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Abstract

We develop new algorithms for global optimization by combining well
known branch and bound methods with multilevel subdivision techniques
for the computation of invariant sets of dynamical systems. The basic idea
is to view iteration schemes for local optimization problems — e.g. New-
ton’s method or conjugate gradient methods — as dynamical systems and
to compute set coverings of their fixed points. The combination with bound-
ing techniques allow for the computation of coverings of the global optima
only. We show convergence of the new algorithms and present a particular
implementation.
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1 Introduction

The solution of global optimization problems plays an important role in many ap-
plications in science and engineering. Classical iteration procedures (e.g. Newton’s
method or conjugate gradient methods) are often not appropriate for finding a
global minimum of a given objective function, since they usually get stuck in local
minima. Alternative approaches like random search methods (see e.g. Dixon and
Szegö (1978), Zhigljavsky (1991)) or genetic algorithms (Goldberg (1989); Davis
(1996)) have the disadvantage that there always is some uncertainty whether or
not the global optimum has actually been found at the end of the searching proce-
dure. On the other hand rigorous methods based on interval analysis as proposed
for instance in Ratschek and Rokne (1988), Hansen (1992) or Kearfott (1996) are
usually only applicable to low-dimensional problems.

In this article we propose a new method for the computation of the global
minimum of a given objective function. This method is based on a set oriented ap-
proach which is similar in spirit as the one in Dellnitz and Hohmann (1997) where
set oriented numerical methods have been developed for the analysis of discrete
dynamical systems (see also Dellnitz and Hohmann (1996); Dellnitz and Junge
(2002)). Roughly speaking these methods work as follows: starting with a big
compact region in state space one constructs successively refined box coverings of
the invariant sets of the dynamical system under consideration. Thus, the respec-
tive numerical multilevel scheme is based on two basic ingredients: subdivision
and selection. Similar approaches can be found e.g. in Hsu (1987) or Osipenko and
Komarchev (1995).

Already in Dellnitz et al. (2002) subdivision techniques were succesfully in-
troduced for the computation of all the zeros of a nonlinear function in a com-
pact domain. The underlying idea is to view iteration schemes (such as Newton’s
method) as dynamical systems. Then the subdivision and selection procedures are
adapted to this context such that all the respective fixed points can be detected. In
this paper we go even one step further and adjust the algorithms to the context of
global optimization. That is, by an additional combination with branch and bound
strategies we propose particular subdivision schemes which allow to approximate
the global minima of a given function in a reliable way.

A more detailed outline of the article is as follows. In Section 2 we present a
modification of the subdivision procedure for the computation of set coverings of
the fixed points of a given dynamical system (Proposition 2.2 and Algorithm 2.1).
This allows us to compute all the local extremal points of arbitrary nonlinear
functions within compact domains. Since we want to find the global optima of the
given objective function we propose an algorithm which combines the subdivision
procedure of Section 2 with branch and bound techniques as described in Horst
and Tuy (1996) and discuss its convergence properties (Section 3). In Section 4 we
present three numerical examples which illustrate the efficiency and reliability of
our approach.
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2 The Computation of Fixed Points of Discrete

Dynamical Systems

We consider discrete dynamical systems of the type

xj+1 = f(xj), j = 0, 1, 2, . . . ,

where f : Rn → Rn is continuous. Our purpose is to develop a set oriented
numerical method for the approximation of all the fixed points of f within some
given compact subset Q ⊂ Rn, i.e. the set

FPf (Q) = {x ∈ Q : f(x) = x}.

The main idea is to adapt a subdivision technique used in Dellnitz and Hoh-
mann (1997) for the approximation of general invariant sets of dynamical systems
in order to compute successively finer coverings of FPf (Q).

2.1 The Subdivision Procedure

The following algorithm is a modified version of subdivision schemes, which have
previously been presented in Dellnitz and Hohmann (1997). The main difference
is in the selection step, which is now adapted to the purpose of finding FPf (Q).

