and B.M. Nigg. In vivo determination of the anatomical axes of the ankle joint complex:

an optimization approach. Journal of Biomechanics 1994; 12:1477–1488.

11. J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference

on Neural Networks 1995; 4:1942–1948.

12. Y. Shi and R.C. Eberhart. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on

Evolutionary computation 1998; 69–73.

13. Yuhui Shi and Russel C. Eberhart. Parameter selection in particle swarm optimization. In V. W. Porto, N. Saravanan,

D. Waagen, and A. E. Eiben, editors, Evolutionary Programming VII. Springer:Berlin, 1998; 591–600.

14. R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization. In

Proceedings of the 2000 World Congress on Evolutionary Computation 2000; 84–88.

15. Maurice Clerc. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In Peter J.

Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, editors, Proceedings of the Congress of

Evolutionary Computation 1999; 3:1951–1957.

16. Morten Løvbjerg, Thomas Kiel Rasmussen, and Thiemo Krink. Hybrid particle swarm optimiser with breeding and

subpopulations. In Proceedings of the third Genetic and Evolutionary Computation Conference 2001.

17. A. Carlisle and G. Dozier. Adapting particle swarm optimization to dynamic environments. In International Conference

on Artificial Intelligence 2000; 1:429–434.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls



24 J.F. SCHUTTE ET AL.

18. J. Kennedy and R.C. Eberhart. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997

Conference on Systems, Man and Cybernetics 1997; 4104–4109.

19. William Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Implementation of MPI. Argonne National

Laboratory, Mathematics and Computer science division. http:// www.mcs.anl.gov/mpi/mpiuserguide/paper.html.

20. I. Soderkvist and P.A. Wedin. Determining the movements of the skeleton using well-configured markers. Journal of

Biomechanics 1993; 26:1473–1477.

21. C.W. Spoor and F.E. Veldpaus. Rigid body motion calculated from spatial co-ordinates of markers. Journal of

Biomechanics 1980; 13:391–393.

22. T.-W. Lu and J.J. O’Connor. Bone position estimation from skin marker co-ordinates using global optimization with joint

constraints. Journal of Biomechanics 1999 32:129–134.

23. L. Cheze, B.J. Fregly, and J. Dimnet. A solidification procedure to facilitate kinematics analyses based on video system

data. Journal of Biomechanics 1995; 28:879–884.

Copyright c© 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:0–0

Prepared using nmeauth.cls