Algorithm 2.1 Let B0 be an initial collection of finitely many subsets of the
compact set Q such that ∪B∈B0B = Q. Then Bk is inductively obtained from Bk−1

in two steps:

(i) Subdivision Construct a new system B̂k of subsets such that⋃
B∈B̂k

B =
⋃

B∈Bk−1

B

and
diam(B̂k) = θk diam(Bk−1),

where 0 < θmin ≤ θk ≤ θmax < 1.

(ii) Selection Define the new collection Bk by

Bk =
{

B ∈ B̂k : f(B) ∩B 6= ∅
}

.

As a first result we show that this algorithm converges to the set FPf (Q) for
k →∞.

Proposition 2.2 Let Qk be the union of the subsets in Bk,

Qk =
⋃

B∈Bk

B.

Then the following holds:
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(a) Qk is a covering of FPf (Q) for every k ≥ 0.

(b) Q∞ =
∞⋂

k=0

Qk = FPf (Q).

Proof:

(a) Let x ∈ FPf (Q). By definition we have x ∈ Q = Q0. Now assume that

x ∈ Qk−1 for some k > 0. Then by construction there exists a B(x) ∈ B̂k

with x ∈ B(x). Since f(x) = x it follows that f(B(x)) ∩ B(x) is nonempty.
Therefore B(x) ∈ Bk which implies x ∈ Qk.

(b) Let x ∈ Q∞. Then for every k ≥ 0 there exists a Bk(x) ∈ Bk with x ∈ Bk(x).
Assume that x /∈ FPf (Q), i.e. ε = ||f(x) − x|| > 0. Since f is continuous
there exists a δ > 0 such that ||f(x′) − f(x)|| < ε/3 for every x′ ∈ Rn with
||x′−x|| < δ. Using the fact that diam(Bk) → 0 for k →∞ we conclude that
there exists a K > 0 such that diam(Bk(x)) < min(δ, ε/3) for all k > K. But
this implies that diam(f(Bk(x))) < 2ε/3 for all k > K. On the other hand
f(B)∩B 6= ∅ for all B ∈ Bk and all k > 0, thus we have a contradiction. We
conclude that Q∞ ⊂ FPf (Q). In combination with (a) it immediately follows
that Q∞ = FPf (Q).

Remark 2.3 The statements of Proposition 2.2 still hold if we replace f(B) in the
selection step of the subdivision procedure with some outer approximation U(f(B))
of f(B) as long as maxB∈B̂k

dist(U(f(B)), f(B)) → 0 for k →∞.

2.2 Implementation of the Algorithm

The numerical realization of the subdivision procedure is very similar to the clas-
sical subdivision algorithm for the approximation of arbitrary invariant sets of
dynamical systems as described in Dellnitz and Hohmann (1997). For the sake of
completeness we briefly review its important aspects.

For the implementation of the collections Bk we use generalized rectangles (also
called boxes) of the form

R(c, r) = {y ∈ Rn : |yi − ci| ≤ ri for i = 1, . . . , n},

where c, r ∈ Rn, ri > 0 for i = 1, . . . , n, are the center and radius respectively. We
start the subdivision procedure with a single rectangle B0 = {R}. Given a collection

Bk we construct the refined collection B̂k by bisection of the rectangles in Bk with
respect to the j-th coordinate, where j is varied cyclically. The subdivision of a
rectangle R(c, r) leads to two rectangles R−(c−, r̂) and R+(c+, r̂), where

r̂i =

{
ri for i 6= j

ri/2 for i = j
, c±i =

{
ci for i 6= j

ci ± ri/2 for i = j
.
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Figure 1: Storage scheme for the box collections Bk, k = 0, 1, 2, 3.

This allows for a very efficient storage scheme: a collection Bk is completely de-
termined by the initial box R(c, r) and a binary tree representing the subdivision
structure, see Figure 1.

The selection step is usually discretized via test points within each box. The
selection criteria is thus given by

Bk = {B ∈ B̂k : f(x) ∈ B for at least one test point x ∈ B}.

For low-dimensional problems we typically use a fixed grid of test points within
each box, in higher-dimensional problems the points are chosen at random.

Remark 2.4 Rigorous convergence results for the realization of the subdivision
scheme can be obtained when outer approximations of f(B) can be computed
which satisfy the condition of Remark 2.3. This can be done for example using
appropriate interval extensions of f (see e.g. Moore (1966); Alefeld and Herzberger
(1983)). If local Lipschitz estimates on f are available the methods presented in
Junge (1999) can be used, too.

We now illustrate the method by the following elementary

Example 2.5 We want to compute the fixed points of the Hénon map (Hénon
(1976))

f : R2 → R2, f(x) =

(
1− ax2

1 + bx2

x1

)
with parameters a = 1.2 and b = 0.2.

Using Algorithm 2.1 with a grid of 4×4 test points per box in the selection step
we get the coverings shown in Figure 2. After 40 subdivision steps the covering
consists of 5 boxes within two clusters (see Table I).

Since the number of clusters stays constant after the first few subdivision steps
we conclude that there are two fixed points within the rectangles

[−1.3051645,−1.3051528]× [−1.3051645,−1.3051528]
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(a) k = 10
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(b) k = 14
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(c) k = 18

Figure 2: Box coverings B10, B14 and B18 of the fixed points of the Hénon map.

Table I: Boxes obtained after 40 steps of Algorithm 2.1 applied to the Hénon map.

center radius
x1 x2 x1 x2

-1.30516148 -1.30516148 2.86102295 · 10−6 2.86102295 · 10−6

-1.30515575 -1.30516148 2.86102295 · 10−6 2.86102295 · 10−6

-1.30515575 -1.30515575 2.86102295 · 10−6 2.86102295 · 10−6

0.63849163 0.63849163 2.86102295 · 10−6 2.86102295 · 10−6

0.63849163 0.63849735 2.86102295 · 10−6 2.86102295 · 10−6

and
[0.6384887, 0.6384945]× [0.6384887, 0.6385003]

respectively. The exact results can either be found by additional subdivision steps
until a prescribed accuracy is achieved or by switching to some local search method
which uses the obtained covering as input.

3 Application to Optimization Problems

In this section we show how to use the methods presented in the previous section
to solve unconstraint optimization problems.

3.1 Computation of Extremal Points

The main idea is to view iteration schemes for local optimization (e.g. Newton’s
method or conjugate gradient methods) as discrete dynamical systems and to com-
pute their fixed points using the subdivision procedure of Section 2. Since these
fixed points correspond to the (local) extremal solutions of the objective function
under consideration this method allows for the computation of coverings of all the
minima (or maxima) within a given compact subset of the phase space.
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Example 3.1 We want to compute the extremal points of the following objective
function (cf. Himmelblau (1972)):

g(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2

Within the compact set Q = [−5, 5] × [−5, 5] this function possesses 9 critical
points as listed in Table II. Using our subdivision algorithm with Newton’s method
as the dynamical system and a grid of 3 × 3 test points per box we obtain the
covering shown in Figure 3. It consists of 9 boxes with each of them containing
one of the critical points of g.

Table II: Locations and types of the critical points of g within the region Q =
[−5, 5]× [−5, 5].

x1 x2 type
-3.7793 -3.2832 minimum
-2.8051 3.1313 minimum
3.0000 2.0000 minimum
3.5844 -1.8481 minimum

-3.0730 -0.0814 saddle point
-0.1280 -1.9537 saddle point
0.0867 2.8843 saddle point
3.3852 0.0739 saddle point

-0.2708 -0.9230 maximum
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Figure 3: Box covering of all the critical points of the function g of Example 3.1
obtained after 14 subdivision steps.

6



Having computed such a box covering one can obtain the exact solutions of
the optimization problem using standard iterative optimization algorithms with a
small number of initial points within each of the boxes.

3.2 Combination with Branch and Bound Techniques

Using the method described above we are in principle able to approximate all the
local extremal solutions of the given optimization problem. Selection of the global
minima (or maxima) can then be done by comparing the corresponding function
values.

However, if one is only interested in the global minima our method can be
combined with well known branch and bound techniques (see e.g. Horst and Tuy
(1996)) yielding an even more efficient approach. We therefore introduce the fol-
lowing modified algorithm for the computation of coverings of the set of global
minimizers of a given continuous function g : Rn → R:

Algorithm 3.2 Let f : Rn → Rn be an iteration scheme such that the local
minima of g are fixed points of f . Set α0 = +∞ and let B0 be an initial collection
of finitely many subsets of a compact set Q such that ∪B∈B0B = Q. Then Bk is
inductively obtained from Bk−1 in two steps:

(i) Subdivision Construct a new system B̂k of subsets such that⋃
B∈B̂k

B =
⋃

B∈Bk−1

B

and
diam(B̂k) = θk diam(Bk−1),

where 0 < θmin ≤ θk ≤ θmax < 1.

(ii) Selection For each B ∈ B̂k determine a lower bound βk(B) ≤ inf g(B). Let
αk = min(αk−1, min g(Sk)) for a finite set of sample points Sk within the

union of the boxes in B̂k.

The new collection Bk is then defined by

Bk =
{

B ∈ B̂k : f(B) ∩B 6= ∅ and βk(B) ≤ αk

}
.

From Proposition 2.2 we know that in the limit the resulting set Q∞ =
⋂∞

k=0 Qk

with Qk = ∪B∈Bk
B contains only fixed points of f . We now show under which

conditions Algorithm 3.2 converges to the set

GMg(Q) = {x? ∈ Q : g(x?) ≤ g(x) ∀x ∈ Q}

of all global minimizers of g with respect to the set Q.
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Theorem 3.3 The set Q∞ =
⋂∞

k=0 Qk with Qk = ∪B∈Bk
B generated by Algo-

rithm 3.2 is equal to the set GMg(Q) = {x? ∈ Q : g(x?) ≤ g(x) ∀x ∈ Q} of global
minimizers of g with respect to Q if the following conditions on the bounds αk and
βk(B) are satisfied:

(i) (αk −min g(Q)) → 0 for k →∞.

(ii) max
B∈Bk

(inf g(B)− βk(B)) → 0 for k →∞.

Proof: We first show that no global minimizer is removed in the selection step of
the algorithm: Let x ∈ Q be a global minimizer of g with respect to Q. Assume that
x ∈ Qk−1 =

⋃
B∈Bk−1

B for some k > 0. By construction there exists a B(x) ∈ B̂k

with x ∈ B(x). Since x is a fixed point of f we have f(B(x)) ∩ B(x) 6= ∅.
Furthermore αk ≥ g(x) since x is a global minimizer and g(x) ≥ βk(B(x)) by
construction. It follows that B(x) ∈ Bk and therefore x ∈ Qk. Since x ∈ Q = Q0

we conclude that x ∈ Qk for all k ≥ 0 and hence x ∈ Q∞.
Since Q∞ is a subset of FPf (Q) by Proposition 2.2 it remains to show that

each x ∈ FPf (Q) which is not a global minimizer of g is not contained in Q∞:
Let x ∈ FPf (Q) with ε =

(
g(x) − min g(Q)

)
> 0. For contradiction assume

that x ∈ Q∞. This implies that for every k ≥ 0 there exists a Bk(x) ∈ Bk with
x ∈ Bk(x). Since g is continuous and diam(Bk) → 0 for k → ∞ there exists a k1

with (g(x)− inf g(Bk(x))) < ε/3 for all k > k1. The condition on βk implies that
there is a k2 with (inf g(Bk(x))−βk(Bk(x))) < ε/3 for all k > k2. Furthermore there
exist a k3 such that (αk − min g(Q)) < ε/3 for all k > k3 due to the convergence
property of αk. It follows that for all k > K = max(k1, k2, k3)

αk − βk(Bk(x)) = αk −min g(Q) + min g(Q)− g(x) +

g(x)− inf g(Bk(x)) + inf g(Bk(x))− βk(Bk(x))

< ε/3− ε + ε/3 + ε/3 = 0

Therefore αk < βk(Bk(x)) for all k > K which contradicts the fact that Bk(x) ∈ Bk

for all k ≥ 0.

Remark 3.4 (a) Observe that Algorithm 3.2 can be viewed as a particular real-
ization of the general branch and bound algorithm by Horst and Tuy (1996).
In fact, the additional selection criterion f(B) ∩ B 6= ∅ turns out to be very
useful for purposes of global optimization.

(b) Using the definitions of Horst and Tuy a bounding operation which satisfies
conditions (i) and (ii) of Theorem 3.3 is called consistent.

In numerical realizations of Algorithm 3.2 the following two questions arise:

(i) How to choose the sets Sk of sample points to satisfy the condition on the
αk?
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(ii) How to determine suitable lower bounds βk(B)?

One possible answer to the first question is given by the following result:

Proposition 3.5 Let the sets of sample points Sk for the computation of αk in
Algorithm 3.2 be defined in such a way that Sk ∩ B 6= ∅ for all k > 0 and for all
B ∈ Bk. Furthermore assume that condition (ii) of Theorem 3.3 is satisfied. Then
the coverings Bk converge to the set of global minimizers of g, i.e.

dist(Qk, GMg(Q)) → 0 for k →∞.

Proof: We have to show that αk → min g(Q) for k → ∞. Let x? ∈ Q be a
global minimizer of g, i.e. g(x?) = min g(Q), and choose an arbitrary ε > 0. For
each k > 0 there exists a Bk(x

?) ∈ Bk with x? ∈ Bk(x
?). Since diam(Bk) → 0 for

k → ∞ and by continuity of g we conclude that there exists a k̄ > 0 such that
g(y) − g(x?) < ε for all y ∈ Bk(x

?) and all k > k̄. By assumption we can choose
yk ∈ Sk with yk ∈ Bk(x

?) for all k > 0. It follows that g(yk) − g(x?) < ε for all
k > k̄. By definition of αk we therefore have αk − g(x?) < ε for all k > k̄.

In applications we usually discretize the selection criterion f(B) ∩ B 6= ∅ of
Algorithm 3.2 by mapping test points from the box B. We therefore just have to
compute the values of the objective function for these points to satisfy the above
condition. In practice we additionally compute the objective values for the image
points f(x) of those test points for which f(x) ∈ B for x ∈ B. The reason is
that in general these values are lower than those for the test points themselves.
This leads to sequences {αk}k which converge faster to the global minimum and
therefore boxes with ’big’ lower bounds are eliminated earlier in the subdivision
process.

Obviously the computation of lower bounds βk(B) on the function values of g
within a given box B is in general a very difficult task. If the objective function
is simple enough methods of interval arithmetic can be used. Otherwise estimates
on lower bounds have to be computed based on numerical approximations of the
given function and/or other available information on its local behavior.

4 Numerical Examples

We now illustrate the efficiency of our approach by three numerical examples.

Example 4.1 As a first example we apply our global optimization algorithm to
the function

g(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2

which has previously been considered in Example 3.1. The four local minimizers
of g (cf. Table II) have the same function value 0 and therefore all of them are also
global minimizers. As shown in Table III and Figure 4 the subdivision procedure
locates all these points efficiently in a reliable way. In this simple case interval
arithmetic has been used for the computation of the lower bounds.

9



Table III: Number of boxes obtained during an application of the subdivision pro-
cess to the objective function g of Example 4.1.

subdivision number
steps of boxes

2 4
4 9
6 5
8 5
10 5
12 4
14 4
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Figure 4: Box covering of the global minimizers of Example 4.1 obtained after 14
subdivision steps.

Example 4.2 Our next example is taken from Moré et al. (1981):

g2 : R3 → R, g2(x) =
10∑
i=1

hi(x)2

where

hi(x) = exp(−0.1ix1)− exp(−0.1ix2)− x3(exp(−0.1i) + exp(−i)).

The points (1, 10, 1)t and (10, 1,−1)t are global minimizers. The line x1 = x2,
x3 = 0 consists of global minimizers, too.

Using Newton’s method with randomly chosen initial points the two global
minima at (1, 10, 1)t and (10, 1,−1)t can easily be found. On the other hand such a
direct approach makes it difficult to detect that the line x1 = x2, x3 = 0 completely
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consists of global minimizers as well (see Figure 5(a)). In contrast to this we are able
to compute coverings of all the global minimizers within a given box B ∈ R3 using
our subdivision algorithm (cf. Figure 5(b)). As shown in Table IV a comparable
computational effort is required to obtain this result. For the results in this table
we have again used randomly chosen initial points for the Newton iteration.

−12 −8 −4 0 4 8 12
−12
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0

4

8

12

x
1

x 2

(a) Newton iteration with 25000
randomly chosen initial points

−12 −8 −4 0 4 8 12
−12

−8

−4

0

4

8

12

x
1

x 2

(b) Box covering after 30 steps of
the subdivision algorithm

Figure 5: Global minimizers found for Example 4.2 (projection onto the (x1, x2)-
plane).

Table IV: Comparison of the subdivision algorithm with other optimization meth-
ods for the function g2.

Method function evaluations global minimizers found
g2 ∇g2 ∇2g2 (1, 10, 1)t (10, 1,−1)t x1 = x2

Subdivision 6.6 · 105 9.8 · 105 3.6 · 105 yes yes all1

Newton 125 6.7 · 104 6.6 · 104 yes yes 121
1424 6.7 · 105 6.6 · 105 yes yes 1420
3488 1.7 · 106 1.7 · 106 yes yes 3486

1 The line x1 = x2, x3 = 0 is completely contained in the covering.

Example 4.3 Our last example shows that the subdivision algorithm also reliably
finds the global minimizers of objective functions with a larger number of variables.
For this we introduce the following function

g3 : Rn → R, g3(x) =
n∑

i=1

1 + x2
i (xi − 0.2)2(xi + 0.2)2 − cos(10πxi)

which has 3n global minimizers in [−2, 2]n.
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Using the subdivision algorithm we always find all the global minimizers of g3.
For n = 5 it is also possible to find all these points running the Quasi-Newton
method implemented in the NAG C-library (www.nag.com) with randomly chosen
initial points. However, the number of function and gradient evaluations is much
higher than for the subdivision procedure (cf. Table V). For n = 10 it seems to be
impossible to compute all the minimizers using this method while the subdivision
algorithm finds all of them successfully.

Table V: Comparison of the results for the subdivision algorithm and an optimiza-
tion method implemented in the NAG C-library applied to the function g3.

Dim Method function evaluations minimizers
g3 ∇g3 found

5 subdivision 1.0 · 107 4.3 · 106 243
NAG 9.5 · 105 9.5 · 105 41

9.6 · 106 9.6 · 106 211
3.8 · 107 3.8 · 107 243

10 subdivision 1.6 · 1010 6.7 · 109 59049
NAG 1.2 · 108 1.2 · 108 4

1.2 · 109 1.2 · 109 53
1.2 · 1010 1.2 · 1010 563
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